92 research outputs found

    A Method Based on Total Variation for Network Modularity Optimization using the MBO Scheme

    Get PDF
    The study of network structure is pervasive in sociology, biology, computer science, and many other disciplines. One of the most important areas of network science is the algorithmic detection of cohesive groups of nodes called "communities". One popular approach to find communities is to maximize a quality function known as {\em modularity} to achieve some sort of optimal clustering of nodes. In this paper, we interpret the modularity function from a novel perspective: we reformulate modularity optimization as a minimization problem of an energy functional that consists of a total variation term and an â„“2\ell_2 balance term. By employing numerical techniques from image processing and â„“1\ell_1 compressive sensing -- such as convex splitting and the Merriman-Bence-Osher (MBO) scheme -- we develop a variational algorithm for the minimization problem. We present our computational results using both synthetic benchmark networks and real data.Comment: 23 page

    Simplified Energy Landscape for Modularity Using Total Variation

    Get PDF
    Networks capture pairwise interactions between entities and are frequently used in applications such as social networks, food networks, and protein interaction networks, to name a few. Communities, cohesive groups of nodes, often form in these applications, and identifying them gives insight into the overall organization of the network. One common quality function used to identify community structure is modularity. In Hu et al. [SIAM J. App. Math., 73(6), 2013], it was shown that modularity optimization is equivalent to minimizing a particular nonconvex total variation (TV) based functional over a discrete domain. They solve this problem, assuming the number of communities is known, using a Merriman, Bence, Osher (MBO) scheme. We show that modularity optimization is equivalent to minimizing a convex TV-based functional over a discrete domain, again, assuming the number of communities is known. Furthermore, we show that modularity has no convex relaxation satisfying certain natural conditions. We therefore, find a manageable non-convex approximation using a Ginzburg Landau functional, which provably converges to the correct energy in the limit of a certain parameter. We then derive an MBO algorithm with fewer hand-tuned parameters than in Hu et al. and which is 7 times faster at solving the associated diffusion equation due to the fact that the underlying discretization is unconditionally stable. Our numerical tests include a hyperspectral video whose associated graph has 2.9x10^7 edges, which is roughly 37 times larger than was handled in the paper of Hu et al.Comment: 25 pages, 3 figures, 3 tables, submitted to SIAM J. App. Mat

    Stochastic Block Models are a Discrete Surface Tension

    Full text link
    Networks, which represent agents and interactions between them, arise in myriad applications throughout the sciences, engineering, and even the humanities. To understand large-scale structure in a network, a common task is to cluster a network's nodes into sets called "communities", such that there are dense connections within communities but sparse connections between them. A popular and statistically principled method to perform such clustering is to use a family of generative models known as stochastic block models (SBMs). In this paper, we show that maximum likelihood estimation in an SBM is a network analog of a well-known continuum surface-tension problem that arises from an application in metallurgy. To illustrate the utility of this relationship, we implement network analogs of three surface-tension algorithms, with which we successfully recover planted community structure in synthetic networks and which yield fascinating insights on empirical networks that we construct from hyperspectral videos.Comment: to appear in Journal of Nonlinear Scienc

    Multiclass Data Segmentation using Diffuse Interface Methods on Graphs

    Full text link
    We present two graph-based algorithms for multiclass segmentation of high-dimensional data. The algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation compressed sensing and image processing. A multiclass extension is introduced using the Gibbs simplex, with the functional's double-well potential modified to handle the multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm is a uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, grayscale and color images, and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current state-of-the-art multiclass segmentation algorithms.Comment: 14 page

    Community detection in networks via nonlinear modularity eigenvectors

    Get PDF
    Revealing a community structure in a network or dataset is a central problem arising in many scientific areas. The modularity function QQ is an established measure quantifying the quality of a community, being identified as a set of nodes having high modularity. In our terminology, a set of nodes with positive modularity is called a \textit{module} and a set that maximizes QQ is thus called \textit{leading module}. Finding a leading module in a network is an important task, however the dimension of real-world problems makes the maximization of QQ unfeasible. This poses the need of approximation techniques which are typically based on a linear relaxation of QQ, induced by the spectrum of the modularity matrix MM. In this work we propose a nonlinear relaxation which is instead based on the spectrum of a nonlinear modularity operator M\mathcal M. We show that extremal eigenvalues of M\mathcal M provide an exact relaxation of the modularity measure QQ, however at the price of being more challenging to be computed than those of MM. Thus we extend the work made on nonlinear Laplacians, by proposing a computational scheme, named \textit{generalized RatioDCA}, to address such extremal eigenvalues. We show monotonic ascent and convergence of the method. We finally apply the new method to several synthetic and real-world data sets, showing both effectiveness of the model and performance of the method

    Escape times for subgraph detection and graph partitioning

    Full text link
    We provide a rearrangement based algorithm for fast detection of subgraphs of kk vertices with long escape times for directed or undirected networks. Complementing other notions of densest subgraphs and graph cuts, our method is based on the mean hitting time required for a random walker to leave a designated set and hit the complement. We provide a new relaxation of this notion of hitting time on a given subgraph and use that relaxation to construct a fast subgraph detection algorithm and a generalization to KK-partitioning schemes. Using a modification of the subgraph detector on each component, we propose a graph partitioner that identifies regions where random walks live for comparably large times. Importantly, our method implicitly respects the directed nature of the data for directed graphs while also being applicable to undirected graphs. We apply the partitioning method for community detection to a large class of model and real-world data sets.Comment: 22 pages, 10 figures, 1 table, comments welcome!

    Geotagging One Hundred Million Twitter Accounts with Total Variation Minimization

    Full text link
    Geographically annotated social media is extremely valuable for modern information retrieval. However, when researchers can only access publicly-visible data, one quickly finds that social media users rarely publish location information. In this work, we provide a method which can geolocate the overwhelming majority of active Twitter users, independent of their location sharing preferences, using only publicly-visible Twitter data. Our method infers an unknown user's location by examining their friend's locations. We frame the geotagging problem as an optimization over a social network with a total variation-based objective and provide a scalable and distributed algorithm for its solution. Furthermore, we show how a robust estimate of the geographic dispersion of each user's ego network can be used as a per-user accuracy measure which is effective at removing outlying errors. Leave-many-out evaluation shows that our method is able to infer location for 101,846,236 Twitter users at a median error of 6.38 km, allowing us to geotag over 80\% of public tweets.Comment: 9 pages, 8 figures, accepted to IEEE BigData 2014, Compton, Ryan, David Jurgens, and David Allen. "Geotagging one hundred million twitter accounts with total variation minimization." Big Data (Big Data), 2014 IEEE International Conference on. IEEE, 201

    Total variation based community detection using a nonlinear optimization approach

    Get PDF
    Maximizing the modularity of a network is a successful tool to identify an important community of nodes. However, this combinatorial optimization problem is known to be NP-complete. Inspired by recent nonlinear modularity eigenvector approaches, we introduce the modularity total variation TVQTV_Q and show that its box-constrained global maximum coincides with the maximum of the original discrete modularity function. Thus we describe a new nonlinear optimization approach to solve the equivalent problem leading to a community detection strategy based on TVQTV_Q. The proposed approach relies on the use of a fast first-order method that embeds a tailored active-set strategy. We report extensive numerical comparisons with standard matrix-based approaches and the Generalized RatioDCA approach for nonlinear modularity eigenvectors, showing that our new method compares favourably with state-of-the-art alternatives

    An MBO scheme for clustering and semi-supervised clustering of signed networks

    Get PDF
    We introduce a principled method for the signed clustering problem, where the goal is to partition a weighted undirected graph whose edge weights take both positive and negative values, such that edges within the same cluster are mostly positive, while edges spanning across clusters are mostly negative. Our method relies on a graph-based diffuse interface model formulation utilizing the Ginzburg–Landau functional, based on an adaptation of the classic numerical Merriman–Bence–Osher (MBO) scheme for minimizing such graph-based functionals. The proposed objective function aims to minimize the total weight of inter-cluster positively-weighted edges, while maximizing the total weight of the inter-cluster negatively-weighted edges. Our method scales to large sparse networks, and can be easily adjusted to incorporate labelled data information, as is often the case in the context of semisupervised learning. We tested our method on a number of both synthetic stochastic block models and real-world data sets (including financial correlation matrices), and obtained promising results that compare favourably against a number of state-of-the-art approaches from the recent literature
    • …
    corecore