8 research outputs found

    LEMP : a language engineering model-driven process

    Get PDF
    In this paper, we propose LEMP as a model-driven process to develop a language endowed with a set of derived artifacts (syntax, interchange format, APIs, ...) and with a well defined formal semantics. The process exploits the Model Driven Engineering principles of metamodeling, model transformation and automatic generation of language processing tools. We describe the requirements to fulfill and the development steps of this language engineering life cycle, including the validation activities regarding the syntactic and semantic aspects. As a proof-of-concepts, we apply LEMP to the Finite State Machines and we report our experience in developing a language for the Abstract State Machine formal method

    Metamodelling a formal method : applying MDE to abstract state machines

    Get PDF
    This paper presents the AsmM, a metamodel for Abstract State Machines developed by following the guidelines of the Model Driven Engineering. The AsmM represents concepts and constructs of the ASM formal method in an abstract way, it is endowed with a standard visual notation, and it is intended easy to learn and understand by practitioners and students. From the AsmM a concrete syntax is also proposed and a standard interchange format for a systematic integration of a number of loosely-coupled ASM tools is derived. The metamodelling advantages for tool interoperability are shown by referring to the experience in making the ATGT, an existing tool supporting test case generation for ASMs, compliant to the AsmM

    A Language-centered Approach to support environmental modeling with Cellular Automata

    Get PDF
    Die Anwendung von Methodiken und Technologien aus dem Bereich der Softwaretechnik auf den Bereich der Umweltmodellierung ist eine gemeinhin akzeptierte Vorgehensweise. Im Rahmen der "modellgetriebenen Entwicklung"(MDE, model-driven engineering) werden Technologien entwickelt, die darauf abzielen, Softwaresysteme vorwiegend auf Basis von im Vergleich zu Programmquelltexten relativ abstrakten Modellen zu entwickeln. Ein wesentlicher Bestandteil von MDE sind Techniken zur effizienten Entwicklung von "domänenspezifischen Sprachen"( DSL, domain-specific language), die auf Sprachmetamodellen beruhen. Die vorliegende Arbeit zeigt, wie modellgetriebene Entwicklung, und insbesondere die metamodellbasierte Beschreibung von DSLs, darüber hinaus Aspekte der Pragmatik unterstützen kann, deren Relevanz im erkenntnistheoretischen und kognitiven Hintergrund wissenschaftlichen Forschens begründet wird. Hierzu wird vor dem Hintergrund der Erkenntnisse des "modellbasierten Forschens"(model-based science und model-based reasoning) gezeigt, wie insbesondere durch Metamodelle beschriebene DSLs Möglichkeiten bieten, entsprechende pragmatische Aspekte besonders zu berücksichtigen, indem sie als Werkzeug zur Erkenntnisgewinnung aufgefasst werden. Dies ist v.a. im Kontext großer Unsicherheiten, wie sie für weite Teile der Umweltmodellierung charakterisierend sind, von grundsätzlicher Bedeutung. Die Formulierung eines sprachzentrierten Ansatzes (LCA, language-centered approach) für die Werkzeugunterstützung konkretisiert die genannten Aspekte und bildet die Basis für eine beispielhafte Implementierung eines Werkzeuges mit einer DSL für die Beschreibung von Zellulären Automaten (ZA) für die Umweltmodellierung. Anwendungsfälle belegen die Verwendbarkeit von ECAL und der entsprechenden metamodellbasierten Werkzeugimplementierung.The application of methods and technologies of software engineering to environmental modeling and simulation (EMS) is common, since both areas share basic issues of software development and digital simulation. Recent developments within the context of "Model-driven Engineering" (MDE) aim at supporting the development of software systems at the base of relatively abstract models as opposed to programming language code. A basic ingredient of MDE is the development of methods that allow the efficient development of "domain-specific languages" (DSL), in particular at the base of language metamodels. This thesis shows how MDE and language metamodeling in particular, may support pragmatic aspects that reflect epistemic and cognitive aspects of scientific investigations. For this, DSLs and language metamodeling in particular are set into the context of "model-based science" and "model-based reasoning". It is shown that the specific properties of metamodel-based DSLs may be used to support those properties, in particular transparency, which are of particular relevance against the background of uncertainty, that is a characterizing property of EMS. The findings are the base for the formulation of an corresponding specific metamodel- based approach for the provision of modeling tools for EMS (Language-centered Approach, LCA), which has been implemented (modeling tool ECA-EMS), including a new DSL for CA modeling for EMS (ECAL). At the base of this implementation, the applicability of this approach is shown

    Formal verification of automotive embedded UML designs

    Get PDF
    Software applications are increasingly dominating safety critical domains. Safety critical domains are domains where the failure of any application could impact human lives. Software application safety has been overlooked for quite some time but more focus and attention is currently directed to this area due to the exponential growth of software embedded applications. Software systems have continuously faced challenges in managing complexity associated with functional growth, flexibility of systems so that they can be easily modified, scalability of solutions across several product lines, quality and reliability of systems, and finally the ability to detect defects early in design phases. AUTOSAR was established to develop open standards to address these challenges. ISO-26262, automotive functional safety standard, aims to ensure functional safety of automotive systems by providing requirements and processes to govern software lifecycle to ensure safety. Each functional system needs to be classified in terms of safety goals, risks and Automotive Safety Integrity Level (ASIL: A, B, C and D) with ASIL D denoting the most stringent safety level. As risk of the system increases, ASIL level increases and the standard mandates more stringent methods to ensure safety. ISO-26262 mandates that ASILs C and D classified systems utilize walkthrough, semi-formal verification, inspection, control flow analysis, data flow analysis, static code analysis and semantic code analysis techniques to verify software unit design and implementation. Ensuring software specification compliance via formal methods has remained an academic endeavor for quite some time. Several factors discourage formal methods adoption in the industry. One major factor is the complexity of using formal methods. Software specification compliance in automotive remains in the bulk heavily dependent on traceability matrix, human based reviews, and testing activities conducted on either actual production software level or simulation level. ISO26262 automotive safety standard recommends, although not strongly, using formal notations in automotive systems that exhibit high risk in case of failure yet the industry still heavily relies on semi-formal notations such as UML. The use of semi-formal notations makes specification compliance still heavily dependent on manual processes and testing efforts. In this research, we propose a framework where UML finite state machines are compiled into formal notations, specification requirements are mapped into formal model theorems and SAT/SMT solvers are utilized to validate implementation compliance to specification. The framework will allow semi-formal verification of AUTOSAR UML designs via an automated formal framework backbone. This semi-formal verification framework will allow automotive software to comply with ISO-26262 ASIL C and D unit design and implementation formal verification guideline. Semi-formal UML finite state machines are automatically compiled into formal notations based on Symbolic Analysis Laboratory formal notation. Requirements are captured in the UML design and compiled automatically into theorems. Model Checkers are run against the compiled formal model and theorems to detect counterexamples that violate the requirements in the UML model. Semi-formal verification of the design allows us to uncover issues that were previously detected in testing and production stages. The methodology is applied on several automotive systems to show how the framework automates the verification of UML based designs, the de-facto standard for automotive systems design, based on an implicit formal methodology while hiding the cons that discouraged the industry from using it. Additionally, the framework automates ISO-26262 system design verification guideline which would otherwise be verified via human error prone approaches

    A Metamodel for SDL-2000 in the Context of Metamodelling ULF

    No full text
    Today the syntax of many languages is defined by using context-free grammars. These syntax definitions suffer from a major drawback: grammars do not allow the definition of abstract, reusable concept definitions. Especially in families of related languages, where multiple languages often share the same concepts, this limitation leads to unnecessary reproduction of concept definitions and a missing shared base for these related languages. Metamodels can contain inheritance hierarchies of concepts; thus multiple specifications can reuse and refine existing shared concept definitions. Therefore we propose a method to develop metamodels from existing syntax definitions. We explain our method by applying it to SDL-2000. The method starts with a mapping from BNF grammars into simple preliminary metamodels. Then, by supplying a relation between elements of these simple metamodels and abstract concepts, these metamodels are automatically transformed into metamodels that use existing descriptions of abstract concepts and thus allow a shared basis of common abstract concepts definitions.Peer Reviewe

    A Metamodel for SDL-2000 in the Context of Metamodelling ULF

    Get PDF
    Today the syntax of many languages is defined by using context-free grammars. These syntax definitions suffer from a major drawback: grammars do not allow the definition of abstract, reusable concept definitions. Especially in families of related languages, where multiple languages often share the same concepts, this limitation leads to unnecessary reproduction of concept definitions and a missing shared base for these related languages. Metamodels can contain inheritance hierarchies of concepts; thus multiple specifications can reuse and refine existing shared concept definitions. Therefore we propose a method to develop metamodels from existing syntax definitions. We explain our method by applying it to SDL-2000. The method starts with a mapping from BNF grammars into simple preliminary metamodels. Then, by supplying a relation between elements of these simple metamodels and abstract concepts, these metamodels are automatically transformed into metamodels that use existing descriptions of abstract concepts and thus allow a shared basis of common abstract concepts definitions.Peer Reviewe

    A Metamodel for SDL-2000 in the Context of Metamodelling ULF

    Get PDF
    Programme de l’année 2008-2009 : I. Les évêques dans la guerre féodale. — II. Questions diverses
    corecore