136 research outputs found

    An Accurate and Robust Numerical Scheme for Transport Equations

    Get PDF
    En esta tesis se presenta una nueva técnica de discretización para ecuaciones de transporte en problemas de convección-difusión para el rango completo de números de Péclet. La discretización emplea el flujo exacto de una ecuación de transporte unidimensional en estado estacionario para deducir una ecuación discreta de tres puntos en problemas unidimensionales y cinco puntos en problemas bidimensionales. Con "flujo exacto" se entiende que se puede obtener la solución exacta en función de integrales de algunos parámetros del fluido y flujo, incluso si estos parámetros son vari- ables en un volumen de control. Las cuadraturas de alto orden se utilizan para lograr resultados numéricos cercanos a la precisión de la máquina, incluso con mallas bastas.Como la discretización es esencialmente unidimensional, no está garantizada una solución con precisión de máquina para problemas multidimensionales, incluso en los casos en que las integrales a lo largo de cada coordenada cartesiana tienen una primitiva. En este sentido, la contribución principal de esta tesis consiste en una forma simple y elegante de obtener soluciones en problemas multidimensionales sin dejar de utilizar la formulación unidimensional. Además, si el problema es tal que la solución tiene precisión de máquina en el problema unidimensional a lo largo de las líneas coordenadas, también la tendrá para el dominio multidimensional.In this thesis, we present a novel discretization technique for transport equations in convection-diffusion problems across the whole range of Péclet numbers. The discretization employs the exact flux of a steady-state one-dimensional transport equation to derive a discrete equation with a three-point stencil in one-dimensional problems and a five-point stencil in two-dimensional ones. With "exact flux" it is meant that the exact solution can be obtained as a function of integrals of some fluid and flow parameters, even if these parameters are variable across a control volume. High-order quadratures are used to achieve numerical results close to machine- accuracy even with coarse grids. As the discretization is essentially one-dimensional, getting the machine- accurate solution of multidimensional problems is not guaranteed even in cases where the integrals along each Cartesian coordinate have a primitive. In this regard, the main contribution of this thesis consists in a simple and elegant way of getting solutions in multidimensional problems while still using the one-dimensional formulation. Moreover, if the problem is such that the solution is machine-accurate in the one-dimensional problem along coordinate lines, it will also be for the multidimensional domain.<br /

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Tensor B-spline numerical method for PDEs : a high performance approach

    Get PDF
    Solutions of Partial Differential Equations (PDEs) form the basis of many mathematical models in physics and medicine. In this work, a novel Tensor B-spline methodology for numerical solutions of linear second-order PDEs is proposed. The methodology applies the B-spline signal processing framework and computational tensor algebra in order to construct high-performance numerical solvers for PDEs. The method allows high-order approximations, is mesh-free, matrix-free and computationally and memory efficient. The first chapter introduces the main ideas of the Tensor B-spline method, depicts the main contributions of the thesis and outlines the thesis structure. The second chapter provides an introduction to PDEs, reviews the numerical methods for solving PDEs, introduces splines and signal processing techniques with B-splines, and describes tensors and the computational tensor algebra. The third chapter describes the principles of the Tensor B-spline methodology. The main aspects are 1) discretization of the PDE variational formulation via B-spline representation of the solution, the coefficients, and the source term, 2) introduction to the tensor B-spline kernels, 3) application of tensors and computational tensor algebra to the discretized variational formulation of the PDE, 4) tensor-based analysis of the problem structure, 5) derivation of the efficient computational techniques, and 6) efficient boundary processing and numerical integration procedures. The fourth chapter describes 1) different computational strategies of the Tensor B-spline solver and an evaluation of their performance, 2) the application of the method to the forward problem of the Optical Diffusion Tomography and an extensive comparison with the state-of-the-art Finite Element Method on synthetic and real medical data, 3) high-performance multicore CPU- and GPU-based implementations, and 4) the solution of large-scale problems on hardware with limited memory resources

    Fundamental solution based numerical methods for three dimensional problems: efficient treatments of inhomogeneous terms and hypersingular integrals

    No full text
    In recent years, fundamental solution based numerical methods including the meshless method of fundamental solutions (MFS), the boundary element method (BEM) and the hybrid fundamental solution based finite element method (HFS-FEM) have become popular for solving complex engineering problems. The application of such fundamental solutions is capable of reducing computation requirements by simplifying the domain integral to the boundary integral for the homogeneous partial differential equations. The resulting weak formulations, which are of lower dimensions, are often more computationally competitive than conventional domain-type numerical methods such as the finite element method (FEM) and the finite difference method (FDM). In the case of inhomogeneous partial differential equations arising from transient problems or problems involving body forces, the domain integral related to the inhomogeneous solutions term will need to be integrated over the interior domain, which risks losing the competitive edge over the FEM or FDM. To overcome this, a particular treatment to the inhomogeneous term is needed in the solution procedure so that the integral equation can be defined for the boundary. In practice, particular solutions in approximated form are usually applied rather than the closed form solutions, due to their robustness and readiness. Moreover, special numerical treatment may be required when evaluating stress directly on the domain surface which may give rise to hypersingular integral formulation. This thesis will discuss how the MFS and the BEM can be applied to the three-dimensional elastic problems subjected to body forces by introducing the compactly supported radial basis functions in addition to the efficient treatment of hypersingular surface integrals. The present meshless approach with the MFS and the compactly supported radial basis functions is later extended to solve transient and coupled problems for three-dimensional porous media simulation

    Hybrid coupling of CG and HDG discretizations based on Nitsche’s method

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Computational mechanics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00466-019-01770-8A strategy to couple continuous Galerkin (CG) and hybridizable discontinuous Galerkin (HDG) discretizations based only on the HDG hybrid variable is presented for linear thermal and elastic problems. The hybrid CG-HDG coupling exploits the definition of the numerical flux and the trace of the solution on the mesh faces to impose the transmission conditions between the CG and HDG subdomains. The con- tinuity of the solution is imposed in the CG problem via Nitsche’s method, whereas the equilibrium of the flux at the interface is naturally enforced as a Neumann con- dition in the HDG global problem. The proposed strategy does not affect the core structure of CG and HDG discretizations. In fact, the resulting formulation leads to a minimally-intrusive coupling, suitable to be integrated in existing CG and HDG libraries. Numerical experiments in two and three dimensions show optimal global convergence of the stress and superconvergence of the displacement field, locking-free approximation, as well as the potential to treat structural problems of engineering interest featuring multiple materials with compressible and nearly incompressible behaviors.Peer ReviewedPostprint (author's final draft

    Meshless methods for Maxwell’s equations with applications to magnetotelluric modelling and inversion

    Get PDF
    The first part of thesis presents new meshless methods for solving time harmonic electromagnetic fields in closed two- or three-dimensional volumes containing heterogeneous materials. This new methods will be used to simulate magnetotelluric experiments, when an Earth conductivity model is given in advanced. Normally, classical approximation methods like finite elements or finite differences are used to solve this task. The algorithms here in this thesis, only need an unstructured point sampling in the modelling domain for the discretization and is able to gain a solution for the partial differential equation without a fixed mesh or grid. This is advantageous when complex model geometries have to be described, because no adapted mesh or grid need to be generated. The meshless methods, described here in this thesis, use a direct discretization technique in combination with a generalized approximation method. This allows to formulate the partial differential equations in terms of linear functionals, which can be approximated and directly form the discretization. For the two-dimensional magnetotelluric problem, a second-order accurate algorithm to solve the partial differential equations was developed and tested with several example calculations. The accuracy of the new meshless methods was compared to analytical solutions, and it was found, that a better accuracy can be achieved with less degrees of freedoms compared to previously published results. For the three-dimensional case, a meshless formulation was given and numerical calculations show the ability of the scheme to handle models with heterogeneous conductivity structures. In the second part of this thesis, the newly developed two-dimensional simulation method will be used in an inversion scheme. Here, the task is to recover the unknown Earth conductivity model with the help of data gained from a magnetotelluric experiment. Due to the previously developed meshless approximation algorithm, some numerical tasks during the inversion can be simplified by reusing the discretization defined on the point sampling from the forward simulation. The newly developed meshless inversion algorithm will be tested with synthetic data to reconstruct known conductivity anomalies. It can be shown, that the inverse algorithm produces correct results, even in the presence of topography
    corecore