
A Metamodel for SDL-2000 in the Context of
Metamodelling ULF

Joachim Fischer, Michael Piefel, and Markus Scheidgen

Humboldt Universität zu Berlin
Institut für Informatik
Unter den Linden 6

10099 Berlin, Germany
(fischer|piefel|scheidge)@informatik.hu-berlin.de

Abstract. Today the syntax of many languages is defined by using
context-free grammars. These syntax definitions suffer from a major
drawback: grammars do not allow the definition of abstract, reusable
concept definitions. Especially in families of related languages, where
multiple languages often share the same concepts, this limitation leads
to unnecessary reproduction of concept definitions and a missing shared
base for these related languages.
Metamodels can contain inheritance hierarchies of concepts; thus multi-
ple specifications can reuse and refine existing shared concept definitions.
Therefore we propose a method to develop metamodels from existing
syntax definitions. We explain our method by applying it to SDL-2000.
The method starts with a mapping from BNF grammars into simple pre-
liminary metamodels. Then, by supplying a relation between elements of
these simple metamodels and abstract concepts, these metamodels are au-
tomatically transformed into metamodels that use existing descriptions
of abstract concepts and thus allow a shared basis of common abstract
concepts definitions.

1 Introduction

In the ongoing research on model driven software engineering the relations be-
tween different modelling languages are a key point. The approach in [1] uses
model transformation between eODL[2] and SDL-2000 [3] to drive software proj-
ects from design to implementation. Such a technology requires language align-
ment. To build such relations as transformation rules, between these languages,
we needed unified specifications for both of the participating languages. The need
of unifying the SDL-2000 grammar based syntax definition with the eODL meta-
model started our research on developing a metamodel for the SDL-2000 syntax.
But the metamodel of SDL-2000 only attacks the tip of a far more common
problem.

ITU-T recommends a long series of formalized languages, such as MSC,
ASN.1, TTCN and the already mentioned eODL and SDL. These languages were
developed independently using different specification techniques. Unfortunately,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127594754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this resulted in languages that are hard to relate to each other. But language
alignment is crucial for model driven engineering. It is important to know where
and how these languages can be used together, how to profit from an integrated
use of these languages. Consequently, the ITU-T started the Language Coordina-
tion Project [4] with the goal to unify the mentioned languages, thus to form the
Unified Language Family (ULF). The Language Coordination Project considers
two methodologies to achieve a coordinated syntax definition: a common syntax
for BNF grammars (a common meta-metagrammar) and metamodelling.

We figured the metamodelling technology to be more appropriate to define
the abstract syntax of a language, its concepts and its structure, than to use
context free grammars. We give the reasons for this opinion in the following
comparison of BNF grammars and metamodels:

Context free grammars, used in language specifications, are mostly in BNF.
The BNF syntax was developed to specify concrete language syntax. It is a math-
ematicly exact method to determine which words are in the described language
and which are not. To achive this, grammars use rules; these rules specify a set of
productions; these productions represent a set of words, words that form the lan-
guage described by the grammar. However, what grammars do not provide are
means for rule refinement or generalization, they do not allow modularization.
It is not possible to refine rules to form generalization hierarchies or to build
logical structures by using a namespace mechanism of some sort. Structure and
abstraction hierarchies are always flat.

This is a severe grammar disadvantage. The following two profits, known from
object-oriented languages, cannot be taken from a grammar based specification.
First, generalization, and thus refinement and reuse, as well as logical structures,
provided through mechanisms like namespaces and packages, are vital concepts
for compact and easy to understand language specifications. With these features
not only the words of a language can be specified, but the internal structure of the
described language can be defined. This allows a natural evolution of language
specifications and easy tool development. Second, in the context of language
families, a package of shared abstract concepts, concepts that are refined in
different languages, can directly align the concepts of different languages. This
allows the notation of inter language relations at specification time, and thus
allows unification of the participating languages.

These two points make clear that a modern language specification must offer
more than a pure syntax definition, it must show the language’s internal structure
and make it accessable to other language specifications. This is to allow the
notation of relations between different languages. Therefore we believe that a
syntax specification technique must provide the following two important meta-
meta-concepts. First, generalization; the building blocks of a syntax definition
must be refinable. One must be able to define abstract concepts and one must
be able to use them in multiple concrete refinements in the definition of the
same and in the definition of different languages. Second, structural composition;
to use the same concepts in different language definitions and to allow bigger
language definitions, namespaces for structured specification must be provided.

Both concepts, generalization and structural composition, are provided by
modern metamodelling architectures; Atkinson’s work[5] gives a good introduc-
tion into the subject. As object-oriented modelling platforms, metamodelling
architectures provide a generalization mechanism as well as a namespace mech-
anism. Metamodels are designed for abstract syntax, or better static concept
definition. As a side effect the meta-language as well as the languages to be mod-
elled are object oriented modelling languages. Due to that common nature, an
expert in the specified language is often also well trained in the used specification
technique.

After we were aware of the potential of metamodelling for language specifica-
tion, we faced the problem of providing this metamodelling features to already
existing, grammar based language specifications. Therefore we propose a method
that allows to develop a metamodel from an existing grammar based syntax def-
inition. The method fulfils two requirements: It is partially automated to avoid
the error-prone task of manual grammar to metamodel transformation and the
resulting metamodels use a set of abstract concept definitions. These abstract
concepts are to be identified by a language expert and can be shared in the
specification of different languages or in the specification of a hole family of
languages.

To prove and explain our method, we applied it to a part of the abstract
SDL-2000[3] syntax. The developed metamodel covers all of SDL’s structural
concepts. The reason for modelling only structural concepts is that structural
concepts are by far the best researched concepts, and various abstract concepts
for many languages are already identified and modelled[6]. Thus we can fully
concentrate on the method and general metamodelling aspects. But of course
the method is independent from what is modelled; therefore it also works for
other parts of language specifications like the description of behaviour or data
concepts.

We tried to stay as general as possible, to make the method applicable with
most existing metamodelling architectures. But a few requirements had to be
made. The metamodelling architecture has to consist of at least four layers[7].
The method is made for a strict[5] metamodelling environment; but that does
not imply that it will not work for a loose metamodelling architecture as well.
The used M3 layer model must include a generalizable class concept, associations,
namespaces and a package concept.

The mentioned properties are fulfilled by the most important metamodelling
architectures: MOF 1.4[8], UML 2.0[6], OML[9], and even formal metamodelling
techniques like VPM[10]. We used the meta-metamodel in [8] and implemented
our method by using JMI[11], which is a MOF 1.4 based metamodelling stan-
dard[8].

In section 2 we give an overview over the developed method. The sections
3 and 4 cover the necessary steps of that method. The concluding section 5
compares the resulting SDL-2000 metamodel with the original grammar based
syntax definition, it summarizes the paper, and it gives some further research
perspectives.

2 A method for metamodelling existing languages

language defintion BNF grammar

primitive metamodel

metamodel

static semantic

constraints

abstract concepts

mapping application(1)

transient metamodel

model transformation(2)

model transformation(2)model transformation(2)

model transformation

Fig. 1. The steps involved in the presented metamodel development.

The steps involved in our method are presented in figure 1. The whole process
is based on an already existing syntax and static semantics specification. This
paper addresses only the grammar part of language definitions; it does not cover
aspects of static semantics. A complete presentation of the method, including
static semantics concerns, can be found in [12].

The development of a metamodel from a BNF grammar includes two steps.
First a preliminary metamodel is generated from the existing BNF grammar. We
required our method to do this step automatically, because a manual transfor-
mation from a grammar to a metamodel would be cause to many errors due to
human failure. Metamodels are more expressive than grammars. Thus it was easy
to find a grammar to metamodel mapping. Section 3 describes this mapping.

Of course, implied by this automatic transformation, the resulting metamodel
only uses meta-concepts already provided by BNF grammars. Thus neither gen-
eralization nor structural composition are used. All concept definitions reside in
the same namespace and they form a flat hierarchy.

To use the more advanced concepts generalization and structural composi-
tion some human input is needed. Along our second method requirement two
things have to be provided by a language expert. First, abstract concepts must
be identified and modelled. Of course there are different levels of abstraction.
Some concepts are very abstract and shared by many languages, like general-
ization, namespaces or a type system, others are more specific to the modelled
language like SDL’s instance sets. In section 4.3 we show the models of a package

consisting of general abstract concepts and a package consisting of the abstract
SDL concepts, that we could identify. The second kind of information that must
be provided by a human expert is: Which concrete language concept is a refine-
ment of which identified abstract concept? We call this information a semantic
mapping. A model transformation engine can now use both inputs, abstract con-
cept definitions and semantic mapping, to automatically convert the preliminary
primitive metamodel into the final metamodel. The semantic mapping and the
transformation engine are explained in 4.3.

3 Generating metamodels from BNF grammars

BNF grammars, primarily used in the definition of computer languages, are
basically context free grammars. The rules of such grammars replace a non-
terminal with a regular expression containing non-terminals and terminals. These
regular expressions may use the composition, alternative, arbitrary, at-least-one
and optional constructs. An example of such rules, taken from the abstract
procedure definition syntax of SDL-2000, is presented in figure 2.

1Procedure definition :: Procedure name
2Procedure formal parameter∗
3[Result]
4Procedure graph;
5

6Procedure name = Name;
7

8Procedure formal parameter = In parameter
9| Inout parameter
10| Out parameter;

Fig. 2. SDL-2000 abstract syntax example.

For a better understanding of the concepts used in BNF grammars and their
relationships figure 3 presents a meta-metamodel for BNF grammars. Now we are
modifying this grammar meta-metamodel until it becomes a meta-metamodel
for common metamodelling architectures. Along the modifications made on the
meta-meta-level we show a mapping from BNF concepts to the concepts of meta-
modelling. Thus creating transformation rules for the meta-level, which are used
in the automatic grammar to metamodel conversion.

The first modification is to use concepts out of the concept space of object-
oriented metamodelling, as long these concepts can replace the respective gram-
mar concepts isomorphicly. Figure 4 shows a more general model than 3. It uses
the metamodelling concepts class and relation for the grammar concepts symbol,
terminal, non-terminal and rule. Unfortunately, the concept Expression and its
specializations have no equivalent in metamodelling.

Symbol

Terminal NonTerminal Rule1
1

Alternative

Composition

ArbitraryAtLeastOneOptional

Expression
1

1 1..n

+subexpression

1

+subexpression

Fig. 3. BNF grammar meta-metamodel.

When you think about the semantics of Composition and Alternative, they
turn out to be those of Association and Generalization. Associations allow the lin-
ear composition of classes, alias symbols, and specialized classes are alternative
realizations of the general class, alias symbol. This leads to the idea of mapping
compositions and alternatives to associations and generalizations. The expres-
sion kinds that describe multiplicities, can be compared to the multiplicity of
association ends in object-oriented metamodelling. A modified meta-metamodel
realizing this ideas is shown in figure 5.

Expressions allow the recursive composition of an unlimited depth of sub-
expressions. To respect that, Class in figure 5 is modelled as a generalization

Class Relation1
1

Alternative

Composition

ArbitraryAtLeastOneOptional

Expression
1

1 1..n

+subexpression

1

+subexpression

Fig. 4. Homomorphous modifications.

Multiplicity

kind : MultiplicityKind

Class

Generalization

Association

1

 Expression

1

1

MultiplicityKind

Arbitrary
AtLeastOne
Optional
One

«enumaration»

{xor}

1

1

Fig. 5. Associations and generalizations for relations rather than compositions and
alternativs as expressions.

to Expression. Thus allowing Expression to relate with itself. But there is no
reason not to completly identify Class with Expression, see figure 6.

MultiplicityKind

Arbitrary
AtLeastOne
Optional

«enumaration»

Multiplicity

kind : MultiplicityKind

Association

1

Generalization

Class
1

1

One

1

1

Fig. 6. A more usual meta-metamodel.

Now it is easy to build transformation rules along the meta-metamodel evo-
lution from figure 3 to figure 6. The only problematic thing are the names for
classes that represent sub-expressions. In BNF grammars sub-expressions are
nameless and are only separated by the use of parentheses. But classes in meta-
modelling are named model elements. We simply name the classes that represent
sub-expression rather than symbols with unused new names.

The developed BNF grammar to metamodel transformation rules are:

1. Every symbol is represented through a class.
2. A rule with a single symbol on the right is represented through an association

that associates the class representing the left hand symbol with the class
representing the right hand symbol.

3. A rule with an composition on the right is represented through an association
for every composed sub-expression.

4. A rule with an alternative on the right is represented through a generalization
for every alternated sub-expression.

5. A sub-expression consisting only of a single symbol is represented through
that symbol’s class.

6. A sub-expression that is a composition or an alternative is represented
through a new class, with a so-far unused name. The composition or al-
ternative is transformed as in 2 or 3, but with the new class as the left hand
representative.

7. A sub-expression of multiplicity kind, that is part of a composition, is trans-
formed to an equivalent multiplicity kind of the proper association end.

8. An expression of multiplicity kind or a sub-expression of multiplicity kind,
that is part of an alternative, is represented through a new class with a so far
unused name. An association is introduced between that new class and the
class that represents the multiplied sub-expression, with proper multiplicity.

In_parameter Out_parameter Inout_parameter

Procedure_formal_parameter

Result

Procedure_definition

0..n

0..1

Procedure_graph

1

Procedure_name1 Name1

Fig. 7. The example grammar part mapped into a metamodel.

We implemented a simple tool, consisting of a BNF grammar parser, the
implemented transformation rules, and a XML generator, producing the meta-
model in XMI format. XMI is a standard format for metamodel exchange. This
tool called agramm successfully transforms the abstract SDL-2000 grammar. Fig-
ure 7 shows a part of it. It shows that syntax part that is shown in the grammar
example in figure 2 at the beginning of this section.

4 The use of abstract concepts

4.1 Beyond the grammar to metamodel mapping

The metamodels one get by applying the described mapping from a BNF gram-
mar can be called primitive at best. The reason is, of course, that those primitive

metamodels can only be as expressive as the original grammar is. We identified
three categories of problems in that the primitive metamodels must be improved.

First, those primitive metamodels suffer from the same drawback as the orig-
inal grammars: They do not use and reuse abstract concept descriptions. One
example are the structural type concepts in SDL-2000, namely Agent type defini-
tions and Composite-state type definitions. These two concepts are generalizable,
they can be instantiated, they are namespaces for a number of other SDL con-
cepts, and so forth. But these abstract concepts are specified separately for both
of that elements, instead of being defined once and then reused. Especially be-
ing a namespace is a property that even more SDL concepts like procedures and
packages share. Furthermore, namespace is an abstract concept used by many
other languages; take eODL for an example.

The second problem is that grammars are very limited in their meta-meta-
concepts, and so there are many metamodelling features that are not used by
the automatic generated metamodels. In the grammar example in figure 2, both
Procedure definition and Procedure name are described by a symbol. Therefore
both concepts are modelled by a class in the generated metamodel. Of course,
that is bad metamodelling technique. The name of a procedure should rather be
modelled through a string attribute. The same problem lays in the modelling of
associations. Metamodelling concepts like navigability, aggregation, etc. cannot
be stated in grammars, and so they are not used in the generated metamodel,
even if their usage would be appropriate.

The third problem is what can be called textual syntax rudiments. These are
concepts like identifier and qualifier. In a text based language they are needed
to identify objects. To do so they represent a logical relation between the ob-
ject definition and its usage, like the definition of a variable and its usage in
an expression. In a metamodel and its model instances these concepts are not
necessary. These relations can be modelled by associations and their instances,
called links. In other words these are concepts that already exist as meta-meta-
concepts and have not to be redefined. Of course, identifier and qualifier are
needed in concrete model notations to represent those relations, but they serve
no purpose in an abstract language definition.

Of course the first problem category and its solution, that is the introduction
of abstract concept definitions, is the most interesting. The usage of abstract
concepts leads to better structured and reusable syntax definitions and thus
presents the biggest advantage in comparison with a grammar based syntax
definition.

In addition to that, it turned out that, in the case of SDL-2000, the most
concepts that cause problems of the second and third category are potentially
abstract concepts. Potential means that these are concrete concepts that should
be replaced by abstract definitions. Thus these faulty concrete realizations will
vanish when abstract concepts are introduced. For example: The name feature
in the procedure example causes a problem of category two; the concept name
is realised through a class instead a string attribute. But it also is a potentially
abstract feature. There are a lot of SDL concepts that have a name property.

That is why it is most likely that after the introduction of an abstract named
model element concept, the concrete concept procedure definition has lost its
distinctive name property and inherits it from the abstract concept, instead.
The same can be said about identification and qualification. They are often
used by concepts that are potentially abstract, and thus they will not be used
after well modelled abstract concepts have been introduced. In this paper we
concentrate on the more interesting category one: The introduction of abstract
concept definitions.

4.2 Abstract concept definitions

First we present the abstract concept definitions that we used for the SDL-
2000 metamodel. There are different levels of abstractions. Some concepts are so
general that they are used in virtually every object-oriented language, others are
more specific and may only be reused among related languages or only within
one language.

Figure 8 shows the abstract structure concepts used by most object-oriented
languages. A detailed explanation and documented development of that model
can be found in [12]. The resemblance to the most known languages might strike
the reader’s eye. They are also used in the successful metamodels of UML and
the meta-metamodel of MOF.

TypedElement

«reference» type : ModelElement

GeneralizableElement

isAbstract : Boolean
«reference» supertypes : GeneralizableElement

allSupertypes()
lookupElementExtended()

0..n

0..n

Generalizes

+supertype

+subtype

Namespace

«reference» contents : ModelElement

lookupElement()

ModelElement

name : String
«reference» container : Namespace

1

0..n

+type

1

+typedElement

IsTypeOf

0..n

1

Contains

+containedElement

+container

Fig. 8. Abstract concepts.

But even more abstract concepts could be obtained from SDL’s syntax itself.
Even if they may turn out to be more specific, perhaps distinctive to SDL, they

GeneralizableElement

TypedElement

BodiedElement

ModelElement 0..1

+bodiedElement

+body
BodiedElement body

StructureTypedElement

DataTypedElement

StructureType

ParameterizedElement

Parameter

1

0..n

+parameterizedElement

+parameter

Parameter

Procedure_parameter

kind : Procedure_formal_parameter_kind

Procedure_definition

Agent_type_definition

Agent_definition

Variable_definition

Fig. 9. Abstract SDL-2000 concepts.

still allow a more compact and therefore easier to understand and easier to use
metamodel. Figure 9 presents the additional abstract concepts that we were
able to identify in the SDL-2000 syntax. A few concrete concepts, those that are
marked grey, are shown too. That is to ease the understanding and shorten the
necessary explanations. A few remarks:

– Many SDL concepts reference a body of some sort. Procedures for example
must contain a state automaton defining their behaviour. This state automa-
ton is referred as a body. The same is true for process typed Agents or the
bodies in Composite-state types. To respect the varying nature of bodies,
they are modelled to be the most abstract concept: ModelElement.

– Parameters are used by a variety of SDL concepts. Agent types, Procedures,
Composite-state types have parameters. Even if Procedure uses a special form
of parameter, the parameter itself is a typed element in any case.

– In SDL-2000 two type concepts coexist. A type is something that describes
a set of instances or values. In SDL a type can on the one hand be a data

type, like a Signal definition or a primitive data type and on the other hand
a type can be a structure type like Agent type or Composite-state type.

– Structure types are instancable, generalizable, parameterized types. There-
fore structure types are a combination of the generalizable concept, parame-
terized concept and the body possession concept.

As a reminder: one may criticize that the displayed model allows unwanted in-
stances, that procedure for example may contain a non-procedure parameter, or
a structure-typed element may reference a data type. Obviously some restrictions
have to be added to the model. Actually these constraints are considered static
semantics and are not covered by this paper, but [12] addresses that matter by
using a predicate logic formalism to further limit the set of possible metamodel
instances.

4.3 Combining primitive metamodels with abstract concept
definitions

Now we have sets of abstract metamodel elements and a generated primitive
grammar-based metamodel. But how to combine these model elements to form
a single metamodel? Two things must be realized: First, the concrete concepts
must be marked as specializations of the introduced abstract concepts. And
second, features and rudiments of concrete elements that are already defined
or realized by the corresponding abstract model element must be removed. To
accomplish this task, we use model transformation.

common abstract
concepts

concrete concepts

metamodel

semantic
mapping

abstract but language specific
concepts

BNF grammar

primitive
metamodel

transformation

represents

Fig. 10. Transforming the primitive metamodel.

Figure 10 shows the basic idea of this transformation. We already have the
grammar that is represented by the primitive metamodel, and we already have

common as well as more language specific abstract model elements. To complete
the metamodel, we have to transform the concrete concepts of the primitive
metamodel to actually become specializations of the abstract model elements.

To do so some information from a language expert is needed. That is in-
formation about the nature of the concrete language concepts, something that
can be given through a semantic mapping between the primitive metamodel
elements and the abstract model elements. This mapping must say which con-
crete concept is a specialization of what abstract concept and how it refines the
abstract concept. With this information the transformation itself can be done
automatically.

How it works: The semantic mapping is a partial relation that assigns con-
crete metamodel elements to the most appropriate abstract model element. The
mapping of model elements does not only involve a mapping between classes,
but a mapping between relations as well.

1agentTypeDefinition = new SdlStructureTypeAdaptor(
2”Agent type definition”);
3agentTypeDefinition.addSupertypeType(”Agent type defintion”);
4agentTypeDefinition.addBodyType(”State machine definition”);
5agentTypeDefinition.addParameterType(”Agent formal parameter”);
6agentTypeDefinition.addContainedType(”Agent type definition”);
7agentTypeDefinition.addContainedType(”Procedure definition”);
8agentTypeDefinition.addContainedType(”Agent definition”);
9...

Fig. 11. An example taken from the semantic mapping used for the SDL-2000 meta-
model.

As an example figure 11 presents a part of the semantic mapping used for the
SDL-2000 metamodel. The first line assigns Agent type definition to be a special-
ization of the abstract concept class StructureType. The second line maps agent
type definition’s association with itself to be a specialization of the generalization
association introduced by one of agent type definition’s new super meta-classes:
GeneralizableElement. Line three maps agent type definition’s association with
state machine definition to be a specialization of the body association introduced
by another new super type of agent type definition: BodiedElement. Line four
refines the inherited features of the abstract concept ParameterizedElement, the
other lines refine the inherited features of the abstract concept Namespace.

This mapping is actually Java code. That is because we realized the transfor-
mation using JMI [11] a Java based API for metadata management. For every
abstract concept an adaptor class was written in Java. SdlStructureTypeAdap-
tor is such an adaptor. The inheritance hierarchy of the adaptors is aligned
to the hierarchy form by the corresponding abstract concepts. Thus the super
types of SdlStructureTypeAdaptor are GeneralizableElementAdaptor, Parameter-

izedElementAdaptor, BodiedElementAdaptor, NamespaceAdator and ModelEle-
mentAdator.

For every abstract concept class a adaptor class was written, for every con-
crete class a adaptor instance is created by the semantic mapping. The con-
structor that is used maps the concrete concept class to the abstract concept
class. This means the constructor uses JMI to introduce a new generalization
relation between the abstract concept class and the concrete concept class that
is provided through the constructor’s parameter.

For every abstract association or attribute a method was written. The method
is owned by the adaptor class for the abstract concept class, that the associa-
tion or attribute is originated in. For every concrete association a method call is
used. This Java method call maps the concrete association to the corresponding
abstract association. Therefore the Java method deletes the old concrete associ-
ation, originally generated through the grammar to metamodel generator, and
replaces it with a refinement of the abstract association. This refinement is done
through the addition of a constraint. The concrete association is identified by
taking the concrete class for one end and taking the class provided through the
Java method’s parameter for the other end.

For example, look at line 2 of the previous semantic mapping example 11.
Originated in SDL’s abstract grammar, a concrete association between Agent -
type definition and Agent type definition exists in the primitive metamodel. This
association refers to the inheritance relationship between two agent types. Line
2 maps the abstract association Generalizes of StructureType’s and therefore
Agent type definition’s meta- superclass GeneralizableElement. The invoked Java
method removes the original concrete association and replaces it by a constraint
that restricts the abstract inherited Generalizes association to allow only links
between two instances of Agent type definition. The mapping of StructureType
associations then continues for the abstract associations Contains and Element-
Body.

This way the mapping works as a chain of commands that transforms the
metamodel according to the semantics given by the mapping. After the whole
mapping is applied, all concrete concepts are specializations of abstract ones, all
concrete associations and rudiments have been removed and replaced by con-
straints that restrict abstract associations or attributes. The only things left are
a few concrete concepts for which no appropriate abstract concepts could yet be
identified. For these concepts some manual transformations have to be made.

In particular, the explained SDL-2000 metamodel lacks an abstract concept
for the SDL communication concepts channel and gate, as well as the concrete
agent-instance- set concept that uses minimum and maximum instance numbers.
An abstract relation concept may be very useful, because relations occur in
many languages as well as in the behaviour of SDL itself. Therefore it should be
introduced when the metamodel family grows, and the abstract basis becomes
larger. The second left-out concept on instance sets is, as far the authors know,
unique to SDL, and therefore only a concrete description is needed.

5 Conclusions

We presented a method that allows the development of metamodels from existing
syntax definitions. The presented method shows the following characteristics:

– It is partially automatic and thus less error-prone.
– The only human input that is needed is a model of abstract concepts; a

mapping from concrete, grammar originated, model elements to abstract
model elements; and a transformation rule for every abstract concept, that
transforms generated concrete elements to become specializations of abstract
elements.

– Modelled abstract elements and transformation rules are reusable and ex-
tendable and can be used in the development of multiple metamodels. That
is an even bigger advantage in the modelling of language families.

We applied and tested our method on SDL-2000. The resulting metamodel
shows the following characteristics and advantages, when compared to the origi-
nal grammar based syntax definition.

– Due to the extensive usage of abstract model elements and refinement the
resulting SDL metamodel is compact and easy to understand. Abstractions
are already noted in the metamodel itself, they have not to be explained in
additional text. The inheritance hierarchy of concepts can be directly and
naturally used in the development of object-oriented SDL tools.

– The metamodel includes and is based on a reusable refinable abstract basis.
This basis can easily be reused in metamodels of languages that share the
same concepts. A shared set of abstract concepts can be used in a unified
specification of language families and allows a direct alignment of languages
that share the same abstract concepts.

– The concepts of the metamodel are well structured by the use of packages.
Due to such structural concepts like namespaces and packages, metamodels
can be easily combined and related to each other.

These advantages over grammars are mostly based on the metamodelling
concepts generalizability and namespaces. Both are concepts that grammars can
not support.

But even if we see many advantages of the metamodelling side, we have to
admit that metamodels cannot replace grammars in the specification of concrete
syntax. When it comes to the task of defining and parsing textual notation the
formal foundations and exact semantics of grammars cannot be yet replaced. But
in defining the concepts of a language in an abstract manner to derive semantics
definitions, tool development and human understanding from it, the advantages
of metamodels are superior.

We developed a series of tools to support the method application and meta-
model development. A tool called agramm was created that allows automatic
transformation from BNF grammar to MOF metamodels. The API mmm, based

on JMI [11], is a framework for metamodel transformations that uses refinable
transformation rules.

There are a few problems that should be addressed by further research. First,
the metamodelling of behaviour concepts is not yet satisfactory. Abstract be-
haviour concepts must be identified and should be used for the completion of
the SDL-2000 metamodel. Second, with the metamodel for SDL-2000 we started
to build an abstract set of concepts. It should be used and extended in the
metamodelling of other ULF languages. Third, the relations of abstract ULF
concepts to the concepts used in UML should be researched for easier UML pro-
filing or other language integration. And fourth and last, the most challenging
problem is metamodelling of dynamics. The formal specification of SDL-2000
showed a way to specify a language’s dynamic semantics, using Abstract State
Maschines[13]. Integration of that knowledge into metamodelling architectures
could be result in an unified metamodelling technique for reusable syntax and
semantics definition.

References

1. Böhme, H., Fischer, J.: eODL and SDL in combination for components. In: Fourth
SDL and MSC Workshop. (2004)

2. ITU-T Z.130: Extended Object Definition Language (eODL), International
Telecommunication Union (2003)

3. ITU-T Z.100: Specification and Description Language (SDL), International
Telecommunication Union (2002)

4. Reed, R.: Language Coordination Project – Revised information – Workshop
results, International Telecommunication Union (2003) TD 3145.

5. Atkinson, C.: Meta-Modeling for Distributed Object Environments. In: 1st Inter-
national Enterprise Distributed Object Computing Conference. (1997)

6. UML 2.0: Infrastructure Final Adopted Specifcation. Object Management Group
(2003) ptc/2003-09-15.

7. Crawley, S., Davis, S., Indulska, J., McBride, S., K.Raymond: Meta-meta is better-
better! In: IFIP WG 6.1 International Working Conference on Distributed Appli-
cations and Interoperable Systems(DAIS’97). (1997)

8. MOF 1.4: Meta Object Facility, Version 1.4. Object Management Group (2003)
formal/2002-04-03.

9. Handerson-Sellers, B., Firesmith, D., Graham, I., Page-Jones, M.: OPEN Modeling
Language (OML) Meta-model Specification, Version 1.0. (1996)

10. Varró, D., Pataricza, A.: VPM: Mathematics of Metamodeling is Metamodeling
Mathematics. Journal of Software and Systems Modelling (2003) 1–24

11. JMI: The Java Metadata Interface(JMI) Specification(Final Release). Java Com-
munity Process (2002) JSR-000040.

12. Scheidgen, M.: Metamodelle für Sprachen mit formaler Syntaxdefinition, am
Beispiel von SDL-2000. Humboldt Universität zu Berlin (2004) master thesis.

13. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In Börger, E., ed.: Specifica-
tion and Validation Methods. Oxford University Press (1995) 9–36

