Geographically annotated social media is extremely valuable for modern
information retrieval. However, when researchers can only access
publicly-visible data, one quickly finds that social media users rarely publish
location information. In this work, we provide a method which can geolocate the
overwhelming majority of active Twitter users, independent of their location
sharing preferences, using only publicly-visible Twitter data.
Our method infers an unknown user's location by examining their friend's
locations. We frame the geotagging problem as an optimization over a social
network with a total variation-based objective and provide a scalable and
distributed algorithm for its solution. Furthermore, we show how a robust
estimate of the geographic dispersion of each user's ego network can be used as
a per-user accuracy measure which is effective at removing outlying errors.
Leave-many-out evaluation shows that our method is able to infer location for
101,846,236 Twitter users at a median error of 6.38 km, allowing us to geotag
over 80\% of public tweets.Comment: 9 pages, 8 figures, accepted to IEEE BigData 2014, Compton, Ryan,
David Jurgens, and David Allen. "Geotagging one hundred million twitter
accounts with total variation minimization." Big Data (Big Data), 2014 IEEE
International Conference on. IEEE, 201