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Talking once with friends, one of them asked me “What is CFD?”. I
aswered him “CFD is the only powerful mathematical tool that turns a fully-
qualified engineer into a five-year-old child drawing colours on his laptop screen”.

Víctor Javier Llorente Lázaro





v

UNIVERSITY OF ZARAGOZA

Abstract
School of Engineering and Architecture (EINA)

Deparment of Science & Technology of Materials and Fluids
Computational Fluid Mechanics Group

PhD

An accurate and robust numerical scheme for transport equations

by Víctor Javier Llorente Lázaro

In this thesis, we present a novel discretization technique for transport
equations in convection-diffusion problems across the whole range of Pé-
clet numbers. The discretization employs the exact flux of a steady-state
one-dimensional transport equation to derive a discrete equation with a
three-point stencil in one-dimensional problems and a five-point stencil in
two-dimensional ones. With "exact flux" it is meant that the exact solution
can be obtained as a function of integrals of some fluid and flow parame-
ters, even if these parameters are variable across a control volume. High-
order quadratures are used to achieve numerical results close to machine-
accuracy even with coarse grids.

As the discretization is essentially one-dimensional, getting the machine-
accurate solution of multidimensional problems is not guaranteed even in
cases where the integrals along each Cartesian coordinate have a primitive.
In this regard, the main contribution of this thesis consists in a simple and
elegant way of getting solutions in multidimensional problems while still
using the one-dimensional formulation. Moreover, if the problem is such
that the solution is machine-accurate in the one-dimensional problem along
coordinate lines, it will also be for the multidimensional domain.
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Resumen
Escuela de Ingeniería y Arquitectura (EINA)

Departamento de Ciencia y Tecnología de Materiales y Fluidos
Grupo de Fluidodinamica Computacional

Doctor

An accurate and robust numerical scheme for transport equations

por Víctor Javier Llorente Lázaro

En esta tesis se presenta una nueva técnica de discretización para ecua-
ciones de transporte en problemas de convección-difusión para el rango
completo de números de Péclet. La discretización emplea el flujo exacto de
una ecuación de transporte unidimensional en estado estacionario para de-
ducir una ecuación discreta de tres puntos en problemas unidimensionales
y cinco puntos en problemas bidimensionales. Con "flujo exacto" se en-
tiende que se puede obtener la solución exacta en función de integrales de
algunos parámetros del fluido y flujo, incluso si estos parámetros son vari-
ables en un volumen de control. Las cuadraturas de alto orden se utilizan
para lograr resultados numéricos cercanos a la precisión de la máquina, in-
cluso con mallas bastas.

Como la discretización es esencialmente unidimensional, no está garan-
tizada una solución con precisión de máquina para problemas multidimen-
sionales, incluso en los casos en que las integrales a lo largo de cada co-
ordenada cartesiana tienen una primitiva. En este sentido, la contribución
principal de esta tesis consiste en una forma simple y elegante de obtener
soluciones en problemas multidimensionales sin dejar de utilizar la formu-
lación unidimensional. Además, si el problema es tal que la solución tiene
precisión de máquina en el problema unidimensional a lo largo de las líneas
coordenadas, también la tendrá para el dominio multidimensional.
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Chapter 1

Introduction

In many branches of engineering that involve fluid problems, Figure 1.1,
one is interested in the values of some global variables for which it is fun-
damental to know the detailed fluid flow. For instance, in wind engineering
aerodynamic drag is calculated in order to know the fuel consumption in
aircraft or lorries [179]. Meanwhile, aerospace engineers may be engaged in
determining the position and shape of shock waves during the atmospheric
reentry of spacecraft [131]. Civil engineers focus their calculations on ero-
sion and sedimentation in floods [129], or the design of hydraulic works
for irrigation and navigation like the Aragon’s Imperial Channel, one of the
most important works in this field in 18th century Europe [40]. These are
some examples where the detailed fluid flow is of interest in itself or as a
prior step to calculate global parameters (functionals) of the flowfield.

FIGURE 1.1: Examples in Fluid Mechanics. Left, Vortex
street near Canary Islands [144]. Middle top, Fluid chains
produced by obliquely intersecting viscous jets [184]. Mid-
dle bottom, Airbus Jet Engine [4]. Right top, shock wave from
a USAF Test Pilot School T-38C aircraft [145]. Right middle,
waterway canal-bridge [54]. Right bottom, Aerodynamic of

a cyclist bunch in a wind tunnel [124].

From the 17th to 20th centuries, renowned physicists such as Bernoulli,
Reynolds, Navier or Stokes, among others, could translate into mathemat-
ical language, what we nowadays know as Partial Differential Equations
(PDEs), the motion of fluids. The Navier-Stokes equations describe a bal-
ance between the variations of the velocity under study and the forces that
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elicit those variations. We define two types of variations. Phenomena that
can change in time are expressed by the operator ∂/∂t, with the spatial co-
ordinate fixed. The operator∇ represent changes in space, with the time co-
ordinate fixed, and depends strictly on the coordinate base, see Simmonds
[199]. Forces are diverse and can also be expressed in terms of variations
of the velocities or other variables under study. Thus, if we want to un-
derstand the fluid behaviour and get some results to design devices or to
predict atmospheric motion as in meteorology, the whole flow field has to
be determined solving these PDEs.

It can be found in a basic course of Fluid Mechanics [202] that the me-
chanical problem is described by the conservation of mass and momentum
transport,

∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu

∂t
+∇ ·

(
ρu⊗ u− µ(∇u + (∇u)T )

)
= ρfm −∇ (p− κ∇ · u) ,

and the thermal problem by the transport of internal energy,

∂ρe

∂t
+∇ · (ρue− k∇T ) = ρq̇m − p(∇ · u) + ΦV .

The system is closed with two equations of state (EoS): p = p(ρ, T ) and
e = e(ρ, T ). The meaning of all terms will not be commented on, the pur-
pose is to show that they have a similar structure. The previous PDEs
are not unique and one could add more as their range of applicability is
widespread. Let us see some examples. In combustion [105] eachN species
has a mass fraction Yk that obeys

∂ρYk
∂t

+∇ ·
(
ρ (u + uc)Yk − ρDk

Wk

W
∇Yk

)
= ω̇k,

and react through M chemical reactions, ω̇k =
∑M

j=1 ω̇kj . In turbulence
[236], (U)RANS equations along with the k − ε model are widely used in
the industry to compute the mean velocity in turbulent flows. The turbulent
kinetic energy k,

∂ρk

∂t
+∇ ·

(
ρuk −

(
µ+

µt
σk

)
∇k
)

= G− ρε,

and dissipation ε,

∂ρε

∂t
+∇ ·

(
ρuε−

(
µ+

µt
σε

)
∇ε
)

=
C1ε

k

(
G+ C3

2

3
k∇ · u

)
− C2ρ

ε2

k
,

links with the (U)RANS equations through the Reynolds stress tensor. In
the physical sense, these turbulent variables intensify the molecular diffu-
sion by adding some eddy viscosity, µt = ρ Cµk2/ε. On the other hand, mag-
netohydrodynamics [38] couples the mechanical problem via the Lorentz
force with the Maxwell equations to study the motion of an electrically-
charged fluid in a magnetic field. The Maxwell equations can be combined
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resulting in the induction magnetic equation,

∂B

∂t
+∇ · (u⊗B− η∇B) = ∇ · (B⊗ u) .

Finally, in ventilation [50] not only is important to know the temperature of
a room, but also the local mean age-of-air, τa, which is defined as the time
that a particle has been in this room. Its equation writes

∂ρτa
∂t

+∇ · (ρuτa − ρDm∇τa) = 1.

If we look at all previous PDEs, we can realise that all of them are written
with the same conservation law. This kind of PDE describes the transport
of quantities carried by the fluid velocity and spread over the domain due
to the existing gradients over the domain. In Fluid Mechanics, those prob-
lems are named as convection-diffusion problems and they are ruled by
transport equations. The prototypical equation reads

∂ρφ

∂t
+∇ · (ρuφ− Γ∇φ) = S (1.1)

where φ is the transport variable, ρ the density, u the velocity vector field,
Γ the diffusion coefficient and S the source term. Depending on the choice
of φ, Γ and S, (1.1) can represent any of the former PDEs. The term inside
brackets is named as flux, F , and is the sum of the convective flux, F c :=
ρuφ, and the diffusive flux, Fd := −Γ∇φ. In this thesis Γ is treated like a
scalar but it could also be a tensor, see e.g. Gómez [68]. The mathematical
problem defined by the transport equation (1.1) is closed with boundary
conditions (BC) and initial values (IV).

FIGURE 1.2: CFD outline. Left, continuum domain. Right,
discrete domain split into cells (blue) with boundary (red)
and a 10-point stencil or computational molecule (green

lines with black nodes).

Only a very limited number of convection-diffusion problems can be
solved exactly [139, 149, 157, 160, 246, 260], so in order to evaluate (1.1)
numerical approximations are used to convert it to an algebraic system of
equations. The branch of Fluid Mechanics that uses numerical analysis to
compute the solution of transport phenomena is named “Computational
Fluid Dynamics”, CFD. Almost all methods in CFD usually have three-
stages: first, the domain is broken down into small cells with an associated
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node or point, then, the conservation law is discretized over the cells giv-
ing a p-point stencil, and finally, a system Aφφφ = b is solved with φφφ a vector
of φs at nodes. A stencil or computational molecule is a discrete region
where several nodes link to each other, Fig. 1.2. The larger the computa-
tional molecule, the more accurate the method is. In addition, the size of the
molecule affects the numerical performance of the system solver. A small
stencil requires less special discretizations near boundaries.

Devising robust and accurate numerical methods is not at all a straight-
forward endeavour. Some guidelines should be followed:

• The computational molecule must be as small as possible while main-
taining accuracy.

• Due to its good numerical properties the coefficient matrix A should
be an M-matrix [237].

• The numerical scheme should preserve monotonicity and well-balancing
[72, 81].

• It should provide smooth transition from the diffusion limit to strong
convection.

In the following the most used techniques are summarized and the fam-
ily to which the numerical approach described in this thesis belongs is de-
scribed. If a reader is interested in a complete historical review about nu-
merical techniques it is referred to Thomee [215].

1.1 Spatial Numerical Techniques

Spatial discretization methods could be classified as finite differences (FD),
finite volumes (FV), finite elements (FE), spectral and meshless.

1.1.1 FD and FV method

In FD methods derivatives in the PDE at discrete points are approximated
by algebraic relations obtained via Taylor series expansion, see the books
[192, 214]. Those methods are conservative if the equations are discretized
in conservative form. Indeed, this is a sufficient condition as interpolations
for the fluxes can turn such methods into non-conservative. A drawback of
FD is the requirement of cartesian meshes. In complex geometries FD may
be combined with immersed boundary methods, see Pinelli et al. [161]. To
illustrate FD we consider a semi-discrete form of a one-dimensional trans-
port equation at a generic node i, i.e.

dρiφi
dt

+
∂F
∂x

∣∣∣∣
i

= Si.

The first standard idea for the discretized flux would be central differencing
for the diffusive term and forward/backward differencing for convection.
Assuming ui > 0 and uniform spacing, this produces the discretized flux

∂F
∂x

∣∣∣∣
i

≈ (ρu)i
φi − φi−1

∆x
− Γi

φi−1 − 2φi + φi+1

∆x2
.
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The reason to avoid central differencing to compute convective phenomena
is the fact that the interpolation can generate spurious wiggles for strong
convection, although it can still be used if corrections are applied. Later
this idea will be further elaborated. If we want to increase the accuracy
of the scheme, more nodes should be allowed in the expansion. Fornberg
[57] provides an algorithm to calculate the weights for an FD formula with
arbitrary spacing and several orders of accuracy. For instance, an eighth-
order central difference will have a nine-point stencil that will increase the
computational molecule and the storage requirements of the matrix.

Other option to achieve high-order accuracy but using fewer compu-
tational nodes is the family of compact schemes [108]. Now, the Taylor
expansion serves to relate a linear combination of derivative values with
values of variables at nodes, e.g

1

4

∂φ

∂x

∣∣∣∣
i−1

+
∂φ

∂x

∣∣∣∣
i

+
1

4

∂φ

∂x

∣∣∣∣
i+1

=
3

2

φi+1 − φi−1

2∆x
,

Finally, the idea is to obtain a tridiagonal system, in vectorial form, as fol-
lows

C
dφφφ
dt

+ Aφφφ = Bs,

in which φφφ and s are the vectors of φ and S at nodes, respectively, and A,
B and C matrices from the discretization. The drawback is that compact
schemes generate oscillations near shock or regions with strong gradients.
In such cases numerical diffusion [32] or filters [37] are introduced. Any-
way, a common discretization in the CFD community nowadays is the cen-
tral difference based on values at half-way nodes. A second-order writes

∂F
∂x

∣∣∣∣
i

≈
Fi+1/2 −Fi−1/2

∆x
,

but any other order can be achieved expanding the stencil assigning differ-
ent weights. Weight tables can be found in [57].

The FV method uses the integral form of the conservation law,

d
dt

∫
Vk

ρφdV +

∮
Ak

F · ndA =

∫
Vk

S dV,

to aproximate the integrals by some quadratures from the balance over
the control volumes Vk [3, 143]. Employing the same example as before a
quadrature easy to handle is the midpoint rule for a one-dimensional prob-
lem. The volume integrals are evaluated around some node i with volume
∆x and the surface integral is evaluated at the cell face center i ± 1/2 over
an unit area, i.e.

dρiφi
dt

+
Fi+1/2 −Fi−1/2

∆x
= Si,

which is the same half-way FD scheme. This approximation results in a cell
centered FV discretization but it could also be discretized by a cell vertex
FV. Some comparisons of both can be found in [45, 46, 171, 205]. A con-
sequence of the weak formulation is that FV is conservative by nature as
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the flux balances are satisfied at two adjacent control volumes. Another ad-
vantage in comparison with FD is that FV can be applied in unstructured
meshes employed for complex geometry.

The fluxes must be interpolated at mesh nodes for either FD or FV. For
the diffusive flux, a central difference is widely used,

Fd
i+1/2 = −Γi+1/2

∂φ

∂x

∣∣∣∣
i+1/2

≈ −Γi+1/2
φi+1 − φi

∆x
,

but for convection this discretization brings a dilemma. Although the scheme
is second order, the numerical solution will be unstable in strong convection
problems since the matrix is no longer an M-matrix. Physically speaking,
the convection propagates φ in the direction of u and the information from
downwind becomes negligible, so weighting the two contributions equally
is not appropriate. Upwinding differences could apply

F c
i+1/2 = (ρu)i+1/2 φi+1/2 ≈ (ρu)i+1/2

{
φi if ui+1/2 > 0,

φi+1 if ui+1/2 < 0,

guaranteeing stability although increasing the errors. This is a first-order
scheme and adds artificial diffusion that in some cases is larger than the
physical one. One way to reduce numerical diffusion is the use of some
high-order linear scheme, e.g. QUICK [109]. van Leer [223] describes them
as a family of κ-schemes:

φi+1/2 =


φi +

1 + κ

4
(φi+1 − φi) +

1− κ
4

(φi − φi−1) if ui+1/2 > 0,

φi+1 +
1 + κ

4
(φi − φi+1) +

1− κ
4

(φi+1 − φi+2) if ui+1/2 < 0,

for some constant κ ∈ [−1, 1]. The drawback is that they are not bounded
and tend to be dispersive near regions with strong gradients leading to
over- or under-shoots. This result is due to Godunov’s Theorem. Back in
the 1950s, Godunov [67] proved that:

Theorem 1 (Godunov’s order barrier). Linear monotone schemes are at most
first-order accurate.

Therefore, high-order schemes that preserve monotonicity need to be
nonlinear. One way to generate nonlinear schemes is by using flux limiters,
see book by LeVeque [112], which belong to the family of Total Variation
Diminishing (TVD) schemes [77] and shock-capturing methods [163]. The
first outline of flux limiters was introduced by Boris and Book [16] in their
Flux Corrected Transport (FCT) algorithm. A generalization of a flux limiter
[74] can be expressed as

F c
i+1/2 = F cL

i+1/2 + Φ
(
ri+1/2

) [
F cH
i+1/2 −F cL

i+1/2

]
,

where F cL
i+1/2 and F cH

i+1/2 are the low- and high-order fluxes, respectively,
Φ = Φ(r) is the limiter function and ri+1/2 the smoothness indicator defined
as ri+1/2 := (φi+1−φi)/(φi−φi−1). For instance, a low-order flux can be the
upwind flux and a high-order flux can be the second-order upwind flux.
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Then the interpolator at cell face for ui+1/2 > 0 is given by

φi+1/2 = φi +
1

2
Φ
(
ri+1/2

)
[φi − φi−1] .

The idea behind limiters is that in smooth regions, ri+1/2 ≈ 1, the interpo-
lator becomes high-order, but near shocks or large gradient regions where
ri+1/2 is away from 1, low interpolation works adding some numerical dif-
fusion [30]. The most relevant contribution of flux limiters is their mono-
tone behaviour. Spekreijse [201] proves the next theorem:

Theorem 2. If the limiter Φ(r) has the properties that there exist constants C1 ∈
(0,∞), C2 ∈ [−2, 0] such that C2 ≤ Φ(r) ≤ C1, −C1 ≤ Φ(r)/r ≤ 2 +C2 for all
r ∈ R, then the scheme is monotone.

For all second-order schemes, the monotone region is given by Sweby
[206] and plotted in Figure 1.3a. An analysis of standard limiters can be
found in [244, 251] on irregular grids [12] and some others more sophisti-
cated in [23, 183, 247], mostly third order.

Another criterion for monotonicity is Gaskell and Lau’s [62]. The inter-
polator formula is more straightforward to check under this criterion than
under that from Spekreijse’s theorem. They used the normalized variable
diagram (NVD) that represents the mid-point value with respect to the up-
wind node in terms of normalized variables, φ̂k = (φk−φi−1)/(φi+1−φi−1).
They claimed that any characteristic line of a monotone scheme must lie in
a specific region and contain the points (0, 0) and (1, 1), see Fig.1.3b. In
addition Leonard [110] put forward a sufficient condition for a monotone
scheme to be at most second-order: its characteristic must contain the point
(0.5, 0.75). If the slope at this point is 0.75, the scheme is at most third-order.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

r

Φ
(r

)

(A) Flux diagram

φ̂i

φ̂i+1/2

0.75

0.5

•
1

10

(B) NVD

FIGURE 1.3: Monotone regions for flux limiter theory.

Another nonlinear interpolation is the family of (W)ENO schemes. The
essentially non-oscillatory (ENO) reconstruction scheme was introduced by
Harten and Osher [78] and extended by Harten et al. [79]. Some related
schemes are the TVD Runge-Kutta + ENO by Shu and Osher [196, 197] or
the enhanced ENO by Shu [198]. Hydrodynamic applications can be found



8 Chapter 1. Introduction

in Fatemi et al. [53]. As Zhang and Shu [255] pointed out, the ENO re-
construction adapts its computational molecule to avoid including, if pos-
sible, a stencil in a strong-gradient cell by comparing the local smoothness
of the reconstruction polynomials, see Figure 1.4. Later, Liu, Osher and
Chan [117] introduced the weighted ENO (WENO) reconstruction scheme
that was standardized by Jiang and Shu [93]. In this sense, WENO approx-
imates better in smooth regions, near regions with strong gradient reduces
to ENO. The k-order WENO scheme reconstructs the value at the face cell
in the form

φi+1/2 =
k−1∑
r=0

ω̃rφ
(r)
i+1/2,

where

φ
(r)
i+1/2 =

k−1∑
j=0

Crjφi+r−j , r = 0, . . . , k − 1 ,

might represent a low-order interpolator for φi+1/2 in each r-stencil. Note
that the interpolation takes the value of the average φ at nodes. To link
with nodal values is necessary to find, for each cell, a polynomial pr(x) of
kth order accurate. Then,

φm =
1

∆xm

∫ xm+1/2

xm−1/2

pr(x) dx, m = i− r, . . . , i− r + k − 1.

The weights ω̃r in WENO are calculated as

ω̃r =
ωr

k−1∑
s=0

ωs

, ωr =
dr

(ε+ βr)2
.

The parameter ε is introduced to avoid dividing by zero. The values of
constants Crj and dr, and their calculations, can be found in [195]. Finally,
the standard smoothness indicator βr is defined as

βr :=
k−1∑
l=1

∫ xi+1/2

xi−1/2

∆x2l−1

(
dlpr
dxl

)2

dx,

but other indicators have been designed with different features [8, 83, 84,
240, 254]. Over the years several WENOs have been developed, a wide
comparison was done by Zhao, Lardjane and Fedioun [256]. (W)ENO offers
between third- and fifth-order monotone results, but for strong convection
the computational molecule is large. For instance, a normal (W)ENO uses
a five-point stencil resulting in a large sparse matrix.

Lastly, another option to increase the stability of numerical schemes are
the deferred-correction methods. The best definition of such methods was
given by Wesseling [235]: to improve a low-order discretization without
having to solve for a high-order discretization. Thus, those methods are ex-
tremely flexible in order to make a correction up. As previously said, central
differencing for the convective term is not such a good idea. However, as
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xi−2 xi−1 xi xi+1 xi+2
�

0-stencil

1-stencil

2-stencil

FIGURE 1.4: Computational molecule for the WENO recon-
struction technique.

Khosla and Rubin pointed out [99], a central derivative can be understood
as an upwind derivative plus an anti-diffusive term, i.e.

φi+1 − φi−1

2∆x
=
φi − φi−1

∆x
+

∆x

2

φi−1 − 2φi + φi+1

∆x2
.

Upwinding is employed in the coefficient matrix and the anti-diffusion is
evaluated with "old values" of φ in the source term. The converged solu-
tion will be second order and the method unconditionally stable. Deferred
correction is, therefore, an iterative method in which values of a previous
iteration level are used as "old values" in the source term.

The way to compute fluxes at cell faces, either convective or diffusive,
is

Fi+1/2 = FLi+1/2 + θ
[
FHi+1/2 −FLi+1/2

]old
,

for some constant θ ∈ [0, 1]. When θ = 0 we have a purely low-order flux,
if θ = 1 a high-order deferred flux. Otherwise, a mixture of both fluxes
is employed. Since the low-order is in the coefficients we ensure that the
matrix is an M-matrix, but stable oscillations can be developed during the
iteration procedure if large gradients are at face cells. Another shortcoming
of these corrections is the increase in computational time [55].

1.1.2 FE and spectral method

The FE method has its origin in the work of Turner et al. [219] as a gen-
eralization of the direct stiffness method to compute stress and strain in
structural problems. The method belongs to the family of Galerkin’s for-
mulation to obtain a discrete counterpart from the continuous operator in
PDEs. Insomuch as FE became more and more popular, it did not take long
for it to be applied in fluid flows and heat transfer, see books [175, 259].
The FE approximation starts by multiplying the conservation law by a test
function Wk = Wk(x) and then integrating in each element, Ωk, i.e.∫

Ωk

Wk

[
∂ρφ

∂t
+∇ ·F − S

]
dΩ = 0.

The solution is a linear combination of shape functions Nk = Nk(x) and φ
values at nodes. These functions are defined to be 1 at node k and 0 at any
node in the element. With the use of integration by parts the law is reduced
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to the system

C
dφφφ
dt

+ Aφφφ = b,

where

Ckl =

∫
Ωk

ρWkNl dΩ,

Akl =

∫
Ωk

[
Wkρu · ∇Nl + Γ∇Wk · ∇Nl

]
dΩ,

bk =

∫
Ωk

WkS dΩ−
∫
∂Ωk

WkFd · nd(∂Ω).

The matrix A is named the stiffness matrix. Legendre polynomials are usu-
ally chosen as shape functions although they can be taken arbitrarily. In 1D,
linear (two-nodal element), quadratic (three-nodal element) or cubic (four-
nodal element) can be employed, see Figure 1.5. In higher dimensions some
extensions of these are appropriate. On the other hand, the test functions
depend on the Galerkin formulation. In standard FE, Wk = Nk. The stiff-
ness matrix will be symmetric iff ρu = 0. As the convection gets stronger,
the matrix becomes more asymmetric and eventually the discrete equation
will become unstable. For a 1D problem with linear shape function, con-
stant convection and diffusion and equal size mesh, oscillations pop up for
Péclet greater than 1. Petrov-Galerkin (PG) methods [73] provide stability
taking Wk = Nk + αW ∗k , where α is a parameter depending on the element
Péclet number and W ∗k a perturbation function dependent on the convec-
tion direction [18, 43]. The integrals are approximated by Gauss-Legendre
(GL) quadrature because of its higher accuracy.

Ni−1(x) Ni(x)

xi−1 xi

Ni−1(x) Ni(x) Ni+1(x)

xi−1 xi xi+1

Ni−1(x) Ni(x) Ni+1(x)Ni+2(x)

xi−1 xi xi+1 xi+2

FIGURE 1.5: Linear (left), Quadratic (middle) and Cubic
(right) shape functions on a 1D mesh.

A FE drawback has to do with the performance of the matrix solver
that drops down when the matrix becomes more sparse, as happens with
every numerical method dealing with unstructured meshes. Also, FE might
face problems if the numerical solution is not sufficiently smooth [7]. In
addition, FE is more sensitive to skinny faces or elements with small edges
than the Virtual Element (VE) methods [35, 90, 91, 132] that can overcome
these deficiencies. Other unsolved problems in FE methods are listed in
Zienkiewicz [257].

In these methods the formulation is continuous, but there are others
where the continuity requirement across element boundaries is relaxed: the
so-called Discontinuous Galerkin (DG) methods, see books [44, 48]. From a
geometrical point of view, the physical domain is divided into subdomains
where the solution is approximated. This permits a compact computational
molecule and flexibility to apply the method in a wide variety of fluid flows
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with high-order results.
Spectral or Spectral Element (SE) methods are another type of discretiza-

tion technique introduced by Canuto [24]. Zienkiewicz and Cheung [258]
pointed out that SE methods may be viewed as a special case of PG meth-
ods. The main difference is that the shape functions are nonzero over the
whole domain. Now, the solution is built up from Fourier series and, there-
fore, Nk = exp(ikx). The test functions satisfy the biorthonormality con-
dition giving Wk = (1/2π) exp(−ikx). The main features of SE and DG
method are combined in the “Discontinuous Galerkin Spectral Element
Method”, DGSEM [10, 63, 114, 191].

Regarding conservativeness, it is known that FE is at least globally con-
servative. However, Hughes et al. [86] proved that any continuous Galerkin
formulation is locally conservative. Perot [158] suggested that this local
conservation often follows from global conservation. SE methods can also
be made conservative [15], although Giraldo and Restelli [66] indicated that
they were at least globally. DG methods were both locally and globally.

1.1.3 Meshless

All previous methods are based on discretizations in a set of points con-
nected with each other, what allows to obtain an approximation of spatial
derivatives. However, there are other techniques to compute those deriva-
tives based on the interactions of each node or particle with its neighbours
rather than being connected with a mesh. These are the so-called mesh-
less or meshfree methods. An application that makes those methods attrac-
tive is free-surface flows. Since FD, FV or FE use meshes, in each running
time the procedure must know where the interface is inside a volume or an
element. There are other techniques to deal with these flows such as the
Volume of Fluid (VoF) method [170] or Shallow Water models [26].

One of the most famous and used meshless methods is the smoothed
particle hydrodynamics (SPH) method, see books [113, 228]. SPH was in-
vented in the ’70s by Gingold and Monaghan [65] and Lucy [121] for as-
trophysical problems and later applied in Fluid Mechanics [140]. The basic
idea in SPH is to take an integral representation of the transport variable or
any variable as follows

φ(x) '
∫
V
φ(x′)K(x− x′, h) dV ′,

which is O(h2). The kernel function K should be the Dirac delta as h goes
to zero where h is the interaction radius with other particles. Then, the first
derivative, after some mathematical manipulation, is given by

∇xφ(x) ' −
∫
V
φ(x′)∇x′K(x− x′, h) dV ′,

or its discrete form

∇nφ ≈ −
∑
m

φm∇mKnmV
′
m,
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which is O(h−1). Error estimation in SPH derivatives is assessed by Fatehi
and Manzari [52]. For the kernel, there are several functions used in litera-
ture [11, 156, 169, 243]. The main problems in SPH are the accuracy and the
particle clustering. The accuracy relates to the approximation of the inte-
grals by sums of particles in the neighbourhood. The greater the number of
particles is and the more uniformly are distributed, the more accurate the
SPH method is. This requirement is not met near boundaries and empty
areas can arise due to particle clustering. Those methods cluster particles
by nature and, therefore, collisions models [102] must be programmed to
avoid regions with high density of particles in the domain. A review in
detail of meshless methods can be found in [59, 69]. Positiveness and the
conditions under which the coefficient matrix of meshless methods is an
M-matrix are studied by Seibold [189].

1.2 Time Numerical Techniques

Once equation (1.1) is spatially discretized with any of the above approxi-
mations, the result is a set of ODEs in the form of

C
dφφφ
dt

= Ds(φφφ, t),

whereDs(φφφ, t) is the spatial discretization of the convection-diffusion prob-
lem. The matrix C may appear due to techniques used in the spatial dis-
cretization. Finally, the time derivative is computed by time integration
methods that can be classified as one-step, multi-step and others. In turn,
the methods can be explicit, in which the solution depends on φφφ at early
times, or implicit, in which the current time is also considered. To illustrate
time integration, we consider a single ODE, with C being the identity ma-
trix. Further and complete information on time methods can be found in
books [21, 71, 87, 130].

1.2.1 One-step methods

These methods consider φ at two timesteps. The midpoint method gives,

φn+1
i − φni

∆t
= Ds(φn+1/2

i , tn+1/2), φ
n+1/2
i :=

φn+1
i + φni

2
,

Euler method,

φn+1
i − φni

∆t
= Ds(φni , tn), (Explicit)

φn+1
i − φni

∆t
= Ds(φn+1

i , tn+1), (Implicit)

and θ-method which is a linear combination of the previous two, i.e.

φn+1
i − φni

∆t
= θDs(φni , tn) + (1− θ)Ds(φn+1

i , tn+1),
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for some constant θ ∈ [0, 1]. If θ = 0 we have the first-order implicit Euler,
if θ = 1, the first-order explicit and if θ = 1/2, the Crank-Nicolson or trape-
zoidal rule which is expected to be second-order. Stability analysis shows
that the explicit Euler may turn unstable for some time steps whereas the
implicit Euler and the θ-method for θ ≤ 1/2 are unconditionally stable. An
algorithm for reducing the computational cost to solve implicit schemes is
a predictor-corrector (PC) method: in the prediction stage a value of φ is
estimated for later improving the result by correcting the predicted value.
For instance,

φ̃n+1
i − φni

∆t
= Ds(φni , tn), (P stage)

φn+1
i − φni

∆t
=

1

2

[
Ds(φni , tn) +Ds(φ̃n+1

i , tn+1)
]
, (C stage)

is Heun’s method. Other improvements that require fewer time steps to
achieve the same accuracy are the high-order Runge-Kutta (RK) methods.
A classical one is the 4th-order RK. The method evaluates Ds at tn, tn+1/2

and tn+1. With φni at the beginning it performs a φ-prediction with an ex-
plicit Euler and a φ-correction with an implicit Euler at midpoints, and fi-
nally a φ-correction with a midpoint method is done. RK averages these
predictions/corrections with weights 1/6 at the beginning and at the end,
and 1/3 at midpoints. The shortcoming of RKs lies in the great number of
evaluations per time ofDs to achieve an accuracy comparable to multi-steps
methods.

1.2.2 Multi-step methods

When more than two timesteps are considered, we have linear multistep
methods. The general recurrence formula writes:

1

∆t

m∑
k=0

λkφ
n+k
i =

m∑
k=0

µkDs(φn+k
i , tn+k).

The method contains m steps and if µm 6= 0 it is implicit. The coefficients
depend on the chosen family of multistep methods and they are usually
calculated by expanding φ and Ds via Taylor series in order to achieve a
m-order method. For instance, a 4th-order Adams-Bashforth method gives:

{λk|k = 0, . . . , 4} = {0, 0, 0,−24, 24},
{µk|k = 0, . . . , 4} = {−9, 37,−59, 55, 0},

and therefore it is explicit. One drawback of multistep methods is that they
require several initial values to start running the scheme, e.g., in the pre-
vious Adams-Bashforth φ0

i , φ
1
i , φ

2
i and φ3

i are needed which are computed
either with a low-order Adams-Bashforth or with 4th-order RK. The latter
is more usual.

A surprising outcome related to multistep methods was found in the
research related to this thesis. Some integrals of various functions are re-
quired in the numerical scheme on which this thesis is based, so a quadra-
ture to compute integrals was devised. This quadrature can be cast as a
linear multistep method. If the quadrature is written in terms of the usual
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recurrence formula it is unstable, but if it is solved as a tridiagonal system,
the results are more accurate than with traditional multistep methods. This
is explained in Appendix D.

1.2.3 Others

In one-step methods one may notice that the time derivative was approxi-
mated by a forward difference. In doing so the number of time steps can be
very large if the accuracy needs to be increased. For instance, the derivative

dφi
dt
≈ −3φn+4

i + 16φn+3
i − 36φn+2

i + 48φn+1
i − 25φni

12∆t

isO(∆t4). But again, this procedure suffers from the same problem as mul-
tistep methods as φ0

i , φ
1
i , φ

2
i and φ3

i should be provided to start off, not to
mention stability.

ADER methods compute the time derivative by Taylor expansions in
time, whose derivatives are later related to space derivatives. They are not
time integration methods per se. First, we expand in time via Taylor series
at a generic node:

φn+1
i = φni +

m∑
k=1

∆tk

k!

∂kφ

∂tk

∣∣∣∣n
i

.

If the transport equation is linear, e.g.

∂φ

∂t
+ u

∂φ

∂x
= 0⇒ ∂kφ

∂tk
= (−u)k

∂kφ

∂xk
.

If is nonlinear, the Cauchy–Kowalewski [207] theorem is then applied. Spa-
tial derivatives are discretized as before. ADER methods are user-friendly
when the equation is hyperbolic but when the transport equation contains
high-order derivatives and nonlinearities the task becomes tough.

1.3 Exponential schemes

As we have seen, all previous numerical techniques, either spatial or tem-
poral, have strengths and weaknesses. The CFD community does not have
a unique numerical method able to compute a wide range of transport
phenomena keeping the size of the computational molecule small. Usu-
ally, if the convection is strong the required molecule size grows to main-
tain high accuracy. In addition, in singular perturbation problem [178],
i.e. 0 < Γ � 1, where the fluid flow exhibit boundary layers, numeri-
cal methods become unstable if numerical diffusion is not added. At this
point, we should be able to construct a smooth interpolator covering from
parabolic/elliptic flow to hyperbolic flow in order to have a robust numer-
ical method. To overcome this "smooth transition" keeping high accuracy,
the family of methods named exponentially fitted, exponential fitting, exponen-
tial difference, or just exponential, could be applied.
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Exponential schemes form a group of discretization methods that have
been around for a long time, used to discretize convection-diffusion prob-
lems. These schemes employ the analytical solution of a steady-state one-
dimensional transport equation in a local boundary value problem in order
to link the values of the variable at grid points. From this last point of view,
exponential schemes may be considered as a subgroup of the so-called non-
standard FD (NFD) methods introduced by Mickens [133]. There is no clear
definition of an NFD method but some rules should be followed [134]. To
illustrate, let us consider the transport equation

dφ
dx
− 1

λ

d2φ

dx2
= 0,

in which λ = ρu/Γ is a constant. The NFD derivatives would be:

dφ
dx

∣∣∣∣
i

=
φi − φi−1

∆x
expP − 1

P expP

,
d2φ

dx2

∣∣∣∣
i

=
φi−1 − 2φi + φi+1

∆x2 (expP − 1)2

P 2 expP

,

as they give the exact solution of the ODE, i.e. φi = exp(Pxi/∆x) with
P = λ∆x. Further research on these methods are explored in [152, 186, 241,
252]

One of the first publications on exponential schemes comes from Allen
and Southwell [39]. The motion of a viscous flow around a cylinder was
calculated by the vorticity transport equation using the exact solution of
the flow in order to discretize it by a central difference scheme. Later Il’in
[89] developed a general exponential scheme for transport problems, and
in the same line, Gartland [60] put forward a q-order compact exponential
scheme in the ’80s where the discrete equation is exact on the next set of
functions:{

1, x, . . . , xq, exp

(∫ x

λdx′
)
, x exp

(∫ x

λdx′
)
, . . . , xq−1 exp

(∫ x

λdx′
)}

This scheme was used by Costa do Amaral and Gonçalves dos Santos [47].
Back to the Il’in scheme, a similar approach was taken by Scharfetter and
Gummel [188] for ionic flux models in semiconductors, see books [136, 162],
and later extended to two-dimensional problems by Bank et al. [9]. On
the other hand, Sacco [182] presented three families of exponential shape
functions based on Scharfetter and Gummel in triangular elements with
Galerkin formulation. The Scharfetter-Gummel scheme is very popular to
calculate ionic transport in semiconductors at present [94, 100, 101, 153] and
was the starting point for the development of exponential schemes in mul-
tidimensional flows for convection-diffusion problems in Fluid Mechanics,
for instance the exponentially fitted technique of El-Mistikawy and Werle
[49] employed to compute Falkner-Skan boundary-layer flows.

The first exponential scheme applied to fluid transport phenomena was
designed by Spalding [200] and later included in the pioneer book of Patankar
[150]. They assumed piecewise constant convection-diffusion parameters
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in the one-dimensional sourceless transport equation. The discrete equa-
tion yielded a three-point stencil,

− ρu expP

expP − 1

∣∣∣∣
i−1/2

φi−1 +

[
ρu

expP − 1

∣∣∣∣
i−1/2

+
ρu expP

expP − 1

∣∣∣∣
i+1/2

]
φi −

ρu

expP − 1

∣∣∣∣
i+1/2

φi+1 = 0,

where the influence coefficients were exponential functions of the Péclet
number. The Péclet number contains the ratio between the convection and
diffusion terms in a generic transport equation. An improvement over
Patankar and Spalding is given by Thiart [212, 213]. Thiart’s two-dimensional
approach considers now a constant source over each control volume,

Spalding-Patankar’s stencil = ∆xS
(P − 1) expP − 2P + 1

P (expP − 1)

∣∣∣∣
i−1/2

+ ∆xS
expP − P + 1

P (expP − 1)

∣∣∣∣
i+1/2

,

and it is used to formulate an algorithm for the pressure-velocity coupling.
Thiart’s scheme is similar to the locally analytic differencing (LOAD) scheme
of Wong and Raithby [238]. LOAD assumes local one-dimensionality in
treating fluxes what yields false diffusion at high Péclet numbers and in
the presence of variable source term. Virag and Trincas [229] proposed
some improvement of LOAD modifying both the discrete source terms and
the interpolator at cell faces. Additionally, MacKinnon and Johnson [123]
derived a fourth-order nine-point centred difference scheme with variable
convective parameters for a 2D transport equation in nonconservative form.
As Ramos [174] pointed out, those exponentially fitted methods work bet-
ter than any numerical techniques in problems of exponential nature, such
as boundary layers [85] or with steep gradients, and can be used with adap-
tive mesh refinements [173].

In the last few years, other authors have proposed more sophisticated
exponential schemes. For instance, Tian and Yu [218] developed a high-
order approach for unsteady one-dimensional transport equations but with
constant convection and diffusion coefficients and no source. Neumann
boundary conditions were considered by Fu, Tian and Liu [58]. Previously,
Tian and Ge [217] developed a fourth-order exponential scheme for solving
2D unsteady convection-diffusion problems, and used in unsteady magne-
tohydrodynamics flows by Wu, Peng and Tian [239]. Extension to a three-
dimensional case of the Tian-Dai’s scheme [216] was done by Mohamed,
Mohamed and Seddek [138]. Wang [232] gave a second-order exponen-
tial scheme for two-dimensional convection-diffusion problems with just
a five-point stencil, changing to fourth-order if Richardson extrapolation
was applied. Similar use of the Richardson extrapolation technique in a ex-
ponential scheme was done by Mishra and Yedida [137]. The effects of em-
ploying Richardson extrapolation in a CFD simulation are explored in [125].
Another second-order exponential scheme is proposed by Angermann and
Wang [5] in a dual mesh. A modern exponential scheme is given by Cui
[33, 34] where a Caputo time fractional model is presented for the unsteady
transport equation. On the other hand, a complete integral representation
of the flux is achieved as an extension of Thiart’s by van’t Hof, ten Thije
Boonkkamp and Mattheij [225], and modified by ten Thije Boonkkamp and
Anthonissen [209]. For reaction problems Luo, Dlugogorski, Moghtaderi
and Kennedy [122] devised a family of one-dimensional exponential schemes
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that give satisfactory results comparing with Spalding-Patankar’s and con-
ventional schemes. Finally, Polyakov [164, 165] designed a second-order ex-
ponential scheme with double integral transformation for one-dimensional
modelling. This was extended and applied to a 2D electromagnetic wa-
ter purification model by Polyakov, Karamzin, Kudryashova and Tsybulin
[166].

Previous methods commonly use an alternating direction implicit method
when they are extended to two- and three-dimensional problems. If these
splitting techniques are not carried out correctly, the great accuracy in one
dimension is lost. A completely and different way to circumvent this split-
ting issue was performed by Bianchini and Gosse [14] and Gosse [70]. They
designed a genuinely 2D well-balanced exponential scheme based on an
exact flux of a 2D steady-state transport equation with variable convection
and no source in a disk of radius R. The scheme has a nine-point stencil
overall and the coefficients are integral representations of Bessel functions.

In this thesis the exponential scheme established by Pascau will be stud-
ied and assessed. The first sketch of this scheme can be found in [146]. The
exact solution in normalized variables is achieved by assuming piecewise-
constant convection/diffusion and polynomial source, being later extended
to arbitrary sources. An improvement of this scheme was given by Pascau
and Arıcı [147] taking into account arbitrary convection and diffusion pa-
rameters. However, the scheme is one dimensional and its extension to
multidimensional problems is the backbone of this doctoral work.

1.4 Outline of this thesis

The thesis is structured as follows:
Chapters

• Chapter 2: An introduction of the exponential scheme in 1D is pro-
vided, able to deal with nonlinear equations and arbitrarily varying
coefficients and source.

• Chapter 3: The scheme is extended to cover steady two-dimensional
problems. Three different approaches were developed.

• Chapter 4: The ideas of chapter 3 are applied to deal with unsteady
one-dimensional problems.

• Chapter 5: Conclusions and future research. This chapter is later
translated to spanish due to regulations of Zaragoza University.

Appendices

• Appendix A: An integral formulation of the exponential flux is pre-
sented.

• Appendix B: The coefficients of Hermite splines of different orders
used to compute the basic integral of the scheme are provided.

• Appendix C: Some theoretical simplifications of the integrals are pro-
posed and their features assessed.
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• Appendix D: A review of the CIR quadrature is provided as well as
its applications to time integration methods.

• Appendix E: How to obtain the coefficients of Central Compact Schemes
for nonuniform meshes is explained.
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Chapter 2

The first contact:
one-dimensional ENATE

This chapter is based on two papers published by Pascau [146] and [147]
with some extensions and new work.

Goals:

• To get the exact solution of a one-dimensional non-homogeneous trans-
port equation

• To assemble it into a three-node algebraic equation

• To analyze their features, integration methods and boundary treat-
ment

• To develop cases of nonlinear-convection and solutions with discon-
tinuous derivatives

2.1 The dimensionless transport equation

Let us begin the chapter with the steady-state one-dimensional transport
equation as a local boundary value problem (BVP) referred to an interval of
length ∆x = xrb − xlb,

d
dx

(
ρuφ− Γ

dφ
dx

)
= S, xlb ≤ x ≤ xrb, (2.1a)

φ(xlb) = φlb, φ(xrb) = φrb, (2.1b)

with known variable coefficients: ρu = ρ(x)u(x), Γ = Γ(x) and S = S(x).
The transported variable is named as φ = φ(x). When working with equa-
tions such as the previous one it is sometimes convenient to make it nondi-
mensional. When doing so, several dimensionless numbers come out, in
particular the Péclet number which is defined as the ratio between trans-
port by convection and by diffusion, i.e. P := ρu∆x/Γ. In the equations
where momentum is transported the Péclet number becomes the Reynolds
number. The ratio between the convective coefficient and the diffusive co-
efficient is the inverse of a characteristic length and will be called λ, i.e.
λ := ρu/Γ. All variables will be normalized, see Figure 2.1, by using their
values at the left boundary of the interval, marked as lb. The right boundary
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will be marked as rb.

φ̂ :=
φ− φlb
φrb − φlb

=
φ− φlb

∆φ
, ρ̂u :=

ρu

(ρu)lb
, (2.2a)

Γ̂ :=
Γ

Γlb
, λ̂ :=

P

P0
=
ρ̂u

Γ̂
, P0 :=

(ρu)lb∆x

Γlb
. (2.2b)

In addition, the space variable is rescaled to x̂ = (x − xlb)/(xrb − xlb), thus
x = xlb + x̂∆x. Replacing the set (2.2) into equation (2.1a) and boundary
conditions (2.1b), the normalized convection-diffusion problem becomes

d
dx̂

(
ρ̂uφ̂− Γ̂

P0

dφ̂
dx̂

)
= Πs −

φlb
∆φ

dρ̂u
dx̂

, 0 ≤ x̂ ≤ 1,

φ̂(0) = 0, φ̂(1) = 1.

The Πs-term is a dimensionless source, Πs = S∆x/(ρu)lb∆φ. Notice that in
the previous equation normalization brings in a new source term as a result
of the gradient of the convective term. The combination of both implies a
net source, S∗, which exists even if there is no source in the original problem
(2.1a), provided that the product φlbdρu/dx is not equal to zero.

d
dx̂

(
ρ̂uφ̂− Γ̂

P0

dφ̂
dx̂

)
= Π∗s, Π∗s =

S∗∆x

(ρu)lb∆φ
, S∗ = S − (ρu)lb φlb

∆x

dρ̂u
dx̂

.

xlb xrb

z

0

1

2

3

4

x

φ

ρu

Γ

(A) Dimensional map

0 1

ẑ

0

1

2

3

4

x̂

φ̂

ρ̂u

Γ̂

(B) Normalized map

FIGURE 2.1: Sketching the main variables of equation (2.1a)
in the normalized map.

2.1.1 The homogeneous exact solution

In the homogeneous case, that is S = 0, the normalized transport equation
is

d
dx̂

(
ρ̂uφ̂− Γ̂

P0

dφ̂
dx̂

)
= − φlb

∆φ

dρ̂u
dx̂

. (2.4)
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Thus, integrating between 0 and x̂,

ρ̂uφ̂− Γ̂

P0

dφ̂
dx̂

+
1

P0

dφ̂
dx̂

∣∣∣∣∣
0

= − φlb
∆φ

(ρ̂u− 1) ,

the second-order ODE is reduced to first-order. The differential equation

dφ̂
dx̂
− Pφ̂ = P0

φlb
∆φ

λ̂+
1

Γ̂

[
dφ̂
dx̂

∣∣∣∣∣
0

− P0
φlb
∆φ

]
,

includes one unknown term, (dφ̂/dx̂)0. The solution of this linear ODE
with variable coefficients and source reads

φ̂

E
=

[
dφ̂
dx̂

∣∣∣∣∣
0

− P0
φlb
∆φ

]∫ x̂ dx̂′

Γ̂E
+ P0

φlb
∆φ

∫ x̂ λ̂

E
dx̂′ + Co,

where the integrating factor E = E(x̂) is defined as exp
∫ x̂

P dx̂′, being x̂′

a dummy variable. The constant of integration Co and (dφ̂/dx̂)0 are deter-
mined making use of φ̂ (0) = 0 and φ̂ (1) = 1. The final solution is

φ̂ = E

(∫ x̂

0

dx̂′

Γ̂E

/∫ 1

0

dx̂′

Γ̂E

+ P0
φlb
∆φ

∫ 1

0

λ̂

E
dx̂′

[∫ x̂

0

λ̂

E
dx̂′

/∫ 1

0

λ̂

E
dx̂′

−
∫ x̂

0

dx̂′

Γ̂E

/∫ 1

0

dx̂′

Γ̂E

])
, (2.5)

where E = E(x̂) is defined as

E :=
E(x̂)

E(1)
= exp

(∫ x̂

P dx̂′
)

exp

(
−
∫ 1

P dx̂′
)

= exp

(
−
∫ 1

x̂
P dx̂′

)
.

Equation (2.5) could be handled in a more convenient way with the inte-
grals renamed as follows:

φ̂ = E

(
IGE0x̂

IGE01
+ P0

φlb
∆φ

ILE01

[
ILE0x̂

ILE01
− IGE0x̂

IGE01

])
, (2.6a)

ILE0x̂ :=

∫ x̂

0

λ̂

E
dx̂′, IGE0x̂ :=

∫ x̂

0

1

Γ̂E
dx̂′, (2.6b)

ILE01 :=

∫ 1

0

λ̂

E
dx̂′, IGE01 :=

∫ 1

0

1

Γ̂E
dx̂′, (2.6c)

where ILE0x̂ stands for Integral of Lambda and E from 0 to x̂ and IGE0x̂,
Integral of Gamma and E from 0 to x̂. The only difference between ILE0x̂

and ILE01 or IGE0x̂ and IGE01 lies in the integration limits. The inte-
gral formula (2.6a) is the exact solution of equation (2.4). The dimensional
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variable value is recovered straightforwardly as φ = φlb+ φ̂∆φ. In many in-
stances it is unlikely that the integrals of the above expression be evaluated
exactly. Only ILE0x̂ could be evaluated by using the exponential derivative
rule: d (expu) /dx = du/dx expu, since λ̂ and E are functions of Péclet, P ,

ILE0x̂ =

∫ x̂

0

λ̂

E
dx̂′ =

∫ x̂

0

P

P0

1

E
dx̂′

= − 1

P0

∫ x̂

0

d
dx̂′

(
1

E

)
dx̂′

=
1

P0

(
1

E(0)
− 1

E(x̂)

)
=

1

P0

(
expP − exp

∫ 1

x̂
P dx̂′

)
. (2.7)

Even so, this evaluation of ILE is only of some use if the integral of Péclet,∫ 1
x̂ P dx̂′, is known. The average Péclet, P , is defined as

∫ 1
0 P dx̂. Conse-

quently, in a general problem involving integrands with no primitives some
kind of interpolator will be needed for the integrands. In Sections 2.2 and
2.3 this idea will be recovered and extended.

There are some particular solutions of eqn.(2.6a). On the one hand,
when ρu is constant, ρ̂u = 1 and λ̂ = 1/Γ̂. Therefore ILE0x̂ = IGE0x̂,
as well as ILE01 = IGE01, then the term in square brackets vanishes and
the final solution is

φ̂ = E
IGE0x̂

IGE01
= exp

(
−
∫ 1

x̂
P dx̂′

) expP − exp

∫ 1

x̂
P dx̂′

expP − 1

=

exp

∫ x̂

0
P dx̂′ − 1

expP − 1
.

Besides, if Γ is also constant, the Péclet number is easy to integrate and the
solution is the standard one,

φ̂ =
expPx̂− 1

expP − 1
, (2.8)

covered in a great number of books, for instance Ferziger et al. [55]. A last
particular solution is that with equal boundary values, that is φlb = φrb.
Multiplying both sides of eqn.(2.6a) by ∆φ and using ∆φ = 0, the first term
in brackets vanishes. Then dividing by φlb, the dimensionless solution is
achieved,

φ

φlb
= 1 + EP0ILE01

[
ILE0x̂

ILE01
− IGE0x̂

IGE01

]
.

With no source and fulfilling mass conservation, i.e. dρu/dx = 0, neces-
sarily ILE = IGE and, therefore, the term in brackets is identically zero.
The final solution, φ = φlb = φrb ∀x, satisfies the maximum principle [104,
p. 91].
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2.1.2 The complete exact solution

In this section the normalized equation is considered for the case S 6= 0,

d
dx̂

(
ρ̂uφ̂− Γ̂

P0

dφ̂
dx̂

)
= Πs −

φlb
∆φ

dρ̂u
dx̂

. (2.9)

The method of Undetermined Coefficients (UC) and Constants Variation
(CV) are two well known techniques to obtain the particular solution of
an ODE. However, UC only works for differential equations with constant
coefficients if the right-hand side of eqn.(2.9) is a constant, polynomial, ex-
ponential or trigonometric function, or a linear combination of them. On
the other hand, and although CV is a generalization of UC, replacing the
arbitrary constants of the homogeneous solution by unknown functions to
be determined in a system of differential equations may turn tough. Hence,
the aim of this subsection is to figure out the way of removing the source
Πs from ODE (2.9) in order to transform it to the homogeneous case (2.4)
whose solution is already known.

Let us assume for now that ρu, Γ and S are constants1. Under these
assumptions, equation (2.9) reads

d
dx̂

(
φ̂− 1

P

dφ̂
dx̂

)
= Πs0, (2.10)

where Πs0 is a constant. Making up a new variable as φ(0)
= φ̂ − Πs0x̂, the

new transport equation is

d
dx̂

(
φ

(0) − 1

P

dφ(0)

dx̂

)
= 0, (2.11)

which is sourceless but with a new set of boundary values: φ(0)
(0) = φ̂(0) =

0 and φ
(0)

(1) = φ̂(1) − Πs0 = 1 − Πs0. We can construct a normalized
φ
N

(x̂) = φ
(0)

(x̂)/φ
(0)

(1) to have φN (1) = 1 as

φ
N

=
φ̂−Πs0x̂

1−Πs0
,

because in this way, although the normalization does not change the equa-
tion (2.11), φN has the same boundary values as the homogeneous solution
φ̂ and hence, the same exact solution (2.8), i.e.

φ
N

=
expPx̂− 1

expP − 1
=⇒ φ̂ = Πs0x̂+ (1−Πs0)

expPx̂− 1

expP − 1
. (2.12)

This expression has been obtained previously, Thiart [212] and Wang et al.
[233], following different paths. Here, by integrating the constant source
and inserting it in the transformed φ̂ has been easy to get an homogeneous

1Recall that in that case ρ̂u = 1 and Γ̂ = 1 what implies λ̂ = 1 and P0 = P
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differential equation with known solution. What if Πs is now a linear poly-
nomial? The transport equation becomes

d
dx̂

(
φ̂− 1

P

dφ̂
dx̂

)
= Πs1x̂+ Πs0, (2.13)

being Πs0 and Πs1 constants. Therefore, working out the integral of the
polynomial source and again inserting it in φ(0), the equation

d
dx̂

(
φ

(0) − 1

P

dφ(0)

dx̂

)
=

1

P
Πs1,

with φ
(0)

= φ̂ − Πs1(x̂2/2) − Πs0x̂, is a transport equation with a constant
source term similar to (2.10). In order to get rid of this constant source, the
process is as before by using φ(1)

= φ
(0) − (Πs1/P )x̂. Then, the normalized

φ
N with the same boundary values as φ̂ is

φ
N

=

φ̂−Πs1
x̂2

2
−
(

Πs0 +
1

P
Πs1

)
x̂

1−Πs1

(
1

2
+

1

P

)
−Πs0

=
expPx̂− 1

expP − 1
,

and the exact solution of eqn.(2.13) is

φ̂ =Πs1
x̂2

2
+

(
Πs0 +

1

P
Πs1

)
x̂

+

(
1−Πs1

(
1

2
+

1

P

)
−Πs0

)
expPx̂− 1

expP − 1
.

It can be realized that for arbitrary source polynomials this procedure re-
duces them one degree whenever the transport equation is transformed.
It can be repeated over and over again until achieving a sourceless equa-
tion. In a general case where ρu, Γ and S are arbitrary function of x this
approach can be generalized. Unless otherwise indicated, these coefficients
are smooth, of class C∞.

Let us define the function Λ
(0)
s = Λ

(0)
s (x̂) as

d
dx̂

(
ρ̂uΛ(0)

s

)
:= Πs =⇒ Λ(0)

s =
1

ρ̂u

∫ x̂

0
Πsdx̂′, (2.14)

assuming Λ
(0)
s (0) = 0. This Λ function is used to formulate the new variable

φ
(0)

= φ̂− Λ
(0)
s . So, the transport equation associated to this variable is

d
dx̂

(
ρ̂uφ

(0) − Γ̂

P0

dφ(0)

dx̂

)
= − φlb

∆φ

dρ̂u
dx̂

+
d

dx̂

(
Γ̂

P0

dΛ
(0)
s

dx̂

)
. (2.15)



2.1. The dimensionless transport equation 25

Although there is a second source term that turns up in eqn.(2.15), it can be
taken out in the same way by looking for a function Λ

(1)
s that satisfies:

d
dx̂

(
ρ̂uΛ(1)

s

)
:=

d
dx̂

(
Γ̂

P0

dΛ
(0)
s

dx̂

)
⇒ Λ(1)

s =
1

ρ̂u

(
Γ̂

P0

dΛ
(0)
s

dx̂
+ Co

)
.

The constant of integration Co is written so as not to loose generality and
it can be estimated by taking Λ

(1)
s (0) = Λ

(0)
s (0) = 0 what leads to Co =

−(dΛ
(0)
s /dx̂)0/P0, as Γ̂(0) = 1. Then, Λ

(1)
s together with φ

(0) makes φ(1)
=

φ
(0) − Λ

(1)
s = φ̂− (Λ

(0)
s + Λ

(1)
s ) whose transport equation is similar to (2.15)

where Λ
(0)
s is replaced by Λ

(1)
s . If one goes on adding up Λ functions,

Λ(i)
s =

1

ρ̂uP0

(
Γ̂

dΛ
(i−1)
s

dx̂
− dΛ

(i−1)
s

dx̂

∣∣∣∣∣
0

)
∀i = 1, 2, 3, . . . , (2.16)

the final variable reads

φ
(∞)

= φ̂−
∞∑
i=0

Λ(i)
s , (2.17)

and the process ends up with a transport equation where Πs has disap-
peared. An important remark is the relationship between the Λ

(i)
s function

and the Péclet number. As each Λ
(i)
s is built with Λ

(i−1)
s and Λ

(1)
s is inversely

proportional to Péclet then Λ
(i)
s ∝ P−i0 . So in cases where Péclet number

is very high, Λ
(0)
s is the dominant factor and it will only be necessary to

perform one integration.
Further, the variable (2.17) is normalized in order to achieve the same

boundary values as φ̂,

φ
N

(x̂) =

φ̂(x̂)−
∞∑
i=0

Λ(i)
s (x̂)

1−
∞∑
i=0

Λ(i)
s (1)

=:
φ̂(x̂)− F (x̂)

1− F (1)
. (2.18)

To fulfil φN (0) = φ̂(0) = 0, then F (0) = 0. Therefore, φN is governed by the
transport equation

d
dx̂

(
ρ̂uφ

N − Γ̂

P0

dφN

dx̂

)
= −Φ

dρ̂u
dx̂

, Φ :=
1

1− F (1)

φlb
∆φ

,

whose solution is already highlighted in eqn.(2.6a), given by

φ
N

= E

(
IGE0x̂

IGE01
+ P0ΦILE01

[
ILE0x̂

ILE01
− IGE0x̂

IGE01

])
. (2.19)

So, the complete solution of the non-homogeneous transport equation (2.9)
is taken from (2.18) as

φ̂ = F + (1− F (1))φ
N
, (2.20)
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and is made up of the particular solution F and the normalized function
φ̂N corresponding to the homogeneous part of the dimensional equation.
The factor 1 − F (1) appears in (2.20) to satisfy the boundary values of φ̂
mentioned before. Finally, if the Λ

(i)
s functions (2.16) and (2.14) are summed

up,

∞∑
i=0

Λ(i)
s =

1

ρ̂u

∫ x̂

0
Πsdx̂′ +

1

ρ̂uP0

(
Γ̂

d
dx̂

∞∑
i=0

Λ(i)
s −

d
dx̂

∞∑
i=0

Λ(i)
s

∣∣∣∣∣
0

)
,

taking F :=
∑∞

i=0 Λ
(i)
s , a nonhomogeneous first order differential equation

with variable coefficient is procured,

dF
dx̂
− PF = −P0

Γ̂

∫ x̂

0
Πsdx̂′ +

1

Γ̂

dF
dx̂

∣∣∣∣
0

. (2.21)

It is remarked that a family of ODE arises as solution, owing to the arbitrary
value of (dF/dx̂)0. This derivative is not fixed and the particular solution
of (2.21) is a one-parameter family of solutions. For algebraic reasons it is
better to characterize the family with the parameter F (1) which, based on
the differential equation, is directly linked to (dF/dx̂)0. Therefore, the set
of F solutions is given by the F (1)-parameter family as follows:

F = E

(
F (1)

∫ x̂

0

dx̂′

Γ̂E

/∫ 1

0

dx̂′

Γ̂E

− P0

∫ 1

0

∫ x̂′
0 Πsdx̂′′

Γ̂E
dx̂′

[∫ x̂

0

∫ x̂′
0 Πsdx̂′′

Γ̂E
dx̂′

/∫ 1

0

∫ x̂′
0 Πsdx̂′′

Γ̂E
dx̂′

−
∫ x̂

0

dx̂′

Γ̂E

/∫ 1

0

dx̂′

Γ̂E

])
. (2.22)

Rewriting equation (2.22) with integral terms already defined and some
new ones,

F = E

(
F (1)

IGE0x̂

IGE01
− P0 ĨSGE01

[
ĨSGE0x̂

ĨSGE01

− IGE0x̂

IGE01

])
, (2.23a)

ĨSGE0x̂ :=

∫ x̂

0

1

Γ̂E

[∫ x̂′

0
Πsdx̂′′

]
dx̂′, ĨS0x̂ :=

∫ x̂

0
Πsdx̂′, (2.23b)

ĨSGE01 :=

∫ 1

0

1

Γ̂E

[∫ x̂

0
Πsdx̂′

]
dx̂, ĨS01 :=

∫ 1

0
Πsdx̂, (2.23c)

where ĨSGE0x̂ stands for Integral of Source, Gamma and E between 0 and
x̂. ĨS0x̂ is the Integral of Source between 0 and x̂. Therefore, ĨSGE01 and
ĨS01 are evaluated in the whole interval. Note that integrals (2.23b) and
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(2.23c) are written in a dimensionless form but they can be made dimen-
sional on multiplying by (ρu)lb∆φ,

ISGE0x̂ := (ρu)lb∆φĨSGE0x̂ =

∫ x̂

0

∆x

Γ̂E

[∫ x̂′

0
S dx̂′′

]
dx̂′, (2.24a)

IS0x̂ := (ρu)lb∆φĨS0x̂ = ∆x

∫ x̂

0
S dx̂′ ≡

∫ x

xlb

S dx′, (2.24b)

ISGE01 := (ρu)lb∆φĨSGE01 =

∫ 1

0

∆x

Γ̂E

[∫ x̂

0
S dx̂′

]
dx̂, (2.24c)

IS01 := (ρu)lb∆φĨS01 = ∆x

∫ 1

0
S dx̂ ≡

∫ xrb

xlb

S dx. (2.24d)

When assembling the final equation F (1) will disappear of the φ̂ expression
as shown below.

φ̂ =F + (1− F (1))φ
N

=E

(
F (1)

IGE0x̂

IGE01
− P0 ĨSGE01

[
ĨSGE0x̂

ĨSGE01

− IGE0x̂

IGE01

])

+ (1− F (1))E

(
IGE0x̂

IGE01
+ P0

1

1− F (1)

φlb
∆φ

ILE01

[
ILE0x̂

ILE01
− IGE0x̂

IGE01

])
,

=E

(
IGE0x̂

IGE01
+ P0

φlb
∆φ

ILE01

[
ILE0x̂

ILE01
− IGE0x̂

IGE01

]
− P0 ĨSGE01

[
ĨSGE0x̂

ĨSGE01

− IGE0x̂

IGE01

])
. (2.25)

An estimation of F (1) is not required anymore. It is easy to check that
the complete solution (2.25) satisfies the ODE (2.9). φ̂ is assembled with
equation (2.20) together with (2.19) and (2.23a). Table 2.1 summarizes all
integral formulae and solutions derived so far.

As an example, take the first case in this subsection: ρu, Γ and S con-
stants, what leads to Γ̂ = ρ̂u = λ̂ = 1 and P, Πs constants. The integral
formulae can be calculated in a straightforward manner as

E = exp (P (x̂− 1)) ,

ILE0x̂ = IGE0x̂ =
expP − exp (P (1− x̂))

P
,

ĨS0x̂ = Πsx̂,

ĨSGE0x̂ = Πs
expP − (1 + Px̂) exp (P (1− x̂))

P 2
,

then, they can be plugged into equations (2.19) and (2.23a). After some
mathematical manipulation, the homogeneous and particular solutions read

φ
N

=
expPx̂− 1

expP − 1
,

F = Πsx̂+ (F (1)−Πs)
expPx̂− 1

expP − 1
.
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The complete solution is made up of the combination of both solutions and
yields the same result as (2.12). In this case if one goes back to equation
(2.10) when Πs = const., only one-step integration of the source term is
required to get F = Πsx̂ and achieve a homogeneous solution.

The assembled exact solution (2.25) is a general formula in which Péclet
number plays a fundamental role. If P = 0, ρu = 0 and E = 1 ∀x̂ ∈ [0, 1],
the complete solution becomes

φ̂ =
IGE0x̂

IGE01
− ∆x

Γlb∆φ
ISGE01

[
ISGE0x̂

ISGE01
− IGE0x̂

IGE01

]
.

When |P | → ∞ because of Γ → 0 the homogeneous component, φN , will
come from a first-order ODE and F = Λ

(0)
s . Thus, the complete solution

could be written down as follows:

φ̂ =
ĨS0x̂

ρ̂u
+
φlb
∆φ

(
1

ρ̂u
− 1

)
.
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2.2 The nodal equation

An exact solution of a transport equation with variable coefficients and
source term in a given interval has been put forward. Such a solution re-
quires integrals whose estimation is accurate as long as the integrand is in-
terpolated appropriately. The larger any domain is, the more difficult it will
be to find good interpolators, so the traditional alternative is to split up the
whole domain in intervals wherein the solution is known. To connect two
adjacent intervals the continuity of diffusion flux is enforced at a generic
point xC belonging to both. The whole discretization is named “Enhanced
Numerical Approximation of a Transport Equation”, ENATE.

x0 xn

xW xC xE

0 1x̂

φ̂(x̂)

0 1x̂

φ̂(x̂)

Γ
dφ
dx

∣∣∣∣
xC

=Γ
dφ
dx

∣∣∣∣
xC

× ×

FIGURE 2.2: ENATE discretization: (×) Boundary points;
(•) Internal points. Two generic intervals: one from West

node to Central node and the other from Central to East

The diffusion flux on the normalized map reads

Γ
dφ
dx

= Γ
∆φ

∆x

dφ̂
dx̂

=
ρu∆φ

P

dφ̂
dx̂

= ρu∆φ

[
1

P

dF
dx̂

+ (1− F (1))
1

P

dφN

dx̂

]
, (2.26)

where the derivatives of the homogeneous and particular solutions are

dφN

dx̂
= P

[
φ
N

+
k̃

ρ̂u
+ Φ

(
1− 1

ρ̂u

ILE01

IGE01

)]
, (2.27a)

dF
dx̂

= P

[
F +

F (1)k̃

ρ̂u
− 1

ρ̂u

(
ĨS0x̂ −

ĨSGE01

IGE01

)]
, (2.27b)

being k̃ := 1/(P0IGE01). Equation (2.26) is associated to a reference interval
that goes from 0 to 1, either blue or red in Figure 2.2. The value of a variable
at a node depends on the interval where it is located. For instance, if the
reference Péclet over an interval, P0, is required, it is calculated as

P0 = P (0) =


(ρu)W∆xWC

ΓW
, if x̂ is within WC

(ρu)C∆xCE
ΓC

, if x̂ is within CE
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Equation (2.26) is thus applied to both intervals, [xW , xC ] and [xC , xE ],
in the discretized domain. The interval lengths ∆xWC = xC − xW and
∆xCE = xE − xC could be the same, as in Figure 2.2, or different, if a
non-uniform mesh is employed. The Péclet number will be affected by the
different lengths. On the other hand, integrals such as ILE, IGE, IS, ISGE
must be found in all intervals using the available information at nodes. In
Subsection 2.3 this will be further detailed.

The Central node, the end point of the interval [xW , xC ], x̂ = 1 in the
reference interval, is the same as the start point of the next one [xC , xE ],
x̂ = 0 in the reference interval. Linking the diffusion fluxes yields:

(ρu)C ∆φWC

[
1

P1

dF
dx̂

∣∣∣∣
1

+ (1− FC)
1

P1

dφN

dx̂

∣∣∣∣∣
1

]

= (ρu)C ∆φCE

[
1

P0

dF
dx̂

∣∣∣∣
0

+ (1− FE)
1

P0

dφN

dx̂

∣∣∣∣∣
0

]
, (2.28)

where ∆φWC = φC − φW , ∆φCE = φE − φC and FC = F (1)|WC , FE =
F (1)|CE . Finally, the factors that have to be calculated at the edges of the
intervals are

1

P0

dφN

dx̂

∣∣∣∣∣
0

= k̃CE + ΦCE

[
1− ILE01

IGE01

∣∣∣∣
CE

]
,

1

P1

dφN

dx̂

∣∣∣∣∣
1

= 1 +
k̃WC

ρ̂uC
+ ΦWC

[
1− 1

ρ̂uC

ILE01

IGE01

∣∣∣∣
WC

]
,

1

P0

dF
dx̂

∣∣∣∣
0

= FE k̃CE +
ĨSGE01

IGE01

∣∣∣∣∣
CE

,

1

P1

dF
dx̂

∣∣∣∣
1

= FC

[
1 +

k̃WC

ρ̂uC

]
− 1

ρ̂uC

[
ĨS01

∣∣∣
WC
− ĨSGE01

IGE01

∣∣∣∣∣
WC

]
,

together with the following parameters:

k̃CE =
1

P0IGE01

∣∣∣∣
CE

, k̃WC =
1

P0IGE01

∣∣∣∣
WC

,

ΦCE =
1

1− FE
φC

∆φCE
, ΦWC =

1

1− FC
φW

∆φWC
,

ĨSGE01

∣∣∣
CE

=
ISGE01|CE
(ρu)C∆φCE

, ĨSGE01

∣∣∣
WC

=
ISGE01|WC

(ρu)W∆φWC
,

ĨS01

∣∣∣
WC

=
IS01|WC

(ρu)W∆φWC
, ρ̂uC = ρ̂u(1)|WC =

(ρu)C
(ρu)W

.
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Introducing previous factors and parameters into equation (2.28), the inner
nodal equation takes the following expression:

−(ρu)W

(
k̃WC +

ILE01

IGE01

∣∣∣∣
WC

)
φW +

[
(ρu)W k̃WC

+ (ρu)C

(
k̃CE +

ILE01

IGE01

∣∣∣∣
CE

)]
φC − (ρu)C k̃CE φE

= IS01|WC +

(
ISGE01

IGE01

∣∣∣∣
CE

− ISGE01

IGE01

∣∣∣∣
WC

)
. (2.29)

Although the integrals, now applied at each interval, have been defined in
(2.6c), (2.24d) and (2.24c), and set forth in Table 2.1, will be rewritten here
as a reminder.

ILE01 =

∫ 1

0

λ̂

E
dx̂ =

expP − 1

P0
, P =

∫ 1

0
P dx̂,

IGE01 =

∫ 1

0

1

Γ̂E
dx̂, k̃ =

1

P0IGE01
,

IS01 = ∆x

∫ 1

0
S dx̂, ISGE01 =

∫ 1

0

∆x

Γ̂E

[∫ x̂

0
S dx̂′

]
dx̂.

Identifying the coefficients that multiply each φi, equation (2.29) can be
written in the form

−AWφW +ACφC −AEφE = bC , (2.30)

with the influence coefficients,

AC := (ρu)W k̃WC + (ρu)C

(
k̃CE +

ILE01

IGE01

∣∣∣∣
CE

)
, (2.31a)

AW := (ρu)W

(
k̃WC +

ILE01

IGE01

∣∣∣∣
WC

)
, (2.31b)

AE := (ρu)C k̃CE , (2.31c)

and discrete source,

bC := IS01|WC +

(
ISGE01

IGE01

∣∣∣∣
CE

− ISGE01

IGE01

∣∣∣∣
WC

)
. (2.32)

Some algebraic relations can be extracted form the result derived. The
equation (2.29) can be arranged as follows:

− (ρu)W k̃WC φC + (ρu)W

(
k̃WC +

ILE01

IGE01

∣∣∣∣
WC

)
φW + IS01|WC −

ISGE01

IGE01

∣∣∣∣
WC

=

− (ρu)C k̃CE φE + (ρu)C

(
k̃CE +

ILE01

IGE01

∣∣∣∣
CE

)
φC −

ISGE01

IGE01

∣∣∣∣
CE

.
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The total fluxF = F(x) := ρuφ−Γdφ/dx, defined by the transport equation
(2.1a), can be written within a reference interval2,

F(x̂) = −(ρu)0k̃ φ1 + (ρu)0

(
k̃ +

ILE01

IGE01

)
φ0 + IS0x̂ −

ISGE01

IGE01
.

The discrete equation (2.29) becomes

F(1)|WC = F(0)|CE .

The former expression just says that F leaving the interval [xW , xC ] is equal
to that entering the interval [xC , xE ] or roughly speaking, the discrete solu-
tion guarantees the continuity of F . This comes as no surprise as the term
ρuφ is supposed to be continuous at node xC and F is also continuous on
matching the diffusive flux. F can only be discontinuous if the source is a
Dirac-delta. In Section 2.5 a case with discontinuous coefficients but with
continuous flux will be assessed with ENATE scheme.

The algebraic relation (2.30) is akin to other Finite Volume (FV) methods,
although some differences arise. In traditional FV methods, numerical tools
are employed to approximate the integral balances of an ODE or PDE with
values interpolated at cell faces. This gives a connection between nodes in
the discrete domain, with coefficients related to all these approximations.
By contrast, ENATE is a numerical scheme whose coefficients (2.31) are re-
lated to integrals of the convective, diffusive and source terms and whose
accuracy can be as high as desired by using better interpolations without
modifying the computational molecule.

In Table 2.4, on page 46, all formulae that are used to compute the nu-
merical solution of a convection-diffusion problem are summarized.

2.2.1 A low-order approximation

As mentioned before ILE01, IGE01, ISGE01 and IS01 should be approx-
imated to get a numerical solution. A simplification could be carried out
with the assumption that ρu, Γ and S are constant between nodes, with
their values taken at the interval midpoint, e.g., ρu = (ρu)w if xW ≤ x ≤ xC ;
ρu = (ρu)e if xC ≤ x ≤ xE . Here w denotes the midpoint of [xW , xC ] and e
that of [xC , xE ]. So, the integrals in a generic interval are

ILE01 = IGE01 =
1

B(P1/2)
, k̃ =

B(P1/2)

P1/2
,

IS01 = S1/2∆x,
ISGE01

IGE01
= IS01W (P1/2),

where the B(z) and W (z) functions are defined as

B(z) :=
z

exp z − 1
, W (z) :=

exp z − z − 1

z (exp z − 1)
.

2For further information on the deduction of the flux (2.33) see Appendix A.
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Finally the influence coefficients and discrete source now read

AC = AW +AE + [(ρu)e − (ρu)w] ,

AW =
Γw

∆xWC
B(−Pw), AE =

Γe
∆xCE

B(Pe),

bC = Sw∆xWC [1−W (Pw)] + Se∆xCEW (Pe),

with the western and eastern Péclet calculated as

Pw =
(ρu)w ∆xWC

Γw
, Pe =

(ρu)e ∆xCE
Γe

.

This discretization leads to the second order accurate scheme of Thiart [212].
All in all, ENATE is a global exponential scheme that can be particularized
to known schemes by taking different approximations to the integrals that
are involved in the influence coefficients and discrete source. In Numeri-
cal Tests section, ENATE will be compared to a scheme closer than Thiart’s:
the exponential scheme of ten Thije Boonkkamp [209]. The coefficients in
this subsection are identical to those in ten Thije Boonkkamp et al. but the
quadrature employed is different, normally a trapezoidal rule. In [6] a GL
quadrature was occasionally implemented. The coefficients equality was
demonstrated in a paper where the FV-CF scheme and ENATE were al-
ready compared for linear source terms [224].

2.2.2 Fundamental discretization-properties

The ENATE scheme ends up solving a system of algebraic equations that in
matrix form is

Aφφφ = b, (2.33)

where A is a tridiagonal matrix, φφφ is the vector of the discrete transported
variable, and b the discrete source vector.

A =


◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦

 , φφφ =


◦
◦
◦
◦
◦

 , b =


◦
◦
◦
◦
◦

 .

Blue circles symbolize the inner region of the domain. Red circles are the
special treatment of eqn.(2.30) at boundaries which is provided in Subsec-
tion 2.2.3. As solving (2.33) with a direct method requires a notable amount
of work and computer storage, iterative methods are normally used. Their
features are studied by numerical analysis. However, not only does it mat-
ter the numerical behaviour in terms of stability, also the solution must be in
accordance with physical reality and violation of physical laws such as ca-
sual loss/gain of mass, non-physical oscillations or shock moving at wrong
speed should not be allowed. Therefore, to give realistic results a numerical
scheme in CFD should satisfy some properties summarized in Table 2.2, see
Versteeg et al. [227], and Schäfer [187].

Transportiveness is the ability of a numerical scheme to reproduce by
itself in what direction the information of φ is being transported. In a
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Numerical analysis CFD
Convergence Transportiveness
Consistency Conservativeness

Stability Boundedness

TABLE 2.2: Properties of a CFD scheme related to those
studied in numerical analysis

diffusion-dominated problem (P → 0), φ is spread over the whole do-
main with a non-preferred direction. In the opposite case, in a convection-
dominated problem (|P | → ∞), φ only depends on upstream values or
rather, the information is totally transported in the sense marked by the
sign of u velocity.

When Péclet is zero in ENATE, E(x̂) = 1 ∀x̂ and ILE01 = 0. Since
the exponential factor is no longer considered in IGE01 and ISGE01, the
integrals are renamed as

IGE01 → IG01 :=

∫ 1

0

dx̂

Γ̂
,

ISGE01 → ISG01 :=

∫ 1

0

∆x

Γ̂

[∫ x̂

0
S dx̂′

]
dx̂.

The product of the convective term and the parameter k̃ is rearranged as

(ρu)C k̃CE = (ρu)C
1

P0IG01

∣∣∣∣
CE

= �
��(ρu)C

1

���(ρu)C∆xCE
ΓC

IG01|CE

=
ΓC

∆xCE

1

IG01|CE
.

Thus, the pure-diffusion nodal equation writes

−AWφW +ACφC −AEφE = bC , (2.34a)

AW =
ΓW

∆xWC

1

IG01|WC

, AE =
ΓC

∆xCE

1

IG01|CE
, (2.34b)

AC = AW +AE , (2.34c)

bC = IS01|WC +

(
ISG01

IG01

∣∣∣∣
CE

− ISG01

IG01

∣∣∣∣
WC

)
. (2.34d)

The discrete equation (2.34a) corresponds to the 1D Poisson equation and
shows up a transportive behaviour: φ at xC is influenced by xW and xE .
Note that AW and AE contain the harmonic average of Γ if 1/Γ is linear in
their respective intervals. Moreover, if a uniform mesh is set up and Γ is
constant, IG01 = 1, the influence coefficients are the same and φ tends to be
influenced equally by upwind and downwind directions.

As Péclet increases and goes to plus infinity, φW contribution becomes
more and more important as compared to that of φC . When Péclet goes
to minus infinity, φE is dominant. The case where ρu is positive will be
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discussed, with convective information travelling from left to right within
the domain. Integrals such as IGE and ISGE must be approximated for
this Péclet regime. Similarly to ILE (2.7) we can obtain a simplified version
for the Integral of Gamma and E,

IGE01 =

∫ 1

0

1

Γ̂E
dx̂

=

∫ 1

0

1

ρ̂u

λ̂

E
dx̂

= − 1

P0

∫ 1

0

1

ρ̂u

d
dx̂

(
1

E

)
dx̂

(a)
= − 1

P0

∫ 1

0

d
dx̂

(
1

ρ̂uE

)
dx̂

=
1

P0

(
exp

∫ 1

0
P dx̂− 1

ρ̂u(1)

)
,

and for the Integral of Source, Gamma and E,

ISGE01 =

∫ 1

0

[
∆x

Γ̂E

∫ x̂

0
S dx̂′

]
dx̂

= − 1

P0

∫ 1

0

[
∆x

ρ̂u

d
dx̂

(
1

E

)∫ x̂

0
S dx̂′

]
dx̂

(b)
= − 1

P0

∫ 1

0

d
dx̂

(
∆x

ρ̂uE

∫ x̂

0
S dx̂′

)
dx̂

= − ∆x

P0ρ̂u(1)

∫ 1

0
S dx̂.

Both simplifications can be employed if the inequality (a),∣∣∣∣ 1

E

d
dx̂

(
1

ρ̂u

)∣∣∣∣� ∣∣∣∣ 1

ρ̂u

d
dx̂

(
1

E

)∣∣∣∣∣∣∣∣ d
dx̂

(
1

ρ̂u

)∣∣∣∣� ∣∣∣∣ 1

ρ̂u
P

∣∣∣∣∣∣∣∣ d
dx̂

(ln ρ̂u)

∣∣∣∣� |P | ,
and inequality (b),∣∣∣∣∣ 1

E

d
dx̂

(
∆x

ρ̂u

∫ x̂

0
S dx̂′

)∣∣∣∣∣�
∣∣∣∣∣∆xρ̂u d

dx̂

(
1

E

)∫ x̂

0
S dx̂′

∣∣∣∣∣ ,∣∣∣∣∣ d
dx̂

(
∆x

ρ̂u

)∫ x̂

0
S dx̂′ +

∆xS

ρ̂u

∣∣∣∣∣�
∣∣∣∣∣∆xPρ̂u

∫ x̂

0
S dx̂′

∣∣∣∣∣ ,∣∣∣∣ d
dx̂

(ln ρ̂u)

∣∣∣∣+
1∣∣∣∣∣ 1S

∫ x̂

0
S dx̂′

∣∣∣∣∣
� |P | ,



2.2. The nodal equation 37

are satisfied. These inequalities will now be used to estimate the values of k̃
and the ratios ILE01/IGE01 and ISGE01/IGE01 when Péclet is very high.
These are

k̃ =
1

exp

∫ 1

0
P dx̂− 1

ρ̂u(1)

, (2.35a)

ILE01

IGE01
=

exp

∫ 1

0
P dx̂− 1

exp

∫ 1

0
P dx̂− 1

ρ̂u(1)

, (2.35b)

ISGE01

IGE01
= −

∆x

∫ 1

0
S dx̂

ρ̂u(1) exp

∫ 1

0
P dx̂− 1

. (2.35c)

It is clear that when taking the limit as Péclet goes to infinity, the exponen-
tial dominates to make the ratio (2.35b) go to 1, whereas the ratio (2.35c)
and parameter (2.35a) become negligible. In Figure 2.3 the tendency of all
these functions is displayed. Finally, the pure-convection nodal equation
reads

−AWφW +ACφC = bC , (2.36a)
AC = (ρu)C , AW = (ρu)W , (2.36b)
bC = IS01|WC , (2.36c)

assuming ρu > 0. Notice φ at xC is only bound to xW as the convective
information only comes from the upwind side. In case that P → −∞ the
resulting equation gives

ACφC −AEφE = bC , (2.37a)
AC = − (ρu)C , AE = − (ρu)E , (2.37b)
bC = IS01|CE . (2.37c)

Therefore, ENATE fulfills transportiveness for any Péclet number regime.
Conservativeness is the ability of a numerical scheme to represent the con-

servation principle at the discrete level whatever the grid size, or in other
words, preserves F at the edge between two adjacent intervals. This is easy
to check with a generic interval, for instance, [xW , xC ]. Working out the
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P
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IGE01

1

(A) ILE/IGE vs Peclet.

P
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∞

(B) k̃ vs Peclet.
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a
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∆x

1
IG01

(C) ρuk̃ vs Peclet.
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b
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IG01

(D) ISGE/IGE vs Peclet.

FIGURE 2.3: Trends for the ratios and parameters of the
equation (2.29) with increasing Péclet. Gray areas mean the
ranges over which those functions can vary. k̃ is an un-

bounded function at P = 0.

total flux F at both nodes,

FC = F(1)|WC =− (ρu)W k̃WC φC

+ (ρu)W

(
k̃WC +

ILE01

IGE01

∣∣∣∣
WC

)
φW

+ IS01|WC −
ISGE01

IGE01

∣∣∣∣
WC

,

FW = F(0)|WC =− (ρu)W k̃WC φC

+ (ρu)W

(
k̃WC +

ILE01

IGE01

∣∣∣∣
WC

)
φW

− ISGE01

IGE01

∣∣∣∣
WC

,

and,

FC −FW = IS01|WC =

∫ xC

xW

S dx.

The left-hand side can be defined as the integral from xW to xC of the F
variation. The final result,∫ xC

xW

(
dF
dx
− S

)
dx = 0,

gives the integral form of the conservation law (2.1a) valid in a single inter-
val as in the whole domain. ENATE is thus a conservative approach.
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Finally, Boundedness relates to the fact that in the absence of sources the
value of φ within an interval should lie between the values at the edges.
From a physical point of view some transport quantities must be bounded
to certain limits, the thermodynamic temperature cannot be negative for
instance. Since the continuous transport equation must fulfil a maximum
principle, as we proved for the homogeneous solution on page 22, the dis-
crete equation does satisfy monotonicity. This CFD property is basically
related to the matrix of (2.33) being an M-matrix. The matrix A is an M-
matrix if:

1. The off-diagonal elements of A are negative,

2. A is regular (nonsingular),

3. A−1 ≥ 0.

These items ensure positivity but criteria 2 and 3 are tricky to check. Au-
thors such as Fiedler [56] or Horn and Johnson [82] gave a list of equivalent
conditions that are sufficient but sometimes not necessary. In this group it is
included the condition that the matrix is diagonally dominant [226, p. 92],
what can be expressed as

|AC | ≥
∑
i∈Nx

|Ai| , (2.38)

withNx = {W,E}. When the case of pure diffusion, φ is absolutely bounded.
In a general case, AC is not equal to

∑
iAi considering that

AC = AW +AE +

[
(ρu)C

ILE01

IGE01

∣∣∣∣
CE

− (ρu)W
ILE01

IGE01

∣∣∣∣
WC

]
.

In 1D mass conservation implies dρu/dx = 0, that is ρu constant. The term
in square brackets is identically zero and φ is bounded. In other cases, such
as multidimensions or an injection/extraction of mass dρu/dx = ṁ where
ṁ is the arbitrary mass flux, the term in brackets could be equal, less or
greater than zero, and therefore, the condition (2.38) can be met or not. It
should be mentioned that the solution could converge even if the diagonal
is not dominant.

Another essential criterion, see Patankar [150], is that the influence coef-
ficients (2.31) must always have the same sign, either positive or negative.
Take the steady-state 1D heat conduction equation,

d
dx

(
−kdT

dx

)
= 0,

with variable thermal conductivity k = k(x). Since the problem is free of
heat sources, the temperature must be within the range of the boundary
values. Applying k = exp(100x), T (0) = 0 and T (1) = 1 the exact solution
is T (x) = (1−exp(−100x))/(1−exp(−100)). Let the problem be discretized
uniformly by a central difference scheme in conservative form,

−kw TW + (kw + ke)TC − ke TE = 0, (2.39)
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and in non-conservative form,

−
(

1− k̇C∆x

2 kC

)
TW + 2TC −

(
1 +

k̇C∆x

2 kC

)
TE = 0. (2.40)

Thermal conductivities ke and kw are evaluated at interfaces of the control
volume and k̇ is the spatial derivative of k. In the scheme (2.39) the tempera-
ture at xC is calculated with the weighted average of their neighbour nodes
at xW and xE and hence limited, while in the scheme (2.40) an increase of
TE leads to a decrease of TC , giving a non-realistic physics displayed in
Figure 2.4. Therefore, this criterion could be a better tool to catch whether a
numerical scheme is bounded or not.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x

T
(x

)

FIGURE 2.4: Numerical solutions for the schemes (2.39) (2)
and (2.40) (4) compared with the exact solution (-).

The ENATE coefficients can be summarized by the next expression:

Ai = (1− δij)
[
(ρu)j k̃ji

]
+ (1− δil)

[
(ρu)i

(
k̃il +

ILE01

IGE01

∣∣∣∣
il

)]
, (2.41)

being δij and δil Kronecker deltas,

δab =

{
1, if a = b,

0, if a 6= b.

The indices i, j, and l are given in Table below.

i W C E

j W W C

l C E E

TABLE 2.3: Index specification

As an example, if AE is sought, then i ≡ E and j ≡ C and l ≡ E. That
makes δEC = 0 and δEE = 1 which results is (ρu)C k̃CE . Same for the other
coefficients.
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In expression (2.41) there are two fundamental terms: (ρu)lbk̃ and (ρu)lb(k̃+
ILE01/IGE01). The main idea is that if it is shown that both terms have the
same sign, the sign of Ai will be the same for the three coefficients of (2.30).
To do so, it is essential to seek the sign of the integrals and variables that
make up the coefficients. By definition, the diffusion variable Γ is always
positive what makes Γ̂ positive as well. The factor E is positive since it
is an exponential function, and as IGE01 is an integral by combination of
both parameters, is also positive. Therefore, the Ai sign depends on the
convective sign. k̃ contains (ρu)lb in P0, and ILE01 in P .

If (ρu)lb ≥ 0 all coefficients have the same sign. If (ρu)lb < 0 we will
work with the modulus, (ρu)lb = − |(ρu)lb|. In the first term,

− |(ρu)lb| k̃ = ��− |(ρu)lb|
1

��− |P0| IGE01
> 0,

the sign cancels out so it remains positive, whereas the second one could be
rearranged by using the simple form of ILE01 as follows:

− |(ρu)lb|
(
k̃ +

ILE01

IGE01

)
= − |(ρu)lb|

(
1

− |P0| IGE01
+
ILE01

IGE01

)
=
− |(ρu)lb|
IGE01

(
− 1

|P0|
+ ILE01

)

=
− |(ρu)lb|
IGE01

− 1

|P0|
+

exp

∫ 1

0
− |P |dx̂− 1

− |P0|


=
|(ρu)lb|
|P0| IGE01

exp

∫ 1

0
− |P |dx̂ > 0,

which is also positive. ENATE thus meets the physical requirement that all
coefficients must be of the same sign.

2.2.3 Boundary value problem

The mathematical modelling of the physical world by PDEs requires a set
of conditions at the boundaries of the domain of interest that determine a
unique solution of the mathematical problem. Then, it is said that one has
a boundary value problem.

u∞ u(y)

y

x

FIGURE 2.5: Boundary layer around a flat plate

See for instance Figure 2.5. At large distances from the plate a friction-
less fluid could be assumed to model the flow, giving reasonable predic-
tions. But around the plate viscous stresses become essential since the fluid
velocity changes quickly within a thin layer, gray area, as the fluid does not
slip on the surface. The boundary condition for this problem is u(x, 0) = 0.
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Sorting out such boundaries there are three classic conditions used: Dirich-
let, Neumann, and Robin. All of them have some importance in fluid me-
chanics. For instance, in the illustration above the value of the fluid velocity
imposed on the body wall is a Dirichlet Condition for the velocity equation.
The Neumann Condition deals with the gradient of a variable and could be
used as condition of fluid outlet, in a symmetry axis of the domain or as a
given heat flux. A Robin Condition imposes the value of the flux F on the
boundary and models, for instance, the heat transmission between a wall
and a fluid by Newton’s law of cooling, see Powers [167]. Other sophis-
ticated conditions such as periodic boundary condition and mixed boundary
condition are a special case of the former three.

We will describe how to apply them with the ENATE scheme.

Dirichlet condition or fixed boundary problem

· · ·
xB1 xC1 xE1

(A) Left boundary

· · ·•
xW2 xC2 xB2

(B) Right boundary

FIGURE 2.6: Boundary zones in a one-dimensional do-
main. The circles at edges correspond to known values with

Dirichlet BC.

The boundary condition of the first type sets the value of the dependent
variable, φ. Thus, the nodal equation (2.30) can be handled in the following
way. For the left boundary, Figure 2.6a, West node matches up with xB1

what leads to the same influence coefficients AB1 ≡ AW , AC1 ≡ AC , AE1 ≡
AE and discrete source term bC1 ≡ bC . As in that case φ(xB1) = φB1 is
the known value, it is included along with bC1 in a new source. Finally, the
system of equations (2.33) is partially closed by the left-boundary equation
as follows:

AC1φC1 −AE1φE1 = b′C1, (2.42a)
b′C1 := bC1 +AB1φB1. (2.42b)

Similar procedure is employed for the right boundary, Figure 2.6b. The
right-boundary equation reads as follows:

−AW2φW2 +AC2φC2 = b′C2, (2.43a)
b′C2 := bC2 +AB2φB2, (2.43b)

where AW2 ≡ AW , AC2 ≡ AC , AB2 ≡ AE and bC2 ≡ bC . The problem
contains n− 1 equations with n− 1 unknowns.

Neumann condition

The second type of boundary condition (Neumann BC) fixes the value of
the gradient at the edge of the domain. It is not as straightforward to im-
plement as the previous condition. If a relation between the gradient and
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· · ·
xB1 xC1 xE1

0 1x̂

dφ̂
dx̂

(A) Left boundary

· · ·•
xE2 xC2 xB2

0 1x̂

dφ̂
dx̂

(B) Right boundary

FIGURE 2.7: Boundary zones in a one-dimensional domain.
Values of φ at edge points are unknown.

the edge value is formulated by first-order finite differences:

dφ
dx

∣∣∣∣
xB1

≈ φC1 − φB1

xC1 − xB1
,

and

dφ
dx

∣∣∣∣
xB2

≈ φB2 − φC2

xB2 − xC2
,

the accuracy of the method could be impaired. However, as ENATE works
with the exact solution the gradient can also be evaluated exactly. ENATE
uses a reference interval, x̂, for each interval of the dimensional x domain.
For the left boundary, Figure 2.7a, xB1 matches up with x̂ = 0 and xC1 with
x̂ = 1. In case of the right boundary, Figure 2.7b, xC2 matches up with x̂ = 0
and xB2 with x̂ = 1. Then the gradients dφ/dx read

ΓB1

(ρu)B1

dφ
dx

∣∣∣∣
B1

= ∆φB1C1

[
1

P0

dF
dx̂

∣∣∣∣
0

+ (1− FC1)
1

P0

dφN

dx̂

∣∣∣∣∣
0

]
,

ΓB2

(ρu)B2

dφ
dx

∣∣∣∣
B2

= ∆φC2B2

[
1

P1

dF
dx̂

∣∣∣∣
1

+ (1− FB2)
1

P1

dφN

dx̂

∣∣∣∣∣
1

]
,

with φN and F derivatives at edges

1

P0

dφN

dx̂

∣∣∣∣∣
0

= k̃B1C1 +
1

1− FC1

φB1

∆φB1C1

[
1− ILE01

IGE01

∣∣∣∣
B1C1

]
,

1

P0

dF
dx̂

∣∣∣∣
0

= FC1k̃B1C1 +
1

(ρu)B1∆φB1C1

ISGE01

IGE01

∣∣∣∣
B1C1

,

and

1

P1

dφN

dx̂

∣∣∣∣∣
1

=1 +
k̃C2B2

ρ̂uB2

+
1

1− FB2

φC2

∆φC2B2

[
1− 1

ρ̂uB2

ILE01

IGE01

∣∣∣∣
C2B2

]
,

1

P1

dF
dx̂

∣∣∣∣
1

=FB2

[
1 +

k̃C2B2

ρ̂uB2

]

− 1

ρ̂uB2

1

(ρu)C2∆φC2B2

[
IS01|C2B2 −

ISGE01

IGE01

∣∣∣∣
C2B2

]
,
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beingFC1 = F (1)|B1C1, FB2 = F (1)|C2B2, ρ̂uB2 = (ρu)B2 / (ρu)C2, ∆φB1C1 =
φC1 − φB1, and ∆φC2B2 = φB2 − φC2. After some mathematical manipula-
tion, the left-boundary equation becomes

AB1φB1 −AC1φC1 = bB1, (2.45a)

AB1 := (ρu)B1

(
k̃B1C1 +

ILE01

IGE01

∣∣∣∣
B1C1

)
− (ρu)B1 , (2.45b)

AC1 := (ρu)B1 k̃B1C1, (2.45c)

bB1 :=
ISGE01

IGE01

∣∣∣∣
B1C1

− ΓB1
dφ
dx

∣∣∣∣
B1

, (2.45d)

whereas the right-boundary equation becomes

−AC2φC2 +AB2φB2 = bB2, (2.46a)

AB2 := (ρu)B2 + (ρu)C2 k̃C2B2, (2.46b)

AC2 := (ρu)C2

(
k̃C2B2 +

ILE01

IGE01

∣∣∣∣
C2B2

)
, (2.46c)

bB2 := IS01|C2B2 −
ISGE01

IGE01

∣∣∣∣
C2B2

+ ΓB2
dφ
dx

∣∣∣∣
B2

, (2.46d)

The system (2.33) is made up of n + 1 equations with n + 1 unknowns if
both boundaries are of Neumann type.

Robin condition or convective boundary problem

A Robin condition works with the flux as known value:

FB1 = (ρu)B1 φB1 − ΓB1
dφ
dx

∣∣∣∣
B1

,

and

FB2 = (ρu)B2 φB2 − ΓB2
dφ
dx

∣∣∣∣
B2

.

As Γdφ/dx and F are related to each other, those diffusion terms could
be replaced in the source term (2.45d) and (2.46d) by the total fluxes. This
results in the left-boundary equation

AB1φB1 −AC1φC1 = bB1, (2.47a)

AB1 := (ρu)B1

(
k̃B1C1 +

ILE01

IGE01

∣∣∣∣
B1C1

)
, (2.47b)

AC1 := (ρu)B1 k̃B1C1, (2.47c)

bB1 :=
ISGE01

IGE01

∣∣∣∣
B1C1

+ FB1, (2.47d)
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and the right-boundary equation

−AC2φC2 +AB2φB2 = bB2, (2.48a)

AB2 := (ρu)C2 k̃C2B2, (2.48b)

AC2 := (ρu)C2

(
k̃C2B2 +

ILE01

IGE01

∣∣∣∣
C2B2

)
, (2.48c)

bB2 := IS01|C2B2 −
ISGE01

IGE01

∣∣∣∣
C2B2

−FB2. (2.48d)

As before, the system is made up of n + 1 equations with n + 1 unknowns
if both boundaries are of Robin type.

Discussion on the Neumann condition

A Dirichlet condition does not affect the global scheme (2.29) because the
influence coefficients are the same as those of the inner part. Hence, it is
expected to have the same boundedness behaviour. However, a Neumann
condition modifies some coefficients by incorporating an extra convective
term that could endanger satisfying the constraint of equal signs. Recall
that (ρu)lbk̃ and (ρu)lb(k̃+ ILE01/IGE01) are always positive whatever the
convection sign. A Robin condition removes this problem and the scheme
is bounded. In consequence, Robin BC is suitable as, unlike Neumann BC, it
is guarantee of boundedness.

So, if Neumann BC is used and the coefficients (2.45b) and (2.46b) could
change the sign, it is recommended to take this extra convective term to
the source as a value from the old iteration. The left- and right-boundary
equations are

AB1φB1 −AC1φC1 = b′B1,

−AC2φC2 +AB2φB2 = b′B2,

with

b′B1 := bB1 + (ρu)B1 φ
old
B1 ,

b′B2 := bB2 − (ρu)B2 φ
old
B2 ,

where AB1 and AB2 do not contain (ρu)B1 and (ρu)B2.
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.
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2.3 Integration methods I

The ENATE scheme provides an algebraic relation of a three-point stencil.
Its accuracy relies on the way the numerical integrals are worked out in
each interval. If the domain is cut off into n intervals with n + 1 points
(x0, x1, · · · , xn), n integrals must be solved. If the integrand does not have
a primitive an interpolating function has to be chosen in order to evaluate
the integrals. As integrands with no primitive are most common, in this sec-
tion two numerical approaches to calculate integrals such as ILE01, IGE01,
ISGE01 and IS01, are developed: Hermite splines and GL quadrature. In
Section 2.6, both interpolators will be compared.

2.3.1 Hermite splines

A fundamental background of Hermite interpolation can be found in the
book [20], among others. This interpolation for quadratures is employed in
this thesis.

On the whole a Hermite spline is an interpolation tool that matches the
target function f(x) given a dataset of its values and derivatives up to q-
order at p+ 1 points, as read below.

x0 x1 x2 · · · xp
f(x0) f(x1) f(x2) · · · f(xp)

df(x0) df(x1) df(x2) · · · df(xp)

d2f(x0) d2f(x1) d2f(x2) · · · d2f(xp)
...

...
...

. . .
...

dqf(x0) dqf(x1) dqf(x2) · · · dqf(xp)

Note: dqf = dqf/dxq

Consequently, the total number of data that Hermite requires is (p+1)(q+1).
By the theory of the interpolation, the integral within [x0, xp], and interval
length ∆ = (xp − x0)/p, could be written as∫ xp

x0

f(x)dx ≈ ∆

p∑
i=0

wi0f(xi) +

q∑
j=1

(
∆j+1

p∑
i=0

wij
djf
dxj

∣∣∣∣∣
xi

)
, (2.49)

with the error given by

EH (x; f) =

∫ xp

x0

1

r!

drf
dxr

∣∣∣∣
x?

p∏
i=0

(x− xi)1+q dx, x0 6 x
? 6 xp,

and r = (p+ 1)(q + 1). Thus, the quadrature would be exact if the polyno-
mial is of degree r − 1. The error formula has been obtained by integrating
the error term of Hermite interpolation. Regarding the integral (2.49), the
dimensionless weights, wij , are calculated as follows. Take f(x) = xk for
all k values that meet EH

(
x;xk

)
= 0. To reduce complexity throughout the

calculation rename the variables as

Domain : [x0, xp] −→ [0, p]
Continuum : x −→ t = (x− x0)/∆
Discrete : xi −→ ti = i
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A linear equation system is obtained whose solution gives unique weights,

q∑
j = 0
j ≤ k

p∑
i=0

k!

(k − j)! i
k−jwij =

pk+1

k + 1
, k = 0, 1, ..., r − 1. (2.50)

Some rules and tips should be followed in the above equation: 1) Start off
with the k-index, go on with the j-index and end up with the i-index; 2)
When the term ik−j becomes the indeterminate form 00, change it to 1.

The value of the influence coefficients (2.31) and discrete source (2.32)
depends on integrals in each interval within the split-up domain, see Figure
2.2. Those integrals can be calculated straightaway in the domain [0, 1], due
to the mapping. So, it all comes down to applying (2.50) with two points,
p = 1, at the edges of the normalized interval. The degree of accuracy re-
lates to the order of employed derivatives of the function to be interpolated.
For instance, the simplest Hermite spline, also named as Cubic Hermite, has
the first derivatives, q = 1,∫ 1

0
f(x̂)dx̂ ≈ 1

2
(f1 + f0) +

1

12

(
df
dx̂

∣∣∣∣
0

− df
dx̂

∣∣∣∣
1

)
, (2.51)

whereas a Quintic Hermite uses up to the second derivative, q = 2,∫ 1

0
f(x̂)dx̂ ≈ 1

2
(f1 + f0) +

1

10

(
df
dx̂

∣∣∣∣
0

− df
dx̂

∣∣∣∣
1

)
+

1

120

(
d2f

dx̂2

∣∣∣∣
0

+
d2f

dx̂2

∣∣∣∣
1

)
. (2.52)

Finally, if the third derivative is included, q = 3, a Septic Hermite is ob-
tained, ∫ 1

0
f(x̂)dx̂ ≈ 1

2
(f1 + f0) +

3

28

(
df
dx̂

∣∣∣∣
0

− df
dx̂

∣∣∣∣
1

)
+

1

84

(
d2f

dx̂2

∣∣∣∣
0

+
d2f

dx̂2

∣∣∣∣
1

)
+

1

1680

(
d3f

dx̂3

∣∣∣∣
0

− d3f

dx̂3

∣∣∣∣
1

)
. (2.53)

The splines above could work fine with slowly varying functions, but, with
ILE01, IGE01, and ISGE01 depending on the exponential of Péclet, E, they
could give rise to large errors and even blow up the method when Péclet is
high. Let us evaluate the integral∫ 1

0

dx̂
E

with E(x̂) = exp (−P (1− x̂)) , (2.54)

in three numerical regimes: a low-Péclet, P = 0.1, a medium-Péclet, P = 1,
and a high-Péclet, P = 10. It is observed in Table 2.5 that errors increase
significantly for high values of Péclet what caused by the splines being un-
able to fit the integrand, 1/E. These discrepancies have their origin in the
sharp slope of the exponential within [0, 1], the integrand is expP at x̂ = 0
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and 1 at x̂ = 1. When Péclet is high expP � 1.

P 0.1 1 10
Exact 1.051709180 1.718281828 2202.546579480

Cubic 1.051709(034) 1.71(5950761) -7340.821931602
Quintic 1.051709180 1.7182(98413) 7344.488598269
Septic 1.051709180 1.718281(762) 527.796804638

TABLE 2.5: Comparison between exact and numerical val-
ues of the integral (2.54) using the splines (2.51) to (2.53)

It is observed that all splines provide results far from the correct ones for
P = 10. The cubic spline even gives a negative value which is mathemati-
cally wrong as the integral (2.54) is a monotonically increasing function of
Péclet. Taking as an example the Cubic spline,∫ 1

0

dx̂
E
≈ 1

2

(
1 +

1

E(0)

)
+
P

12

(
1− 1

E(0)

)
.

The derivative with respect to Péclet is

d
dP

[∫ 1

0

dx̂
E

]
≈ 1

12

(
1 +

5− P
E(0)

)
.

For P > 5.0070 it is found that the approximation of the integral starts
decreasing. A similar procedure reveals that Quintic provides a monoton-
ically increasing integral for the whole range of Péclet, P ∈ [0,∞), and
Septic displays a Cubic-like behaviour when P > 9.5780. This monotonic
behaviour is crucial in the splines approximation. A negative value could
change the signs of the influence coefficients and the numerical scheme will
not work. With Cubic the integral is negative when P ≥ 6.0290 and Septic
when P ≥ 10.4730. In Figure 2.8 the spline approximation is shown and a
white circle displays where the curve stops being monotonically increasing.
The color circle represents the point where the integral becomes negative.

In a general case, when P = P (x̂), it is difficult to determine the mean
Péclet number for which the integral evaluation goes wrong. From the
point of view of obtaining a robust scheme it is fundamental to seek another
formulation of Hermite that keeps good results in low-, medium-Péclet
while diminishing the errors for high Péclet. Consider an integrand with
an exponential factor, fE = fE(x̂) := g(x̂)/E(x̂) for some specific function
g = g(x̂) that depends on the integral to evaluate,

∫ 1

0
fE dx̂ =

∫ 1

0

g

E
dx̂, g =


λ̂, for ILE01

1

Γ̂
, for IGE01

IS0x̂

Γ̂
, for ISGE01

. (2.55)
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FIGURE 2.8: Behaviours of the cubic (a), quintic (b), and
septic (c) fitting in relation to the exact integral (d)

The factor 1/E is modified by using a reference Péclet, P †, as an arbitrary
constant, and a change of integral limits as follows:

1

E
= exp

(∫ 1

x̂
Pdx̂′

)
= exp

(∫ 1

x̂
P †dx̂′

)
exp

(∫ 1

x̂
(P − P †)dx̂′

)
= exp

(
P †(1− x̂)

)
exp

(∫ 1

0
(P − P †)dx̂

)
exp

(
−
∫ x̂

0
(P − P †)dx̂′

)

= exp
(
P †(1− x̂)

)
exp

(
P − P †

)
exp

(
−
∫ x̂

0
(P − P †)dx̂′

)
.

If P † is chosen as the average Péclet, P , then the above factor becomes

1

E
= exp

(
P (1− x̂)

)
exp

(
−
∫ x̂

0

(
P − P

)
dx̂′
)
. (2.56)

The reason for this transformation (2.56) lies in the second exponential which
is smoother than exp

∫ 1
x̂ Pdx̂′. It starts and ends with the same value, 1, and

hence, it is more suitable for an accurate interpolation, contrary to the orig-
inal one that varies from expP to 1.

The interpolator Hm = Hm(x̂) is defined as the m-th Hermite spline

Hm :=

m∑
i=0

aix̂
i, m = 1 + 2q,
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that interpolates the set of functions which multiplies exp
(
P (1− x̂)

)
in the

factor (2.56) once it is replaced into the integral (2.55), i.e.,∫ 1

0
fE dx̂ =

∫ 1

0

g

E
dx̂

=

∫ 1

0
g exp

(
−
∫ x̂

0

(
P − P

)
dx̂′
)

exp
(
P (1− x̂)

)
dx̂

≈
∫ 1

0
Hm exp

(
P (1− x̂)

)
dx̂

=

∫ 1

0

m∑
i=0

aix̂
i exp

(
P (1− x̂)

)
dx̂

=
m∑
i=0

ai

∫ 1

0
x̂i exp

(
P (1− x̂)

)
dx̂.

In this way the integrals in the previous expression can be calculated ex-
actly, see Jeffrey [92, p. 176], giving as final result

∫ 1

0
fE dx̂ ≈ expP

P

m∑
i=0

ai
i!

P
i
− 1

P

m∑
i=0

ai i∑
j=0

i!

P
j
(i− j)!

 . (2.57)

The determination of the coefficients {a0, a1, a2, . . . , am} is carried out
by matching the values and derivatives of both the Hermite polynomial
Hm and the function to be interpolated, up to order q at the edges of the
reference interval. The function is g exph, with h := −

∫ x̂
0

(
P − P

)
dx̂′.

Hm(0) = g(0), (2.58a)
Hm(1) = g(1), (2.58b)

dkHm

dx̂k

∣∣∣∣∣
{0,1}

=
k∑
l=0

(
k
l

)
dk−lg
dx̂k−l

∣∣∣∣∣
{0,1}

dl exph

dx̂l

∣∣∣∣∣
{0,1}

, k = 1, 2, · · · , q. (2.58c)

For instance, a Cubic Hermite spline, q = 1, uses a third degree polynomial,
m = 1 + 2 · 1 = 3, given by H3 = a0 + a1x̂ + a2x̂

2 + a3x̂
3. By applying

conditions (2.58), the system written in matrix form is
1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3



a0

a1

a2

a3

 =


g(0)
g(1)

(dg/dx̂)0 − g(0)
(
P (0)− P

)
(dg/dx̂)1 − g(1)

(
P (1)− P

)
 . (2.59)

In the case of Quintic Hermite spline, q = 2, the polynomial is of fifth de-
gree, m = 5, whereas in Septic Hermite spline, q = 3, is of seventh degree,
m = 7. The set of ai coefficients are listed in Appendix B.

On calculating the integral of 1/E when P = const., the coefficients be-
come a0 = 1 and a1, . . . , am = 0. Therefore, the integral (2.57) is calculated
as (expP −1)/P , getting the exact solution of the example. If a linear Péclet
is tested the Table 2.6 shows that the errors of the high-Péclet case are much
reduced.
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α 0.1 1 10
Exact 1.087927463 2.517182609 3.010062626·105

Cubic
(2.51) 1.0879(01860) 2.5(34037112) -1.089670290·106

(2.57)/m = 3 1.087(882373) 2.5(07667597) 2.808933031·105

Quintic
(2.52) 1.0879274(03) 2.517(675628) 8.172600931·105

(2.57)/m = 5 1.087927(303) 2.51(6848424) 2.967137221·105

Septic
(2.53) 1.087927463 2.51718(9383) 2.724298048·105

(2.57)/m = 7 1.087927463 2.5171(73425) 3.0(01935044)·105

TABLE 2.6: Comparison between exact and numerical val-
ues of the integral (2.55) with g(x̂) = 1 and P (x̂) = α(1 + x̂)

using different Hermite splines.

In a nutshell: Using the splines (2.51) to (2.53) to calculate smooth
functions such as IS01, or P will work well while ILE01, IGE01, and
ISGE01 should be tackled with the spline (2.57).

2.3.2 Gauss–Legendre Quadrature

Other option to compute integrals, instead of Hermite, is a GL quadrature.
This kind of p-point quadrature manages to integrate exactly a polynomial
of (2p − 1)th degree by picking optimal points which are the roots of the
Legendre polynomial, and evaluating the integrand in those points multi-
plied by a weight. The modifed GL quadrature for the ENATE integrals can
be written as ∫ 1

0
f(x̂)dx̂ ≈ 1

2

p∑
i=1

wif(x̂i).

Number of points, p Points, x̂i Weights, wi

3
1/2 8/9

1/2
(

1±
√

3/5
)

5/9

4
1/2

(
1±

√
3/7− 2/7

√
6/5

) (
18 +

√
30
)
/36

1/2

(
1±

√
3/7 + 2/7

√
6/5

) (
18−

√
30
)
/36

TABLE 2.7: Localization of points and weights for different
number of points in GL quadrature
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In Table 2.7, the key information is summarized. For the integrals ILE01,
IGE01, and ISGE01 the quadrature gives the next approximations:

ILE01 ≈
1

2

p∑
i=1

wi
λ̂(x̂i)

E(x̂i)
, (2.60a)

IGE01 ≈
1

2

p∑
i=1

wi
1

Γ̂(x̂i)E(x̂i)
, (2.60b)

ISGE01 ≈
1

2

p∑
i=1

wi
IS0x̂i

Γ̂(x̂i)E(x̂i)
. (2.60c)

However, E(x̂i) and IS0x̂i contain integrals whose integration does not go
from 0 to 1 as it depends on x̂i. In such case the GL quadrature becomes∫ b

a
f(x̂)dx̂ ≈ b− a

2

p∑
k=1

wkf (b x̂k + a(1− x̂k)) .

Notice that if the limits are a = 0 and b = 1 we recover the GL quadrature
at the beginning of this subsection. Since either a or b depends on x̂i, k = i.
For the exponential factor a = x̂i and b = 1,

E(x̂i) ≈ exp

(
−1− x̂i

2

p∑
k=1

wkP (x̂k + x̂i − x̂ix̂k)
)
,

and for the integral of the source a = 0 and b = x̂i,

IS0x̂i ≈ ∆x
x̂i
2

p∑
k=1

wkS (x̂ix̂k) .

Contrary to Hermite, the GL quadrature provides a monotonically increas-
ing integration since it consists of a sum of positive terms. Some numerical
tests similar to those in the previous subsection are displayed in Table 2.8.

Constant Peclet, P = α

α 0.1 1 10
Exact 1.051709180 1.718281828 2202.546579480

3-point 1.051709180 1.718281(00) 2409.190973573
4-point 1.051709180 1.71828182(7) 2187.328913256

Linear Peclet, P = α(1 + x̂)

α 0.1 1 10
Exact 1.087927463 2.517182609 3.010062626·105

3-point 1.08792746(7) 2.5171(57428) 2.789135221·105

4-point 1.08792746(4) 2.517182(706) 3.0(01353937)·105

TABLE 2.8: Comparison between exact and numerical val-
ues of the integral (2.55) with g(x̂) = 1 for two Péclet cases

using the GL quadrature
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However, the Gauss points are within [0, 1] and, therefore, the quadra-
ture is not suitable for functions not given analytically as it will require
interpolation. In addition, the calculation of ILE01 by (2.60a) and IGE01

by (2.60b) involves a total of
(
p2 − 2p+ 6

)
-points, see Figure 2.9. Similarly,

ISGE01 by (2.60c) is evaluated with a total of
(
p2 + 2p

)
-points. So, the GL

quadrature needs more information than the Hermite splines.

0 1

0 1

0 1

(A) Taking p = 3

0 1

0 1

0 1

(B) Taking p = 4

FIGURE 2.9: Localization of Gauss’ points in a reference in-
terval for λ̂ or Γ̂ (�), P (N), and S (�) using different GL

quadratures.

2.4 Nonlinear ENATE

So far, in sections 2.1 and 2.2 an algebraic equation has been derived for
linear convection-diffusion problems and the exact solution has been ob-
tained. What if the transported variable is the velocity, φ = u? In such a
case, one deals with the equation

d
dx

(
ρuu− Γ

du
dx

)
= S.

If Γ = 0, a recurrence nodal equation can be written as follows:

uC = ±
√
ρW
ρC

u2
W +

1

ρC

∫ xC

xW

S dx.

We only consider solutions with u2 > 0.
In a general case with diffusion one could use the derivation for linear

problems to compute the solution of a nonlinear one. To do so, ENATE
becomes a numerical iterative procedure:

1. Start off with guessed values of u, uold

2. First evaluation of ILE01, IGE01 and ISGE01

3. Substitute u in the convective term, ρuold

4. Calculate the integrals ILE01, IGE01 and ISGE01 by Hermite (2.57)
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5. Update u by using the algebraic equation (2.29), unew

6. If |uold − unew|∞ ≤ ε stop, if not, uold ← unew and go to point 3

The parameter ε is the tolerance. As with the linear problems, at some
point of Hermite calculations the values of dkP/dx̂k (k = 1, 2, 3) are re-
quired. However, this evaluation is not straightforward since u within the
Péclet number is unknown a priori. To calculate these values the normal-
ized velocity is defined as

û =
u− ulb
urb − ulb

=
u− ulb

∆u
.

In nonlinear problems we could distinguish three types of Péclet num-
bers. ρu∆x/Γ is the local Péclet, P , whereas

∆P =
ρ∆u∆x

Γ
, ∆P0 =

ρ∆u∆x

Γlb
,

are the Péclet number based on u variation and the reference Péclet number
based on u variation, respectively. So, the first derivative of Péclet is

dP
dx̂

=
d

dx̂

(
ρu∆x

Γ

)
=
ρ∆x

Γ

du
dx̂

+ ρu∆x
d

dx̂

(
1

Γ

)
= ∆P

dû
dx̂
− P

Γ̂

dΓ̂

dx̂
, (2.61)

assuming ρ constant. From equation (2.20) it is deduced that

dû
dx̂

=
dF
dx̂

+ (1− F (1))
duN

dx̂
.

Substituting derivatives (2.27a) and (2.27b) above, the derivative of the ve-
locity is

dû
dx̂

= P
u

∆u
+

1− P0
ulb
∆u

ILE01

Γ̂ IGE01

− ∆x

Γ∆u

(
IS0x̂ −

ISGE01

IGE01

)
.

Finally, if this is inserted into (2.61), the Péclet derivative is

dP
dx̂

= P 2 + w1 (C?1 − C?2IS0x̂)− w2P,

where the constants are defined as

C?1 :=
∆P0 − P 2

0 ILE01

IGE01
+ C?2

ISGE01

IGE01
, C?2 := ρ

(
∆x

Γlb

)2

,

and the factors related to diffusion by

w1 :=
1

Γ̂2
, w2 :=

d
dx̂

(
ln Γ̂

)
,

dw1

dx̂
= −2w1w2. (2.62)
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Thus, its second derivative reads

d2P

dx̂2
=2P

dP
dx̂
− 2w2

(
dP
dx̂
− P 2 + w2P

)
− d

dx̂
(w2P )− C?2w1S∆x,

and the third is

d3P

dx̂3
=2

(
dP
dx̂

)2

+ 2P
d2P

dx̂2

− 2

(
2w2

2 +
dw2

dx̂

)(
dP
dx̂
− P 2 + w2P

)
− 4w2

(
d2P

dx̂2
− P 2 + w2P

)
− C?2w1

dS
dx̂

∆x.

In the limit case when Γ is constant, the previous calculations convert
into

dP
dx̂

=P 2 + C?1 − C?2IS0x̂,

d2P

dx̂2
=2P 3 + 2P (C?1 − C?2IS0x̂)− C?2S∆x,

d3P

dx̂3
=6P 4 + 8P 2 (C?1 − C?2IS0x̂)

+ 2 (C?1 − C?2IS0x̂)2 − C?2∆x

(
2PS − dS

dx̂

)
.

Sometimes an initial estimation of ILE01, IGE01 and ISGE01 is re-
quired to start the iterative procedure. The derivatives of P depend on
those integrals. The starting Péclet can be assumed to be the average Péclet
over the interval, and the source taken as the source value at the left node
of the interval, then

ILE01 =
expP − 1

P0
, IGE01 =

expP − 1

P
,

ISGE01 = S0∆x
expP − P − 1

P
2 .

2.5 ENATE with discontinuous coefficients and source

Extensions of ENATE to more complex problems will now be commented
on. In multiphase flows with geometrically complex physical interfaces
either density or viscosity have jumps where they could vary several orders
of magnitude, see e.g. Brennen [17]. In electromagnetic applications both
permittivity and permeability show discontinuous behaviour when either
a charged or magnetic material is within an electromagnetic field.

In order to simplify the problem in ENATE, the domain will have a dis-
continuity at xD, see Figure 2.10, where

lim
x→xD

φ+
i = lim

x→xD
φ−i = φD.
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xlb xrbxD

φlb

φrb
φD

φ+i

φ−i

FIGURE 2.10: Representation of a two-zone problem

The coefficients ρu and Γ are assumed to be piecewise continuous,

ρu =

{
ρu+(x), for x ∈ [xlb, xD]

ρu−(x), for x ∈ [xD, xrb]
,

Γ =

{
Γ+(x), for x ∈ [xlb, xD]

Γ−(x), for x ∈ [xD, xrb]
,

as well as the source term,

S =

{
S+(x), for x ∈ [xlb, xD]

S−(x), for x ∈ [xD, xrb]
.

Note that when the discretization is applied, one grid-point must lie at xD
to link upstream and downstream solutions. In each zone, φ+

i and φ−i , the
algebraic equation is (2.29) with the corresponding coefficients and source.
So, the compatibility condition at the discontinuity is of Robin type,

F(1)|+WD = F(0)|−DE .

Then, replacing the total flux F of appendix A, the expression

−(ρu)+
W

(
k̃+
WD +

ILE01

IGE01

∣∣∣∣+
WD

)
φ+
W +

[
(ρu)+

W k̃
+
WD

+(ρu)−D

(
k̃−DE +

ILE01

IGE01

∣∣∣∣−
DE

)]
φD − (ρu)−Dk̃

−
DE φ

−
E

= IS01|+WD +

(
ISGE01

IGE01

∣∣∣∣−
DE

− ISGE01

IGE01

∣∣∣∣+
WD

)
, (2.63)

is the discretized equation at xD. If there is more than one discontinuity,
equation (2.63) will be implemented at each one. In the special case of ρu, Γ
and S being piecewise constant, the equation reads

−ρu+(1 + k̃+)φ+
W +

[
ρu+k̃+ + ρu−(1 + k̃−)

]
φD − ρu−k̃−φ−E

= S+∆x+ + S+∆x+

(
k̃+ − 1

P+

)
− S−∆x−

(
k̃− − 1

P−

)
.
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2.6 Numerical Examples

All numerical tests but one that are evaluated in this section have an exact
solution. In order to know how well or poorly ENATE resolves any of them
the l2-norm of the error vector will be used as monitor and calculated as

||φnum. − φexact||2 :=

√√√√ 1

Nnodes

Nnodes∑
i=0

(φi|num. − φi|exact)
2,

being Nnodes the number of computed nodes, φi|num. the numerical result
at the i point of the mesh and φi|exact the exact solution at the same point.
Numerical examples from Pascau et al. [147] are included first, since the ini-
tial work of this thesis was the coding of both a central-differencing scheme
(CDS) and a compact scheme (CS) proposed by Sen [190] that later were
compared with ENATE. Next, a study where ENATE is compared with a
high-order scheme is discussed. This study was published in Llorente et
al. [119]. Finally, some work performed during a short stay in the Depart-
ment of Mathematics and Computer Science of the Eindhoven University
of Technology, The Netherlands, is shown, in which ENATE was compared
with the FV-CF scheme.

TDMA (TriDiagonal Matrix Algorithm) was used as solver of the system
of equations. The TDMA solver is based on LU-descomposition, a direct
method to evaluate the matrix. In all cases a uniform mesh was employed.

2.6.1 Case with variable diffusion

Tian and Dai case [216] case is a traditional test employed to assess the
accuracy of CFD schemes. The transport equation with BC is

d
dx

(
ρuφ− Γ

dφ
dx

)
= ex (1− ε(1 + x)) , x ∈ [0, 1]

φ(0) = 1 +
1

21/ε
, φ(1) = 2 + e,

where ρu = ρ(1 + ε) and Γ = ε(1 + x). So, the factor ε controls both con-
vection and diffusion terms and therefore, the Péclet number. ρ is set to 1.
The solution, that develops a boundary layer near x = 1 for small ε see Fig.
2.11, is given by

φ(x) = ex + (1 + x)

(
1 + x

2

)1/ε

.

The l2-norm is plotted in Fig. 2.12a for interval sizes within [10−4, 10−1]
and ε = 10−2. The results obtained indicate that a Septic Hermite spline
behaves as a seventh-order scheme for ∆x around 10−1 and a eighth-order
for ∆x < 5 · 10−2. Machine accuracy is obtained with 101 nodes. Quintic
has the same convergence in those intervals: fifth- and sixth-order, whereas
Cubic is fourth-order over a wide range of ∆x. Convergence of three- and
four-point Gauss is similar to those of Quintic and Septic. Also, the l2-norm
of CDS is plotted given second-order accuracy and CS fourth-order.
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Changing ε to 10−4, the rates of convergence are displayed in Fig. 2.12b.
Hermite splines show similar behaviour to the previous case. Septic reaches
machine accuracy for 201 nodes. Regarding GL quadrature, the three- and
four-point quadratures produce two regions that are likely related to the ap-
proximation of the exponential. Errors could be magnified by GL quadra-
ture if large values of the interval size are used due to its inability to inte-
grate exponentials of large Péclet. The central and compact schemes, CDS
and CS, have converged in a small stable region. The stability limit for CDS
is P < 2 and for CS, P < 8/3.
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FIGURE 2.11: Example Case with variable diffusion, exact so-
lution for two values of ε.

2.6.2 Case with variable convection

The test below solves the ODE with BC [142, p. 147],

d
dx

(
ρuφ− Γ

dφ
dx

)
=

Smax

1 + Smax(2x− 1)2
, x ∈ [0, 1]

φ(0) = 0,
dφ
dx

∣∣∣∣
1

= 0.

The flow velocity is u = (1+x)3 whereas the kinematic diffusion Γ/ρ = ε
remains constant. ρ is set to 1. The BC at x = 1 is of Neumann type. The pa-
rameter Smax controls the source that takes a value of Smax/(Smax +1) at the
edges of the domain and raises to Smax at x = 0.5. As a result, the solution
displays a steep layer at x = 0.5 where Smax regulates its top value. Since
the previous ODE does not have an analytic solution, a reference solution
is used with Septic Hermite and 10 001 nodes taking ε ∈ {10−2, 10−4} and
Smax ∈ {102, 103}. As an example the reference solution for ε = 10−2 is
plotted in Figure 2.13.

In the case of ε = 10−2, the results for the convergence rates are plotted
in Figure 2.14. When Smax = 102, Cubic Spline gets a third order scheme,
Quintic, fifth order and Septic, seventh order. In the regime of high-Péclet
Hermite mimics the theoretical tendency as shown in Figure 2.3. On the
whole, Hermite works better than a GL quadrature as the large exponen-
tials are poorly resolved with the latter for high Péclet. For instance, the
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(B) Test with ε = 10−4

FIGURE 2.12: Example Case with variable diffusion, the l2-
norm of the error for the ENATE scheme. Solid lines repre-
sent Hermite spline: Cubic (�), Quintic (�) and Septic (N).
Dashed lines are Gauss quadrature: 3-point (�) and 4-point
(�). Dash-dotted lines: central scheme (�) and central com-

pact scheme (�).
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ratio ILE01/IGE01 did not get a value of one as it should be. Similar resid-
uals and behaviours were achieved with Smax = 103.

For ε = 10−4, results are plotted in Figure 2.15. In that case the resid-
uals are two orders of magnitude better than for ε = 10−2. However, Cu-
bic Spline performs like a second-order scheme, Quintic is third-order and
Septic, fourth-order. Regarding the GL quadrature, two regions showed up
before and after ∆x = 10−3. Initially it is a first-order scheme and then it
moves closer to the order of Quintic and Septic.

In the four cases, neither CDS nor CS show a stable numerical solution
and, therefore, they were substituted by an upwind scheme.
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FIGURE 2.13: Example Case with variable convection, exact
solution for Γ = 10−2.

2.6.3 Nonlinear case: the 1D Burgers’ equation

To assess a nonlinear convection-diffusion problem, the nonhomogeneous
Burgers’ equation with constant diffusion,

d
dx

(
1

2
u2 − Γ

du
dx

)
= 0, x ∈ [0, 1]

u(0) = 1, u(1) = 0,

is employed. This ODE has an exact solution, drawn in Fig. 2.16,

u(x) = C tanh

( C
2Γ

(1− x)

)
with 1 = C tanh

( C
2Γ

)
.

This solution shows two zones: a boundary layer near x = 1, thinner as
diffusion decreases, and a region where u remains constant and very close
to one.

The tests proposed were with Γ = 0.04 and Γ = 0.01. In Figure 2.17a a
similar behaviour to previous numerical cases is depicted. Septic Hermite
has an l2-norm of 1.19 · 10−14 with 100 nodes, its convergence is somewhat
worse than eighth-order, in contrast to Quintic, which is a bit better than
sixth-order. Cubic spline is fourth-order. As we pointed out on page 54,
the GL quadrature requires the value of the integrands within the inter-
val. Due to the nonlinearity of the problem, the solution u participates in



62 Chapter 2. The first contact: one-dimensional ENATE

10−4 10−3 10−2 10−1

10−1

10−3

10−5

10−7

10−9

10−11

10−13

∆x

l 2
-n

o
rm

(A) Test with Smax = 100

10−4 10−3 10−2 10−1

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

∆x

l 2
-n

or
m

(B) Test with Smax = 1000

FIGURE 2.14: Example Case with variable convection and ε =
10−2, the l2-norm of the error for the ENATE scheme. Solid
lines represent ENATE: Cubic (�), Quintic (�) and Septic
(N). Dashed lines are Gauss quadrature: 3-point (�) and 4-
point (�). Dash-dotted lines: central scheme (�) and central

compact scheme (�).
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(A) Test with Smax = 100
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(B) Test with Smax = 1000

FIGURE 2.15: Example Case with variable convection and
ε = 10−4, the l2-norm of the error for the ENATE scheme.
Same symbols as Fig. 2.14 except dash-dotted lines: upwind

scheme (�).
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the integrand and must be interpolated, adding complexity and numerical
errors. Moreover, according to the numerical results presented before Her-
mite achieved better l2-norms than GL. For all these reasons GL is no longer
used.

The smaller the contribution of the diffusion is, the thinner the bound-
ary layer is. This is the case with Γ = 0.01 where the convergence rates are
plotted in Fig. 2.17b. It is seen that for large interval size, some Hermite
did not converge. Also Septic needed fine grids to reach machine accuracy,
2.84 · 10−13 with 500 nodes. Orders of Hermite, CDS and CS were as ex-
pected.
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FIGURE 2.16: Example Nonlinear case, exact solution for two
values of diffusion.

2.6.4 Case with discontinuities in the coefficients and source

A fourth numerical test deals with a solution with discontinuous derivative
at x = 0.5 induced by a piecewise Gamma. The transport equation with BC
is defined as,

d
dx

(
ρuφ− Γ

dφ
dx

)
= S, x ∈ [0, 1]

φ(0) = 2, φ(1) = 0,

where ρu = 103, Γ(x) = 0.1(1 +x)2 if 0 ≤ x ≤ 0.5 and Γ(x) = 0.0231(2−x)2

if 0.5 < x ≤ 1. The S(x) term was such that the manufactured solution
depicted in Figure 2.18 gave

φ(x) =

{
3− 22x, If x ∈ [0, 0.5]

20x2 − 32x+ 12, If x ∈ [0.5, 1]
.

The values were chosen to set up a moderate jump in the derivative at 0.5
where the diffusion coefficient and the source vary in almost one order of
magnitude. In Figure 2.19 the convergence rates are plotted. It can be seen
that Hermite splines get fourth-order accuracy with Cubic, sixth-order for
Quintic, eighth-order for Septic. With this last spline, l2-norm was around
10−10 with ten intervals.
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(B) Test with Γ = 0.01

FIGURE 2.17: Example Nonlinear case, the l2-norm of the er-
ror for the ENATE scheme with two values of Γ. Solid lines
correspond to Cubic Hermite (�), Quintic Hermite (�) and
Septic Hermite (N). Dash-dotted lines: CD (�) and CS (�).
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FIGURE 2.18: Example Case with discontinuities in the coeffi-
cients and source, exact solution.
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FIGURE 2.19: Example Case with discontinuities in the coef-
ficients and source, the l2-norm of the error for the ENATE
scheme. Cubic Hermite (�), Quintic Hermite (�) and Septic

Hermite (N).
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2.6.5 ENATE vs DGSEM

A comparison between ENATE and a well established numerical scheme,
the Discontinuous Galerkin Spectral Element Method (DGSEM) was car-
ried out within a collaboration with the Applied Mathematics and Statistics
Department, Polytechnical University of Madrid. The DGSEM data were
obtained with an in-house code of Madrid group.

The DG approach was introduced more than 40 years ago for the neu-
tron distibution in a nuclear reactor [176]. This approach binds the flux
balance in FV with the weak formulation in FE. The extra feature in DG
lies in the fact that there is no continuity at the interfaces of adjacent ele-
ments. SE uses high-order discontinuous Lagrangian interpolants as bases
and GL quadrature to approximate the integrals. Further information on
one-dimension DGSEM formulation can be found in Llorente et.al. [119].

Since the 1D Burgers’ equation was checked and reported good results
for ENATE, it was decided to use this nonlinear equation for the purpose of
comparison. DGSEM was run with fourth-degree and ninth-degree poly-
nomials for each element.

As a first test, an inviscid Burgers’ equation with source was tested.

d
dx

(
1

2
uu

)
= 20

tanh(20x+ 15)

cosh2(20x+ 15)
, x ∈ [−1, 1]

u(−1) = tanh(−5), u(1) = tanh(35).

The solution of the ODE, u(x) = tanh(20x + 15), contains a steep layer
near the left boundary, Fig. 2.20. The approximation by DGSEM is given in
Figure 2.21. The test is of paramount importance to show that DGSEM does
not work well if sharp variations occur within an element, whatever order
the polynomials may have. With ENATE the result was the exact one as the
source has a primitive. However, one could use Hermite to approximate the
source integral. If this is done, the l2-norm with ∆x = 10−1 gets 8.32 · 10−3

for Cubic, it is 4.05 · 10−3 for Quintic and 6.69 · 10−3 for Septic. None of the
Hermite splines was able to reproduce the steep slope of the solution due to
the poor resolution of the source and the l2-norm is pretty much the same
for all splines. It is expected that a nonuniform mesh would alleviate this
problem.

In a second test, the diffusion is activated with Γ = 0.1 and 5 · 10−3

whereas the source is removed. The former provides a smooth solution
whilst the latter presents an abrupt drop at the end of the domain, Fig.2.22.
The exact solution is

u(x) = C tanh

( C
2Γ

(1− x)

)
with 1 = C tanh

( C
2Γ

)
.

The constant C, calculated to fix u(0) = 1, and BCs are those in the Table
below.

The l2-norm for ENATE and DGSEM with Γ = 0.1 is plotted in Figure
2.23a. As can be seen, both methods converge with their theoretical rates.
However, a Cubic spline gets a lower order and less accuracy than DGSEM
with a 4th-degree polynomial. A norm of 10−6 is achieved with six ele-
ments in Galerkin and a slightly lower one with ten intervals in ENATE.
Figure 2.23b shows norms for Γ = 5 · 10−3. For large ∆x, ENATE could not
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Γ C u(−1) u(1)

0.1 1.000090688 1.000090683 0
5 · 10−3 1 1 0

TABLE 2.9: Key parameters for the second test ENATE vs
DGSEM.

achieve a solution and DGSEM has low accuracy. In medium and fine ∆x
the convergence and orders are correct, but Galerkin does not reproduce
the steep layer near the right boundary whereas ENATE gives good results
with higher accuracy.

Finally, a nonhomogeneous convection-diffusion case is presented. The
source was chosen in such a way that the manufactured solution was u(x) =
2 − A sin(σxπ), −1 ≤ x ≤ 1, picture in Figure 2.24. Similarly, BCs are
obtained from the exact solution. Two cases were run with σ = 1 and 5.
The parameter σ represents the wavelength of the sine wave and A the
amplitude, that is set to 1. For large wavelength problems, both ENATE
and DGSEM reach the asymptotic slope with few nodes, see Figure 2.25a.
A fourth-degree polynomial DGSEM has the same order as a Quintic spline,
showing DGSEM a better performance. When the wavelength is one fifth of
the whole domain, both show similar behaviour in convergence rates, see
Figure 2.25b. DGSEM is showing better accuracy, e.g., with fifteen elements
the l2-norm is 10−8 and ENATE provides the same norm with forty.
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FIGURE 2.20: Example ENATE vs DGSEM, exact solution
for the first test case.
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FIGURE 2.21: Solid line correspond to the exact solution
and white dots to the DGSEM approximation [181].
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FIGURE 2.22: Example ENATE vs DGSEM, exact solution
for the second test case.
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FIGURE 2.23: Example ENATE vs DGSEM, the l2-norm of
the error for two values of Γ. Solid lines represent ENATE:
Cubic (�), Quintic (�) and Septic (N). Dashed lines are
DGSEM: 4th degree polynomial (�) and 9th degree poly-

nomial (�).
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FIGURE 2.24: Example ENATE vs DGSEM, exact solution
for the third test case.

2.6.6 Analysis with another modern exp-scheme

In recent years, the exponential scheme named “Finite Volume-Complete
Flux”, FV-CF [209], has been developed in the Department of Mathematics
and Computer Science of Eindhoven University of Technology, The Nether-
lands. This numerical procedure solves transport equations in a similar
way to ENATE with some differences that are detailed in [120]. The first
difference is that the control volume of ENATE goes between nodes and
that of FV-CF between interfaces, as drawn in Figure 2.26. Secondly, in the
FV-CF scheme some integrals that appear in the coefficients have the lower
limit of integration at the interfaces and others at nodes, e.g.,

Λ =

∫ x

xe

λdx′, S =

∫ x

xe

S dx′, 〈a, b〉 =

∫ xE

xC

abdx,

whereas ENATE the integration limits are always from nodes. The ENATE
integrals can be linked with the FV-CF ones as follows:

P ≡ 〈λ, 1〉,
E1/2

E
≡ e−Λ, IS0x̂ − IS01/2 ≡ S,

P0E1/2 ILE01 ≡ 〈λ, e−Λ〉,
P0E1/2

(ρu)lb
IGE01 ≡ 〈Γ−1, e−Λ〉

P0E1/2

(ρu)lb
ISGE01 ≡ 〈S Γ−1, e−Λ〉+ IS01/2〈Γ−1, e−Λ〉.

where E1/2 = E(1/2). If the total flux in FV-CF is broken down in the homo-
geneous and inhomogeneous fluxes

Fe = Fφe + FSe ,

Fφe =
〈λ, e−Λ〉/〈λ, 1〉
〈Γ−1, e−Λ〉

[ −〈λ, 1〉
exp(−〈λ, 1〉)− 1

φC −
〈λ, 1〉

exp(〈λ, 1〉)− 1
φE

]
,

FSe = −〈S Γ−1, e−Λ〉
〈Γ−1, e−Λ〉 ,
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(A) Wave with σ = 1
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(B) Wave with σ = 5

FIGURE 2.25: Example ENATE vs DGSEM, the l2-norm of
the error for two values of σ. Same legend as in Figure 2.23.
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FIGURE 2.26: Control volume for FV-CF (red box) and
ENATE (blue box). Grid-points (•), Interfaces (�).

and compared with the ENATE flux, as done in Appendix A, it is concluded
that both homogeneous (Fφ) and inhomogeneous (FS) fluxes at the inter-
faces are the same. The difference comes from the method chosen to numer-
ically calculate the integrals. The FV-CF scheme uses second-order approxi-
mations in the calculations of the integrals whereas ENATE uses high-order
splines to do the same.

In order to compare them let us assume a transport equation with con-
stant convection and diffusion,

d
dx

(
ρuφ− Γ

dφ
dx

)
= S, 0 ≤ x ≤ a,

where the source and BCs are those that give as solution

φ(x) = 2
ρux

Γ
exp

(
−ρux

2

Γa

)
.

The exact solution is pictured in Fig. 2.27. The smaller the diffusion is, the
bigger is the contribution of the source in the left boundary. In Table 2.10
the l2-norm is displayed in three meshes. Clearly, ENATE reduces the norm
very quickly on increasing the number of intervals, much more than FV-CF
with a second-order approximation. In fact, from 10 to 100 nodes, FV-CF is
a second-order scheme and ENATE is fourth-, sixth- and eighth-order. With
Γ = 10−2, Septic achieves machine accuracy with 100 nodes and requires
ten times more nodes with Γ = 10−3. In contrast, the FV-CF gets the same
accuracy with 1000 nodes as Septic with 10 nodes in both diffusion regimes.
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FIGURE 2.27: Example Analysis with another modern exp-
scheme, exact solution for two values of diffusion taken

a = 1 and ρu = 0.5
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Γ = 10−2

Nnodes ∆x FV-CF
ENATE

Cubic Quintic Septic
10 0.1 6.4737 · 10−1 3.4219 · 10−2 1.6612 · 10−3 5.8206 · 10−5

50 0.02 7.1589 · 10−3 3.5051 · 10−5 6.0070 · 10−8 7.6507 · 10−11

100 0.01 2.5418 · 10−3 2.2344 · 10−6 9.5419 · 10−10 3.0428 · 10−13

500 0.002 1.2916 · 10−4 3.5970 · 10−9 6.2685 · 10−14 3.9511 · 10−15

1000 0.001 3.3134 · 10−5 2.2478 · 10−10 1.4890 · 10−13 1.5556 · 10−13

Γ = 10−3

Nnodes ∆x FV-CF
ENATE

Cubic Quintic Septic
10 0.1 4.1300 · 10+1 1.4243 · 10−1 2.4309 · 10−3 6.9036 · 10−4

50 0.02 3.2521 · 10−1 6.6915 · 19−3 1.0452 · 10−4 1.2338 · 10−6

100 0.01 6.2289 · 10−2 4.1856 · 10−4 1.9207 · 10−6 6.4660 · 10−9

500 0.002 1.2628 · 10−3 6.2217 · 10−7 1.0604 · 10−10 1.3431 · 10−14

1000 0.001 4.5417 · 10−4 3.9670 · 10−8 1.7128 · 10−12 1.9204 · 10−13

TABLE 2.10: Example Analysis with another modern exp-
scheme, the l2-norm of the error for ENATE and FV-CF.

2.7 In Closing

In this chapter, a complete formulation of the numerical solution of a one-
dimensional steady-state transport equation with ENATE was carried out.
The procedure allows an algebraic equation between three nodes to be for-
mulated by ensuring the continuity of the diffusion fluxes at the central
one. BCs of different type are easily implemented. A complete analysis of
classical properties of schemes used in CFD shows ENATE to be a robust
1D scheme. In addition, ENATE can be used to solve linear and non-linear
cases with continuous and discontinuous variable coefficients.

Numerical results for several tests were provided, showing that the best
option was Hermite spline interpolation. On the other hand, a comparison
study was done with another high-order scheme, DGSEM, with good out-
comes for both. Also, the comparison with another exponential scheme,
FV-CF, in which the assembly of the algebraic equation is the same, high-
lights the fact that the source treatment is of paramount importance for the
global accuracy.

Some issues arise when extensions and generalizations to multidimen-
sions are required in the problem, as one-dimensional cases are very sim-
plistic. In chapters to follow, a multidimensional ENATE will be drawn up
to achieve similar accuracy to the one-dimensional scheme.
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Chapter 3

Climbing the challenge:
two-dimensional ENATE

Goals:

• To carry over to two dimensions the procedure devised for one-dimensional
non-homogeneous transport equation.

• To compare different treatments of the sources.

• To develop a case on nonuniform mesh.

3.1 Overview of the difficulties related to exponential
schemes

Exponential schemes work properly with steady-state one-dimensional flows.
The treatment of the source is also fundamental. Yet, many important flows
are multidimensional and unsteady so the practical applications of expo-
nential schemes as originally devised are reduced to a very large extent.
In the ’90s, Leonard published an article [111] where he gave some reasons
why exponential schemes should not be used for practical calculations, con-
sidering that they were devised under the following restrictions:

1. Steady one-dimensional problems,

2. Convection/diffusion coefficients constant over control volumes,

3. Sources negligible or weak enough,

and flows of interest never satisfy these constraints. The main problem of
these schemes is associated to the existence of a large numerical diffusion
superimposed to the physical one. This makes the results overly diffusive.
Along the same line, Roos [177] claimed that although one can extend these
schemes to high dimensions, the convergence and the accuracy level will
be affected. Contrary to this claim, different approaches of ENATE for mul-
tidimensional problems will be derived in this chapter, specifically in two
dimensions, keeping similar convergence rates to one dimension. As will
be explained, two paths can be taken, either to reduce the dimensionality
of the PDE, or to set a system of pseudo-1D convection-diffusion problems
that considers somehow the influence of the other dimension via the source
term. A correct numerical treatment of either approach will be required.
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3.2 Streamline approach

Let us start with a convection-only equation,

∇ · (ρuφ) = S, (3.1)

where u = (u, v)T 6= 0. If the fluid flows along the x-direction, φ values at
north and south of a generic point in the grid are unconnected and the so-
lution may have layers with strong gradients between them. When flow is
skewed with respect to the coordinate lines, flow along unconnected layers
will also appear. In order to solve the 2D equation there is a transforma-
tion that turns it into an ordinary differential equation along each layer.
The transformation will be based on the streamline geometry of the given
velocity field.

The history of stream-function coordinates (SFC) goes back to 1927 with
the boundary layer theory [168] and von Mises’ work [231]. SFC formula-
tion was used for potential and viscous flows in curved geometries, mul-
tiphase flows, airfoils, tubomachinery, porous media and many others [22,
28, 76, 97]. On the whole, there are two types of formulations:

• von Mises transformation considers a mapping between Cartesian co-
ordinates (x, y) and curvilinear coordinates (x, ψ) where the variable
ψ is the stream-function,

• Martin’s approach [127, 128] turns (x, y) into (ϕ,ψ) where the iso-ϕ
are taken arbitrarily.

The preference for any new system of coordinates varies. In this work it
was decided to use (ϕ,ψ) as an orthogonal curvilinear space. ψ = ψ(x, y) is
the stream-function defined such that

∇ψ · ρu = 0,

and the potential function ϕ = ϕ(x, y) is defined by

∇ψ · ∇ϕ = 0.

A possible solution to the previous PDE system could be

∂ψ

∂x
= −ρv, ∂ψ

∂y
= ρu, (3.2a)

∂ϕ

∂x
= Ξρu,

∂ϕ

∂y
= Ξρv, (3.2b)

where Ξ = Ξ(x, y), similar to Keller [97], is a stretching coefficient for rota-
tional flows. This coefficient will be defined later. On the other hand, we
write the curvilinear basis vectors as eϕ and eψ. The base is an orthonormal
set, |eϕ| = |eψ| = 1 and eϕ · eψ = 0. eϕ is the unitary vector aligned with
the direction of the flow. The transformation between the map (x, y) and
(ϕ,ψ), Figure 3.1, is given by

ex = R (θ) eϕ, ey = R (θ) eψ, R (θ) :=

(
cos θ sin θ
− sin θ cos θ

)
,
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where R (θ) is the rotation matrix being θ the angle between ex and eϕ
which may depend on the position:

cos θ =
ρu

|ρu| , sin θ =
ρv

|ρu| , |ρu|2 = (ρu)2 + (ρv)2.

As a result, the convection vector is ρu = |ρu|eϕ. The next step is to de-
scribe the divergence in the curvilinear space (ϕ,ψ). A formulation for the
differential operators in generalized coordinates is found in [242]. Taking
the changes (3.2a) and (3.2b), the contravariant basis is

gϕ := ∇ϕ = Ξ|ρu|eϕ, gψ := ∇ψ = |ρu|eψ.

On the other hand, the Jacobian of the transformation reads

J :=

∣∣∣∣∂(ϕ,ψ)

∂(x, y)

∣∣∣∣ = Ξ|ρu|2. (3.3)

Note that the mapping (x, y) → (ϕ,ψ) is valid provided that Ξ 6= 0. Given
the new basis, a general vector v could be written with their covariant com-
ponents as follows:

v = vϕgϕ + vψgψ

= |ρu| (Ξvϕeϕ + vψeψ) .

Finally, the divergence of v is defined by

∇ · v = J ∂

∂ϕ

(
gϕ · v
J

)
+ J ∂

∂ψ

(
gψ · v
J

)
= Ξ|ρu|2

[
∂

∂ϕ
(Ξvϕ) +

∂

∂ψ

(vψ
Ξ

)]
.

In the problem at hand, v = ρuφ then vϕ = φ/Ξ and vψ = 0. So, the
purely convective transport equation on streamlines writes

∂φ

∂ϕ
=

S

Ξ|ρu|2 . (3.4)

The great achievement of this transformation is that it allows a reduction in
the dimensionality of the convective terms. The new coordinate is pointed
out in the direction of the flow and that is why φ changes only with ϕ. The
direction of the ϕ coordinate is the flow direction whereas ψ coordinate is
orthogonal to it, owing to the definition of a streamline. In consequence, ψ
remains constant along it.

The procedure with ENATE keeps the discretization of (3.4) very simple.
What is needed is to cut the streamline into intervals as in Figure 3.1 and
then to calculate φ at aCentral node with the help of φ at an Upstream node
by

φC = φU +

∫ ϕC

ϕU

S

Ξ|ρu|2 dϕ, on ψ = const. . (3.5)
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x
ex

y

ey

× •
•

•

• •
• • •

•

•
•
• · · ·

ψ = const.B.C.

ϕU
ϕC

θ
eϕ

eψ

xU xC

yC
yU

FIGURE 3.1: Discretization on a streamline. Boundary Con-
dition: cross node. Black points: inner nodes. Cartesian

basis: blue arrows. Curvilinear basis: red arrows.

The previous equation is recurrently applied for every streamline drawn
over the domain. The integral of S/Ξ|ρu|2 could be split up as∫ ϕC

ϕU

S

Ξ|ρu|2 dϕ =

∫ xC

xU

S

Ξ|ρu|2
∂ϕ

∂x
dx+

∫ yC

yU

S

Ξ|ρu|2
∂ϕ

∂y
dy

=

∫ xC

xU

S
ρu

|ρu|2 dx+

∫ yC

yU

S
ρv

|ρu|2 dy.

Since the integrals are performed over a streamline, i.e. ρvdx = ρudy, then∫ ϕC

ϕU

S

Ξ|ρu|2 dϕ =

∫ xC

xU

S

ρu
dx =

∫ yC

yU

S

ρv
dy.

3.2.1 Change of variables

As seen above, this approach requires the curvilinear geometry of stream-
lines and, therefore, a mesh oriented to the flow in the whole domain, see
Figure 3.2. This entails knowing the change of variables (ϕ(x, y), ψ(x, y)) in

x

y

ϕ

ψ

FIGURE 3.2: Cartesian mesh (blue) vs Curvilinear mesh
(red)
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the domain. An option would be to solve the next set of Poisson equations,

∇2ϕ = ρu · ∇Ξ,

∇2ψ = −ez · ∇ × (ρu) ,

what gives the ϕ, ψ fields to calculate the isolines. The expression for ∇2ϕ
is valid provided that ∇ · (ρu) = 0. On the other hand, the unit vector ez
is perpendicular to the plane. For simplicity, ∇2ψ is defined in terms of the
variable

ωρ := ez · ∇ × (ρu) =
∂ρv

∂x
− ∂ρu

∂y
.

If ρ is constant, then ωρ = ρω where ω is the z-component of the vorticity.
Another way to calculate the ψ = const. lines is by taking the total deriva-
tive of ψ,

dψ = −ρv dx+ ρudy.

The isoline satisfies dψ = 0. So, the former equation is an exact differential
equation if and only if ∂ρu/∂x = −∂ρv/∂y or∇·(ρu) = 0 which is the mass
conservation. The solution can be obtained integrating the first equation of
(3.2a) with respect to x, i.e.

ψ(x, y) = −
∫ x

0
ρv dx′ + a(y),

where a(y) is an arbitrary function of integration. Substituting in the second
equation of (3.2a),

−
∫ x

0

∂ρv

∂y
dx′ +

da
dy

= ρu,

the function a is found by integrating with respect to y. The arbitrary con-
stant of integration can be set to zero if ψ(0, 0) = 0. The result is

ψ = −
∫ x

0
ρv dx′ +

∫ y

0
ρudy′ +

∫ y

0

∫ x

0

∂ρv

∂y′
dx′dy′, (3.6)

Similarly, the total derivative of ϕ,

dϕ = Ξρudx+ Ξρv dy,

allows to formulate the ϕ-field as

ϕ =

∫ x

0
Ξρudx′ +

∫ y

0
Ξρv dy′ −

∫ y

0

∫ x

0

∂ (Ξρu)

∂y′
dx′dy′, (3.7)

if ∂(Ξρv)/∂x = ∂(Ξρu)/∂y or ∇ × (Ξρu) = 0 is valid. If the flow was
irrotational with constant density , then Ξ(x, y) = Ξ0 being Ξ0 an arbitrary
constant. In a general case, a solution can be obtained by the method of
characteristics [261, p. 432]. Write∇× (Ξρu) = 0 in the form of a PDE,

ρv
∂Ξ

∂x
− ρu∂Ξ

∂y
= −Ξωρ.
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The total differentiation of Ξ with respect to the characteristic s is

dΞ

ds
=
∂Ξ

∂x

dx
ds

+
∂Ξ

∂y

dy
ds
.

Comparing both equations, one takes

dΞ

ds
= −Ξωρ, (3.8a)

dx
ds

= ρv,
dy
ds

= −ρu. (3.8b)

Assuming Ξ(s = 0) = Ξ0 = 1, the ODE (3.8a) leads to a stretching coeffi-
cient

Ξ(s) = exp

(
−
∫ s

0
ωρ ds′

)
(3.9)

along the path described by the system (3.8b), which are in this case curves
orthogonal to the streamlines. Since Ξ > 0, then J 6= 0 and the transforma-
tion is valid.

3.2.2 Skewed flow at 45o

A special case could be considered when ρu = ρv. In such a case, some
simplifications can be done. Firstly, the stretching coefficient (3.9) becomes
Ξ = 1/ρu and the Jacobian of the transformation (3.3) now writes J = 2ρu.
Secondly, the convective terms could be taken out in the iso-ψ and iso-ϕ
equations and the mapping (3.6) and (3.7) yields

(ϕ,ψ)T = (y + x, y − x)T .

Streamlines are just straight lines with unity slope. The grid has rotated
α = π/4 and the derivatives of ρu in the curvilinear coordinates are

∂ρu

∂ϕi
=
∂xj

∂ϕi
∂ρu

∂xj
−→


∂ρu

∂ϕ
=

1

2
∇ · (ρu) = 0,

∂ρu

∂ψ
= −1

2
ωρ.

These calculations say that ρu is going to be a function of ψ and if ωρ = 0,
then ρu in the (ϕ,ψ)-space is constant. This allows to simplify the recur-
rence equation (3.5) to

φC = φU +
1

2ρu

∫ ϕC

ϕU

S dϕ on ψ = const. .
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3.3 Cross-flux approach

A convection-diffusion problem is written as

∇ ·F = S, (3.10)

where the total flux F writes

F = ρuφ− Γ∇φ

=

(
ρuφ− Γ

∂φ

∂x
, ρvφ− Γ

∂φ

∂y

)T
= (Fx,Fy)T . (3.11)

The previous section referred to convection-only problems. With diffusion
the streamline approach does not make much sense. Diffusion processes
tend to spread information, so it is expected that a φ value on a stream-
line depends on adjacent streamlines. Moreover, although this is not a
major problem, the transformation (ϕ,ψ) turns the problem into one with
anisotropic diffusion,

∇ · (Γ∇φ) =J ∂

∂ϕ

(
gϕ · gϕ
J Γ

∂φ

∂ϕ

)
+ J ∂

∂ϕ

(
�

�
�
�gϕ · gψ

J Γ
∂φ

∂ψ

)

+ J ∂

∂ψ

(
�
�

�
�gψ · gϕ

J Γ
∂φ

∂ϕ

)
+ J ∂

∂ψ

(
gψ · gψ
J Γ

∂φ

∂ψ

)

=Ξ|ρu|2
[
∂

∂ϕ

(
ΓΞ

∂φ

∂ϕ

)
+

∂

∂ψ

(
Γ

Ξ

∂φ

∂ψ

)]
,

for orthogonal curvilinear coordinates.
Another alternatives should be considered. An option to deal with a 2D

convection-diffusion problem is the Alternating Direction Implicit (ADI)
method. The ADI method is a splitting operator method where the vari-
ables are separately solved along each coordinate of the domain. Those
kinds of schemes are used widespread in CFD techniques such as projec-
tion methods [75]. In a nutshell, given a 1D transport equation,

Lxφ := ax(x)
dφ
dx
− bx(x)

d2φ

dx2
= c(x),

the symbolic discrete equation can be written as follows:

Axφi = Bxci =⇒ B−1
x Axφi = ci,

being Ax and Bx the finite differential operators of the discrete technique
and B−1

x Ax the operator that mimics Lx. So, the approximation of a 2D
transport equation,

Lxφ+ Lyφ = c(x, y),

would be given by

B−1
x Axφij + B−1

y Ayφij = cij ,
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or cancelling out the inverses,

(ByAx + BxAy)φij = BxBycij ,

if Bx and By commute, i.e. [Bx,By] = BxBy − ByBx = 0. The previous
approach can achieve high-order accuracy and stability via some witty fac-
torization of the operators, as many authors have shown [19, 36, 64, 95, 96,
234, 250], for both unsteady and steady problems. However, this procedure
might not fulfil some basic properties in CFD, e.g., conservativeness.

As ENATE is basically a one-dimensional scheme, the operator splitting
idea is very appealing. After the splitting ENATE can be applied to the
particular equation along each coordinate. The difference with ADI is that
the splitting is made over the original 2D differential equation and not over
the algebraic relation.

The first strategy followed in this thesis is to move the derivatives along
the other coordinate to the right-hand side as a new additional source [238].
Thus, the convection-diffusion problem in x-direction writes

∂

∂x

(
ρuφ− Γ

∂φ

∂x

)
= S − ∂Fy

∂y
=: Sx, xlb ≤ x ≤ xrb, (3.12a)

φ(xlb, y) = φlb, φ(xrb, y) = φrb, y = const., (3.12b)

whereas in y-direction is

∂

∂y

(
ρvφ− Γ

∂φ

∂y

)
= S − ∂Fx

∂x
=: Sy, ybb ≤ y ≤ ytb, (3.13a)

φ(x, ybb) = φbb, φ(x, ytb) = φtb, x = const. (3.13b)

The subscripts bb and tb stand for bottom boundary and top boundary, re-
spectively. Next, ENATE scheme is employed in both 1D equations. The
horizontal and vertical intervals are shown in Figure 3.3. The two dis-
cretized equations are now summed up to provide the algebraic equation

ACφC −
∑
i∈N

Aiφi = bC , (3.14)

beingN the neighbour points: West,East, South andNorth. N = Nx∪Ny,
Nx = {W,E} and Ny = {S,N}. The influence coefficients are

AC = AxC +Ay C , (3.15a)

AxC = (ρu)W k̃xWC + (ρu)C

(
k̃xCE +

ILEx 01

IGEx 01

∣∣∣∣
CE

)
, (3.15b)

Ay C = (ρv)S k̃y SC + (ρv)C

(
k̃y CN +

ILEy 01

IGEy 01

∣∣∣∣
CN

)
, (3.15c)

AW = (ρu)W

(
k̃xWC +

ILEx 01

IGEx 01

∣∣∣∣
WC

)
, (3.15d)

AE = (ρu)C k̃xCE , (3.15e)

AS = (ρv)S

(
k̃y SC +

ILEy 01

IGEy 01

∣∣∣∣
SC

)
, (3.15f)

AN = (ρv)C k̃y CN , (3.15g)
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and the discrete source is

bC = bxC + by C , (3.16a)

bxC = ISx 01|WC +

(
ISxGEx 01

IGEx 01

∣∣∣∣
CE

− ISxGEx 01

IGEx 01

∣∣∣∣
WC

)
, (3.16b)

by C = ISy 01|SC +

(
ISyGEy 01

IGEy 01

∣∣∣∣
CN

− ISyGEy 01

IGEy 01

∣∣∣∣
SC

)
. (3.16c)

∆y

∆x

xS

xW xC xE

xN

∆y

∆x

0 1x̂

φ̂(x̂, yC)

0

1

ŷφ̂(xC , ŷ)

10 x̂

φ̂(x̂, yC)

1

0

ŷ φ̂(xC , ŷ)

FIGURE 3.3: A five-point stencil in a structured mesh
for two-dimensional ENATE. Nodes are located at xC =
(xC , yC)T , xW = (xW , yC)T , xE = (xE , yC)T , xN =

(xC , yN )T and xS = (xC , yS)T .

All these expressions are just extensions of the 1D formulation. If we
define ξ = x or ξ = y, ρux = ρu and ρuy = ρv, then the Péclet number and
related integrals are

Pξ =
ρuξ∆ξ

Γ
, Pξ 0 =

(ρuξ)0 ∆ξ

Γ0
, P ξ =

∫ 1

0
Pξ dξ̂, (3.17a)

Eξ = exp
(
−P ξ(1− ξ̂)

)
exp

(∫ ξ̂

0

(
Pξ − P ξ

)
dξ̂′
)
, (3.17b)

ILEξ 01 =
expP ξ − 1

Pξ 0
, IGEξ 01 =

∫ 1

0

dξ̂

Γ̂Eξ
, k̃ξ =

1

Pξ 0IGEξ 01
, (3.17c)

ISξ 01 = ∆ξ

∫ 1

0
Sξ dξ̂, ISξGEξ 01 =

∫ 1

0

∆ξ

Γ̂Eξ

[∫ ξ̂

0
Sξ dξ̂′

]
dξ̂. (3.17d)

In section Numerical Examples this approach will be named as “Fluxes as
Pseudo-sources”, FaP. Regarding the CFD properties, the extension to 2D
contains the same features as the 1D counterpart. The discrete equation
(3.14) keeps transportiveness, that is, in a diffusive problem φC links with
{φW , φE , φS , φN}, whereas in convective processes φC links with φW and
φS if ρu, ρv > 0. On the other hand, all influence coefficients are posi-
tive providing a diagonally dominant matrix in most cases, which makes
ENATE a bounded scheme. If the flux balance is done over horizontal lines,
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y = const.,

FxC −FxW =

∫ xC

xW

Sx dx,∫ xC

xW

∂Fx
∂x

dx =

∫ xC

xW

(
S − ∂Fy

∂y

)
dx,∫ xC

xW

(
∂Fx
∂x

+
∂Fy
∂y
− S

)
dx = 0,

and vertical lines, x = const.,

Fy C −Fy S =

∫ yC

yS

Sy dy,∫ yC

yS

∂Fy
∂y

dy =

∫ yC

yS

(
S − ∂Fx

∂x

)
dy,∫ yC

yS

(
∂Fx
∂x

+
∂Fy
∂y
− S

)
dy = 0,

ENATE recovers the conservation law in each direction of the problem, so
conservativeness is ensured. That was the point in setting ∂F{x,y}/∂{x, y}
in the source, to ensure this basic property. The numerical treatment of this
derivative and its integral is crucial for determining the order of the scheme.

Finally, a mention of the solver of the matrix is needed. Now the matrix
of the scheme A contains elements far off the diagonal, so the tridiagonal
algorithm cannot be used.

A =



◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦


.

The algorithm employed in this thesis for two-dimensional problems solves
a tridiagonal system sweeping from south to north of the domain taking the
old (previous level) values of neighbour lines as a source-like term. Since
it is not known which boundary is important and how they spread the in-
formation in a convection-diffusion problem, another sweep from north to
south is done, see Patankar [150, p. 64]. For lines of y constant,

−AWφW +ACφC −AEφE = ASφ
old
S +ANφ

old
N + bC ,

and in the other direction,

−ASφS +ACφC −ANφN = AWφ
old
W +AEφ

old
E + bC ,

it sweeps from left to right and then from right to left. In a convection-
dominant problem, only one sweep is required in the direction of convec-
tion. A TDMA will be applied in each case, see Figure 3.4.
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FIGURE 3.4: Iterative process to solve the discrete equa-
tion by a line-by-line TDMA. Symbols: •, points where the
Thomas algorithm calculates; �, boundary value points; ×,

points whose contribution is considered as source.
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3.3.1 Additional sources and start-off of the method

Hermite polynomials are used again as the method for the interpolation of
the integrals, further information is in Section 2.3 and Appendix B. These
integrals contain non-analytical sources as in

ISx 01 = ∆x

∫ 1

0
Sx dx̂,

= ∆x

∫ 1

0
S dx̂−∆x

∫ 1

0

(
∂Fy
∂y

)old

dx̂,

and

ISxGEx 01 =

∫ 1

0

∆x

Γ̂Ex

[∫ x̂

0
Sx dx̂′

]
dx̂,

=

∫ 1

0

∆x

Γ̂Ex

[∫ x̂

0
S dx̂′

]
dx̂−

∫ 1

0

∆x

Γ̂Ex

[∫ x̂

0

(
∂Fy
∂y

)old

dx̂′
]

dx̂,

which should be calculated accurately. With Hermite, the knowledge of the
integrand and its derivatives at mesh points are required. Neither ∂φ/∂{x, y}
nor ∂F{x,y}/∂{x, y}, nor their derivatives, are directly available at the start
of the numerical procedure. To estimate those derivatives at each point and
in each direction, ENATE applies the “Central Compact Scheme”, CCS,
originally proposed by Lele [108], although other authors had proposed
similar schemes earlier [31, 159, 180].

Let us consider a generic coordinate ξ and a function f = f(ξ, η =
const.) that could be either φ or F{x,y}. A compact differentiation scheme
consists of a linear combination of first derivatives and values at nodes, i.e.

m2∑
k=−m1

αk
∂f

∂ξ

∣∣∣∣
i+k

=
1

∆ξ

q2∑
k=−q1

akfi+k + τi.

The relations between the coefficients {ak} and {αk} are derived by match-
ing the Taylor series coefficients of ∂f/∂ξ|i+k and fi+k to the desired or-
der. The first unmatched coefficient determines the local truncation error,
τi. Notice that the previous scheme is valid at inner and boundary points.
If we want a left-boundary scheme, for instance, we set m1 = q1 = 0 and
i = 0. The stencil sizes of left- and right-hand side are 1+m1+m2,m1,2 ∈ N0,
and 1 + q1 + q2, q1,2 ∈ N0, respectively. Hence, a compact scheme ends up
by solving the system

M
∂f

∂ξ
=

1

∆ξ
Qf + τττ , (3.18)

where M,Q ∈ R(n+1)×(n+1) are banded matrices and

f := (f0, . . . , fi−q1 , . . . , fi+q2 , . . . , fn)T , (3.19a)

∂f

∂ξ
:=

(
∂f

∂ξ

∣∣∣∣
0

, . . . ,
∂f

∂ξ

∣∣∣∣
i−m1

, . . . ,
∂f

∂ξ

∣∣∣∣
i+m1

, . . . ,
∂f

∂ξ

∣∣∣∣
n

)T
, (3.19b)

are the discrete vectors of the scheme in Rn+1, with τττ the error vector. Lele’s
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CCS assume that m1 = m2 and q1 = q2. In this thesis a 4th order CCS has
been employed, where

M :=


1 3

1/4 1 1/4
. . .

. . .
. . .

1/4 1 1/4
3 1

 ,

Q :=


−17/6 3/2 3/2 −1/6
−3/4 0 3/4

. . .
. . .

. . .

−3/4 0 3/4
1/6 −3/2 −3/2 17/6

 ,

and a 6th order CCS

M :=



1 5
1/8 1 3/4

1/3 1 1/3
. . .

. . .
. . .

1/3 1 1/3
3/4 1 1/8

5 1


,

Q :=



−197/60 −5/12 5 −5/3 5/12 −1/20
−43/96 −5/6 9/8 1/6 −1/96
−1/36 −7/9 0 7/9 1/36

. . .
. . .

. . .
. . .

. . .

−1/36 −7/9 0 7/9 1/36
1/96 −1/6 −9/8 5/6 43/96

1/20 −5/12 5/3 −5 5/12 197/60


.

A complete analysis of those schemes can be found in [220], and dif-
ferent configurations of the stencils in [51, 115, 116], among others. Just
to show the numerical behaviour of system (3.18) CCS is compared with
an upwind and an explicit central scheme for a case where f = ξ + 0.5 +
0.02 ln (2 cosh (50 (ξ − 0.5))) and ∂f/∂ξ = 1 + tanh (50 (ξ − 0.5)), Figure 3.5.
Although the elapsed CPU time in CCS is twice the time of upwind or cen-
tral, CCS fits better the derivative around ξ = 0.5.

In order to calculate ∂φ/∂{x, y}, the process just sweeps in both direc-
tions, see Figure 3.6, solving tridiagonal systems with TDMA. What about
∂F{x,y}/∂{x, y}? Is it better to calculate them in a non-conservative form re-
quiring a second-derivative CCS for ∂2φ/∂{x, y}2, or in a conservative form
applying twice the system (3.18)? As Visbal and Gaitonde [230] showed,
there are hardly any numerical differences in both treatments, and the con-
servative form is very efficient. Furthermore, a CCS for ∂2φ/∂{x, y}2 needs
a spatial filtering that damps the smallest wave length of the solution be-
cause it does not provide good numerical stability by itself [230]. So, in this
thesis the system (3.18) will be applied in each direction as many times as
required by the derivative order.



88 Chapter 3. Climbing the challenge: two-dimensional ENATE

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

ξ

∂
f
/
∂
ξ

FIGURE 3.5: Numerical example for the calculation of
∂f/∂ξ. Solid line, exact derivative. Red circle, Upwind.

Blue star, Central. Green cross, fourth-order CCS.
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FIGURE 3.6: Iterative process for calculating derivatives.
Symbol: •, points where TDMA calculates. In level 1
derivative with respect to x is solved; level 2, derivative

with respect to y.

The iterative sequence to calculate the pseudo-sources in both directions
is summarized below:

1. Calculate φ with the algebraic equation (3.14) setting S{x,y} = S,

2. Calculate ∂φ/∂{x, y} with CCS and then F{x,y}. In convection-only
problems this step is not needed,

3. Calculate ∂F{x,y}/∂{x, y}with CCS and then S(x,y) = S−∂F{y,x}/∂{y, x},
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4. Apply CCS to S{x,y} to obtain as many derivatives as required by the
polynomial order of the interpolant,

5. Calculate bC (3.16) by computing the integrals with Hermite polyno-
mials,

6. Update φ solving the equation (3.14),

7. Back to second step until convergence.

3.3.2 Numerical diffusion

A key point in the use of high-order methods lies in the fact that they can
reduce the numerical dissipation caused by discretization errors. Within
this category the second-order upwind, SUDS [172], QUICK [109], MUSCL
[222], SHARP [110], SMART [62] are widely used, among others. An an-
alytical way to calculate these errors is via the modified equation. Let us
start with the basic transport equation

∂ (ρuφ)

∂x
+
∂ (ρvφ)

∂y
= 0, (3.20)

being ρu and ρv functions of x and y that meet mass conservation, i.e.
∂ρu/∂x+ ∂ρv/∂y = 0. The ENATE scheme will discretize this PDE as

(ρu+ ρv)C φC = (ρu)W φW + (ρv)S φS

−
∫ xC

xW

(
∂ (ρvφ)

∂y

)old

dx−
∫ yC

yS

(
∂ (ρuφ)

∂x

)old

dy. (3.21)

Omitting the superscript old, the previous equation can be rearranged with
the definition of the flux, i.e Fx = ρuφ and Fy = ρvφ, as follows:

FxC + Fy C = FxW + Fy S −
∫ xC

xW

∂Fy
∂y

dx−
∫ yC

yS

∂Fx
∂x

dy. (3.22)

Taking into account the location of nodes in Figure 3.3, the Taylor series for
the fluxes at west and south about the central node are

FxW =FxC −∆x
∂Fx
∂x

∣∣∣∣
C

+
∆x2

2!

∂2Fx
∂x2

∣∣∣∣
C

+O(∆x3), (3.23)

FxS =FxC −∆y
∂Fy
∂y

∣∣∣∣
C

+
∆y2

2!

∂2Fy
∂y2

∣∣∣∣
C

+O(∆y3). (3.24)

Also, the integrals of the fluxes are evaluated in Taylor expansions over the
intervals as∫ yC

yS

∂Fx
∂x

dy = ∆y
∂Fx
∂x

∣∣∣∣
C

− ∆y2

2!

∂2Fx
∂x∂y

∣∣∣∣
C

+O(∆y3),∫ xC

xW

∂Fy
∂y

dx = ∆x
∂Fy
∂y

∣∣∣∣
C

− ∆x2

2!

∂2Fy
∂x∂y

∣∣∣∣
C

+O(∆x3).
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In the following subscript C is removed. Plugging those Taylor expan-
sions in the discrete equation and using the mass conservation, the mod-
ified equation is given by

∂ (ρuφ)

∂x
+
∂ (ρvφ)

∂y
=
∂

∂x

(
ρu∆x

2(1 + ra)

∂φ

∂x
+

ρv∆x

2(1 + ra)

∂φ

∂y

)
+

∂

∂y

(
ρv∆y ra
2(1 + ra)

∂φ

∂y
+
ρu∆y ra
2(1 + ra)

∂φ

∂x

)
+HOT,

being ra := ∆y/∆x the aspect ratio of the mesh. The right-hand side of
the equation contains the leading error terms and show that the ENATE
scheme is essentially dissipative in nature. Higher-order terms (HOT ) are
collected in the next compact formula:

HOT =

∞∑
k=3

(−1)k

k!

(
∆xk−1 1

1 + ra

(
∂kFx
∂xk

+
∂kFy

∂xk−1∂y

)

+ ∆yk−1 ra
1 + ra

(
∂kFx

∂x∂yk−1
+
∂kFy
∂yk

))
.

Neglecting those terms, the equation that the scheme is actually solving in
vectorial form reads

∇ · (ρuφ−ΓΓΓN∇φ) ' 0, (3.25)

where

ΓΓΓN =

(
ΓNxx ΓNxy

ΓN yx ΓN yy

)
:=


ρu∆x

2(1 + ra)

ρv∆x

2(1 + ra)
ρu∆y ra
2(1 + ra)

ρv∆y ra
2(1 + ra)

 , (3.26)

is the 2× 2 numerical diffusion tensor. This tensor and the local flux vector,
−ΓΓΓN∇φ, have an analogy in heat conduction in anisotropic media. Carslaw
and Jaeger [25] considered two measurable thermal conductivities to con-
struct the conductivity tensor what causes the normal of an isothermal not
to be necessarily parallel to the local heat flux. From this analogy, de Vahl
Davies and Mallinson [41] calculated an approximate expression for the
numerical diffusion of the upwind scheme. Later, Hwang [88] applied it
for higher-order exponential schemes or any generic thirteen-point stencil
scheme.

Let us analyze the previous tensor considering that ΓNxy 6= ΓN yx. The
diagonalization of ΓΓΓN gives the set of eigenvalues, called principal numerical
diffusivities,

ΓN 1,2 =
1

2

[
tr(ΓΓΓN)±

√
tr(ΓΓΓN)2 − 4 det(ΓΓΓN)

]
,

where tr(ΓΓΓN) and det(ΓΓΓN) are the trace and the determinant of (3.26) respec-
tively. ΓN 1 is chosen with the positive sign. The eigenvectors,

vN 1,2 =

(
ΓN 1,2 − ΓN yy

ΓN yx
, 1

)T
,
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allows to make up the basis for the principal axis of numerical diffusion xN 1

and xN 2. Since the tensor is non-symmetric, the eigenvectors are nonorthog-
onal. The angle between each other is

cos γ =
vN 1 · vN 2

|vN 1||vN 2|
=

ΓN yx(ΓN yx − ΓNxy)√[
(ΓN 1 − ΓN yy)2 + Γ2

N yx

] [
(ΓN 2 − ΓN yy)2 + Γ2

N yx

] .
The angle between the principal axis x1 and the x-axis is

cos Θ =
vN 1 · ex
|vN 1||ex|

=
ΓN 1 − ΓN yy√

(ΓN 1 − ΓN yy)2 + Γ2
N yx

.

∆y

∆x

ρuC θC

xN 1C ΘCxN 2C

γC

xS

xW xC xE

xN

FIGURE 3.7: Representation of the principal axis at Central
point. One red line is a direction free of numerical diffusion
when the local velocity vector is pointing in the other red

line.

For the cross-flux approach, ΓNxy = ΓN yy/r
2
a and ΓN yx = ΓNxxr

2
a. So, the

principal numerical diffusivities are

ΓN 1 = |ρu|cos θ∆x+ sin θ∆yra
2(1 + ra)

, ΓN 2 = 0,

where θ is the angle between the convection vector and the x-axis. The
principal basis become

eN 1 =
vN 1

|vN 1|
=

(
1√

1 + r4
a

,
r2
a√

1 + r4
a

)T
, eN 2 =

vN 2

|vN 2|
= (− sin θ, cos θ)T ,

and the angles are

cos γ =
r2
a cos θ − sin θ√

1 + r4
a

, cos Θ =
1√

1 + r4
a

.

From those results, the principal numerical diffusivity ΓN 2 in the direction



92 Chapter 3. Climbing the challenge: two-dimensional ENATE

of eN 2 is zero. Another consequence, eN 2 is perpendicular to the local ve-
locity vector and, therefore, Θ + γ = θ + π/2, see Figure 3.7. As for the
principal numerical diffusivity ΓN 1 is zero when tan θ = −r−2

a (cos γ = 1)
and maxima when tan θ = r2

a (cos γ = 0) with a value of

ΓN 1 max =
|ρu|√∆x∆y

2

1√
ra(1 + r4

a)
.

Hence, when the velocity vector is either perpendicular or parallel to eN 1,
the numerical diffusion normal to the convection direction would disap-
pear. On the other hand, the diffusivity in x direction, ΓN 1(θ = 0), and
in y direction, ΓN 1(θ = π/2), are less than that of the upwind scheme,
ΓNx upwind = ρu∆x/2 and ΓN y upwind = ρv∆y/2, see Figure 3.8. In fact, in a
uniform mesh (ra = 1) the numerical diffusion is half of that of upwind
scheme.
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FIGURE 3.8: Normalized numerical diffusion for ENATE
with the cross-flux approach in x direction (red line) and

y direction (blue line).

3.4 Redistribution coefficient approach

In the approach just shown the discretization is applied independently to
each coordinate and the computation is carried out sequentially one coor-
dinate after another with an extra-source. However, one drawback that the
cross-flux approach might have is the significant increase in the computa-
tional time due to the number of side calculations in the discrete source
and consequent slowness of convergence. Bear in mind that the TDMA al-
gorithm requiresO(Nnodes) operations, and looking at Table 3.1 each sweep
consists ofNlines solved by TDMA. Do not forget that the number of sweeps
in the matrix solver is optional and one could take more sweeps than one
if numerical instabilities occur around boundaries. To reduce the computa-
tional burden and speed up the convergence, another approach to reduce
the extra calculations will be put forward in this section.
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Hermite
Compute

Matrix solver(minimum) Total
∂F{x,y}/∂{x, y} ∂a+bS{x,y}/∂x

a∂yb

Cubic 4 2 4 10
Quintic 4 4 4 12
Septic 4 6 4 14

TABLE 3.1: Total number of sweeps for each interpolation
spline of Hermite.

Let us consider the next coordinate splitting,

∂

∂x

(
ρuφ− Γ

∂φ

∂x

)
=

1

2
S + β, (3.27a)

∂

∂y

(
ρvφ− Γ

∂φ

∂y

)
=

1

2
S − β. (3.27b)

This idea was put forward by Lee and Kim [107] where it was named as
axial splitting. Instead of the pseudo-sources, this alternative introduces
a scalar field, named β = β(x, y), that represents the extra source to be
redistributed between coordinates with respect to an equally distributed
source. The solution of the set (3.27) will also be solution of the original
convection-diffusion problem (3.10). The nature of β is unknown. On di-
viding eqn.(3.27a) by eqn.(3.27b) we can get with a bit of algebra the ratio
between β and S,

β

S
=

1

2
− rf

1 + rf
, rf :=

∂Fy/∂y
∂Fx/∂x

, (3.28)

the field β is bounded by the source when rf ≥ 0.

Remark. If sgn(∂Fx/∂x) = sgn(∂Fy/∂y), then −1/2 ≤ β/S ≤ 1/2.

However, no more information about this ratio can be extracted. β does not
have a PDE of its own. It will also form part of the iterative process to find
φ.

Consider that in an iteration the scalar field is β?. If β? is not the correct
β the solution of both equations will be different. Defining φ?1 and φ?2 as the
solution of φ in both directions, these solutions are ruled by the following
ODEs:

∂

∂x

(
ρuφ?1 − Γ

∂φ?1
∂x

)
=

1

2
S + β? =: Sx, (3.29a)

∂

∂y

(
ρvφ?2 − Γ

∂φ?2
∂y

)
=

1

2
S − β? =: Sy, (3.29b)

along y-constant and x-constant lines, respectively, as many as those em-
ployed to mesh the 2D domain. The purpose is to reach the solution given
in equations (3.27) via successive iterations. Defining the differences be-
tween the current values and the correct ones as

∆β? := β − β?, ∆φ?1 := φ− φ?1, ∆φ?2 := φ− φ?2,
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the equations for the increments, eqns.(3.27) − eqns.(3.29), are

∂

∂x

(
ρu∆φ?1 − Γ

∂∆φ?1
∂x

)
= ∆β?, (3.30a)

∂

∂y

(
ρv∆φ?2 − Γ

∂∆φ?2
∂y

)
= −∆β?, (3.30b)

provided that S and Γ are independent of φ. On page 96, the case when S
depends on φ will be developed. Since the final solutions should be com-
mon to both equations upon convergence, i.e., φ = φ?1 + ∆φ?1 = φ?2 + ∆φ?2,
both increments are linked, that is, ∆φ?1 = ∆φ?2 − (φ?1 − φ?2). The two equa-
tions for ∆φ?2 are given by

∂

∂x

(
ρu∆φ?2 − Γ

∂∆φ?2
∂x

)
= ∆β? +

∂F?x(1−2)

∂x
, (3.31a)

∂

∂y

(
ρv∆φ?2 − Γ

∂∆φ?2
∂y

)
= −∆β?. (3.31b)

where

F?x(1−2) = ρu(φ?1 − φ?2)− Γ
∂(φ?1 − φ?2)

∂x
,

can be interpreted as a numerical flux in x-direction due to the differences
in the solution for both coordinates. Note that if we knew the correct ∆β?

both equations would give the same answer at a generic node xC .
How do we numerically solve the previous equations without affecting

the order of convergence? The discretization of equations (3.29) controls
the accuracy of the method and the good or bad resolution of ∆β? and ∆φ?2
is not crucial as long as the final solution is φ?1 = φ?2. These are computed
with the discrete equations in one-dimensional modelling, from eqn.(2.30)
to eqn.(2.32) on page 32, substituting ρu or ρv in the influence coefficients
and S/2 + β? or S/2 − β? in the source integrals as appropriate. On the
other hand, the set (3.31) looks similar to (3.12a)− (3.13a) and, therefore, its
two-dimensional discrete equation is

AC∆φ?2C −
∑
i∈N

Ai∆φ
?
2 i = bC+AxC(φ?1C − φ?2C)

−AW (φ?1W − φ?2W )

−AE(φ?1E − φ?2E), (3.32)

where the As are the same as the coefficients (3.15) and the bC term is (3.16)
setting Sx = ∆β? and Sy = −∆β?, i.e.

bC = ∆x

∫ 1

0
∆β?

IGEx 0x̂

IGEx 01
dx̂
∣∣∣∣
WC

+ ∆x

∫ 1

0
∆β?

[
1− IGEx 0x̂

IGEx 01

]
dx̂
∣∣∣∣
CE

− ∆y

∫ 1

0
∆β?

IGEy 0ŷ

IGEy 01
dŷ
∣∣∣∣
SC

− ∆y

∫ 1

0
∆β?

[
1− IGEy 0ŷ

IGEy 01

]
dŷ
∣∣∣∣
CN

.

This reformulation of the source integrals is explained in Appendix C. The
remaining terms are the discretization of ∂F?x(1−2)/∂x. Two issues must be
taken into account. First, the problem has two unknowns, namely, ∆φ?2
and ∆β?, and one discrete equation. Thus, some assumptions to calculate
both are clearly needed. Under the assumption of ∆x = ∆y, an obvious
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simplification is to consider ∆β? contribution negligible in comparison to
the other source term in equation (3.32). It must be noticed that the source
terms related to ∆β? have positive and negative coefficients so the error
made in neglecting them is likely to be small, i.e. bC ≈ 0. This hypothesis is
consistent with the solution sought because, if φ?1C → φ?2C then ∆φ?2C → 0
and the iterative process would be near the solution of (3.27). Second, when
∆x 6= ∆y, the algebraic equation in the x-direction can be multiplied by
∆y/∆x to have ∆β? contribution of the same order in both coordinates that
will produce smaller errors on being neglected. Summarizing, the discrete
equation for ∆φ?2 is given by

A′C∆φ?2C −
∑
i∈N

A′i∆φ
?
2 i = A′xC(φ?1C − φ?2C)−

∑
i∈Nx

A′i(φ
?
1 i − φ?2 i), (3.33)

where
A′C = A′xC +AyC , A′xC = raAxC ,

A′W = raAW , A′E = raAE ,

A′S = AS , A′N = AN ,

and
ra :=

max{∆ySC ,∆yCN}
max{∆xWC ,∆xCE}

.

The discrete equation to update ∆β? is going to be eqn.(3.31b) with ENATE,
i.e.

∆y

∫ 1

0
−∆β?

IGEy 0ŷ

IGEy 01
dŷ
∣∣∣∣
SC

+ ∆y

∫ 1

0
−∆β?

[
1− IGEy 0ŷ

IGEy 01

]
dŷ
∣∣∣∣
CN

= −AS∆φ?2S +Ay C∆φ?2C −AN∆φ?2N .

The coefficients of the right-hand side are those on page 82. How to ex-
tract ∆β? at grid points? It must be realized that the integral evaluation
of sources is being accomplished with ENATE knowing the nodal values
of the source field but obtaining the field from the integrals is not easy. If
the field in the RHS was exact, one would strive for seeking a manner of
obtaining the ∆β? field with the complete left-hand side, but as this field is
approximate, one can get away with a much simpler calculation. The sim-
plest estimation employed is the usual one in the finite-volume approach:
constant source around a node. Thus, the ∆β? field is calculated as

∆β?C =
AS∆φ?2S −Ay C∆φ?2C +AN∆φ?2N

∆
, (3.34)

where ∆ := (∆ySC + ∆yCN )/2. This formula will be applied to every x-
constant line in the discrete domain. Other alternatives such as assuming
∆β? linear and constant Péclet number in each interval were considered but
did not provide good results. Although the starting point was the same as
in [107], Lee and Kim employed some very drastic simplifications for the β
calculation that reduced the order of accuracy.

The iterative sequence to calculate both φ and β is summarized below:

1. Initialize the scalar field β, named βold,

2. Calculate φold
1 and φold

2 in the ODEs (3.29) via the one-dimensional
ENATE in Chapter 2.
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3. Calculate ∆φold
2 with the equation (3.33). A line-by-line TDMA proce-

dure is used,

4. Calculate the target φ, i.e. φ = φold
2 + ∆φold

2 . This step is only needed
if the source depends on the solution. It is used to update the source,

5. Calculate ∆βold with the equation (3.34) on vertical lines,

6. Update β, i.e. βnew = βold + ∆βold,

7. Do βold ← βnew and go to second step till maxi{|φold
1 i − φold

2 i |} < ε
where ε is the tolerance.

This approach has been named “Rapid Evaluation of Multidimensional
Equations with Distinct Integrals as Extra Sources”, REMEDIES. “Distinct
Integrals” refer to the fact that +β integral is in the x coordinate and −β
in the y coordinate. It is appropriate to stress that this procedure is not
exclusive of ENATE, coefficients and other parameters of equations (3.33)
and (3.34) can be obtained by any other alternative discretization.

3.4.1 Reaction problem

When the source depends on the solution, i.e. S = S(φ(x, y)), a special
treatment of the schemes must be adopted to update the source in every
iteration. Such problems are called reaction problems [61, 141, 204]. In
the cross-flux approach nothing is modified in the discrete equation but for
REMEDIES the equations (3.30) contain in this case an extra source that can
be split in two. Defining ∆S?1 := S − S(φ?1) and ∆S?2 := S − S(φ?2), then

∂

∂x

(
ρu∆φ?1 − Γ

∂∆φ?1
∂x

)
=

1

2
∆S?1 + ∆β?, (3.35a)

∂

∂y

(
ρv∆φ?2 − Γ

∂∆φ?2
∂y

)
=

1

2
∆S?2 −∆β?. (3.35b)

Doing the same simplifications for ∆β?, the discrete equation (3.32) be-
comes

A′C∆φ?2C −
∑
i∈N

A′i∆φ
?
2 i =∆S?2

x
+ ∆S?2

y

+A′xC(φ?1C − φ?2C)−
∑
i∈Nx

A′i(φ
?
1 i − φ?2 i), (3.36)

where

∆S?2
x

:=
∆x

2

∫ 1

0
∆S?2

IGEx 0x̂

IGEx 01
dx̂
∣∣∣∣
WC

+
∆x

2

∫ 1

0
∆S?2

[
1− IGEx 0x̂

IGEx 01

]
dx̂
∣∣∣∣
CE

,

∆S?2
y

:=
∆y

2

∫ 1

0
∆S?2

IGEy 0ŷ

IGEy 01
dŷ
∣∣∣∣
SC

+
∆y

2

∫ 1

0
∆S?2

[
1− IGEy 0ŷ

IGEy 01

]
dŷ
∣∣∣∣
CN

,

are again average quantities. The new term in (3.36) has been obtained as-
suming φ?1 = φ?2 so ∆S?1 = ∆S?2 . This last assumption was taken in order to
have the same solution-dependent source in both equations (3.35). Finally,
the calculation of ∆β?C is modified as

∆β?C =
∆S?2

x

SC + ∆S?2
y

CN

∆
+
AS∆φ?2S −Ay C∆φ?2C +AN∆φ?2N

∆
,
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3.4.2 Application of boundary conditions

In order to calculate the numerical solution of a convection-diffusion prob-
lem, REMEDIES needs a correct implementation of the boundary condi-
tions. Regular domains will be employed. Since REMEDIES should end up
with φ = φ?1 = φ?2 in the whole domain, the BC for the discrete equation
(3.33) is,

∆φ?2Bl = 0, l ∈ {1, 2, 3, 4} (3.37)

at the boundaries. For equations (3.27), φ values at the boundaries should
be employed. β must be calculated at the boundaries and its calculation de-
pends on the boundary type. When φ is fixed on the boundary, i.e. Dirich-
let BC, equation (3.27a) is used to compute β along horizontal boundary
lines and (3.27b) in vertical boundary lines. In Neumann BC, ∂φ/∂{x, y} is
known. Thus, in each iteration φ at boundary needs to be updated to calcu-
late β again with equations (3.27). In Robin BC, what is known is ρuφ−Γ∇φ
at boundaries and therefore β is fixed. As always, CCS is used in all calcu-
lations involving derivatives.

Finally, β should be initialized within the domain, Figure 3.9. A weighted
average that takes into account the distance from the boundaries to the cen-
tral point is employed, i.e.

βini
C =

4∑
l=1

βBl
|xC − xBl|

4∑
l=1

1

|xC − xBl|

.

d1 d2

d3

d4

� �

�

�

βB1 βB2

βB3

βB4

βini
C

FIGURE 3.9: Schematic representation for the initialization
of β where dl := |xC − xBl| is the euclidean distance from

the Central point to the Boundary l.

3.5 Integration methods II

In Chapter 2, page 47, two quadratures were proposed to compute the in-
tegrals from the matrix of the scheme and the discrete-source vector, being
the Hermite splines the optimal one in all numerical tests coded. The draw-
back was that the variable derivatives at grid points had to be computed as
required by the Hermite interpolant.
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In two-dimensional modelling, all numerical Hermite calculations ei-
ther along vertical lines, ξ = y and x = const., or along horizontal lines,
ξ = x and y = const., will require two basic integrals: the average Péclet
number, P ξ, or the integral of the source, ISξ 01. For instance, taking the
formula (2.57), the ai from Cubic Hermite that interpolate ISξGEξ 01 are

a0 = 0,

a1 = ∆ξ Sξ0,

a2 =

(
3 + Pξ1 − P ξ

Γ0/Γ1
+

1

Γ0

∂Γ

∂ξ̂

∣∣∣∣
0

)
ISξ 01 −∆ξ

(
2Sξ0 −

Sξ1
Γ0/Γ1

)
,

a3 =

(
−2− Pξ1 + P ξ

Γ0/Γ1
− 1

Γ0

∂Γ

∂ξ̂

∣∣∣∣
0

)
ISξ 01 + ∆ξ

(
Sξ0 +

Sξ1
Γ0/Γ1

)
.

Instead of computing P ξ and ISξ 01 via, e.g., spline (2.51), one may wonder
if there are any other alternative quadrature for such smooth functions that
is free of derivatives, only using the values of the integrand at mesh nodes,
whatever order of accuracy is sought. A first idea could reside in taking
nodes outside the interval where the integral is calculated. For example,∫ ξi

ξi−1

f dξ ≈ ∆ξ

192
[3fi−3 − 25fi−2 + 137fi−1 + 77fi] ,

its error is proportional to ∆ξ5, so it is of fifth order. The higher the order
of the rule is, the larger the stencil is. A way to avoid a large set of points
while still having the same order is to calculate the integral over an interval
with its neighbor integrals, that is

1

10

∫ ξi−1

ξi−2

f dξ +

∫ ξi

ξi−1

f dξ +
1

10

∫ ξi+1

ξi

f dξ ≈ 3∆ξ

5
[fi−1 + fi] .

This quadrature generalization is named “Compact Integration Rules”, CIR
[118], and results in an implicit numerical integration method. The previous
rule is just one out of many where a general CIR centered at (ξi−1, ξi) is
given by

m2∑
k=−m1

αk

∫ ξi+k

ξi+k−1

f dξ = ∆ξ

q2∑
k=−q1

akfi+k + τi,

or in matrix form,

M

∫
fdξ = ∆ξQf + τττ , (3.39)

where M ∈ Rn×n, Q ∈ Rn×(n+1) are banded matrices and

∫
fdξ :=

(∫ ξ1

ξ0

f dξ,
∫ ξ2

ξ1

f dξ, . . . ,
∫ ξN

ξN−1

f dξ

)T
,

the discrete solution vector in Rn. The vector f is defined on page 86. It is
easy to see that CIR is an analogy of CCS. The set {ak} links with the {αk}
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set when matching the Taylor series coefficients until the desired order of
accuracy. The first unmatched coefficient determines the local truncation
error, τi and τττ . In Appendix D is explained in detail how to determine the
coefficients αk and ak.

If M is diagonal, m1 = m2 = 0, the rule is explicit. If not, a system of
equations must be solved. We assume m1 = m2 and q1 = q2. The order of
any rule is named as local if it is referred to the integral within an interval
whereas it will be named as global if it is referred to the whole domain. The
global order is one order of accuracy less than the local one due to the pile-
up of local truncation errors, see details in [118]. In this thesis a global 4th
order CIR was applied where

M :=


1 1

1/10 1 1/10
. . .

. . .
. . .

1/10 1 1/10
1 1

 ,

Q :=


1/3 4/3 1/3

3/5 3/5
. . .

. . .

3/5 3/5
1/3 4/3 1/3

 ,

and a global 6th order CIR

M :=


1 27/11

11/38 1 11/38
. . .

. . .
. . .

11/38 1 11/38
27/11 1

 ,

Q :=


281/990 1028/495 196/165 −52/495 1/90

3/38 27/38 27/38 3/38
. . .

. . .
. . .

. . .

3/38 27/38 27/38 3/38
1/90 −52/495 196/165 1028/495 281/990

 .

Similarly to CCS, TDMA was used for solving the system (3.39).

3.6 Numerical Examples

In this section some numerical tests will be presented in order to compare
both approaches. Most of them have an exact solution so the l2-norm de-
fined on page 58 is calculated. In the last one also the l1-norm is computed,
defined as

||φnum. − φexact||1 :=
1

Nnodes

Nnodes∑
i=1

| φi|num. − φi|exact |,
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and the l∞-norm,

||φnum. − φexact||∞ := max
1≤i≤Nnodes

(
| φi|num. − φi|exact |

)
.

where Nnodes is the number of nodes in the mesh. If the exact solution is
unknown, as in the fifth test, the order of the scheme can be estimated by
Richardson extrapolation [27]. According to this theory and once the sim-
ulations are in the convergence region, the approximation of φi at a given
point in a ∆x-size mesh, termed φ∆x, could be expressed as

φi|exact = φ∆x + C∆xp.

Using three mesh configurations: a coarse (∆x), a medium (∆x/2) and a
fine (∆x/4), the Richardson factor is defined by

RF∆x := 2p =
φ∆x/2 − φ∆x

φ∆x/4 − φ∆x/2
,

with p the order of convergence, different for each point.

3.6.1 2D machine-accurate solution

The equation solved in this case corresponds to a manufactured problem
that represents the transport of temperature in a fluid with variable velocity.
The BVP is

∂

∂x

(
ρcpuT − k

∂T

∂x

)
+

∂

∂y

(
ρcpvT − k

∂T

∂y

)
= S, (x, y) ∈ (0, 1)× (0, 1),

T (x, 0) = 0, T (x, 1) = 1− x, 0 ≤ x ≤ 1,

T (0, y) = y, T (1, y) = 0, 0 ≤ y ≤ 1,

where ρ is the density and cp is the specific heat at constant pressure, both
are constant. The actual equation solved is

∂

∂x

(
uT − α∂T

∂x

)
+

∂

∂y

(
vT − α∂T

∂y

)
= S∗,

with α = k/ρcp and S∗ = S/ρcp. The velocity is variable and given by
u = y and v = −x. Two cases were run for α ∈ {10−2, 10−4}. The source
is S∗(x, y) = x2 + y2 − x, such that the solution is T = y(1 − x), see Figure
3.10.

With cubic Hermite and just one node in the center of the square domain
the difference between the computed solution and the exact one is of the
order of 10−16. In fact, this manufactured test case was especially chosen to
show the capability of ENATE to obtain a machine-accurate solution for any
number of grid points in a test case with analytic integrals. In the following
it will be explained why the machine-accurate solution is obtained.

For this particular case the integrating factors included in the integrals
of the coefficients are

exp

∫ 1

x̂
Px dx̂′ = exp (Px(1− x̂)) , exp

∫ 1

ŷ
Py dŷ′ = exp (Py(1− ŷ)) ,
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(A) Temperature field, T (x, y). (B) Source field, S∗(x, y).

FIGURE 3.10: Example 2D machine-accurate solution, Manu-
factured problem for the energy equation in fluid mechan-

ics.

as Px = (u∆x)/α depends only on y through u and Py = (v∆y)/α de-
pends only on x through v. The IGEs ratios can be calculated exactly. For
instance,

IGEx 0x̂ =

∫ x̂

0
exp(Px(1− x̂′))dx̂′ =

1− exp(−Pxx̂)

Px exp(−Px)
,

IGEx 01 =
1− exp(−Px)

Px exp(−Px)
,

and, therefore,

IGEx 0x̂

IGEx 01
=

1− exp(−Pxx̂)

1− exp(−Px)
,

similarly in the other direction. Thus, IGE{x,y}01 makes all coefficients,AW ,
AE , AS , AN and AC , exact in 2D.

The source and pseudo-sources are quadratic in x and y, so any poly-
nomial of second degree or higher may approximate it exactly along one
coordinate, in particular a third-degree Hermite polynomial (cubic Her-
mite), S∗(x̂, yC) =

∑3
k=0 akx̂

k. After interpolating the integrand, all source
contribution reduces to calculating integrals of the type

∫
xn exp(−Pxx) dx.

These integrals have primitives that have been included in the code. In con-
clusion, whatever number of intervals is used the result of the integrals of
both sources and pseudo-sources is exact. As both coefficients and source
integrals are exact, the code with ENATE scheme provides for this example
a machine-accurate solution for any number of grid points. The computer
program turned over machine-accurate results in all cases with cubic, quin-
tic or septic Hermite polynomials and just one node at any position in the
domain. It must be stressed that this case was run with the general-purpose
code, no previous calculation was done by hand to be later coded.
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3.6.2 Nonlinear convection-only problem

Let us briefly consider the 2D pure convection case [181],
u
∂u

∂x
+ u

∂u

∂y
= S, (x, y) ∈ (0, 1)× (0, 1),

u(x, 0) = a+ sin (x− 0.5) , 0 ≤ x ≤ 1,

u(0, y) = b+ tanh (σ (y − 0.5)) , 0 ≤ y ≤ 1,

where a = 2 + tanh (−0.5σ) and b = 2 + sin (−0.5) to enforce continuity of
u in the origin. This is a 2D steady Burgers’ equation in which the velocity
components are the same, so there is only one PDE to solve. A manufac-
tured source is employed,

S(x, y) = (2 + sin (x− 0.5) + tanh (σ (y − 0.5))) cos (x− 0.5)

+ σ (2 + sin (x− 0.5) + tanh (σ (y − 0.5))) sech2 (σ (y − 0.5)) ,

being σ an input parameter that controls the steepness of the solution in a
certain desired region, close to y = 0.5. The exact solution is

u(x, y) = 2 + sin (x− 0.5) + tanh (σ (y − 0.5)) ,

which is very anisotropic, the gradient of u does not change alike in both
directions. The sine function in one direction is very smooth but the hyper-
bolic tangent function around y = 0.5 is very sharp for large σ. In fact, the
greater the value of σ is, the greater the gradient of u in y-direction around
0.5 becomes, see Figure 3.11.

The ENATE scheme works with the conservative form of the transport
equation,

∂ (ρuφ)

∂x
+
∂ (ρuφ)

∂y
= S,

in which the conserved variable is the variable under study, φ(x, y) = u(x, y),
ρ = 1/2 and the convective coefficients use the values of u in the previous
iteration, i.e. ρu = uold/2.

The code was run until the normalized difference between two consec-
utive iterations was less than 10−4. In order to compare with the FV-CF
scheme [209] the transport equation has been further discretized with the
latter. With |P | → ∞ the source integrals do not have the exponential factor.
Different comparisons were undertaken:

1. FaP using CIR+CCS is compared with FV-CF,

2. CIR+CCS is compared with Hermite+CCS in FaP,

3. FaP and REMEDIES are compared,

4. The special case u = v in 3.2.2 of the streamline approach is computed.

First, the l2-norm of the error is plotted in Figure 3.12 where eight nu-
merical experiments were implemented: two levels in the gradient and four
CIR/CCS combinations. Both smooth and sharp gradient simulations us-
ing a fourth-order CIR + fourth-order CCS, sixth-order CIR + fourth-order
CCS show an identical behaviour. In both cases, ENATE works as a fourth-
order scheme, Table 3.2, being slightly better with a smooth gradient.
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(A) u(x, y) field with σ = 5. (B) S(x, y) field with σ = 5.

(C) u(x, y) field with σ = 50. (D) S(x, y) field with σ = 50.

FIGURE 3.11: Example Nonlinear convection-only problem,
manufactured problem for the Burgers’ equation.

The fourth-order CIR + sixth-order CCS and sixth-order CIR + sixth-
order CCS follow the same behaviour in sharp gradient, except for the 500
× 500 mesh whose results differ from each other less than one order of
magnitude. ENATE works as a sixth-order scheme. With a smooth gradi-
ent and same orders of CIR and CCS the differences become relevant be-
yond the 200 × 200 mesh. Rejecting results of the last ∆x, fourth-order
ENATE is achieved with a fourth-order CIR + sixth-order CCS and sixth-
order ENATE is obtained by sixth-order CIR + sixth-order CCS. On the
other hand, eighth-order CIR or CCS did not provide good results and they
are not reported.

It is worth highlighting the good results obtained by ENATE with its
accessories (CCS and CIR) in this nonlinear equation. In the more stringent
case of σ = 50 the l2-norm is 3 · 10−10 with a mesh of 500 × 500.

ENATE provides much better results than the FV-CF scheme, even for
σ = 50, case that contains a region where the solution changes very quickly.
As is remarked by its authors, FV-CF becomes a second-order cell-vertex FV
method when Péclet goes to infinity, as in this test. ENATE cannot provide
a solution for

√
∆x∆y > 2 · 10−2 whereas FV-CF works fine for

√
∆x∆y

greater than this value. For large
√

∆x∆y, the integrals of ENATE are more
sensitive to the exponentials than the FV-CF scheme.

On the other hand, the accuracy with FaP is studied using Hermite
(2.51), (2.52) and (2.53) or CIR, once ∂Fx/∂x and ∂Fy/∂y are computed
with CCS. First, the l2-norm of the error using Hermite+CCS is plotted in
Figure 3.13. Again, the order of ENATE is ruled by CCS. Only with σ = 50



104 Chapter 3. Climbing the challenge: two-dimensional ENATE

10−3 10−2 10−1

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

√
∆x∆y

l 2
-n

or
m

(A) Smooth gradient, σ = 5.
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(B) Sharp gradient, σ = 50.

FIGURE 3.12: Example Nonlinear convection-only problem,
the l2-norm of the error for two numerical methods. • Dash
dotted line, FV-CF scheme. � Solid line, ENATE with FaP
using 4th-order CIR + 4th-order CCS. � Dashed line, 6th-
order CIR + 4th-order CCS. � Dashed line, 4th-order CIR
+ 6th-order CCS. � Dashed line, 6th-order CIR + 6th-order

CCS.
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Case σ CIR CCS ENATE with FaP
1.1

5
(Smooth)

4th 4th 4th
1.2 4th 6th 4th
1.3 6th 4th 4th
1.4 6th 6th 6th
2.1

50
(Sharp)

4th 4th 4th
2.2 4th 6th 6th
2.3 6th 4th 4th
2.4 6th 6th 6th

TABLE 3.2: Example Nonlinear convection-only problem, or-
ders obtained by several combinations of CCS and CIR.
Case 1.2 is better than 1.1. Cases 1.3 and 2.3 is identical to

1.1 and 2.1 respectively.

some differences pop up with Cubic and Quintic in
√

∆x∆y = 10−2 and√
∆x∆y = 2 · 10−3, but they are not significant. Now, if Figure 3.12 is

compared with 3.13, CIR and Hermite give the same accuracy but the CPU
time in the case of ENATE with FaP using CIR+CCS is a bit less than Her-
mite+CCS. As an example, in the case of

√
∆x∆y = 10−2 CIR runs in 11

min. and Hermite in ∼15 min. The cause is that more derivatives need to
be computed, e.g., Quintic requires ∂Fx/∂x, ∂2Fx/∂x∂y, ∂3Fx/∂x∂y2 (in
y-direction).

Another analysis is the comparison of FaP vs. REMEDIES. The integrals
were computed in both approaches using Hermite + CCS. In Figure 3.14
the l2-norm of the error has been plotted. In the case with σ = 5, norms
with FaP and REMEDIES were similar for Cubic Hermite + 4th-order CCS
and one order of magnitude better in REMEDIES than in FaP for Quintic
Hermite + 6th-order CCS. For σ = 50, slight differences are seen in the
norm. Septic Hermite in both approaches and with different σ was not able
to get a norm below Quintic.

Regarding CPU time, REMEDIES is faster than FaP, see Table 3.3. For
instance, in the case of σ = 5, REMEDIES takes around 2 min, FaP 20 min,
in
√

∆x∆y = 5 ·10−3 using Cubic Hermite + 4th-order CCS. For σ = 50 and
same Hermite + CCS and spacing, REMEDIES takes 30.5 s, unlike FaP that
takes 14 min.

Finally, this test allowed to compute the transport equation under the
transformation of the stream-function coordinates on page 76. The integral
in (3.5) was calculated by CIR. In Figure 3.15 the numerical results are com-
pared with FaP. In both tests, if the convection-only transport equation is
reduced to an ODE over a streamline and the one-dimensional fluxes of
ENATE are applied, the numerical solution improves two orders of mag-
nitude for a fourth-order ENATE, or four orders of magnitude for a sixth-
order ENATE. Additionally, in the case σ = 50, the transformation is better
at approximating the integrals than FaP or REMEDIES for large

√
∆x∆y, as

well as REMEDIES.
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(A) Smooth gradient, σ = 5.
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(B) Sharp gradient, σ = 50.

FIGURE 3.13: Example Nonlinear convection-only problem,
the l2-norm of the errors for ENATE with FaP using Her-
mite. � Solid line, Cubic Hermite + 4th-order CCS. �
Dashed line, Quintic Hermite + 4th-order CCS. � Solid line,
Cubic Hermite + 6th-order CCS. � Dashed line, Quintic

Hermite + 6th-order CCS.
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(A) Smooth gradient, σ = 5.
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(B) Sharp gradient, σ = 50.

FIGURE 3.14: Example Nonlinear convection-only problem,
the l2-norm of the errors for two approaches. � Solid
line, ENATE with REMEDIES using Cubic Hermite + 4th-
order CCS. � Solid line, Quintic Hermite + 6th-order CCS.
� Dashed line, ENATE with FaP using Cubic Hermite +
4th-order CCS. � Dashed line, Quintic Hermite + 6th-order

CCS.
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(A) Smooth gradient, σ = 5.
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(B) Sharp gradient, σ = 50.

FIGURE 3.15: Example Nonlinear convection-only problem,
the l2-norm of the errors for FaP and stream-function coor-
dinate. � Solid line, ENATE with FaP using 4th-order CIR +
4th-order CCS. � Solid line, 6th-order CIR + 6th-order CCS.
�Dashed line, ENATE with stream-function coordinate us-

ing 4th-order CIR. � Dashed line, 6th-order CIR.
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σ
√

∆x∆y
Cubic + 4th-CCS Quintic + 6th-CCS

REMEDIES FaP REMEDIES FaP

5

0.1 0.16 0.05 0.11 4.79
0.05 0.46 0.18 0.72 10.51
0.02 2.61 9.44 4.67 51.61
0.01 15.0 140.45 27.0 176.30
0.005 118.9 1226.70 200.8 1010.55
0.002 512.6 13110.67

50

0.02 0.5 6.18 0.6 4.74
0.01 2.5 102.49 4.4 145.94
0.005 30.5 833.76 143.0 1355.53
0.002 315.3 Oscillating

TABLE 3.3: Example Nonlinear convection-only problem, com-
paring the FaP and REMEDIES approaches in terms of

elapsed CPU time (in seconds).

3.6.3 Poisson’s equation

The accuracy of ENATE either with FaP or with REMEDIES depends on
many factors, particularly on the value of the Péclet number based on the
interval size. As part of the assessment of REMEDIES two cases with zero
Péclet, i.e., a Poisson’s equation, were run. Poisson’s equation is widely
used in physics, and particularly in computational fluid dynamics to solve
the pressure field [1, 2].

Two cases were computed that solve

∂2φ

∂x2
+
∂2φ

∂y2
= −S,

in a squared domain of unit size. The two sources and boundary conditions
are such that the solution for the first case is

φ(x, y) = exp
(
−0.5(4π)2((x− 0.5)2 + (y − 0.5)2)

)
,

and for the second

φ(x, y) = (x3 − y4 + x2y3) sin 2πx sin 2πy,

plotted in Figure 3.16. A uniform mesh in both coordinates was used with
∆x = ∆y. In these cases the accuracy of results will be measured by the l2-
norm of the vector difference between the computed results and the exact
ones. The two cases presented were also studied by Zapata and Balam
[248], where they used high-order compact schemes.

In Figure 3.17 the comparison between the two approaches, REMEDIES
and FaP, is depicted. The norm is presented against the mesh size. The
order of accuracy of both is the same but the actual values are slightly dif-
ferent with a gap of half an order of magnitude between them. The relative
behaviour is a bit surprising because with cubic Hermite FaP is better than
REMEDIES but it is the other way round with quintic Hermite. The differ-
ences may only be caused by the buildup of errors due to the number of
arithmetic operations required to get to a converged solution, different for
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(A) Exact solution for the first case (B) Source term for the first case

(C) Exact solution for the second case (D) Source term for the second case

FIGURE 3.16: Example Poisson’s equation, manufactured
problems for the Poisson’s equation.

each approach.
It is convenient to state the differences between the two approaches in

terms of arithmetic operations. The most important one is the number of
sweeps over the 2D domain required to solve the algebraic equation per-
tinent to either approach. FaP solves the algebraic equation resulting from
the sum of equations (3.12a) and (3.13a) once discretized. REMEDIES solves
the algebraic equation for ∆φ?2. In the case of FaP the number of required
sweeps is just four, whereas REMEDIES requires many sweeps to obtain a
good estimation of ∆φ?2. The CPU time not only depends on the number of
sweeps per iteration but also on the number of iterations needed for conver-
gence. CPU times have already been presented for a former test case and
we anticipate that REMEDIES is faster than FaP at reaching the converged
solution for many cases computed.

Figure 3.18 compares ENATE with REMEDIES with results from Zap-
ata and Balam of similar order of accuracy. These authors present tables of
l2-norms for explicit, implicit and high-order implicit schemes, the names
refer to the way the second derivatives are evaluated. In each category dif-
ferent approximations to the source function are considered. Those whose
formal orders of accuracy are sixth, eighth and tenth respectively, named
as EF3, IF3 and HIF3 in the paper, are chosen for comparison. The theo-
retical orders of accuracy of cubic, quintic and septic Hermite are fourth,
sixth and eighth but in this case, apart from cubic, the orders were closer to
the others just mentioned. Cubic Hermite is the only Hermite polynomial
that conforms to the formal order of accuracy. For a short range of mesh
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FIGURE 3.17: Example Poisson’s equation, the l2-norm of the
error for the first Poisson problem. Solid lines are for REME-
DIES and dashed lines correspond to FaP approach. � Cu-

bic Hermite. � Quintic Hermite.

sizes quintic Hermite is eighth-order but in the last mesh becomes sixth-
order. Septic Hermite is tenth-order over an ample range of mesh sizes and
follows closely the convergence results of HIF3.

The second Poisson case is depicted in Figure 3.19. Similar conclusions
to those of the first Poisson case can be drawn from the comparison of
REMEDIES and FaP. For cubic Hermite both approaches give very close
l2 results. For quintic Hermite the differences are more noticeable, always
in favour of the β treatment. It seems that the new terms in the interpolant
introduced by quintic Hermite are more important in this case and the re-
quirements of a larger number of arithmetic operations for FaP contribute
to greater discretization errors. Yet, in the final range of interval sizes both
behave as sixth-order.

Figure 3.20 shows the comparison with Zapata and Balam schemes. All
schemes present the formal order of accuracy except septic that is tenth or-
der. For all interval sizes cubic Hermite is almost two orders of magnitude
better than Zapata and Balam comparable scheme. Quintic Hermite is two
orders of magnitude better only for small interval sizes.

The explicit schemes of Zapata and Balam require the use of TDMA or
PDMA to solve the final system of equations but due to the stencil of the
implicit schemes, namely 21 points for both IF3 and HIF3 in 2D, a SOR pro-
cedure is followed. ENATE only employs TDMA, for a three-point stencil
in each coordinate is employed, which also makes the coding much less
burdensome.

The l2 data from Zapata and Balam are extracted directly from their
paper where no information about the CPU time taken by each scheme is
provided for these two cases.

In the course of this research with REMEDIES two interesting aspects
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FIGURE 3.18: Example Poisson’s equation, the l2-norm of the
error for the first Poisson problem. Solid lines are those
of REMEDIES and dashed lines correspond to Zapata and
Balam data of similar order of accuracy. � Cubic Hermite
and EF3. � Quintic Hermite and IF3. N Septic Hermite and

HIF3.

came up. First, the CPU time was strongly dependent on the Péclet number
of the problem. The smaller this number is, the longer CPU time is needed
to get the final solution. Poisson’s problems are consequently the worst due
to the number of sweeps required to obtain a reasonably good estimation of
∆φ2. Remind that this equation is the only one that is 2D, the equations for
φ1 and φ2 are 1D. A second aspect that emerged is the existence of a mini-
mum number of sweeps below which the solution diverges. This happens
for relatively fine meshes.

In Tables 3.4 and 3.5 the CPU time taken in the two Poisson cases with
REMEDIES by the different Hermite polynomials is shown. The cases were
run under the β approach for two different mesh sizes, a fine one 200×200,
and a medium one 50×50. In the second Poisson case with septic Hermite
the finest grid is 100×100 as with this grid the solution is already near ma-
chine accuracy.

In both tests the CPU time for a mesh of 50×50 is of the order of one
second. With this mesh and in the first Poisson problem the order of mag-
nitude of the l2 norm ranges from 10−5 for cubic to 10−9 for septic, whereas
for the second problem it goes from 10−7 to 10−12. As seen in the tables the
optimum number of sweeps is mildly dependent on both the polynomial
degree and the source but it is strongly dependent on the grid size. CPU
time for FaP is much longer for all meshes and Hermite polynomials, and
it is not detailed. For example, FaP cubic Hermite for a mesh of 200×200
takes about 900 s, compared to 357 s with REMEDIES. This improvement
in CPU time of the β approach is consistently found in all cases tested.
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Hermite
200×200 50×50

Sweeps ×4 CPU time [s] Sweeps CPU Time [s]

Cubic

100 diverges 10 4.14
200 461 20 0.65
300 259 30 0.52
400 199 40 0.51
500 178 50 0.55
600 170
700 251

Quintic

100 diverges 10 5.96
200 543 20 1.05
300 239 30 0.73
400 258 40 0.73

50 0.76

Septic

100 diverges 10 7.95
200 872 20 1.28
300 487 30 1.07
400 430 40 1.00
500 393 50 1.17
600 400

TABLE 3.4: Example Poisson’s equation, First Poisson prob-
lem. Number of sweeps and CPU time in seconds for two

mesh sizes.

Hermite
200×200 50×50

Sweeps ×4 CPU time [s] Sweeps CPU Time [s]

Cubic

100 diverges 10 4.8
200 508 20 1.3
300 445 30 1.2
400 407 40 1.26
500 366
600 357
700 360

Quintic

100 diverges 10 8.0
200 777 20 1.95
300 626 30 1.71
400 566 40 1.78
500 548
600 543
700 580

Septic

70 43 10 9.6
80 39 20 2.42
90 39 30 2.18

100 40 40 1.98
200 44 50 2.25

TABLE 3.5: Example Poisson’s equation, second Poisson
problem. Number of sweeps and CPU time in seconds for
two mesh sizes. The first two columns of septic Hermite are
presented for a mesh of 100×100 as it is already very close

to machine accuracy.
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FIGURE 3.19: Example Poisson’s equation, the l2-norm of the
error for the second Poisson problem. Solid lines are for
REMEDIES and dashed lines correspond to FaP approach.

3.6.4 Convection equation with piecewise-constant BC

Let us consider the following BVP [88, 151],
∂

∂x
(ρuφ) +

∂

∂y
(ρvφ) = 0, (x, y) ∈ (0, 1]× (0, 1],

φ(x, 0) = 1, 0 ≤ x ≤ 1,

φ(0, y) = 0, 0 < y ≤ 1,

with ρu and ρv positive constants. Since convection is the only transportive
process, a discontinuity develops along a straight line with slope ρv/ρu. A
value of 1 fills the domain below this line, and a value of 0 above it, see Fig.
3.21. Since numerical schemes have errors attached to the discretization
process, the numerical φ will not preserve the discontinuity and there will
be some spread perpendicular to this straight line.

In case of ENATE with FaP, integrals (3.17d) are zero as S = 0 and the
fluxes (3.11) are constant in the two areas of the domain. Although φ shows
a discontinuity across the straight line passing through the origin, over this
line the sum of

∫ xC
xW

(∂Fy/∂y)dx and
∫ yC
yS

(∂Fx/∂x)dy is zero if the Dirac
delta function contribution at xC is neglected. In all examples shown this is
assumed. Thus, ENATE with FaP yields

(ρu+ ρv)φC = ρuφW + ρvφS . (3.40)

Due to the fact that the extra terms are discarded, a way to improve the
accuracy of this approach results from adding an additional point to the
stencil in the following manner. Shift the indices φC → φS , φW → φC and
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FIGURE 3.20: Example Poisson’s equation, the l2-norm of the
error for the second Poisson problem. Solid lines are those
of REMEDIES and dashed lines correspond to Zapata and
Balam data of similar order of accuracy. � Cubic Hermite
and EF3. � Quintic Hermite and IF3. N Septic Hermite and

HIF3.

φS → φSW , obtaining

(ρu+ ρv)φS = ρvφC + ρuφSW .

Then, changing the sense of ρv and multiply ρu by the aspect ratio of the
mesh, defined as ra := ∆y/∆x,

(raρu− ρv)φS = −ρvφC + raρuφSW . (3.41)

The ratio ra should be included because if ∆x 6= ∆y the streamline that
passes through xC will pass through xSW iff ρv∆x = ρu∆y. It is easy to
check that in that case the previous algebraic equation provides φSW =
φC . If ra is not included there will also be contribution from φS which is
not correct. Scheme (3.41) that uses the streamline direction to derive the
algebraic relation between nodes is the SUDS of Raithby [172], back in 1976.
Finally, eqn.(3.40) + eqn.(3.41), φC links with φW , φS and φSW :

(ρu+ 2ρv)φC = ρuφW + (2ρv − raρu)φS + raρuφSW , (3.42)

which preserves positiveness iff ρv/ρu ≥ ra/2. On the other hand, REME-
DIES used the integrals of β computed by CIR, no assumption was made.
The numerical diffusion of REMEDIES will be shown in the computations
as to provide a theoretical derivation was not feasible.

In Table 3.6 the l2-norm of the error when ρu = ρv = 1 on a uniform
mesh, ∆x = ∆y, is displayed. Both FV-CF and ENATE show a behaviour of
a scheme less than 1st-order. The reason of this drop in quality of ENATE
lies in two facts. Since the integrals of S{x,y} do not take part in FaP, the
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FIGURE 3.21: Example Piecewise constant boundary condition,
exact solution over the box with ρu = ρv (left) and ρu = 2ρv
(right). Red domain, φ(x, y > (ρv/ρu)x) = 1. Blue domain,

φ(x, y < (ρv/ρu)x) = 0.

scheme converts into an upwind method. For REMEDIES, where the inte-
grals of β are computed, there were no differences in using either fourth- or
sixth-order CIR, because the accuracy is determined by the β derivatives.
They are very inaccurate as β is a Dirac delta along the straight line of slope
ρv/ρu. Notwithstanding this, the best l2-norm is obtained with REMEDIES.

√
∆x∆y FV-CF

ENATE
FaP

REMEDIES
3-point 4-point

0.1 1.8257 · 10−1 2.6140 · 10−1 2.1520 · 10−1 1.6777 · 10−1

0.01 1.0777 · 10−1 1.4616 · 10−1 1.2321 · 10−1 5.0664 · 10−2

0.001 6.1178 · 10−2 8.2971 · 10−2 6.9879 · 10−2 1.7137 · 10−2

TABLE 3.6: Example Piecewise constant boundary condition,
the l2-norm of the error when ρu = ρv for the FV-CF and

ENATE scheme.

If the convection is changed, e.g. ρu = 1 and ρv = 0.5, the l2-norm of
the error does not change too much, Table 3.7. However, with the FV-CF
scheme the computed convection direction has changed, see Fig. 3.22. If a
uniform mesh is adopted with ∆x = ∆y, bottom left figure, not only is FV-
CF adding numerical diffusion but it is also solving a different convection
problem. If its modified equation is looked at, both interpolation and mesh
produce an artificial convection direction that changes back to the real one
if ra = ρv/ρu [120]. Regarding ENATE with FaP, an improvement of the
number of points in a stencil is shown in the two top subfigures in Figure
3.22. The modified equation for the stencil (3.40) is

∂

∂x

(
ρuφ− ρu∆x

2

∂φ

∂x

)
+ ra

∂

∂y

(
ρvφ− ρv∆y

2

∂φ

∂y

)
' 0,

and for (3.42),

∂

∂x

(
ρuφ− ρu∆x

2

∂φ

∂x

)
+

2ra
1 + ra

∂

∂y
(ρvφ) ' 0.
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√
∆x∆y FV-CF

ENATE with
REMEDIES

0.0707 ... 1.6213 · 10−1 1.6213 · 10−1

0.00707 ... 9.0570 · 10−1 3.5737 · 10−2

0.000707 ... 5.0897 · 10−2

√
∆x∆y

ENATE
FaP

REMEDIES
3-point 4-point

0.1 2.1610 · 10−1 1.9541 · 10−1 1.5973 · 10−1

0.01 1.1652 · 10−1 8.9610 · 10−1 5.7161 · 10−2

0.001 6.5336 · 10−2 4.9686 · 10−2 2.5555 · 10−2

TABLE 3.7: Example Piecewise constant boundary condition,
the l2-norm of the error with ρu 6= ρv for the FV-CF and

ENATE schemes.

With the information of φSW , numerical diffusion is made to disappear.
However, FaP with ra 6= 1 suffers from the same problems as FV-CF with
∆x = ∆y due to the factors multiplying the former modified equations. It
was verified that this was in fact the case, but if ρv is multiplied by 1/ra in
scheme (3.40) or (1+ra)/(2ra) in scheme (3.42), we are able to get rid of this
problem.

Finally, REMEDIES gives engaging results. In a mesh with ∆x = ∆y,
the numerical diffusion along the discontinuity is reduced, but oscillations
show up, middle left in Fig. 3.22. So ENATE with REMEDIES may be
dispersive in nature. However, if the mesh is modified with ∆x = 2∆y, we
are able to get rid of those oscillations and move closer to the exact solution
with small numerical diffusion. This behaviour is because specific points
of the mesh lie in the discontinuity line which apparently is more adequate
for obtaining more accurate β-derivatives, see Fig. 3.23. In Fig. 3.24 we
plot φ(x, y) along a line perpendicular to the discontinuity from (1, 0) to
(0.5, 1). It can be seen that a nonuniform REMEDIES reduces the numerical
diffusion with small oscillations near the discontinuity. As an additional
comparison the schemes above were also checked against the second-order
NOTABLE scheme [148].

3.6.5 Rotating flow

We consider now a fluid flow rotating around the origin of coordinates in
the absence of source. The BVP is

∂

∂x

(
yφ− Γ

∂φ

∂x

)
+

∂

∂y

(
−xφ− Γ

∂φ

∂y

)
= 0, (x, y) ∈ (0, 1)× (0, 1),

φ(0, y) = g1(y), ∂xφ(1, y) = 0, 0 ≤ y ≤ 1,

φ(x, 1) = g2(x), ∂yφ(x, 0) = 0, 0 ≤ x ≤ 1,

where two inlet profiles are set up. First, one linear g1(y) = y, g2(x) = 1− x
and second, one with a hyperbolic tangent g1(y) = 0.5 (1 + tanh (10y − 5)),
g2(x) = 0.5 (1− tanh (10x− 5)). The first profile gives a smooth solution
all over the domain contrary to the second one that shows a steep inner
layer. As diffusion increases the layer becomes less and less steep, see Fig.
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FIGURE 3.22: Example Piecewise constant boundary condition,
numerical solutions in

√
∆x∆y = 0.01. Top left, 3-point

ENATE with FaP. Top right, 4-point ENATE with FaP. Mid-
dle left, ∆x = ∆y ENATE with REMEDIES. Middle right,
∆x 6= ∆y ENATE with REMEDIES. Bottom left, ∆x = ∆y

FV-CF. Bottom right, ∆x 6= ∆y FV-CF.
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FIGURE 3.23: Example Piecewise constant boundary condition,
numerical β field in

√
∆x∆y = 0.01 when ∆x = ∆y (left)

and ∆x = 2∆y (right).
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FIGURE 3.24: Example Piecewise constant boundary condition,
profiles of the transport variable on a line y = 2 − 2x in√

∆x∆y = 0.02. Black, Exact. Gray, ∆x 6= ∆y ENATE
with REMEDIES. Violet, ∆x = ∆y ENATE with REME-
DIES. Red, NOTABLE. Green, 4-point ENATE with FaP.
Blue, nonuniform FV-CF. Orange, 3-point ENATE with FaP.

3.25. The smaller the Γ values are, the closer the outlet profiles are to those
at the inlet. Two diffusion coefficients were used: Γ ∈ {10−2, 10−4}. As
no exact solution is known for this example, Richardson extrapolation is
employed to obtain the reference value. Again, the FV-CF scheme in lo-
cal flow adapted coordinates [210] is compared with ENATE. The results
shown were carried out with Quintic Hermite spline in FaP and a Cubic
Hermite spline with REMEDIES. The approaches used sixth-order CCS in
case of FaP, fourth-order in case of REMEDIES and fourth-order CIR in both
FaP and REMEDIES. Richardson extrapolation did not produce any conclu-
sive result regarding the order of the scheme, although the simulations did
converge. Only fourth-order CCS in FaP did not converge.

For the linear profile and for the hyperbolic profile the points used to
compare schemes are (0.5, 0.5) and (0.4, 0.4), respectively. These points
were chosen because they are where the solution starts to change rapidly
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FIGURE 3.25: Example Rotating flow, ENATE numerical so-
lution for Γ = 10−2. Left, Hyperbolic profile; Right, Lin-
ear profile. Richardson interpolation at black square point

(0.4, 0.4), left; (0.5, 0.5), right.

along the second diagonal. Table 3.8 shows the value of φ(0.5, 0.5) for the
linear profile. In ENATE with FaP, the Start-off column refers to an initial
solution removing the derivatives of the flux in (3.17d) whereas the Iteration
column calculates those values of the right hand side and it keeps updating
the integrals until the residuals are below a certain tolerance. Clearly, FaP
achieves a mesh independent solution with only 40 nodes with Γ = 10−2

or 80 nodes for Γ = 10−4. REMEDIES took twice this number of nodes
to attain it. In comparison, a 160 nodes FV-CF gives a similar φ(0.5, 0.5)
as 20 nodes FaP with Γ = 10−2, and 160 nodes FV-CF and 80 nodes FaP
display the same behaviour with Γ = 10−4. When the flow is convection-
dominated (Γ = 10−4) the numerical solution with ENATE in a 10x10 mesh
blows up due to a bad resolution of the integrals. Table 3.9 presents re-
sults of the Richardson factor and order of convergence. The FV-CF scheme
shows a second-order accuracy in both cases. ENATE with FaP is seventh-
order with Γ = 10−2 and almost sixth-order with Γ = 10−4. ENATE with
REMEDIES is third-order with Γ = 10−2.

Γ
√

∆x∆y FV-CF
ENATE

FaP
REMEDIES

Start-off Iteration

10−2

10−1 0.712002 0.698780 0.714575 0.714653
5 · 10−2 0.713686 0.713777 0.714962 0.714973

2.5 · 10−2 0.714608 0.715197 0.715007 0.715005
1.25 · 10−2 0.714901 0.715097 0.715007 0.715007
6.25 · 10−3 0.714980 0.715033 0.715007 0.715007

10−4

10−1 0.705217
5 · 10−2 0.707027 0.717594 0.706143 0.713433

2.5 · 10−2 0.707168 0.715144 0.717198 0.708733
1.25 · 10−2 0.707205 0.711263 0.707218 0.707199
6.25 · 10−3 0.707215 0.709188 0.707218 0.707218

TABLE 3.8: Example Rotating flow, φ(0.5, 0.5) with six fig-
ures in the linear profile.

In the hyperbolic tangent case, Table 3.10 shows similar behaviour as
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Γ
√

∆x∆y FV-CF
ENATE

FaP REMEDIES

10−2
10−1 1.83 (0.87) 8.55 (3.10) 10.20 (3.35)

5 · 10−2 3.14 (1.65) 151.60 (7.24) 13.84 (3.79)
2.5 · 10−2 3.73 (1.90) 151.93 (7.25) 7.60 (2.93)

10−4
10−1 12.88 (3.69)

5 · 10−2 3.79 (1.92) 56.78 (5.83) 3.06 (1.62)
2.5 · 10−2 4.00 (2.00) 56.97 (5.83) −79.43

TABLE 3.9: Example Rotating flow, Richardson factor and
the order of the scheme in brackets as a function of the mesh

size for linear profile.

the linear one. ENATE either with FaP or with REMEDIES achieves a mesh-
independent solution with 80 nodes for Γ = 10−2, and with 160 nodes for
Γ = 10−4. Looking at Table 3.11, the FV-CF scheme shows an accuracy close
to second-order although with Γ = 10−4 an oscillation in the solution oc-
curs that gives some unusual values of RF∆x. ENATE with FaP is between
sixth- and seventh-order with Γ = 10−2 and fourth-order with Γ = 10−4.
Whenever the solution gets steeper in some region the order of accuracy
decreases. ENATE with REMEDIES is fourth-order in both diffusion cases.

Γ
√

∆x∆y FV-CF
ENATE

FaP
REMEDIES

Start-off Iteration

10−2

10−1 0.703646 0.690092 0.700945 0.701610
5 · 10−2 0.702980 0.699863 0.701475 0.701492

2.5 · 10−2 0.701933 0.701279 0.701480 0.701480
1.25 · 10−2 0.701598 0.701446 0.701479 0.701479
6.25 · 10−3 0.701509 0.701472 0.701479 0.701479
3.125 · 10−3 0.701487 0.701478 0.701479 0.701479

10−4

10−1 0.751865
5 · 10−2 0.781566 0.723873 0.784815 0.785121

2.5 · 10−2 0.785862 0.763420 0.785618 0.785605
1.25 · 10−2 0.785862 0.763420 0.785618 0.785620
6.25 · 10−3 0.785696 0.774244 0.785621 0.785621
3.125 · 10−3 0.785642 0.780394 0.785621 0.785621

TABLE 3.10: Example Rotating flow, φ(0.4, 0.4) with six fig-
ures for a hyperbolic profile.

Finally, for this numerical example is not possible to compare the CPU
time between FV-CF and ENATE. The reason is that both schemes were
coded in different languages: FV-CF in MATLAB and ENATE in Fortran.
Also, it is not appropriate to compare FaP and REMEDIES as they use dif-
ferent Hermite splines, but for instance, in the hyperbolic-inlet case and
Γ = 10−4, FaP run in 18.58 min and REMEDIES in 61.5 sec.
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Γ
√

∆x∆y FV-CF
ENATE

FaP REMEDIES

10−2

10−1 0.64 (−0.64) 121.96 (6.93) 10.05 (3.33)
5 · 10−2 3.12 (1.64) 115.04 (6.85) 18.01 (4.17)

2.5 · 10−2 3.77 (1.91) 94.68 (6.56) 11.03 (3.46)
1.25 · 10−2 3.64 (1.86) 90.72 (6.50) −660.38

10−4

10−1 6.70 (2.74)
5 · 10−2 −32.16 18.83 (4.23) 31.06 (4.96)

2.5 · 10−2 0.83 (−0.27) 16.19 (4.02) 18.62 (4.22)
1.25 · 10−2 3.06 (1.61) 16.02 (4.00) 13.90 (3.80)

TABLE 3.11: Example Rotating flow, Richardson factor and
the order of the scheme in brackets as a function of the mesh

size for hyperbolic profile.

3.6.6 Stommel’s ocean model

Finally, this chapter is closed with an application in Geophysical Fluid Dy-
namics [249]: calculations of wind-driven ocean currents. We used Stom-
mel theory [203] who proposed a transport equation for the stream-function
in a convective ocean cell. Some simple models can be found in [106] and
others more sophisticated in [154]. We start off with the steady Navier-
Stokes (NS) equation in the Earth frame, i.e.

∇ · (ρu) = 0,

∇ ·
(
ρu⊗ u− µ(∇u + (∇u)T )

)
= ρfm −∇p′ − 2ΩΩΩ× ρu.

The last term in the RHS of the momentum equation is the Coriolis force
where ΩΩΩ is the Earth’s angular velocity vector. The pressure, p′, is the sum
of the fluid pressure, p, the gravity contribution, ρgr, and the centrifugal
pressure,−ρΩ2r2

⊥/2 where r⊥ = |r⊥| is the perpendicular distance from the
axis of rotation and Ω = |ΩΩΩ|. fm is the external force per unit of mass and
u := (u, v, w)T is the velocity field. The NS equations should be solved in
spherical coordinates but in the phenomena studied here the curvature of
the Earth can be neglected. This allows to use a local Cartesian coordinate
system. This is called the tangent-plane approximation, see Fig. 3.26. No
vertical velocity is assumed, w = 0, all variables are independent of z-axis,
ρ = ρ0 = const., no dissipative effects are considered and a small Rossby
number, what allows to drop the advection term. So, the NS equations
become

∇ · u = 0,

fθu
⊥ = fm −

1

ρ0
∇p′,

where u⊥ := (−v, u, 0)T , fθ = 2Ω sin θ and θ the latitude. In the vertical line,
the centrifugal force can be neglected [221] and, therefore, we have hydro-
static pressure over z. Regarding Coriolis force, for small latitude variations
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in the ocean cell, fθ could be developed in Taylor series at a particular lati-
tude θ0, i.e.

fθ ' 2Ω sin θ0 +
2Ω cos θ0

RE
RE∆θ = fθ0 +

dfθ
dθ

∣∣∣∣
θ0

y.

This is called the beta-plane approximation. On the other hand, the ocean
model includes the wind force fwind on the surface and a friction stress at
the bottom proportional to the fluid velocity, i.e.

fm = fwind −
R

D
u, fwind = (fwx, fwy, 0)T ,

whereR is some constant andD is the depth of the ocean at rest, constant in
this model. The next step is to integrate the momentum equation from the
bottom of the ocean, z = 0, to the surface, z = D. As no variable depends
on z, the equation remains unchanged. Finally, we take the curl of both
sides in the momentum equation,

fθ∇× u⊥ +∇fθ × u⊥ = ∇× fwind −
R

D
∇× u.

It can be seen that∇×u⊥ = (0, 0,∇·u)T = 0 and∇fθ = (0, (dfθ/dθ)θ0 , 0)T

is a constant vector. If the stream-function is defined as u⊥ := ∇Ψ and the
vector∇⊥fθ := (−(dfθ/dθ)θ0 , 0, 0)T , then

∇fθ × u⊥ = (0, 0,∇ · (∇⊥fθ Ψ))T ,

∇× u = (0, 0,−∇2Ψ)T ,

and, therefore, the equation resulting in z direction is

∇ ·
(
∇⊥fθ Ψ− R

D
∇Ψ

)
= (∇× fwind)z,

which is clearly a transport equation for the stream function Ψ. The vari-
ation of Coriolis force is the convection-like parameter, the bottom friction
acts as the diffusive term and the wind stress on the surface of the ocean
cell as the source.

RE

ΩΩΩ

zx
y

FIGURE 3.26: Example Stommel’s ocean model, the tangent-
plane approximation and Ocean cell (blue rectangle) on the

Earth.
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For the case to be solved, Stommel proposed a rectangular ocean area
with wind force as

fwind =

(
F

D
cos
(π
b
y
)
, 0, 0

)T
.

The BVP for φ = Ψ(x, y) writes as follows:
∂

∂x

(
ρuφ− Γ

∂φ

∂x

)
+

∂

∂y

(
−Γ

∂φ

∂y

)
= S, (x, y) ∈ (0, a)× (0, b),

φ(0, y) = 0, φ(a, y) = 0, 0 ≤ y ≤ b,
φ(x, b) = 0, φ(x, 0) = 0, 0 ≤ x ≤ a,

where

ρu = −D
R

dfθ
dθ

∣∣∣∣
θ0

, Γ = 1, S =
Fb

Rπ
sin
(π
b
y
)
.

The source function is zero at y = 0 and y = b and follows the same sine
function at x = 0 and x = a. Note that in the y direction there is no convec-
tion and the source only depends on y, the latitude. The model [203] uses
the next set of constants:

D = 2 · 102 m, F = 0.3 · 10−7 m2s−2,

R = 0.6 · 10−3 ms−1,
dfθ
dθ

∣∣∣∣
64°

= 10−11 m−1s−1,

and the domain is a = 107 m and b = 2π · 106 m. The exact solution is given
by

φ = p sin
(π
b
y
)(exp (q−x)− exp (q+x)

exp (q−a)− exp (q+a)
− exp (q−x)− 1

exp (q−a)− 1

)
,

with

p =
F

R

(
exp

(
q−a

)
− 1
)( b

π

)3

, q± =
ρu

2
±
√(ρu

2

)2
+
(π
b

)2
,

and plotted in Fig. 3.27a. It can be seen a boundary layer at x = 0 that
mimics some western highly-concentrated streamlines in subtropical gyres
[126, 155] such as the Gulf stream or the Kuroshio current, among others.

In this numerical test, only REMEDIES was computed. The reason was
the long CPU time for the cross-flux approach. In addition, a nonuniform
mesh is going to be used clustering nodes at the left boundary, what would
increase substantially the execution time of ENATE with FaP. A drawback
of CCS as originally devised is that it only works for a mesh of equal spac-
ing. A modification of this numerical method dealing with a nonuniform
mesh is described in Appendix E.
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(A) The stream function field. (B) The curl of the wind force.

(C) The β field for REMEDIES.

FIGURE 3.27: Example Stommel’s ocean model, ocean prob-
lem for the Stommel box.

Regarding the boundary conditions, they are of Dirichlet type for the
stream function. The values of β at boundaries can be shown to be

β(0, y) = β(a, y) =
1

2
S(y),

β(x, 0) = β(x, b) = 0.

The ENATE scheme with REMEDIES was run with Cubic, Quintic and
Septic Hermite polynomials for different number of grid points in a uni-
form mesh. Convergence results are displayed in Fig. 3.28. It can be appre-
ciated the good accuracy attained by ENATE as compared with the results
with the high-order compact scheme presented in [29]. The CCS and cubic
Hermite are fourth-order with cubic ENATE lying below CCS in the lim-
ited range of grid sizes where both can be compared. In terms of accuracy,
quintic and septic behave close to what is theoretically predicted. Quintic
is slightly better than sixth-order and septic is eighth-order, although when
it approaches the machine accuracy region the order is somehow reduced.

To check the adequate behaviour of ENATE in nonuniform meshes with
very large size ratio between contiguous intervals a test was carried out
with the mesh divided in two zones, see Fig. 3.29. The first zone is always
kept the same: 100 nodes covering 5 · 105 m. The second zone changes
from nonuniform with smooth transition to uniform with extremely abrupt
size transition. The results obtained are presented in Table 3.12. It can be
observed that as the number of nodes is reduced the accuracy worsens. In
the worst case, for which the size ratio where the two zones meet is around
one hundred, the norms are of order 10−4. That means that the ENATE
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10−3 10−2 10−1

10−2

10−4

10−6

10−8

10−10

10−12

√
∆x∆y

l 2
-n

or
m

FIGURE 3.28: Example Stommel’s ocean model, the l2-norm
of the error for the Stommel’s ocean model in a ∆x = ∆y
mesh. � and dashed line, Chu & Fun combined compact
difference. � and solid line, ENATE with REMEDIES using

Cubic Hermite. �, Quintic Hermite. N, Septic Hermite.

Mesh l1 l2 l∞
200×100 nice 6.31 · 10−8 7.49 · 10−8 1.44 · 10−7

(100+100)×100 5.95 · 10−7 9.50 · 10−7 3.36 · 10−6

(100+50)×100 1.15 · 10−5 1.64 · 10−5 5.27 · 10−5

(100+25)×100 2.05 · 10−4 2.72 · 10−4 6.68 · 10−4

TABLE 3.12: Example the Stommel’s ocean model, norms of
some run cases in non-uniform meshes.

treatment for abrupt size transition works quite well.
Finally, other uniform meshes were studied keeping ∆x = 1.6∆y. The

l2-norm of the error is found in Fig. 3.30. Similar orders of convergence for
Hermite are obtained compared to the ∆x = ∆y mesh test: cubic is fourth-
order whereas quintic is sixth-order and septic is almost eighth-order. Even
so, the accuracy compared with the uniform mesh, Fig. 3.28, increased.
Regarding CPU time, Table 3.13, it was observed that an increase in the
number of sweeps in the matrix solver sometimes reduces the execution
time. In coarse meshes, the CPU time was almost the same for all splines.
The maximum time was around 5 min. with quintic.
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Mesh Sweeps×4
CPU time [s]

Cubic Quintic Septic

320×200

450 252
500 244 308 307
550 217 300 300
600 217 329 327
650 192
700 210

160×100

75 26
100 14.9 18.7 20.5
150 13.6 17.9 23
200 13.1 20.8 30
250 12.6 29.2
300 13.2

80×50

20 0.9 1.2
25 1
30 0.7 0.9 1
35 0.8 0.85
40 0.6 0.8 0.95
45 0.7
50 0.76 0.8

40×25

5 0.1 0.13 0.15
10 0.06 0.06 0.09
15 0.06 0.12
20 0.15

TABLE 3.13: Example Stommel’s ocean model, number of
sweeps and CPU time in seconds for some nonuniform

mesh sizes.
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(A) Mesh in the whole domain. (B) Zone 1: ∆x = 5 · 103 m.

(C) Zone 2: ∆xo = 5 · 103 m, ∆xf =
4 · 105 m.

FIGURE 3.29: Example Stommel’s ocean model, non-uniform
mesh.

3.7 In Closing

In this chapter, three approaches were devised for modelling steady-state
two-dimensional problems based on the one-dimensional exponential flux.

The first formulation consists of a dimensionality reduction transform-
ing a PDE to a first-order ODE via the stream-function coordinates. The
result yielded a two-point upwind stencil where the information is propa-
gated on streamlines. The counterpart is that it can only work for convection-
only problems and that the computation of iso-ψ and iso-ϕ lines may be-
come tough. An in-depth analysis may be of interest in order to know how
the accuracy is reduced when a tiny diffusion exists in the problem or the
streamline is too twisted. How vortex lines should be dealt with? How the
boundary condition is imposed in such a situation? Although its limita-
tions, the approach gave the best l2-norm for the 2D Burgers’ equation.

The other two formulations consist of a coordinate splitting (FaP) and an
axial splitting (REMEDIES). Both approaches solve two pseudo-1D trans-
port equations, but the first one sets the derivative of F in the other coor-
dinate as pseudo-source, whereas in the latter the source S is redistributed
in each axis by a β field. The new coefficients in the 2D approaches are
formed by the one-dimensional ones. So, they keep a compact computa-
tional molecule, a five-point stencil, and the same numerical features. In
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FIGURE 3.30: Example Stommel’s ocean model, the l2-norm of
the error for the Stommel’s ocean model in a ∆x = 1.6∆y
mesh. � and solid line, ENATE with REMEDIES using Cu-

bic Hermite. �, Quintic Hermite. N, Septic Hermite.

the numerical cases computed both FaP and REMEDIES give similar accu-
racy in some cases. In others REMEDIES performs better, for instance, a
sixth-order REMEDIES is more accurate than a sixth-order FaP. The major
improvement of REMEDIES is in the CPU time. REMEDIES is faster than
FaP due to the amount of operations per iteration and the number of iter-
ations to get convergence. The required CPU time of REMEDIES is of the
order of seconds or minutes, FaP requires minutes or hours. Also, we note
that REMEDIES takes more time as Péclet number gets smaller whereas
with FaP is the opposite.

An example was carried out with a non-uniform mesh. Although the
accuracy was slightly reduced in comparison to a uniform mesh, it gave
reasonable results for expansion ratios as large as ten.
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Chapter 4

Paradigm shift:
time-dependent ENATE

Goals:

• To carry over the ideas of steady two-dimensional modelling to solve
unsteady 1D problems

4.1 Unsteady flow problems

In the previous chapter, three approaches were developed for accurately
solving the steady 2D transport equation. However, flow variables may
vary temporarily due to the nature of the flow processes. Flows through
pipe bends [253], separated flow [193] or vortex shedding [98, 185, 208],
just to name a few, are intrinsically unsteady. In such a case, a temporal
term is added to the conservation law (3.10),

∂ρφ

∂t
+∇ · (ρuφ− Γ∇φ) = S,

which takes into account time-dependent phenomena in convection-diffusion
problems. This chapter deals with unsteady 1D transport equations, i.e.,

∂ρφ

∂t
+

∂

∂x

(
ρuφ− Γ

∂φ

∂x

)
= S, xB1 < x < xB2, t > 0, (4.1a)

φ(x, 0) = φ0(x), xB1 ≤ x ≤ xB2, (4.1b)
φ(xB1, t) = φB1(t), φ(xB2, t) = φB2(t), t ≥ 0. (4.1c)

The initial value is φ0(x) and φB1(t) and φB2(t) are the boundary values. A
Dirichlet BC is assumed but it can be of any other type. A possible way to
discretize this PDE may start by carrying out an integration over the control
volume [xW , xC ], ∫ xC

xW

∂ρφ

∂t
dx+ FxC −FxW = IS01|WC ,

After substituting the exact 1D flux, see Appendix A, one finally arrives at
a first order ODE

∆xWC
dρφx

dt
−AWφW +ACφC −AEφE = bC ,
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being ρφx the spatial average of ρφ in [xW , xC ], whereas Ai and bC are sum-
marized in Chapter 2. The average of a generic variable z in a coordinate ξ
is defined as

zξ :=
1

∆ξ

∫ ξj+∆ξ

ξj

z dξ.

The next step is to compute ρφ via any quadrature and discretize dρφ/dt. In
order to avoid some simplifications in the integral evaluation and the use of
time integration methods, one could solve the problem (4.1a) by using the
ideas put forward in previous chapter. Consider a new spatial dimension
η = ct where c is an arbitrary velocity, constant and positive. The unsteady
1D transport equation is rewritten as follows:

∂

∂η
(ρcφ) +

∂

∂x

(
ρuφ− Γ

∂φ

∂x

)
= S.

Looking at this equation, one may consider the temporal term akin to a
diffusionless transport phenomenon with ρc a convection-like parameter.
Then, its numerical solution can be computed using the same ideas ex-
plained in steady two-dimensional modelling: the cross-flux approach and
the source redistribution approach. The streamline approach will no longer
be considered.

4.1.1 A note and clarification

In this section parabolic problems in time as well as elliptical in the spatial
coordinate will be treated. Although the discrete equations move forward
in physical time, it is necessary to update the discrete sources containing
either the flux derivatives or the redistribution coefficient β(x, t) along the
whole time coordinate. Therefore, φ(x, t) at all discrete times and spatial
points must be computed and available.

4.2 Unsteady cross-flux

Let us start by defining the fluxes in (x, η)-domain as

F = (Fx,Fη)T :=

(
ρuφ− Γ

∂φ

∂x
, ρcφ

)T
.

Mimicking the numerical background on page 81, the decomposition gives
two differential equations:

∂

∂x

(
ρuφ− Γ

∂φ

∂x

)
= S − ∂Fη

∂η
=: Sx, (4.2a)

∂

∂η
(ρcφ) = S − ∂Fx

∂x
=: Sη. (4.2b)

The interval size ∆η is c∆t, ηn = nc∆t, and the notation used for any
variable z is z(ηn, xi) = zni or z(ηn, xC) = znC . The discretization of the first
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equation is the usual one,

−AnWφnW +AnxCφ
n
C −AnEφnE = bnxC ,

with

bnxC = ISx 01|nWC +

(
ISxGEx 01

IGEx 01

∣∣∣∣n
CE

− ISxGEx 01

IGEx 01

∣∣∣∣n
WC

)
,

at a time level n. On the other hand, the second equation is discretized by
integrating in time from ηn−1 to ηn at a constant x-coordinate, xC , i.e.

(ρc)nCφ
n
C − (ρc)n−1

C φn−1
C = bnη C ,

with

bnη C =

∫ ηn

ηn−1

Sη C dη,

where Sη C = Sη(η, xC). Finally, the two discrete equations can be added
forming a four-point stencil, see Figure 4.1. Defining the vectors,

ρρρcn := ((ρc)nB1 , . . . , (ρc)
n
C , . . . , (ρc)

n
B2)T ,

φφφn := (φnB1, . . . , φ
n
W , φ

n
C , φ

n
E , . . . , φ

n
B2)T ,

bn :=
(
bnη B1 + bnxB1, . . . , b

n
η C + bnxC , . . . , b

n
η B2 + bnxB2

)T
,

and the matrices,

An := tridiag(−AnW , AnxC ,−AnE),

Cn := diag(ρρρcn),

Pn := Cn + An,

the system,

Pnφφφn = Cn−1φφφn−1 + bn, n ≥ 1,

is made up to get the numerical solution of the problem (4.1a). For n = 1,
φφφ0 = φ0(x) where x = (xB1, . . . , xC , . . . , xB2)T . On the other hand, Pn is
still tridiagonal so TDMA may be used. The velocity in the transformed
temporal term will always be taken as 1 m/s but it will be kept in the for-
mulae out of dimensional consistency.

The procedure to compute bnxC was explained on page 86 and bnη C is
computed via CCS+CIR, page 86 and 97. Regarding stability, the previous
discrete equation is implicit so a diagonally dominant Pn matrix should be
guaranteed to have a bounded solution.
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FIGURE 4.1: Space-time discrete domain, stencil in red
lines. � Boundary and initial values, • Inner values

4.3 Unsteady redistribution coefficient

For the second approach developed in the previous chapter, the calculations
follow the same path but now with different expressions. At a given com-
putational iteration denoted by the superscript ?, the pseudo-ODEs that
rule φ?1 and φ?2 are

∂

∂x

(
ρuφ?1 − Γ

∂φ?1
∂x

)
=

1

2
S + β? =: Sx,

∂

∂η
(ρcφ?2) =

1

2
S − β? =: Sη.

Their numerical solutions may be achieved by taking the same discrete
equations from the previous section. In order to get φ, φ?2 must be updated
by its increment ∆φ?2. With a bit of algebra and repeating the same steps
as in page 92, assuming Γ is independent of φ, the discrete equation for the
increment writes in matrix form

P̃n∆φ?2∆φ?2∆φ?2
n = Cn−1∆φ?2∆φ?2∆φ?2

n−1 + raA
n (φ?1φ

?
1φ
?
1
n −φ?2φ?2φ?2n) + v??? nφφφ , n ≥ 1,

where the principal matrix is defined as P̃n := Cn + raA
n, the vectors as

φ?1φ
?
1φ
?
1
n := (φnB1, . . . , φ

? n
1W , φ

? n
1C , φ

? n
1E , . . . , φ

n
B2)T ,

φ?2φ
?
2φ
?
2
n := (φnB1, . . . , φ

? n
2W , φ

? n
2C , φ

? n
2E , . . . , φ

n
B2)T ,

∆φ?2∆φ?2∆φ?2
n := (0, . . . ,∆φ? n2W ,∆φ

? n
2C ,∆φ

? n
2E , . . . , 0)T ,

the aspect ratio as ra := ∆ηn−1n/max{∆xWC ,∆xCE} and v??? nφφφ is related to
the possible source dependence on the solution. The initial value is ∆φ?2∆φ?2∆φ?2

0 =
0. Finally, β? nC is updated with its increment given by

∆β?∆β?∆β?n =
Cn−1∆φ?2∆φ?2∆φ?2

n−1 −Cn∆φ?2∆φ?2∆φ?2
n + v??? nβββ

∆
,
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being ∆ := ∆ηn−1n the step size, the vector ∆β?∆β?∆β?n := (0, . . . ,∆β? nC , . . . , 0)T

and v??? nβββ silimar to v??? nφφφ . Either in the discrete equations for ∆φ2 or ∆β, if
the source S is independent of the solution, v??? nφφφ = v??? nβββ = 0. Otherwise,

v??? nφφφ =
1

2

[
diag(∆x∆x∆x)∆∆∆SSS??? n222

x
+ diag(∆η∆η∆η)∆∆∆SSS??? n222

η
]
,

v??? nβββ =
1

2
diag(∆η∆η∆η)∆∆∆SSS??? n222

η
.

where ∆x∆x∆x and ∆η∆η∆η are vectors containing the interval lengths in each in-
terval of the domain to take into account a nonuniform mesh. ∆∆∆SSS??? n222

x
and

∆∆∆SSS??? n222

η
, are average integrals over each interval in x- and η-direction com-

puting with CIR. Again, being P̃n diagonally dominant is sufficient condi-
tion for stability in ∆φ2.

4.4 Numerical Examples

Three numerical tests to assess high resolution in transient problems are
provided. All of them have an exact solution so the l2-norm is calculated
in the space-time domain as well as the l1-norm at a given time for the last
one. The definitions of these norms are given on page 58 and 99.

4.4.1 Unsteady homogeneous one-dimensional convection-diffusion
problem

The equation solved is an unsteady transport equation in a domain of unit
length for a time t ∈ (0, T ], i.e.

∂ρφ

∂t
+

∂

∂x

(
ρuφ− Γ

∂φ

∂x

)
= 0, (x, t) ∈ (0, 1)× (0, T ],

φ(0, t) = 0, t ∈ (0, T ],

φ(x, 0) = exp(5x) sin(πx), x ∈ (0, 1).

with ρ = 1, u = 0.1, T = 1 and Γ = 0.01. The solution is φ(x, t) = exp(5x−
t(0, 01π2 + 0, 25)) sin(πx) and plotted in Figure 4.2.
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(A) Profile solution. (B) Space-time domain.

FIGURE 4.2: Example Unsteady homogeneous one-dimensional
convection-diffusion problem, exact solution.
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As explained earlier, the case has been run with both approaches, FaP
and REMEDIES, as a two-dimensional convection diffusion equation with
a pseudo-spatial coordinate η = ct, c = 1. A uniform mesh is employed in
both coordinates with ∆η = ∆x.
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FIGURE 4.3: Example Unsteady homogeneous one-dimensional
convection-diffusion problem, the l2-norm of the error for
ENATE comparing with a traditional numerical scheme.
Solid lines are for REMEDIES and dashed lines are for FaP.
• Crank-Nicolson � Cubic Hermite. � Quintic Hermite. N

Septic Hermite.

In Figure 4.3 norms of FaP and REMEDIES are compared against each
other as well as with a traditional scheme like Crank-Nicolson. All schemes
conform to their theoretical order of accuracy: Crank-Nicolson is second
order, and all mth-order Hermite polynomials are of (m + 1)th order of
accuracy. The CPU time is always of the order of one second except for the
finest meshes. Cubic-REMEDIES with a mesh of 500×500 takes 40 seconds,
and Quintic-REMEDIES for a mesh of 200×200, 26.4 seconds. Only a sweep
is required to estimate ∆φ2 which makes the difference in CPU time for both
approaches more noticeable, always in favour of REMEDIES.

Cubic Hermite provides the same norms for both approaches. Quintic-
REMEDIES is roughly two orders of magnitude better than Quintic-FaP,
both being sixth-order in most part of the graph. Roundoff errors build up
for the finest mesh with Quintic-REMEDIES, and as a consequence there
is barely any difference in the l2-norm with the next coarser grid. Septic-
REMEDIES is between eighth- and ninth-order.

As mentioned above it is not necessary to perform more than one sweep
in the estimation of ∆φ2. It seems that having one time coordinate makes
the domain strongly connected through all points along this coordinate and
allows a quick estimate of ∆φ2. In the case of Poisson equation the connec-
tion is weaker and it takes more sweeps to get a good value. This is only
due to our strategy of sweeping the 2D domain line-by-line, had we used
another procedure to invert the coefficient matrix the conclusions about the
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computer time associated to various Péclet numbers would have been dif-
ferent.

CPU time for FaP is much longer for all runs. To give an idea, for cubic
Hermite and the 500×500 mesh, FaP takes about 1 hour of CPU time, two
orders of magnitude more than REMEDIES.

4.4.2 Unsteady inhomogeneous one-dimensional convection prob-
lem

The equation solved is an unsteady inhomogeneous transport equation in
a domain of unit length for a time t ∈ (0, T ], i.e.

∂ρφ

∂t
+

∂

∂x
(ρuφ) = −φ

τ
, (x, t) ∈ (0, 1)× (0, T ],

φ(0, t) = exp(−t/τ) sin(−πut), t ∈ (0, T ],

φ(x, 0) = sin(πx), x ∈ (0, 1).

with ρ = 1 and T = 1. The exact solution is φ(x, t) = exp(−t/τ) sin(π(x −
ut)) and plotted in Figure 4.11. Parameter τ is a characteristic time of decay.
Four cases were studied, two values of τ ∈ {0.05, 0.5}, corresponding to a
quick decay and a relatively mild one, combined with two values of veloc-
ity, u ∈ {1, 10}. This hyperbolic equation with a relaxation source term that
is relatively stiff [245] mimics the Boltzmann equation in the absence of the
local equilibrium distribution [13]. Boltzmann equation is currently one of
the cutting edge technique to solve Navier-Stokes equations [42, 80, 135,
194].

The source depends linearly on the solution and has to be updated in
every iteration. Remind that if Péclet goes to infinity the upwind source in-
tegral is the only contribution of the right-hand side. In FaP this integral is
calculated with CIR [118]. With REMEDIES, Hermite polynomial integra-
tion is used.

In our implementation the equation for ∆φ?2 is employed to update the
solution. ∆φ?1 in the source is considered to be equal to ∆φ?2 during the
whole updating process. The reason is that explained on page 96.

In Figure 4.4 the convergence pattern of two cases of cubic Hermite, one
with no source in the RHS of ∆φ?2 equation and the other with it, is shown.
Both runs start from scratch with a mesh of 500×500. The main difference
between both approaches lies in the initial increase of the norm during the
first iterations. When including the extra source this increase is much less
pronounced what makes the convergence quicker in the initial stages. In
both runs there is a noticeable change of slope when the norm reaches the
region of low values. This is related to the relative importance of the ne-
glected ∆β? terms compared to the considered ones. When the neglected
integrals are much less than the terms kept in the RHS associated to φ?1−φ?2
the convergence is very quick, whereas it slows down considerably if they
are of the same order. For a large interval of the convergence curve the two
curves lie on top of each other. A criterion to decide whether including or
not the ∆φ?2 source can be the time taken for both approaches to reach a
certain l2-norm, for instance 10−6. Well, the run with no source takes 23 s
and that with source 30 s. At least in this case it is not worth to include it.
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It may well be that in other computational tests the inclusion of this source
makes a favourable difference.
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FIGURE 4.4: Example Unsteady inhomogeneous one-
dimensional convection problem, the l2-norm of the error
versus number of iterations in REMEDIES for a 500×500
mesh. Red line with ∆φ?2 source. Blue line without ∆φ2

source
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In this test problem the convergence pattern has some ups and downs
for some combinations of meshes and Hermite polynomials. In Figure
4.5 the l2-norm is plotted against the number of iterations for two meshes
100×100 and 200×200 with quintic Hermite. This hilly behaviour always
appears for quintic and septic Hermite polynomials and relatively fine grids.
Moreover, in the downward part of the convergence hill the curve is mildly
oscillatory that may suggest that the process of convergence is more unsta-
ble in these cases. For very coarse grids, 10×10 and 20×20, there is a slight
rise in the norm during several iterations that can barely be noticed.

In Figures 4.6 and 4.7 the l2-norm is depicted for τ = 0.05 and the two
velocity cases, u = 1 and u = 10, with FaP and REMEDIES. Cubic Hermite
behaves as a fourth order scheme. Quintic Hermite with FaP is sixth order
but with REMEDIES is seventh-order for some intervals. Septic Hermite
behaviour is pretty close to that of Quintic Hermite.
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FIGURE 4.6: Example Unsteady inhomogeneous one-
dimensional convection problem, the l2-norm of the error for
τ = 0.05 and u = 1. � Cubic Hermite. � Quintic Hermite.
N Septic Hermite. Solid line, REMEDIES. Dashed line, FaP.

The two cases for τ = 0.5 are shown in figures 4.8 and 4.9. No significant
differences with the previous case are seen.

In the four cases computed Cubic Hermite with FaP is better than REME-
DIES, especially for the case u = 10, τ = 0.5, where a difference of three
orders of magnitude in the l2-norm is observed. The reason for such a huge
gap is still unknown. The difference is also present in the rest of cases, yet
in milder form.
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FIGURE 4.7: Example Unsteady inhomogeneous one-
dimensional convection problem, the l2-norm of the error for
τ = 0.05 and u = 10. � Cubic Hermite. � Quintic Hermite.
N Septic Hermite. Solid line, REMEDIES. Dashed line, FaP.
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FIGURE 4.8: Example Unsteady inhomogeneous one-
dimensional convection problem, the l2-norm of the error for
τ = 0.5 and u = 1. � Cubic Hermite. � Quintic Hermite. N

Septic Hermite. Solid line, REMEDIES. Dashed line, FaP.
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FIGURE 4.9: Example Unsteady inhomogeneous one-
dimensional convection problem, the l2-norm of the error for
τ = 0.5 and u = 10. � Cubic Hermite. � Quintic Hermite.
N Septic Hermite. Solid line, REMEDIES. Dashed line, FaP.

4.4.3 Wave travelling problem

The last test case is one with a bit more complicated source term.
∂φ

∂t
+

∂

∂x
(uφ) = −1

τ
φ(1− φ), (x, t) ∈ (0, 1)× (0, 0.5],

φ(0, t) = φ0(t) = 0.8 + 0.2 sin(2πt), t ∈ (0, 0.5],

φ(x, 0) = φ0(x) = 0.8, x ∈ (0, 1).

As in the previous example, τ is a characteristic time of decay. The solution
is

φ(x, t) =


[
1 +

(
1

φ0 (t− x/u)
− 1

)
exp

( x
uτ

)]−1

for x < ut[
1 +

(
1

φ0 (x− ut) − 1

)
exp

(
t

τ

)]−1

for x ≥ ut

This example was also chosen by ten Thije Boonkkamp and Anthonissen to
assess the FV-CF scheme [209]. The solution of this case is only C0 across the
characteristic line x = ut. Both the fluxes and β are discontinuous at this
line what makes this a challenging test case for our approach. Additionally,
it was shown in Llorente et al. [120] that FV-CF and ENATE were almost
identical in 1D but differed considerably in 2D, and this case is a good test
to assess the accuracy of our approach in comparison to FV-CF.

The exact solution decays in time except along the characteristic line
that starts at x = 0, t = 1/4 along which φ is one and the source zero. This
lack of decay initially transforms the sine function into a spiky function that
eventually converts into a function of value one at points of the straight line
x = u(t− 1/4) and measure zero in the x-domain.
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(A) Profile solution. (B) Space-time domain.
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FIGURE 4.10: Example Unsteady inhomogeneous one-
dimensional convection problem, exact solution with u = 1.

(A) and (B) with τ = 0.5. (C) and (D) with τ = 0.05.

The assessment of both approaches will be performed in the x-domain
for t = 0.5. No extra source due to the solution-dependent term has been
included in the ∆φ2 equation. In Figure 4.12 comparative results with a
very coarse grid are depicted. Contrary to the Euler method, both ENATE
approaches follow the spiky part of the solution but with significant over-
and under-shoots, especially REMEDIES. With such a coarse grid the re-
sults are not very good although they are qualitatively much better than
those with Euler explicit.

In Figure 4.13 the comparison between FV-CF and ENATE is presented.
The values of the parameters employed are τ = 0.04 and u = 0.95. The
l1-norm of the error at t = 0.5 s was computed. As shown, FV-CF is second-
order and the two ENATE versions, FaP and REMEDIES, are fourth-order.
The main difference between both approaches is the source treatment. Split-
ting the equation (4.1a) into two quasi-one-dimensional equations seems to
work fine either with FaP or REMEDIES because both approaches use high-
order quadratures. In the case of FV-CF, ∂φ/∂t is only included as pseudo-
source. Then the scheme produces a first-order ODE system solved by a
second-order Crank–Nicolson method, see [209] for details.

The results presented with ENATE-REMEDIES have been carried out
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(A) Profile solution. (B) Space-time domain.
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FIGURE 4.11: Example Unsteady inhomogeneous one-
dimensional convection problem, exact solution with u = 10.

(A) and (B) with τ = 0.5. (C) and (D) with τ = 0.05.
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FIGURE 4.12: Example Wave travelling problem, exact solu-
tion at t = 0.5 s (black line). Numerical solutions in a mesh
with ∆x = 0.0625 m and time step ∆t = 0.0625 s: Explicit
Euler method (blue dots), ENATE with FaP (red diamonds)

and ENATE with REMEDIES (green diamonds).

with Cubic Hermite for the integrals, but FaP used CIR. Compact deriva-
tives of fourth-order are used to evaluate the first derivative of the appro-
priate variables. Despite the discontinuities of the latter, fourth-order com-
pact derivative is still able to provide a reasonably good estimation of the
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FIGURE 4.13: Example Wave travelling problem, the l1-norm
of the error comparing two exponential schemes. • FV-CF
scheme. � ENATE. Solid line, REMEDIES. Dashed line, FaP.

first derivative. In fact, fourth-order CCS even provides usable values of
second and third derivatives for Quintic and Septic Hermite. However, the
use of compact derivatives of order higher than four caused a blowup of
the calculations. When a combination of Hermite polynomials and compact
derivatives of different orders is used, the order of accuracy of the results is
the lower of the two, for example, Quintic Hermite (sixth-order) and fourth-
order compact derivatives gives a fourth-order accuracy overall. There are
huge differences in the CPU time. FaP took 50 min to reach the solution at
t = 0.5 s with 500 nodes in the x coordinate whereas REMEDIES employed
around 4 min.

4.5 In Closing

Finally, in this chapter the developed numerical techniques are focussed on
solving unsteady problems. The temporal term is resolved as a convection-
only problem and, therefore, the numerical approaches in the previous chap-
ter are also applicable.

The numerical examples showed an improvement over basic discretiza-
tion techniques such as Crank-Nicolson or Euler explicit. In fact, in the last
one Euler was unable to catch the wave. A surprising outcome came up
for the reaction problems. The accuracy of REMEDIES dropped two orders
of magnitude compared to FaP in the worst case. Even so, the fast con-
vergence of REMEDIES makes this approach a good choice for temporal
phenomena since only requires just one sweep in the ∆φ2 equation to get
the solution in the convergence process.

Regarding stability, both FaP and REMEDIES are implicit methods which
are unconditionally stable ensuring diagonally-dominant matrix for Pn in
FaP and P̃n in REMEDIES.
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Chapter 5

Conclusions and future
research

ENATE is capable of getting the exact solution of a steady one-dimensional
transport equation. In order to derive a discrete equation associated to a
node in a split-up domain the continuity of the diffusive flux is enforced
in the two adjacent control volumes that share the node. The result is a
three-point stencil where the accuracy of the scheme depends on how well
or poorly the integrals in the coefficients and discrete source are computed.
Therefore, high-order results can be achieved without modifying the com-
putational molecule. The quadrature used to calculate the integrals was
Hermite polynomials. Also, it is proved that the 1D exponential flux of
ENATE preserves positiveness and can interpolate smoothly from strong
convection to dominant diffusion with the same formulation.

In the main part of this work, the exponential formulation of ENATE
is extended to multidimensional problems, in particular, steady-state two-
dimensional and unsteady-state one-dimensional. The formulation uses a
short computational molecule while keeping a similar accuracy to the one-
dimensional approach. One initial approach consisted in a splitting of the
2D transport equation into two pseudo-1D transport equations. In each
direction the influence of the other direction comes in the source by the term
S ± ∂F{y,x}/∂{y, x}. This contribution implies that ENATE is conservative
over each one-dimensional control volume along both coordinates of the
problem. The computation of these integrals requires an evaluation of the
Fs derivatives via central compact schemes. Other integrals such as the
average of Péclet and the integral of the source are computed via compact
integration rules.

This accurate evaluation of the new pseudo-sources brings high-order
resolution, as shown in the Numerical Examples section, but increases a great
deal the CPU time due to the required number of operations per iteration.
This issue gave a chance for seeking a remedy for the excessive CPU time.
The second approach splits the source by an unknown field that is solved
during the iterative process. Along the iterative process the numerical so-
lution in each axis is different, so a correction equation has to be derived
that forces the two solutions to be equal. Converged results were obtained
with this approach in a much shorter CPU time. Moreover, as the number
of operations is reduced the accuracy is often increased with respect to the
first one.

Finally, we carry on extending the scope of our numerical scheme by
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solving time-dependent problems. Instead of a classic methodology to re-
duce the PDE to a first-order ODE in time and solve it by a time integra-
tion method, it was decided to use what was previously learnt in two-
dimensional problems to derive a practical implementation that gave satis-
factory results.

It can be concluded that ENATE forms a robust and high-order multi-
dimensional exponential scheme for convection-diffusion problems. How-
ever, additional work should go on to tackle realistic situations. Different
items of ongoing work are sorted next.

5.1 High-order novel quadratures

One main aspect that makes ENATE a high-order exponential scheme is the
quadratures employed. The disadvantage is that most of them, principally
Hermite splines, need the computation of derivatives. Future research that
ENATE should follow for it to be an efficient scheme is the derivation of
novel high-order quadratures that only use the information at grid points,
e.g. φ values. Section 3.5 on page 97 gives details of one of them: CIR. It
can get the same accuracy as Hermite splines but it is derivative-free. This
is achieved by the derivation of linear combinations of the integrals in each
interval. Thus, to calculate∫ xC

xW

∂Fy
∂y

dx and
∫ yC

yS

∂Fx
∂x

dy,

instead of computing two, or more, compact derivatives and then CIR, we
might use a 2D Taylor series and link those integrals in a two-dimensional
stencil with φ. Some research in this line has started.

◦
◦

◦

◦fk−1
E (x)

fkE (x)

fk+1
E (x)

xWW xW xC xE

FIGURE 5.1: Integrand of ISGE01, fE(x̂) = IS0x̂/Γ̂E for
each interval, in the discrete domain.

Also, we might seek new quadratures for integrals such as ISGE. The
integrals that contain the exponential factor E are piecewise continuous
functions and, therefore, discontinuous at grid points, see Fig. 5.1. Hermite
can deal with this type of integrals because only uses the information of the
nodes of an interval, but CIR grabs adjacent information. One demand for
this quadrature is that the integrand be continuous. A discontinuous CIR
was derived that takes into account the jump in each grid points that the
integrand produces, e.g

1

10

∫ xW

xWW

fk−1
E dx+

∫ xC

xW

fkE dx+
1

10

∫ xE

xC

fk+1
E dx ≈ 3∆x

5

[
f̃EW + f̃EC

]
,

where f̃EW = (fk−1
EW + 2fkEW )/3 and f̃EC = (2fkEC + fk+1

EC )/3. The quadrature
is built by expanding in Taylor series the different functions in a k-interval
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[xW , xC ], linking the functions at nodes by the jumps and expanding these
jumps in Taylor series as well. However, the resolution was poor. A reason
for that result is that it was assumed that the derivatives can be obtained by
the Taylor expansion of fk+m

E and this is not the case, that is, every deriva-
tive of fk+m

E must also be expanded in Taylor series. More research is still
needed in this matter.

5.2 Reaction problems

It was found in the last examples of Chapter 4 that REMEDIES lost accuracy
for reaction problems where the source depends on the solution. There
could be different causes, either the treatment of ∆φ?2 and ∆β? via ∆S?2

x and
∆S?2

y, or the resolution of the transport equations in each axis. In both cases
they are based on an exponential scheme that does not take into account
that the source depends linearly on the transported variable. One way to
improve it would be to look for the exact solution of the PDE

d
dx

(
ρuφ− Γ

dφ
dx

)
= S + Sφφ,

which represents better the nature of the problem and where neither S nor
Sφ depend on φ. This type of equations can be found in combustion theory,
for instance. Even if Sφ constant, its resolution is not straightforward. Un-
der the same methodology of Chapter 2, the dimensionless equation would
be

d
dx̂

(
ρ̂uφ̂− Γ̂

P0

dφ̂
dx̂

)
=

(S + Sφφlb) ∆x

(ρu)lb ∆φ
+
Sφ∆x

(ρu)lb
φ̂− φlb

∆φ

dρ̂u
dx̂

.

The complete solution could be written as φ̂(x̂) = F (x̂) + R(x̂) + φ
N

(x̂),
assuming F (1) = 0. The solution φ

N
(x̂) and F (x̂) are the homogeneous

and the particular solution with S + Sφφlb, respectively, and their formulae
are written on page 21 and 26. R(x̂) with R(0) = R(1) = 0 is the solution
of a transport equation with the reactive source, Sφ∆xφ̂/ (ρu)lb. Integrating
this equation from 0 to x̂ yields

dr
dx̂

+ Mr = s, r(0) = 0,

where

r :=

(∫ x̂

0
SφRdx̂′, R

)T
, M :=

 0 −Sφ
∆x2

Γ
−P

 ,

s :=

(
0,−∆x2

Γ

∫ x̂

0
Sφ

[
F + φ

N
]

dx̂′
)T

.

The resulting is a first-order ODE system whose solution method is well-
known. After considerable algebraic manipulation, it is likely that we may
achieve an exponential scheme with a three-point stencil where the coef-
ficients are modified by some integrals of Sφ that vanish in the limit case
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of Sφ → 0, recovering the original exponential scheme. The same strategy
was carried out in [211] but for constant coefficients. Additionally, it will be
needed to check if the quadratures described in this thesis can still be used
for these new integrals and yet give high-accuracy results.

5.3 Complex geometry

Cartesian mesh always offers the best results but is inefficient for complex
geometry or flow features where some node clustering is required. ENATE
can be used with nonuniform meshes where the clustering is done across
the domain, although there might be some interest in performing only a lo-
cal refinement in a certain area. A mesh similar to that in Figure 5.2 may be
present. In such a case, we need to transform the cartesian transport equa-
tion to a (ξ, η) transport equation. Under this transformation, the Jacobian,

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
,

is clearly discontinuous making the resulting equation difficult to handle
numerically. In fact, we have four values of J at the same point depending
on the interval. A way to remove this problem is the use of the transport
equation locally rather than globally. To decompose and force the continu-
ity of the flux around a central point, and apply REMEDIES since it does
not take into account the normal flux derivative in the source as FaP. Even
so, it is not clear how to evaluate integrals and derivatives, as they are dis-
continuous along the iso-ξ and -η lines.
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FIGURE 5.2: Random mesh. Black circle, inner points;
Black square, boundary points. Red lines, computational

molecule. Blue lines, coordinate basis.

For complex geometries with obstacles two methodologies can be fol-
lowed. One way is the use of unstructured mesh as it offers the best adapt-
ability but suffers from the same problems as the random mesh. On the
other hand, an immersed boundary method can be used. This method re-
quires to localize a Lagrangian point of an internal body or complex bound-
ary what is a bit challenging for programming. There are two issues: 1) it
is not clear how to proceed with REMEDIES to calculate β at nodes on the
internal boundaries, 2) how to link an internal boundary node with a mesh
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node when the internal body or complex boundary does not contain a mesh
node. Some progress is being made right now in this issue.

5.4 Navier-Stokes simulations

One application that we may not be overlooked is the discretization of the
Navier-Stokes (NS) equations. According to the previous numerical exam-
ples, REMEDIES might work properly with this set of nonlinear equations
with a reasonable computational time. The convective terms in the momen-
tum equation would be frozen similar to that on page 54.

One important aspect of NS is the Velocity-Pressure coupling. A SIM-
PLE technique for ENATE was derived in order to calculate a pressure-
correction equation, as well as the velocity corrections. However, this idea
of coupling was rejected because some source integrals had to be dropped
out to get adequate discrete equations what would impair the accuracy.
Another well-known coupling technique is the pressure Poisson equation
obtained form the NS equations,

∂2p

∂x2
+
∂2p

∂y2
= −ρ

[(
∂u

∂x

)2

+ 2
∂u

∂x

∂v

∂y
+

(
∂v

∂y

)2
]

=: −Sp,

derived by taking the divergence of the momentum equation. On page 109
a Poisson’s equation was computed, so similar results would be expected.
As it is pointed out in this chapter, the ENATE scheme must progress to
new quadratures, free of the derivative of the integrand. For the Poisson’s
equation, ENATE needs to compute the integral∫ xC

xW

∫ x

xW

f dx′dx,

in which f can be either Sp or the distribution field βp for REMEDIES. One
quadrature that could meet our demands, and similar to CIR, could be

1

10

∫ xW

xWW

∫ x

xWW

f dx′dx+

∫ xC

xW

∫ x

xW

f dx′dx+
1

10

∫ xE

xC

∫ x

xC

f dx′dx ≈ ∆x2

5
[2fW + fC ]

which is order 5. It was checked that this quadrature works fine for a
smooth function, e.g f(x) = sinx. So, its implementation in Poisson’s
equation is in progress. Finally, the ENATE scheme applied to the NS equa-
tions is associated to a collocated arrangement of the variables on the grid,
but also a staggered arrangement, see [103], is being considered due to its
strong velocity-pressure coupling.
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Capítulo 5

Conclusiones y trabajo futuro

ENATE es capaz de obtener la solución exacta de una ecuación de trans-
porte unidimensional en estado estacionario. Para deducir una ecuación
discreta asociada a un nodo en un dominio dividido se impone la con-
tinuidad del flujo difusivo en dos volúmenes de control adyacentes que
comparten un mismo nodo. El resultado es una plantilla de tres puntos
donde la precisión del esquema depende de como de bien o mal se cal-
culan las integrales en los coeficientes y la fuente discreta. Por lo tanto,
se pueden lograr resultados de alto orden sin modificar dicha molécula
computacional. La cuadratura utilizada para calcular las integrales son
polinomios de Hermite. Además, se ha comprobado que el flujo exponen-
cial 1D de ENATE conserva la positividad y puede interpolar suavemente
desde una convección fuerte hasta una difusión dominante con la misma
formulación.

En lo referente a la parte principal de este trabajo, se extendió la formu-
lación exponencial de ENATE a problemas multidimensionales, en particu-
lar, bidimensionales estacionarios y unidimensionales transitorios. Esta for-
mulación utiliza una molécula computacional corta manteniendo una pre-
cisión similar al esquema unidimensional. Un enfoque inicial consistió en
la división de la ecuación de transporte 2D en dos ecuaciones de transporte
pseudo-1D. En cada dirección coordenada la influencia de la otra dirección
viene dada por el término S ± ∂F{y,x}/∂{y, x}. Esta contribución implica
que ENATE es conservativa sobre cada volumen de control unidimensional
en ambas coordenadas del problema. El cálculo de estas integrales requiere
una evaluación de las derivadas de F a través de un esquema compacto
central. Otras integrales como el Péclet promedio y la integral de la fuente
se calculan mediante las reglas de la integración compacta.

Esta evaluación precisa de las nuevas pseudo-fuentes proporciona una
resolución de alto orden, como se muestra en la sección Numerical Exam-
ples, pero aumenta mucho el tiempo de CPU debido al alto número de op-
eraciones por iteración. Este problema brindó la oportunidad de buscar
una solución para el excesivo tiempo de CPU. El segundo enfoque divide
la fuente en un campo desconocido que se resuelve durante el proceso iter-
ativo. A lo largo del proceso iterativo, la solución numérica en cada eje es
diferente, por lo que se debe deducir una ecuación correctora que obligue a
las dos soluciones a ser iguales. Los resultados convergidos se obtuvieron
con este enfoque en un tiempo de CPU mucho más corto. Además, a me-
dida que se reduce el número de operaciones, la precisión aumenta con
respecto a la primera.

Finalmente, seguimos ampliando el alcance de nuestro esquema numérico
resolviendo problemas dependientes del tiempo. En lugar de una metodología
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clásica para reducir una PDE a un ODE de primer orden en tiempo y re-
solverlo mediante un método de integración temporal, se decidió usar lo
que se aprendió previamente en problemas bidimensionales para deducir
una implementación práctica que dio resultados satisfactorios.

Se puede concluir que ENATE es un esquema exponencial multidimen-
sional robusto y de alto orden para problemas de convección-difusión. Sin
embargo, se debe continuar trabajando para abordar situaciones realistas.
A continuación se ordenan diferentes elementos de trabajo en curso.

5.1 Novedosas cuadraturas de alto orden

Un aspecto principal que convierte a ENATE en un esquema exponencial de
alto orden son las cuadraturas empleadas. La desventaja es que la mayoría
de ellas, principalmente los polinomios de Hermite, necesitan el cálculo de
derivadas. Una investigación futura que ENATE debería seguir para que
sea un esquema eficiente es la deducción de nuevas cuadraturas de alto
orden que solo usen la información en puntos de la malla, es decir, solo
valores de φ. La Sección 3.5 en la página 97 da detalles de uno de ellos: CIR.
Esta cuadratura puede obtener la misma precisión que Hermite, pero sin
utilizar las derivadas. Esto se logra mediante un empleo de combinaciones
lineales de las integrales en cada intervalo. Por lo tanto, para calcular∫ xC

xW

∂Fy
∂y

dx y
∫ yC

yS

∂Fx
∂x

dy,

en lugar de calcular dos o más derivadas compactas y luego CIR, podríamos
usar una serie de Taylor 2D y vincular estas integrales sobre una plantilla
bidimensional de φs. Se han iniciado algunas investigaciones en esta línea.

◦
◦

◦

◦fk−1
E (x)

fkE (x)

fk+1
E (x)

xWW xW xC xE

FIGURA 5.1: Integrando de ISGE01, fE(x̂) = IS0x̂/Γ̂E para
un intervalo de referencia, en el dominio discreto.

Además, se podrían buscar nuevas cuadraturas para integrales como
ISGE. Las integrales que contienen el factor exponencial E son funciones
continuas a trozos y, por lo tanto, discontinuas en los puntos de la malla,
ver Fig. 5.1. Hermite puede manejar este tipo de integrales porque solo usa
la información de los nodos de un intervalo, pero CIR toma información
adyacente. Un requisito para la cuadratura CIR es que el integrando sea
continuo. Se obtuvo un CIR discontinuo que tiene en cuenta el salto que
produce el integrando en cada punto de la malla, p.ej.

1

10

∫ xW

xWW

fk−1
E dx+

∫ xC

xW

fkE dx+
1

10

∫ xE

xC

fk+1
E dx ≈ 3∆x

5

[
f̃EW + f̃EC

]
,

donde f̃EW = (fk−1
EW +2fkEW )/3 y f̃EC = (2fkEC+fk+1

EC )/3. La cuadratura ante-
rior se construye expandiendo en serie de Taylor las diferentes funciones en
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un intervalo k [xw, xC ], vinculando las funciones en los nodos por los saltos
y expandiendo también estos saltos en la serie Taylor. Sin embargo, el re-
sultado fue malo. Una razón para este resultado es que se asumió que las
derivadas podían ser obtenidas mediante la expansión de Taylor de fk+m

E y
no es el caso, es decir, cada derivada de fk+m

E también debe expandirse en
serie de Taylor. Todavía se necesita más investigación en este asunto.

5.2 Problemas de reacción

En los últimos ejemplos del Capítulo 4 se encontró que REMEDIES perdió
precisión para problemas de reacción donde la fuente depende de la solu-
ción. Podría haber diferentes causas, ya sea el tratamiento de ∆φ?2 y ∆β? a
través de ∆S?2

x y ∆S?2
y, o la resolución de las ecuaciones de transporte en

cada eje. En ambos casos las ecuaciones se basan en un esquema exponen-
cial que no tiene en cuenta que la fuente depende linealmente de la variable
de transporte. Una forma de mejorarlo sería buscar la solución exacta a la
PDE

d
dx

(
ρuφ− Γ

dφ
dx

)
= S + Sφφ,

que representa mejor la naturaleza del problema y donde ni S ni Sφ de-
penden de φ. Este tipo de ecuaciones se pueden encontrar en la teoría de
la combustión, por ejemplo. Incluso con Sφ constante, su resolución no es
sencilla. Bajo la misma metodología que en el Capítulo 2, la ecuación adi-
mensional sería

d
dx̂

(
ρ̂uφ̂− Γ̂

P0

dφ̂
dx̂

)
=

(S + Sφφlb) ∆x

(ρu)lb ∆φ
+
Sφ∆x

(ρu)lb
φ̂− φlb

∆φ

dρ̂u
dx̂

.

La solución completa podría escribirse como φ̂(x̂) = F (x̂) + R(x̂) + φ
N

(x̂),
suponiendo que F (1) = 0. La solución φ

N
(x̂) y F (x̂) son la solución ho-

mogénea y particular con S + Sφφlb, respectivamente, y sus fórmulas están
escritas en la página 21 y 26. R(x̂) con R(0) = R(1) = 0 es la solución de
una ecuación de transporte con la fuente reactiva, Sφ∆xφ̂/ (ρu)lb. La inte-
gración de esta ecuación de 0 a x̂ produce

dr
dx̂

+ Mr = s, r(0) = 0,

donde

r :=

(∫ x̂

0
SφRdx̂′, R

)T
, M :=

 0 −Sφ
∆x2

Γ
−P

 ,

s :=

(
0,−∆x2

Γ

∫ x̂

0
Sφ

[
F + φ

N
]

dx̂′
)T

.

El resultado es un sistema ODE de primer orden cuya solución es bien
conocida. Después de una considerable manipulación algebraica, es prob-
able que podamos lograr un esquema exponencial con una plantilla de tres



154 Capítulo 5. Conclusiones y trabajo futuro

puntos donde los coeficientes son modificados por algunas integrales de
Sφ que desaparecen en el caso límite de Sφ → 0, recuperando el esquema
exponencial original. La misma estrategia se desarrollo en [211] pero para
coeficientes constantes. Además, será necesario verificar si las cuadraturas
descritas en esta tesis todavía pueden ser utilizadas para estas nuevas inte-
grales y aún así dar resultados de alta precisión.

5.3 Geometría compleja

La malla cartesiana siempre ofrece los mejores resultados, pero es inefi-
ciente para geometrías complejas o características de flujo donde se requiere
algún agrupamiento de nodos. ENATE puede ser usado con mallas no uni-
formes donde el agrupamiento se realiza en todo el dominio, aunque puede
haber algún interés en realizar solo un refinamiento local en un área deter-
minada. Se puede encontrar una malla similar a la de la Figura 5.2. En tal
caso, necesitamos transformar la ecuación de transporte cartesiana en una
ecuación de transporte (ξ, η). Bajo esta transformación, el Jacobiano,

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
,

es claramente discontinuo, lo que hace que la ecuación resultante sea difícil
de manejar numéricamente. De hecho, tenemos cuatro valores de J en
el mismo punto, dependiendo del intervalo. Una forma de eliminar este
problema es el uso de la ecuación de transporte localmente en lugar de
globalmente. La idea sería descomponer y forzar la continuidad del flujo
alrededor de un punto central, y aplicar REMEDIES ya que no tiene en
cuenta la derivada de flujo normal en la fuente como FaP. Aun así, no está
claro cómo evaluar integrales y derivadas, ya que son discontinuas a lo
largo de las líneas iso-ξ y -η.
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FIGURA 5.2: Malla aleatoria Círculo negro, puntos inter-
nos; Cuadrado negro, puntos del contorno. Líneas rojas,
molécula computacional. Líneas azules, bases de coorde-

nadas.

Para geometrías complejas con obstáculos pueden seguirse dos metodologías.
Una forma es el uso de mallas no estructuradas, ya que ofrece la mejor
adaptabilidad pero sufre los mismos problemas que las mallas aleatorias.
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Por otro lado, se puede utilizar un método de inmersión de malla. Este
método requiere localizar un punto lagrangiano de un cuerpo interno, lo
que supone un desafío para la programación. Hay dos problemas: 1) no
está claro cómo proceder con REMEDIES para calcular β en los nodos del
cuerpo interno, 2) cómo vincular un nodo de contorno interno con un nodo
de malla cuando el cuerpo interno o el contorno complejo no contiene un
nodo de malla. Se están haciendo algunos progresos en este momento.

5.4 Simulaciones con Navier-Stokes

Una aplicación que no podemos pasar por alto es la discretización de las
ecuaciones de Navier-Stokes (NS). Según los ejemplos numéricos anteri-
ores, REMEDIES podría funcionar correctamente con este conjunto de ecua-
ciones no lineales con un tiempo de cálculo razonable. Los términos con-
vectivos en la ecuación de momento se calcularían explicitamente de forma
similar a la de la página 54.

Un aspecto importante de NS es el acoplamiento Velocidad-Presión. Se
dedujo una técnica SIMPLE para ENATE para calcular una ecuación de cor-
rección de presión, así como las correcciones de velocidad. Sin embargo,
esta idea de acoplamiento fue rechazada porque algunas integrales de la
fuente tuvieron que ser eliminadas para obtener ecuaciones discretas ade-
cuadas lo que perjudicaría a la precisión. Otra técnica de acoplamiento bien
conocida es la ecuación de Poisson de presión obtenida directamente de las
ecuaciones NS,

∂2p

∂x2
+
∂2p

∂y2
= −ρ

[(
∂u

∂x

)2

+ 2
∂u

∂x

∂v

∂y
+

(
∂v

∂y

)2
]

=: −Sp,

tomando la divergencia de la ecuación de cantidad de movimiento. En la
página 109 se calculó una ecuación de Poisson, por lo que se esperarían
resultados similares. Como se señala en este capítulo, el esquema ENATE
debe progresar a nuevas cuadraturas que no necesiten la derivada del inte-
grando. Para la ecuación de Poisson, ENATE necesita calcular la integral∫ xC

xW

∫ x

xW

f dx′dx,

en el que f puede ser Sp o el campo de distribución βp para REMEDIES.
Una cuadratura que podría satisfacer nuestras demandas, y similar a CIR,
podría ser

1

10

∫ xW

xWW

∫ x

xWW

f dx′dx+

∫ xC

xW

∫ x

xW

f dx′dx+
1

10

∫ xE

xC

∫ x

xC

f dx′dx ≈ ∆x2

5
[2fW + fC ]

la cual es de orden 5. Se verificó que esta cuadratura funciona bien para una
función suave, por ejemplo, f(x) = sinx. Su implementación en la ecuación
de Poisson está en progreso. Finalmente, el esquema ENATE aplicado a las
ecuaciones NS está asociado a una disposición colocalizada de las variables
en la malla, pero también se está considerando una disposición escalonada,
ver [103], debido al fuerte acoplamiento velocidad-presión.
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Appendix A

Deduction of the total flux
formula within a reference
interval

A.1 Introduction

This appendix shows how to derive the expression for F when the values
of φ at points are known. Let us start with equation (2.26) that says

Γ
dφ
dx

= ρu∆φ

(
1

P

dF
dx̂

+ (1− F (1))
1

P

dφN

dx̂

)
,

where dφN/dx̂ is described by equation (2.27a) and dF/dx̂ by (2.27b). If
they are substituted into the diffusive flux, considering equation (2.20),

Γ
dφ
dx

= ρu∆φ

(
φ̂(x̂) +

1

P0

1

ρ̂u(x̂)

1

IGE01
+
φlb
∆φ

[
1

− 1

ρ̂u(x̂)

ILE01

IGE01

]
− 1

ρ̂u(x̂)

[
ĨS0x̂ −

ĨSGE01

IGE01

])
.

Taking the first equation in (2.2a), some terms cancel out,

Γ
dφ
dx

= ρu∆φ

(
φ

∆φ
+

Γlb
ρu∆x

1

IGE01
− φlb

∆φ

1

ρ̂u(x̂)

ILE01

IGE01

− 1

ρ̂u(x̂)

[
ĨS0x̂ −

ĨSGE01

IGE01

])
.

If ρu∆φ multiplies the whole bracket, the hats of ĨS0x̂ and ĨSGE01 disap-
pear by (2.24a) − (2.24b), then

Γ
dφ
dx

= ρuφ+
Γlb
∆x

∆φ

IGE01
− (ρu)lbφlb

ILE01

IGE01
− IS0x̂ +

ISGE01

IGE01
.

Since F = ρuφ− Γdφ/dx, the total flux reads

F(x̂) = − Γlb
∆x

φrb − φlb
IGE01

+ (ρu)lbφlb
ILE01

IGE01
+ IS0x̂ −

ISGE01

IGE01
,
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interval

or grouping φ terms,

F(x̂) = (ρu)lb

(
k̃ +

ILE01

IGE01

)
φlb − (ρu)lbk̃ φrb + IS0x̂ −

ISGE01

IGE01
. (A.1)

In a reference interval, the left boundary (lb) is x̂ = 0 and the right boundary
(rb) is x̂ = 1.

A.2 Decomposition of F(x̂)
The flux (A.1) can be interpreted as a sum of two fluxes,

F(x̂) = Fφ + FS(x̂).

A constant homogeneous flux,

Fφ = (ρu)lb

(
k̃ +

ILE01

IGE01

)
φlb − (ρu)lbk̃ φrb

= (ρu)lb
ILE01

IGE01

[(
k̃
IGE01

ILE01
+ 1

)
φlb − k̃

IGE01

ILE01
φrb

]
= (ρu)lb

ILE01

IGE01

[(
1

P0ILE01
+ 1

)
φlb −

1

P0ILE01
φrb

]
= (ρu)lb

ILE01

IGE01

[
exp(P )

exp(P )− 1
φlb −

1

exp(P )− 1
φrb

]
=

(ρu)lb

P

ILE01

IGE01

[ −P
exp(−P )− 1

φlb −
P

exp(P )− 1
φrb

]
,

related to the φ values at the edges of the interval, and a nonhomogeneous
flux

FS(x̂) = IS0x̂ −
ISGE01

IGE01
,

which depends on the source.
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Appendix B

Hermite’s interpolation for
exponential integrals

B.1 Coefficients ai for the interpolator

The approximation of the integral∫ 1

0
fE(x̂)dx̂ ≈ expP

P
Σ1 −

1

P
Σ2, (B.1)

with fE(x̂) := g(x̂)/E(x̂) is determined by the ai values in

Σ1 =

m∑
i=0

ai
i!

P
i
, Σ2 =

m∑
i=0

ai i∑
j=0

i!

P
j
(i− j)!

 . (B.2)

These ai are the coefficients of the Hermite polynomial that interpolates
g(x̂). The function g(x̂) is arbitrary, page 49. For a quick implementation in
a subroutine, the set of variables defined as

θ00 =g(0),

θ01 =g(1),

θ10 =
dg
dx̂

∣∣∣∣
0

− θ00

(
P (0)− P

)
,

θ11 =
dg
dx̂

∣∣∣∣
1

− θ01

(
P (1)− P

)
,

θ20 =
d2g

dx̂2

∣∣∣∣
0

−
(

dg
dx̂

∣∣∣∣
0

+ θ10

)(
P (0)− P

)
− θ00

dP
dx̂

∣∣∣∣
0

,

θ21 =
d2g

dx̂2

∣∣∣∣
1

−
(

dg
dx̂

∣∣∣∣
1

+ θ11

)(
P (1)− P

)
− θ01

dP
dx̂

∣∣∣∣
1

,

θ30 =
d3g

dx̂3

∣∣∣∣
0

− 2

(
d2g

dx̂2

∣∣∣∣
0

− θ00
dP
dx̂

∣∣∣∣
0

+
1

2
θ20

)(
P (0)− P

)
− dg

dx̂

∣∣∣∣
0

(
3

dP
dx̂

∣∣∣∣
0

−
(
P (0)− P

)2)− θ00
d2P

dx̂2

∣∣∣∣
0

,

θ31 =
d3g

dx̂3

∣∣∣∣
1

− 2

(
d2g

dx̂2

∣∣∣∣
1

− θ01
dP
dx̂

∣∣∣∣
1

+
1

2
θ21

)(
P (1)− P

)
− dg

dx̂

∣∣∣∣
1

(
3

dP
dx̂

∣∣∣∣
1

−
(
P (1)− P

)2)− θ01
d2P

dx̂2

∣∣∣∣
1

,
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are grouped in the vector θθθ of the linear system Ha = θθθ, being H the dense
matrix of the interpolation. An example is written on page 51. Inverting the
matrix gives the vector a = (a0, a1, . . . , am)T which is gathered in the next
subsections.

B.1.1 Cubic Hermite Spline


a0

a1

a2

a3

 =


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1



θ00

θ01

θ10

θ11

 . (B.3)

B.1.2 Quintic Hermite Spline



a0

a1

a2

a3

a4

a5

 =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1/2 0
−10 10 −6 −4 −3/2 1/2

15 −15 8 7 3/2 −1
−6 6 −3 −3 −1/2 1/2





θ00

θ01

θ10

θ11

θ20

θ21

 . (B.4)

B.1.3 Septic Hermite Spline



a0

a1

a2

a3

a4

a5

a6

a7


=



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1/2 0 0 0
0 0 0 0 0 0 1/6 0
−35 35 −20 −15 −5 5/2 −2/3 −1/6

84 −84 45 39 10 −7 1 1/2

−70 70 −36 −34 −15/2 13/2 −2/3 −1/2

20 −20 10 10 2 −2 1/6 1/6





θ00

θ01

θ10

θ11

θ20

θ21

θ30

θ31


. (B.5)

B.2 Alternative final formulation

Formula (B.1) with (B.2) could be tough to handle, but it can be simplified
further. Let us substitute the sums Σ1 and Σ2,

∫ 1

0
fE(x̂)dx̂ ≈ expP

P

m∑
i=0

ai
i!

P
i
− 1

P

m∑
i=0

ai i∑
j=0

i!

P
j
(i− j)!

 ,

and remove common factor,

∫ 1

0
fE(x̂)dx̂ ≈

m∑
i=0

ai i!
P
i

expP

P
− 1

P

i∑
j=0

P
i−j

(i− j)!

 .
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Taking out the coefficient a0 and inverts the term that multiplies the ai,∫ 1

0
fE(x̂)dx̂ ≈ a0

P

expP − 1

+
m∑
i=1

ai

P

i!

P
i

expP −
i∑

j=0

P
i−j

(i− j)!


.

Similarly, taking out the first term of the second sum,∫ 1

0
fE(x̂)dx̂ ≈ a0

P

expP − 1

+

m∑
i=1

ai

P

i!

P
i

expP −
i∑

j=1

P
i−j

(i− j)!

− 1

,

and inverting the rest in the same way,∫ 1

0
fE(x̂)dx̂ ≈ a0

P

expP − 1

+

m∑
i=1

ai

P

i

P

(i− 1)!

P
i−1

expP −
i∑

j=1

P
i−j

(i− j)!


− 1

.

If one takes again the steps up to get rid of the second sum, a recurrence
relation is obtained as follows:∫ 1

0
fE(x̂)dx̂ ≈ a0

P

expP − 1

+

m∑
i=1

ai

P

i

P

i− 1

P

...

3

P

2

P

1

P

expP − 1

− 1

− 1

− 1

− 1

− 1

.
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So, the final expression can be shorted to∫ 1

0
fE(x̂)dx̂ ≈

m∑
i=0

ai

Bi(P )
,

where the first function, B0(z), is the Bernoulli function and the Bi(z) are
built from it:

Bi(z) :=



z

exp z − 1
, If i = 0,

z

i

Bi−1(z)
− 1

, Otherwise,

Several limit cases are

Bi(z) '


1 + i, If z = 0,

0, If z → +∞,
|z|, If z → −∞.

The ratio of two different B-functions is

Bj(z)

Bi(z)
'



1 + j

1 + i
, If z = 0,

0, If z → +∞ and j < i,

i!

j!
zj−i, If z → +∞ and j > i,

1, If z → −∞.

B.2.1 Special case in ISGE01/IGE01

Assume a case where P and Γ are piecewise constant. In that case IGE01 =
(expP − 1)/P = 1/B0(P ) and, therefore, the next ratio of integrals can be
approximated as

ISGE01

IGE01
≈ a0 +

m∑
i=1

B0(P )

Bi(P )
ai.

The coefficients ai depend on both the order of the Hermite spline em-
ployed and the g-function, that in that case is g(x̂) = IS0x̂.

Cubic Hermite

System (B.3) yields the set:

a0 = 0,

a1 = ∆xS(0),

a2 = 3 IS01 − 2∆xS(0)−∆xS(1),

a3 = −2 IS01 + ∆xS(0) + ∆xS(1).
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Then, the complete source (2.32) is

bC = IS01|WC +

[
B0(P )

B1(P )
a1 +

B0(P )

B2(P )
a2 +

B0(P )

B3(P )
a3

]
CE

−
[
B0(P )

B1(P )
a1 +

B0(P )

B2(P )
a2 +

B0(P )

B3(P )
a3

]
WC

.

Substituting the particular values of the ai coefficients and collecting terms
containing SC = S(0)|CE = S(1)|WC provides

∆xCESC

[
B0(P )

B1(P )
− 2

B0(P )

B2(P )
+
B0(P )

B3(P )

]
CE

+ ∆xWCSC

[
B0(P )

B2(P )
− B0(P )

B3(P )

]
WC

.

Likewise with SW ,

−∆xWCSW

[
B0(P )

B1(P )
− 2

B0(P )

B2(P )
+
B0(P )

B3(P )

]
WC

,

and SE ,

−∆xCESE

[
B0(P )

B2(P )
− B0(P )

B3(P )

]
CE

.

The terms related to the integrals of the source over the intervals associated
to xC are [

1− 3
B0(P )

B2(P )
+ 2

B0(P )

B3(P )

]
WC

IS01|WC ,

and [
3
B0(P )

B2(P )
− 2

B0(P )

B3(P )

]
CE

IS01|CE .

Thus, the complete contribution with cubic Hermite splines is

bC =− γ1|WC SW + (γ1|CE + γ2|WC)SC − γ2|CE SE
+ ζ1|WC IS01|WC + ζ2|CE IS01|CE ,

where the new coefficients in the pop-up stencil of S and IS01 are defined
as

γ1 := ∆x

[
B0(P )

B1(P )
− 2

B0(P )

B2(P )
+
B0(P )

B3(P )

]
, γ2 := ∆x

[
B0(P )

B2(P )
− B0(P )

B3(P )

]
,

ζ1 := 1− 3
B0(P )

B2(P )
+ 2

B0(P )

B3(P )
, ζ2 := 1− ζ1,

and the source integrals over [xW , xC ] and [xC , xE ] can again be approxi-
mated with cubic Hermite splines or compact integration rules CIR. In the
limit cases these coefficients give

γ1 = γ2 =


∆x

12
, If P = 0.

0, If |P | → ∞,
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and

ζ1 =


1

2
, If P = 0,

1, If P → +∞,
0, If P → −∞,

ζ2 =


1

2
, If P = 0,

0, If P → +∞,
1, If P → −∞.

Quintic Hermite

Following the procedure indicated in the previous subsection but now for
quintic splines, the general source term is obtained as

bC = IS01|WC +

[
B0(P )

B1(P )
a1 +

B0(P )

B2(P )
a2 +

B0(P )

B3(P )
a3 +

B0(P )

B4(P )
a4 +

B0(P )

B5(P )
a5

]
CE

−
[
B0(P )

B1(P )
a1 +

B0(P )

B2(P )
a2 +

B0(P )

B3(P )
a3 +

B0(P )

B4(P )
a4 +

B0(P )

B5(P )
a5

]
WC

,

with the ai:

a0 = 0, a1 = ∆xS(0), a2 =
1

2
∆x

dS
dx̂

∣∣∣∣
0

,

a3 = 10 IS01 − 6 ∆xS(0)− 4 ∆xS(1)− 3

2
∆x

dS
dx̂

∣∣∣∣
0

+
1

2
∆x

dS
dx̂

∣∣∣∣
1

,

a4 = −15 IS01 + 8 ∆xS(0) + 7 ∆xS(1) +
3

2
∆x

dS
dx̂

∣∣∣∣
0

−∆x
dS
dx̂

∣∣∣∣
1

,

a5 = 6 IS01 − 3 ∆xS(0)− 3 ∆xS(1)− 1

2
∆x

dS
dx̂

∣∣∣∣
0

+
1

2
∆x

dS
dx̂

∣∣∣∣
1

.

Collecting terms containing SC ,

∆xCES(xC)

[
B0(P )

B1(P )
− 6

B0(P )

B3(P )
+ 8

B0(P )

B4(P )
− 3

B0(P )

B5(P )

]
CE

+∆xWCS(xC)

[
4
B0(P )

B3(P )
− 7

B0(P )

B4(P )
+ 3

B0(P )

B5(P )

]
WC

,

and those of SW ,

−∆xCESE

[
4
B0(P )

B3(P )
− 7

B0(P )

B4(P )
+ 3

B0(P )

B5(P )

]
CE

,

and SE ,

−∆xWCSW

[
B0(P )

B1(P )
− 6

B0(P )

B3(P )
+ 8

B0(P )

B4(P )
− 3

B0(P )

B5(P )

]
WC

.

As quintic splines are employed there are additional terms related to the
source derivative at the nodes. Those having dS/dx at C are

∆x2
CE

dS
dx

∣∣∣∣
C

[
1

2

B0(P )

B2(P )
− 3

2

B0(P )

B3(P )
+

3

2

B0(P )

B4(P )
− 1

2

B0(P )

B5(P )

]
CE

+∆x2
WC

dS
dx

∣∣∣∣
C

[
−1

2

B0(P )

B3(P )
+
B0(P )

B4(P )
− 1

2

B0(P )

B5(P )

]
WC

.
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Recall that dn/dx̂n = ∆xndn/dxn. Those that multiply the source deriva-
tive at the adjacent nodes are

−∆x2
CE

dS
dx

∣∣∣∣
E

[
−1

2

B0(P )

B3(P )
+
B0(P )

B4(P )
− 1

2

B0(P )

B5(P )

]
CE

,

and

−∆x2
WC

dS
dx

∣∣∣∣
W

[
1

2

B0(P )

B2(P )
− 3

2

B0(P )

B3(P )
+

3

2

B0(P )

B4(P )
− 1

2

B0(P )

B5(P )

]
WC

,

The terms containing the integrals are[
1− 10

B0(P )

B3(P )
+ 15

B0(P )

B4(P )
− 6

B0(P )

B5(P )

]
WC

IS01|WC ,

and [
10
B0(P )

B3(P )
− 15

B0(P )

B4(P )
+ 6

B0(P )

B5(P )

]
CE

IS01|CE .

The complete source term with quintic Hermite is

bC =− γ1|WC SW + (γ1|CE + γ2|WC)SC − γ2|CE SE

− δ1|WC

dS
dx

∣∣∣∣
W

+ (δ1|CE + δ2|WC)
dS
dx

∣∣∣∣
C

− δ2|CE
dS
dx

∣∣∣∣
E

+ ζ1|WC IS01|WC + ζ2|CE IS01|CE ,

where the coefficients are

γ1 := ∆x

[
B0(P )

B1(P )
− 6

B0(P )

B3(P )
+ 8

B0(P )

B4(P )
− 3

B0(P )

B5(P )

]
,

γ2 := ∆x

[
4
B0(P )

B3(P )
− 7

B0(P )

B4(P )
+ 3

B0(P )

B5(P )

]
,

δ1 := ∆x2

[
1

2

B0(P )

B2(P )
− 3

2

B0(P )

B3(P )
+

3

2

B0(P )

B4(P )
− 1

2

B0(P )

B5(P )

]
,

δ2 := ∆x2

[
−1

2

B0(P )

B3(P )
+
B0(P )

B4(P )
− 1

2

B0(P )

B5(P )

]
,

ζ1 := 1− 10
B0(P )

B3(P )
+ 15

B0(P )

B4(P )
− 6

B0(P )

B5(P )
, ζ2 := 1− ζ1,

and their limits

γ1 = γ2 =


∆x

10
, If P = 0,

0, If |P | → ∞,

and

δ1 =


∆x2

120
, If P = 0,

0, If |P | → ∞,
δ2 =

−
∆x2

120
, If P = 0,

0, If |P | → ∞.

The limits of ζ1 and ζ2 are the same as in cubic Hermite.
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Septic Hermite

If septic splines are used, the source contribution is

bC = IS01|WC +

[
B0(P )

B1(P )
a1 +

B0(P )

B2(P )
a2 +

B0(P )

B3(P )
a3

+
B0(P )

B4(P )
a4 +

B0(P )

B5(P )
a5 +

B0(P )

B6(P )
a6 +

B0(P )

B7(P )
a7

]
CE

−
[
B0(P )

B1(P )
a1 +

B0(P )

B2(P )
a2 +

B0(P )

B3(P )
a3

+
B0(P )

B4(P )
a4 +

B0(P )

B5(P )
a5 +

B0(P )

B6(P )
a6 +

B0(P )

B7(P )
a7

]
WC

,

being the ai:

a0 =0, a1 = ∆xS(0), a2 =
1

2
∆x

dS
dx̂

∣∣∣∣
0

, a3 =
1

6
∆x2 d2S

dx̂2

∣∣∣∣
0

,

a4 =35 IS01 − 20 ∆xS(0)− 15 ∆xS(1)− 5∆x
dS
dx̂

∣∣∣∣
0

+
5

2
∆x

dS
dx̂

∣∣∣∣
1

− 2

3
∆x

d2S

dx̂2

∣∣∣∣
0

− 1

6
∆x

d2S

dx̂2

∣∣∣∣
1

,

a5 =− 84 IS01 + 45 ∆xS(0) + 39 ∆xS(1) + 10∆x
dS
dx̂

∣∣∣∣
0

− 7∆x
dS
dx̂

∣∣∣∣
1

+ ∆x
d2S

dx̂2

∣∣∣∣
0

+
1

2
∆x

d2S

dx̂2

∣∣∣∣
1

,

a6 =70 IS01 − 36 ∆xS(0)− 34 ∆xS(1)− 15

2
∆x

dS
dx̂

∣∣∣∣
0

+
13

2
∆x

dS
dx̂

∣∣∣∣
1

− 2

3
∆x

d2S

dx̂2

∣∣∣∣
0

− 1

2
∆x

d2S

dx̂2

∣∣∣∣
1

,

a7 =− 20 IS01 + 10 ∆xS(0) + 10 ∆xS(1) + 2∆x
dS
dx̂

∣∣∣∣
0

− 2∆x
dS
dx̂

∣∣∣∣
1

+
1

6
∆x

d2S

dx̂2

∣∣∣∣
0

+
1

6
∆x

d2S

dx̂2

∣∣∣∣
1

.

Collecting terms containing SC ,

∆xCESC

[
B0(P )

B1(P )
− 20

B0(P )

B4(P )
+ 45

B0(P )

B5(P )
− 36

B0(P )

B6(P )
+ 10

B0(P )

B7(P )

]
CE

+∆xWCSC

[
15
B0(P )

B4(P )
− 39

B0(P )

B5(P )
+ 34

B0(P )

B6(P )
− 10

B0(P )

B7(P )

]
WC

.

Those pertaining to SE are

−∆xCESE

[
15
B0(P )

B4(P )
− 39

B0(P )

B5(P )
+ 34

B0(P )

B6(P )
− 10

B0(P )

B7(P )

]
CE

,

and those to SW ,

−∆xWCSW

[
B0(P )

B1(P )
− 20

B0(P )

B4(P )
+ 45

B0(P )

B5(P )
− 36

B0(P )

B6(P )
+ 10

B0(P )

B7(P )

]
WC

.
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Likewise for dS/dx at xC ,

∆x2
CE

dS
dx

∣∣∣∣
C

[
1

2

B0(P )

B2(P )
− 5

B0(P )

B4(P )
+ 10

B0(P )

B5(P )
− 15

2

B0(P )

B6(P )
+ 2

B0(P )

B7(P )

]
CE

+∆x2
WC

dS
dx

∣∣∣∣
C

[
−5

2

B0(P )

B4(P )
+ 7

B0(P )

B5(P )
− 13

2

B0(P )

B6(P )
+ 2

B0(P )

B7(P )

]
WC

,

at xE ,

−∆x2
CE

dS
dx

∣∣∣∣
E

[
−5

2

B0(P )

B4(P )
+ 7

B0(P )

B5(P )
− 13

2

B0(P )

B6(P )
+ 2

B0(P )

B7(P )

]
CE

,

and at xW ,

−∆x2
WC

dS
dx

∣∣∣∣
W

[
1

2

B0(P )

B2(P )
− 5

B0(P )

B4(P )
+ 10

B0(P )

B5(P )
− 15

2

B0(P )

B6(P )
+ 2

B0(P )

B7(P )

]
WC

,

Septic requires another order up of the derivative, so picking up terms with
d2S/dx2 at xC ,

∆x3
CE

d2S

dx2

∣∣∣∣
C

[
1

6

B0(P )

B3(P )
− 2

3

B0(P )

B4(P )
+
B0(P )

B5(P )
− 2

3

B0(P )

B6(P )
+

1

6

B0(P )

B7(P )

]
CE

+∆x3
WP

d2S

dx2

∣∣∣∣
C

[
1

6

B0(P )

B4(P )
− 1

2

B0(P )

B5(P )
+

1

2

B0(P )

B6(P )
− 1

6

B0(P )

B7(P )

]
WC

,

at xE ,

−∆x3
CE

d2S

dx2

∣∣∣∣
E

[
1

6

B0(P )

B4(P )
− 1

2

B0(P )

B5(P )
+

1

2

B0(P )

B6(P )
− 1

6

B0(P )

B7(P )

]
CE

,

and at xW ,

−∆x3
WC

d2S

dx2

∣∣∣∣
W

[
1

6

B0(P )

B3(P )
− 2

3

B0(P )

B4(P )
+
B0(P )

B5(P )
− 2

3

B0(P )

B6(P )
+

1

6

B0(P )

B7(P )

]
WC

.

The terms containing the integrals are[
1− 35

B0(P )

B4(P )
+ 84

B0(P )

B5(P )
− 70

B0(P )

B6(P )
+ 20

B0(P )

B7(P )

]
WC

IS01|WC ,

and [
35
B0(P )

B4(P )
− 84

B0(P )

B5(P )
+ 70

B0(P )

B6(P )
− 20

B0(P )

B7(P )

]
CE

IS01|CE .

Finally, the complete source contribution is

bC =− γ1|WC SW + (γ1|CE + γ2|WC)SP − γ2|CE SE

− δ1|WC

dS
dx

∣∣∣∣
W

+ (δ1|CE + δ2|WC)
dS
dx

∣∣∣∣
C

− δ2|CE
dS
dx

∣∣∣∣
E

− ε1|WC

d2S

dx2

∣∣∣∣
W

+ (ε1|CE + ε2|WC)
d2S

dx2

∣∣∣∣
C

− ε2|CE
d2S

dx2

∣∣∣∣
E

+ ζ1|WC IS01|WC + ζ2|CE IS01|CE ,
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together with

γ1 := ∆x

[
B0(P )

B1(P )
− 20

B0(P )

B4(P )
+ 45

B0(P )

B5(P )
− 36

B0(P )

B6(P )
+ 10

B0(P )

B7(P )

]
,

γ2 := ∆x

[
15
B0(P )

B4(P )
− 39

B0(P )

B5(P )
+ 34

B0(P )

B6(P )
− 10

B0(P )

B7(P )

]
δ1 := ∆x2

[
1

2

B0(P )

B2(P )
− 5

B0(P )

B4(P )
+ 10

B0(P )

B5(P )
− 15

2

B0(P )

B6(P )
+ 2

B0(P )

B7(P )

]
,

δ2 := ∆x2

[
−5

2

B0(P )

B4(P )
+ 7

B0(P )

B5(P )
− 13

2

B0(P )

B6(P )
+ 2

B0(P )

B7(P )

]
,

ε1 := ∆x3

[
1

6

B0(P )

B3(P )
− 2

3

B0(P )

B4(P )
+
B0(P )

B5(P )
− 2

3

B0(P )

B6(P )
+

1

6

B0(P )

B7(P )

]
,

ε2 := ∆x3

[
1

6

B0(P )

B4(P )
− 1

2

B0(P )

B5(P )
+

1

2

B0(P )

B6(P )
− 1

6

B0(P )

B7(P )

]
,

ζ1 := 1− 35
B0(P )

B4(P )
+ 84

B0(P )

B5(P )
− 70

B0(P )

B6(P )
+ 20

B0(P )

B7(P )
, ζ2 := 1− ζ1,

In the limit cases,

γ1 = γ2 =


3∆x

28
, If P = 0,

0, If |P | → ∞,
ε1 = ε2 =


∆x3

1680
, If P = 0,

0, If |P | → ∞,

and

δ1 =


∆x2

84
, If P = 0,

0, If |P | → ∞,
δ2 =

−
∆x2

84
, If P = 0,

0, If |P | → ∞.

Likewise, limits for ζ1 and ζ2 are as in Cubic.
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Appendix C

Simplifying integrals

C.1 Introduction

In ENATE, only ILE01 has a simpler version

ILE01 =

∫ 1

0

ρ̂u

Γ̂E
dx̂ =

expP − 1

P0
,

while others keep their original formulation such as

ISGE01 =

∫ 1

0

∆x

Γ̂E

[∫ x̂

0
S dx̂′

]
dx̂,

or

IGE01 =

∫ 1

0

dx̂

Γ̂E
.

However, some simplifications of the above integrals could be made via
integration by parts.

C.2 Integration-by-parts generalization

Let us consider two functions, f = f(x) and g = g(x). Integration by parts
states that ∫

f dg = fg −
∫
g df,

or replacing df = (df/dx)dx and dg = (dg/dx)dx,∫
f

dg
dx

dx = fg −
∫
g

df
dx

dx.

With the help of another function h = h(x) such that h = dg/dx, and con-
sequently g =

∫
hdx, then the integral of the product of two functions is

given by ∫
fhdx = f

∫
hdx−

∫
df
dx

[∫
hdx

]
dx.

The previous formula could be seen as a generalization of integration by
parts. We are interested in calculating the definite integral in the interval
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[a, b], at the lower limit a,∫ a

fhdx = f(a)

∫ a

hdx−
∫ a df

dx

[∫ x

hdx′
]

dx,

where x′ is a dummy variable, the integral in the interval [a, b] reads∫ b

a
fhdx = f(b)

∫ b

hdx− f(a)

∫ a

hdx−
∫ b

a

df
dx

[∫ x

hdx′
]

dx.

Bear in mind that∫ b

a

df
dx

[∫ x

a
hdx′

]
dx =

∫ b

a

df
dx

[∫ x

hdx′
]

dx− [f(b)− f(a)]

∫ a

hdx,

so the inner product of f(x)h(x) within [a, b] can be calculated as∫ b

a
fhdx = f(b)

∫ b

a
hdx−

∫ b

a

df
dx

[∫ x

a
hdx′

]
dx.

If f(x) is an nth degree polynomial, then by repeating integration by parts
to the second term,∫ b

a
fhdx =

n∑
k=0

(−1)k
dkf
dxk

∣∣∣∣∣
b

∫ b

a
· · ·
∫ x

a︸ ︷︷ ︸
k+1

h (dx)k+1 .

C.3 Simple version of IGE01

The simplification for the integral IGE01 is accomplished with f = 1/E and
h = 1/Γ̂, i.e.,

IGE01 =

∫ 1

0

dx̂

Γ̂
+

∫ 1

0

P

E

[∫ x̂

0

dx̂′

Γ̂

]
dx̂

= IG01 +

∫ 1

0

P

E
IG0x̂ dx̂

= 1 +

∫ 1

0

P x̂

E
dx̂ (Γ = const.) .

If ILE01 is integrated by parts with f = ρ̂u and h = 1/Γ̂E then

ILE01 = ρ̂u(1)IGE01 −
∫ 1

0

dρ̂u
dx̂

IGE0x̂dx̂

is an integral equation for IGE01. In terms of the ratio ILE01/IGE01,

ILE01

IGE01
= 1 +

∫ 1

0

dρ̂u
dx̂

[
1− IGE0x̂

IGE01

]
dx̂.
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Due to the conservation of mass in 1D, dρu/dx = 0, IGE01 = ILE01. As-
sume without loss of generality that dρu/dx 6= 0 and

IGE0x̂ = α

expP − exp

∫ 1

x̂
Pdx̂′

P0
+ β,

where α and β are constant to be determined. By substituting it in the inte-
gral equation and cancelling out the terms,

α =
1

ρ̂u(1)
and β =

ρ̂u(1)− 1

ρ̂u(1)

expP

P0
− 1

P0ρ̂u(1)

∫ 1

0

dρ̂u
dx̂

1

E
dx̂.

By integrating by parts again,

IGE01 =
1 + ρ̂u(1)

ρ̂u(1)

expP − 1

P0
− 1

ρ̂u(1)

∫ 1

0

ρ̂u2

Γ̂E
dx̂.

The previous integral could be approximated by Hermite. Recall that IGE01

must be positive, so the integral should meet∫ 1

0

ρ̂u2

Γ̂E
dx̂ < (1 + ρ̂u(1))

expP − 1

P0
.

C.4 Simple version of ISGE01

Taking f = ∆x

∫ x̂

0
S dx̂′ and h = 1/(Γ̂E), then

ISGE01 = ∆x

∫ 1

0
S dx̂

∫ 1

0

dx̂

Γ̂E
−∆x

∫ 1

0
S

[∫ x̂

0

dx̂′

Γ̂E

]
dx̂

= IS01IGE01 −∆x

∫ 1

0
S IGE0x̂ dx̂,

or in terms of the ratio ISGE01/IGE01,

ISGE01

IGE01
= ∆x

∫ 1

0
S

[
1− IGE0x̂

IGE01

]
dx̂.

If S and P are constants, then

ISGE01

IGE01
= ∆xS

expP − P − 1

P (expP − 1)
,

which is the expected value. If the term into the brackets is defined as
w(x̂) := 1− IGE0x̂/IGE01, then w(x̂) has the next properties:

1. w(0) = 1 and w(1) = 0,

2. w(x̂) ≤ 1 since 1/(Γ̂E) > 0,

3. w(x̂) ' 0 as P → +∞ and w(x̂) ' 1 as P → −∞,

4. ẇ(x̂) = −1/(IGE01 Γ̂E) < 0.
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A dot over w(x̂) stands for dw/dx̂. w(x̂) has no local maximum since
ẇ(x̂) 6= 0, so 0 ≤ w(x̂) ≤ 1. Since the discrete source bC is the balance
of ISGE01/IGE01 within [xC , xE ] and [xW , xC ] plus IS01 within [xW , xC ],
then

bC = ∆x

∫ 1

0
S
IGE0x̂

IGE01
dx̂
∣∣∣∣
WC

+ ∆x

∫ 1

0
S

[
1− IGE0x̂

IGE01

]
dx̂
∣∣∣∣
CE

,

or in a compact way: bC is defined by the integral from xW to xE of the
source times the Green’s functionG(x̂) of the convection-diffusion problem,
i.e.,

G(x̂) =

{
1− w(x̂) within [xW , xC ]

w(x̂) within [xC , xE ]
,

whose properties are:

1. G(1)|WC = G(0)|CE ,

2. 0 ≤ G(x̂) ≤ 1 within [xW , xE ],

3. G(x̂) ' 1 within [xW , xC ] and G(x̂) ' 0 within [xC , xE ] as P → +∞,

4. G(x̂) ' 0 within [xW , xC ] and G(x̂) ' 1 within [xC , xE ] as P → −∞,

5. Ġ(1)
∣∣∣
WC
− Ġ(0)

∣∣∣
CE

=
Γ0/Γ1

IGE01

∣∣∣∣
WC

+
expP

IGE01

∣∣∣∣
CE

> 0.

In the special case that Péclet number is constant, the jump in the derivative
writes

Ġ(1)
∣∣∣
WC
− Ġ(0)

∣∣∣
CE

=

{
2 If P = 0,

|P | If P → ±∞. .

xW xC xE
0

0.2

0.4

0.6

0.8

1

G
(x̂

)

FIGURE C.1: The Green’s function over two adjacent inter-
vals for a constant Péclet regime. Black line, P = 0. Blue

lines, P ∈ {3, 10, 100}. Red lines, P ∈ {−3,−10,−100}.
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Appendix D

Compact Integration Rules

D.1 Derivation of the rule

f(ξ)

ξ0 = 0

ξ1 ξ2 ξ3 ξi−1ξiξi+1 ξn−1

ξn = L

FIGURE D.1: Domain of f(ξ) splits in n intervals of equal
length (∆ξ = L/n).

In this appendix, we show the derivation of a derivative-free quadra-
ture, unlike Hermite splines, to calculate the integral in an interval of a real
function f(ξ), smooth and continuous over the domain [0, L]. The func-
tion can be given analytically or as a data set at evenly distributed nodes.
This quadrature fits well for IS01 and P in the ENATE scheme. For a clear
derivation, we shall use a standard notation instead of the FV notation: ξi
for ξC and so on.

Looking the Figure D.1, the integral in each interval, gray area, is put
in terms of a linear combination of adjacent integrals in the left-hand side
(LHS), and f(ξi+k), k ∈ Z, in the right-hand side (RHS). The number of
k’s will depend on the order of accuracy sought. The quadrature is named
“Compact Integration Rules”, CIR, and is analogous to the compact differ-
entiation [108].

The generic linear combination of definite integrals centered at (ξi−1, ξi)
for internal points is given by

m2∑
k=−m1

αk

∫ ξi+k

ξi+k−1

f dξ = ∆ξ

q2∑
k=−q1

akf(ξi+k) + τi, (D.1)

where m1,2 ∈ N0 and q1,2 ∈ N0 are the lower/upper bounds of the stencil
for the definite integrals and the function values, respectively. If we define
the vector of integrals at every interval as

f =
1

∆ξ

(∫ ξ1

ξ0

f dξ,
∫ ξ2

ξ1

f dξ, · · · ,
∫ ξn

ξn−1

f dξ

)T
,
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and the integrand at nodes,

f = (f0, f1, · · · , fn)T ,

the CIR method ends up by solving the linear system

Mf = Qf + τττ , (D.2)

where M is an n-by-n band-matrix that stores the parameters αk and Q is
an n-by-(n + 1) band-matrix of ak’s. Note that if m1 = m2 = 0, M is a di-
agonal matrix and the quadrature is explicit. The development of CIR will
be described in detail for some special cases of equation (D.1). In particular,
symmetry in the LHS will be assumed with α0 = 1. The detailed analysis
will be restricted to a matrix of five diagonals in the LHS, m1 = m2 = 2,
and six diagonals in the RHS, q1 = 3 and q2 = 2, that is

β

∫ ξi−2

ξi−3

f dξ + α

∫ ξi−1

ξi−2

f dξ +

∫ ξi

ξi−1

f dξ + α

∫ ξi+1

ξi

f dξ + β

∫ ξi+2

ξi+1

f dξ

= ∆ξ [af(ξi−3) + bf(ξi−2) + cf(ξi−1) + df(ξi) + ef(ξi+1) + gf(ξi+2)] + τi.
(D.3)

The last term is the error made in the linear combination, it is not the error
in the evaluation of the integral

∫ ξi
ξi−1

f dξ. Throughout the appendix we
will characterize each scheme by its local truncation error, τi, defined as the
leading order of the error in the linear combination. The integrals of every
interval have the same order of truncation error as the linear combination.
As shown later, the global truncation error of the integral over the whole
domain is one order of accuracy less. In the wavenumber analysis and the
results section as we are mainly interested in the errors in the integral of the
whole domain, the rules will be named according to the global truncation
error.

The system of equations has a coefficient matrix that could be tri- or
penta- diagonal depending on whether β is zero or not. On the other hand
{a, b, c, d, e, g} are linked with {α, β} when matching the Taylor series coef-
ficients until the desired order of accuracy. The truncation error is related
to the first term of the Taylor series that cannot be made zero by the chosen
coefficients.

The notation used for the integral and the integrand is∫ ξi+k

ξ0

f dξ = Fi+k, f(ξi+k) = fi+k, k ∈ Z.

In a uniform mesh the Taylor expansion centered at ξi of the above variables
is given by

fi+k = fi + k∆xf
(1)
i +

k2∆ξ2

2!
f

(2)
i + · · · , (D.4a)

Fi+k = Fi + k∆xfi +
k2∆ξ2

2!
f

(1)
i +

k3∆ξ3

3!
f

(2)
i + · · · , (D.4b)

where f (l)
i is a l-order (≥ 1) derivative. Equation (D.4b) is related to a defi-

nite integral within [ξi, ξi+k] if k > 0 or [ξi+k, ξi] if k < 0. In equation (D.3),
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the integration limits go from ξi+k−1 to ξi+k. So, in that case, the integrals of
the vector f are computed as f i+k = (Fi+k − Fi+k−1)/∆ξ in order to cancel
out Fi.

D.1.1 Local third-order family

Let us begin with a simple low order rule where we match the fi and the
f

(1)
i terms as shown below.

β

(
∆ξfi +

(
22 − 32

)
∆ξ2

2!
f

(1)
i

)
+ α

(
∆ξfi +

(
1− 22

)
∆ξ2

2!
f

(1)
i

)

+

(
∆ξfi −

∆ξ2

2!
f

(1)
i

)
+ α

(
∆ξfi +

∆ξ2

2!
f

(1)
i

)
+ β

(
∆ξfi +

(
22 − 1

)
∆ξ2

2!
f

(1)
i

)
≈ ∆ξ

[
a
(
fi − 3∆ξf

(1)
i

)
+ b

(
fi − 2∆ξf

(1)
i

)
+ c

(
fi −∆ξf

(1)
i

)
+ dfi + e

(
fi + ∆ξf

(1)
i

)
+ g

(
fi + 2∆ξf

(1)
i

)]
.

Taking the first two terms of each expansion, a set of two equations is ob-
tained by equating the factors that multiply fi and f (1)

i to zero:

a+ b+ c+ d+ e+ g =1 + 2α+ 2β,

31a+ 21b+ c− e− 21g =1!
1 + 2

(
21 − 1

)
α+

(
1− 23 + 32

)
β

2!
.

As there are eight coefficients and only two equations to be satisfied there
are six arbitrary values. As an example, one can take a = b = e = g = 0
then c = d = (1 + 2α + 2β)/2 where α and β are still arbitrary. The local
truncation error is

τi = −
(

1− 10α− 46β

2

)
∆ξ3

3!
f

(2)
i .

The local order of accuracy is the power of the interval size contained in the
local truncation error. In this rule the local truncation error is proportional
to ∆ξ3 so the order of accuracy is 3.

There is a number of values of {α, β} that make this term zero, those
that satisfy 10α + 46β = 1. In those cases the order of accuracy increases
two orders of magnitude,

τi = −
(

38α− 502β − 11

6

)
∆ξ5

5!
f

(4)
i .

The same increase happens for rules of any odd order of the local truncation
error for a certain combination of α and β. Incidentally, if α = β = 0 the
integral is explicit and the Trapezoidal rule over each interval [ξi−1, ξi] is
recovered, i.e., ∫ ξi

ξi−1

f dξ ≈ ∆ξ

2
(fi−1 + fi) .

Following this procedure we can obtain the integral in all intervals into
which the whole domain has been split. The integral from 0 to L can be
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calculated by the integration additive property. For instance, by taking the
trapezoidal rule for each interval and summing up for the whole domain
the composite Trapezoidal rule is obtained,∫ L

0
f dξ =

∆ξ

2

(
f0 + 2

n−1∑
i=1

fi + fn

)
− ∆ξ2L

12
f

(2)
ξ? ,

where ξ? is some point within [0, L]. The last term of the expression has
been rearranged as an average of values of the second derivative, f (2)

i , at
each interval [ξi−1, ξi),

n∑
i=1

−∆ξ3

12
f

(2)
i = −∆ξ2∆ξ n

12

n∑
i=1

f
(2)
i

n
= −∆ξ2L

12
f

(2)
ξ? .

The order of accuracy for the integral over the whole domain is 2.

D.1.2 Local fifth-, seventh- and ninth-order family

Similarly, the set of equations to be satisfied for several orders of accuracy
of the local truncation error is presented in this subsection. The coefficients
have to satisfy up to equation (D.6) for 5th-order, up to equation (D.7) for
7th-order, and up to equation (D.8) for 9th-order.

a+ b+ c+ d+ e+ g =1 + 2α+ 2β, (D.5)

31a+ 21b+ c− e− 21g =1!
1 + 2

(
21 − 1

)
α+

(
1− 23 + 32

)
β

2!
,

32a+ 22b+ c+ e+ 22g =2!
1 + 23α+

(
33 − 1

)
β

3!
,

33a+ 23b+ c− e− 23g =3!
1 + 2

(
23 − 1

)
α+

(
1− 25 + 34

)
β

4!
, (D.6)

34a+ 24b+ c+ e+ 24g =4!
1 + 25α+

(
35 − 1

)
β

5!
,

35a+ 25b+ c− e− 25g =5!
1 + 2

(
25 − 1

)
α+

(
1− 27 + 36

)
β

6!
, (D.7)

36a+ 26b+ c+ e+ 26g =6!
1 + 27α+

(
37 − 1

)
β

7!
,

37a+ 27b+ c− e− 27g =7!
1 + 2

(
27 − 1

)
α+

(
1− 29 + 38

)
β

8!
. (D.8)

A family rule which has a fifth-order local τi can be given by the following
set of coefficients:

a = g = 0, b = e =
10α+ 46β − 1

24
, c = d =

14α− 22β + 13

24
.

It should be mentioned that the same values of α and β that made the third-
order local truncation error vanish, also cause the pair {b, e} to become zero
in the fifth-order family. As seen before, this particular pair of values of
{α, β} leads the rule to fifth-order accuracy. In the same way, when taking
β = 0 and α = 1/10, a fifth-order rule with a two-point stencil in the RHS is
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obtained,

1

10

∫ ξi−1

ξi−2

f dξ +

∫ ξi

ξi−1

f dξ +
1

10

∫ ξi+1

ξi

f dξ ≈ 3∆ξ

5
[fi−1 + fi] . (D.9)

When α = 11/38 the fifth-order local truncation error goes to zero and a
seventh-order accuracy is attained with a four-point stencil in the RHS by

11

38

∫ ξi−1

ξi−2

f dξ +

∫ ξi

ξi−1

f dξ +
11

38

∫ ξi+1

ξi

f dξ

≈ ∆ξ

38
[3fi−2 + 27fi−1 + 27fi + 3fi+1] . (D.10)

Leaving α and β as free parameters, the seventh-order family becomes

a = g = −38α− 502β − 11

1440
, b = e =

238α+ 418β − 31

480
,

c = d =
382α− 158β + 401

720
.

Finally, solving the whole system of equations, a ninth-order family with
only one free parameter β is obtained as follows:

a = g =
3 (478β − 3)

5420
, b = e =

3 (4426β + 199)

5420
,

c = d =
24 (83β + 42)

1355
, α =

1726β + 191

542
.

Taking β = 0 a ninth-order scheme with a six-point stencil in the RHS can
be obtained,

191

542

∫ ξi−1

ξi−2

f dξ +

∫ ξi

ξi−1

f dξ +
191

542

∫ ξi+1

ξi

f dξ

≈ ∆ξ

5420
[−9fi−3 + 597fi−2 + 4032fi−1 + 4032fi + 597fi+1 − 9fi+2] .

(D.11)

For the (l + 1)th-order families the local truncation error can be written as

τi =
[
1 + 2l+1α+

(
3l+1 − 1

)
β

− (l + 1)
(

3la+ 2lb+ c+ e+ 2lg
) ] ∆ξl+1

(l + 1)!
f

(l)
i , (D.12)

and listed in Table D.1 for different values of weights and parameters.
Ninth order can be achieved with a RHS stencil of six points. If greater

accuracy is sought one can increase the stencil, the number of neighbour
integrals considered or both, to let more Taylor coefficients match in the
left- and right-hand sides of equation (D.1). Furthermore, the study of fam-
ily rules need not be limited to odd orders. For instance, to derive a local
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fourth-order family the system of equations is

a+ b+ c+ d+ e+ g = 1 + 2α+ 2β,

31a+ 21b+ c− e− 21g = 1!
1 + 2

(
21 − 1

)
α+

(
1− 23 + 32

)
β

2!
,

32a+ 22b+ c+ e+ 22g = 2!
1 + 23α+

(
33 − 1

)
β

3!
.

Taking β = 0 and a = e = g = 0, the family rule with free α becomes

b =
10α− 1

12
, c =

2(1− α)

3
, d =

22α+ 5

12
,

with the truncation error being

τi = (1− 10α)
∆ξ4

4!
f

(3)
i .

If α = 1/10 the rule (D.9) is recovered.

a, g b, e c, d α β τi

1
2 −∆ξ3

12 f
(2)
i

1+2α+2β
2 α β −

(
1−10α−46β

2

)
∆ξ3

3! f
(2)
i

10α+46β−1
24

14α−22β+13
24 α β −

(
38α−502β−11

6

)
∆ξ5

5! f
(4)
i

3
5

1
10 −∆ξ5

100 f
(4)
i

−38α−502β−11
1440

238α+418β−31
480

382α−158β+401
720 α β −

(
191−542α+1726β

12

)
∆ξ7

7! f
(6)
i

3
38

27
38

11
38 −3∆ξ7

5320 f
(6)
i

3(478β−3)
5420

3(4426β+199)
5420

24(83β+42)
1355

1726β+191
542 β −216(3762β−137)

1355
∆ξ9

9! f
(8)
i

− 9
5420

597
5420

1008
1355

191
542 −29592

1355
∆ξ9

9! f
(8)
i

TABLE D.1: Summary of parameters, weights and local
truncation errors for eqn.(D.3). No entry value means that

the parameter is equal to zero.

D.1.3 CIR at Boundaries

The whole background for internal points has been provided, but it is nec-
essary, in closing the algebraic system, to treat the integrals of f(ξ) at both
boundaries using the same strategy of matching Taylor series terms. A gen-
eral boundary rule centered at (ξp−1, ξp) close to ξ0 could be

mc2∑
k=−mc1

αk

∫ ξp+k

ξp+k−1

f dξ = ∆ξ

qc∑
k=0

akf(ξk) + τp,

where mc2, qc ∈ N0 and {mc1 ∈ N0| 0 ≤ mc1 ≤ p − 1}. The equivalent rule
close to ξn reads

mc2∑
k=−mc1

αk

∫ ξp−k

ξp−k−1

f dξ = ∆ξ

qc∑
k=0

akf(ξn−k) + τp,
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where {mc1 ∈ N0| 0 ≤ mc1 ≤ n− p}. Note that α’s and a’s are the same for
both rules and might be identical or not to the internal ones. The set {ak}
links with {αk} via similar expansion (D.4) centered at ξp. With similar
particularizations as before, boundary CIRs at ξ0, p = 1, and ξn, p = n, have
the form∫ ξ1

ξ0

f dξ + α

∫ ξ2

ξ1

f dξ

= ∆ξ [af0 + bf1 + cf2 + df3 + ef4 + gf5 + kf6] + τ1,

α

∫ ξn−1

ξn−2

f dξ +

∫ ξn

ξn−1

f dξ

= ∆ξ [afn + bfn−1 + cfn−2 + dfn−3 + efn−4 + gfn−5 + kfn−6] + τn,

where the local truncation error is

τ1,n =
[
1 +

(
2l+1 − 1

)
α− (l + 1)

(
b+ 2lc

+ 3ld+ 4le+ 5lg + 6lk
) ] ∆ξl+1

(l + 1)!
f

(l)
1,n.

For the 9th-order rule and any other with a large stencil in the RHS, an
additional boundary expression should be added at ξ1 and ξn−1 since some
points of the stencil in (D.11) are outside the domain. For instance, close to
the left boundary the integral

∫ ξ2
ξ1
f dξ would require f(ξ−1). For this case

we have

α−1

∫ ξ1

ξ0

f dξ +

∫ ξ2

ξ1

f dξ + α1

∫ ξ3

ξ2

f dξ

= ∆ξ [af0 + bf1 + cf2 + df3 + ef4 + gf5] + τ2,

α1

∫ ξn−2

ξn−3

f dξ +

∫ ξn−1

ξn−2

fdξ + α−1

∫ ξn

ξn−1

f dξ

= ∆ξ [afn + bfn−1 + cfn−2 + dfn−3 + efn−4 + gfn−5] + τn−1,

with the truncation error being

τ2,n−1 =
[
1 +

(
29 − 1

)
α−1 + α1

− 9
(
28a+ b+ d+ 28e+ 38g

) ]∆ξ9

9!
f

(8)
2,n−1.

All parameters and weights are provided in Table D.2 and D.3 for bound-
ary points. As a remark, a 5th-order boundary rule yields Simpson’s rule
for the integral between ξ0 and ξ2. Some of the rules are also provided in
Table D.2 with a free α but adding this new degree of freedom enlarges the
stencil of the RHS by one node. Notice that the ninth-order rule for nodes
adjacent to boundary has broken the symmetry to get a shorter stencil in
the RHS.
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Local order α a b c d e g k

3
α 1−α

2
1+3α

2

1
2

1
2

5
α 9−α

24
13α+19

24
13α−5

24
1−α
24

1 1
3

4
3

1
3

7
α 475−27α

1440
637α+1427

1440
7(73α−57)

720
241−129α

720
77α−173

1440
27−11α

1440

27
11

281
990

1028
495

196
165 − 52

495
1
90

9 − 1375
56097

71036879
212046660

5684564
5890185 −13273643

23560740
19246592
53011665 − 3823643

23560740
253964
5890185 − 1085521

212046660

TABLE D.2: Parameter and weights for boundary rule at ξ0
and ξn. No entry value means that the parameter is equal

to zero.

α−1 α1 a b c d e g

5
32

4357
6112

2337
61120

33687
61120

3897
3820

258
955 − 693

61120
9

12224

TABLE D.3: Parameter and weights for 9th-order boundary
rule at ξ1 and ξn−1.

D.1.4 Global truncation error

The global truncation error can be estimated as the sum of all the elements
of the vector that results from M−1τ , that is,

τ = 1TM−1τττ ,

being 1 = (1, 1, · · · , 1)T . The vector of local truncation errors at each point
of the mesh {ξi} is written as

τ = ∆ξl+1diag(λλλ)f (l),

where λλλ = (λ1, λ2, · · · , λn)T is the vector of constants, that are equal for
inner points, and f (l) = (f

(l)
1 , f

(l)
2 , · · · , f (l)

n )T is the vector of lth-derivative
values. So

τ = ∆ξl+1λ?λ?λ? · f (l) with λ?λ?λ? = 1TM−1diag(λλλ).

It can be rearranged as a weighted average of values for the lth derivative
at ξi,

τ = ∆ξl∆ξ n
λ?λ?λ? · 1
n

λ?λ?λ? · f (l)

λ?λ?λ? · 1 = ∆ξlLλ? f (l)
a ,

the truncation error for the integral of the whole domain isO
(
∆ξl

)
whereas

for the integrals of the intervals is O
(
∆ξl+1

)
.

D.2 CIR as linear multistep method

In this section an analogy between CIR and linear multistep methods for
ODE is established. It will be theoretically shown that if CIR is cast as a
linear multistep method it is not stable but when used as originally pro-
posed, that is, a system of equations, it can provide very accurate solutions
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without stability problems in the iterative matrix solver, at least for the nu-
merical tests proposed. CIR can compute the 1D integral

F (ξ) =

∫ ξ

ξ0

f(ξ′) dξ′,

being ξ′ the integration variable. In a general case, the integrand f may
depend on F , thus dealing with an integral equation

F (ξ) =

∫ ξ

ξ0

f(ξ′, F (ξ′)) dξ′.

As will be shown CIR can also be interpreted as a linear multistep method
applied to the first-order ODE

dF
dξ

= f(ξ, F (ξ)), F (ξ0) = 0.

In a linear multistep method dF/dξ is approximated as a linear combina-
tion of the discrete integrals {Fi} at equally spaced mesh points {ξi} and the
RHS is computed by a linear combination of f values at the same points.

w∑
s=0

λsFi+s = ∆ξ
w∑
s=0

µsfi+s.

Coefficients λs and µs are determined by Taylor expansion matching, nu-
merical integration, or interpolation. If the integrals in equation (D.3) are
separated as∫ ξi+k

ξi+k−1

f dξ = Fi+k − Fi+k−1, k ∈ {0,±1,±2},

and the F -terms are grouped with a previous shift of indices, e.g. Fi−3 → Fi
and so on, then the recurrence relation reads

βFi+5 + (α− β)Fi+4 + (1− α)Fi+3 − (1− α)Fi+2

−(α− β)Fi+1 − βFi = ∆ξ
[
gfi+5 + efi+4 + dfi+3

+cfi+2 + bfi+1 + afi

]
. (D.13)

Then, the λs and µs coefficients are

{λs|s = 0, . . . , 5} = {−β,−(α− β),−(1− α), 1− α, α− β, β},
{µs|s = 0, . . . , 5} = {a, b, c, d, e, g}.

Equation (D.13) is a 5-step method which will be implicit in a general non-
linear case where f depends on F , as long as g 6= 0. In the limit case of
β = 0, the method is 3-step, i.e.,

αFi+3 + (1− α)Fi+2 − (1− α)Fi+1 − αFi
= ∆ξ

[
efi+3 + dfi+2 + cfi+1 + bfi

]
, (D.14)
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where

{λs|s = 0, . . . , 3} = {−α,−(1− α), 1− α, α},
{µs|s = 0, . . . , 3} = {b, c, d, e}.

To keep the same number of points in the left- and right-hand side, a = g =
0 has been taken. Additionally, if e 6= 0 then (D.14) is an implicit method.
The coefficients {α, β} and parameters {a, b, c, d, e, g} are those in Table D.1.
As any CIR scheme can be cast as a linear multistep method one may won-
der at this point if there is any reason to implement CIR as a multistep
method instead of a tri/penta-diagonal system. Of course, this will depend
on the characteristics of multistep CIR, so in the following subsections the
consistency and stability of a multistep CIR of three or five steps will be
checked.

D.2.1 Consistency

A linear multistep method is consistent if the truncation error defined as

τi =

∑w
s=0

(
λsFi+s −∆ξµsF

′
i+s

)
∆ξ
∑w

s=0 µs
,

tends to zero when the space length ∆ξ tends to zero as well. τi is divided
by ∆ξ

∑w
s=0 µs in order to normalize the error. In terms of the first, ρ(r) =∑w

s=0 λsr
s, and second, σ(r) =

∑w
s=0 µsr

s, characteristic polynomials the
condition reads

ρ(1) = 0 and
dρ
dr

∣∣∣∣
1

= σ(1) 6= 0. (D.15)

For the 5-step CIR these two polynomials are

ρ5(r) = βr5 + (α− β) r4 + (1− α)r3 − (1− α)r2 − (α− β)r − β,
σ5(r) = gr5 + er4 + dr3 + cr2 + br + a,

whereas for the 3-step CIR

ρ3(r) = αr3 + (1− α)r2 − (1− α)r − α,
σ3(r) = er3 + dr2 + cr + b.

The first condition in (D.15) is met because terms containing α and β cancel
out, whereas the second condition yields the equation (D.5). Therefore a
3-step CIR is consistent if α 6= −1/2 and so is 5-step CIR is if α+ β 6= −1/2.
As none of the CIR schemes put forward in the previous section, e.g. (D.9),
(D.10) and (D.11), have negative values of {α, β}, the condition is satisfied.

D.2.2 Stability

Aside from consistency, stability plays an important role in the numerical
analysis. The theory of linear multistep method distinguishes two types
of stabilities: Zero- and A-stability. A method is called zero-stable if the
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numerical solution
w∑
s=0

λsFi+s = 0,

remains bounded as i → ∞, or roughly speaking, round-off errors do not
grow up. That is checked by the roots of the first characteristic polynomial
which must lie within a unit circle with at most a simple root on the edge
of the disk. For instance, the polynomial ρ3(r) can be factorized as

ρ3(r) = (r − 1)
(
αr2 + r + α

)
.

The first root has |r0| = 1. If r1, r2 are the roots of αr2 + r + α, then{
r1 + r2 = −1/α,

r1r2 = 1.

The second equation of the system tells that if one solution, e.g., |r1| ≤ 1
then |r2| ≥ 1 ∀α. Similarly with the 5-step CIR,

ρ5(r) = (r − 1)
(
βr4 + αr3 + r2 + αr + β

)
,

one root is on the unit disk and the others obey
r1 + r2 + r3 + r4 = −α/β,
r1r2 + r2r3 + r3r4 + r4r1 + r1r3 + r2r4 = 1/β,

r1r2r3 + r2r3r4 + r1r2r4 + r1r3r4 = −α/β,
r1r2r3r4 = 1,

where at least one root will be outside the disk. Therefore, the CIR method
as a linear multistep method is not stable, it is mandatory that the integrals
related to CIR be solved by a tri/pentadiagonal matrix system.

D.2.3 Build an ODE solver with CIR

As seen in previous section, CIR, written as a multistep method does not
have good stability properties but written as a system of equations is able
to numerically approximate ODEs. Let us consider for instance the nonho-
mogeneous linear BVP

dF
dξ

+ pF = q, ξ0 ≤ ξ ≤ ξn,
F (ξ0) = FBC,

(D.16)

being FBC a given value at the boundary, p = p(ξ) and q = q(ξ) two given
functions. The CIR method can be applied to dF/dξ with, e.g., rule (D.9) in
the following manner

1

10

∫ ξi−1

ξi−2

dF
dξ

dξ +

∫ ξi

ξi−1

dF
dξ

dξ +
1

10

∫ ξi+1

ξi

dF
dξ

dξ =
3∆ξ

5

(
dF
dξ

∣∣∣∣
i−1

+
dF
dξ

∣∣∣∣
i

)
,
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and then

Fi−1 − Fi−2

10
+ Fi − Fi−1 +

Fi+1 − Fi
10

=
3∆ξ

5
(qi−1 + qi)−

3∆ξ

5
(pi−1Fi−1 + piFi) .

Grouping the terms Fi−1 and Fi, a four-point stencil for the discrete solution
{Fi} at inner points reads

− 1

10
Fi−2 +

(
3∆ξ

5
pi−1 −

9

10

)
Fi−1 +

(
3∆ξ

5
pi +

9

10

)
Fi +

1

10
Fi+1 =

3∆ξ

5
(qi−1 + qi) .

As for the boundary schemes, the boundary expressions are employed with
order 5 and α = 1 in table D.2,(

∆ξ

3
p0 − 1

)
F0 +

4∆ξ

3
p1F1 +

(
∆ξ

3
p2 + 1

)
F2 =

∆ξ

3
(q0 + 4q1 + q2) ,(

∆ξ

3
pn−2 − 1

)
Fn−2 +

4∆ξ

3
pn−1Fn−1 +

(
∆ξ

3
pn + 1

)
Fn =

∆ξ

3
(qn−2 + 4qn−1 + qn) ,

Thus, the numerical solution is achieved by solving

Mv = ∆ξM2q + vBC, M = M1 + ∆ξM2 diag(p),

where the vectors are defined as v = (F0, F1, . . . , Fn)T , vBC = (FBC, 0, . . . , 0)T ,
p = (p0, p1, . . . , pn)T , q = (q0, q1, . . . , qn)T and the matrices

M1 =



1 0 0 · · · · · · · · · 0

−1 0 1
. . .

. . .
. . .

...

− 1
10 − 9

10
9
10

1
10

. . .
. . .

...

0 − 1
10 − 9

10
9
10

1
10

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . − 1
10 − 9

10
9
10

1
10

0 · · · · · · 0 −1 0 1



,

M2 =



0 0 0 · · · · · · · · · 0

1
3

4
3

1
3

. . .
. . .

. . .
...

0 3
5

3
5 0

. . .
. . .

...

... 0 3
5

3
5 0

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 3
5

3
5 0

0 · · · · · · 0 1
3

4
3

1
3



.

Should greater accuracy be required, e.g., the rule with α = 27/11 could be
used. The M1, M2 banded matrices would change to
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M1 =



1 0 0 · · · · · · · · · 0

−1 −16
11

27
11

. . .
. . .

. . .
...

−11 −27 27 11
. . .

. . .
...

0 −11 −27 27 11
. . .

...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . −11 −27 27 11

0 · · · · · · 0 −27
11

16
11 1



,

M2 =



0 · · · · · · · · · · · · · · · 0

281
990

1028
495

196
165 − 52

495
1
90

. . .
...

3 27 27 3 0 0
...

0 3 27 27 3
. . .

...

...
. . .

. . .
. . .

. . .
. . . 0

... 0 0 3 27 27 3

0 · · · 1
90 − 52

495
196
165

1028
495

281
990



.

Two numerical cases are proposed. The first one is a homogeneous, q(ξ) =
0, linear BVP with variable coefficient, p(ξ) = 2ξ, and boundary condition
F (0) = 1 whose exact solution is the Gaussian function, F (ξ) = e−ξ

2
. The

other case is a stiff problem with p(ξ) = 1000, q(ξ) = 3000 − 2000e−ξ and
F (0) = 0. Its exact solution takes the form

F (ξ) = 3− 997e−1000 ξ + 2000e−ξ

999
,

and describes a process with two characteristic length scales as shown be-
low in Figure D.3a.

In both cases the l2-norm of the vector difference between the numerical
solution and the exact one was computed. The system of equations for both
cases was calculated in Matlab with one of Lapack solvers for banded ma-
trices. The numerical solution of CIR was compared with two versions of a
Predict-Evaluate-Correct-Evaluate (PECE) multistep method. This method
was also coded in Matlab.

• Predictor with an Adams-Bashforth four-, five-step (AB4, AB5)

• Corrector with an Adams-Moulton three-, four-step (AM3, AM4)

Clearly, 4th-order CIR is slightly better than AB4-AM3 and both reach 4th-
order accuracy. In contrast, the AB5-AM4 method is 5th-order, whereas
6th-order CIR attains the theoretical order of accuracy.
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The initial strong variation of the stiff problem makes the CIR schemes
not so practical in this case if ∆ξ is constant. Due to the two distinct char-
acteristic lengths a function ∆ξ = ∆ξ(ξ) is needed, but CIR is derived with
∆ξ constant. The solution is to define a break point, ξb thereby a constant
∆ξ1 is used within the interval [ξ0, ξb] whereas a constant ∆ξ2 is adopted in
the interval [ξb, ξn], being ∆ξ1 < ∆ξ2. The link between the two zones is ξb
where the equations for the boundaries are employed.

As in the Gaussian problem, system CIR achieves 4th-, 6th-order ac-
curacy, see Figure D.3b. ∆ξ stands for average interval length. For the
variable step-size PECE method with tolerance 10−4, ∆ξmin = 10−5 and
∆ξmax = 10−2, the l2-norm was 4.41·10−5 with ∆ξ = 1.4·10−3. For the same
∆ξ the 4th-order CIR gives a l2-norm of 10−8 and the sixth-order, 10−12.

As already commented CIR cast as multistep method is unstable. It was
verified for both ODE problems that this was in fact the case.

10−4 10−3 10−2 10−1 100
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FIGURE D.2: Linear ODE dF/dξ + 2ξF = 0; F (0) = 1.
Black Square, 4th-order rules; Black Triangle, 6th-order
rules; Black Diamond, AB4-AM3; Black Circle, AB5-AM4.
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(A) Exact solution.

10−4 10−3 10−2 10−1 100

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

∆ξ

l 2
-n

or
m
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6th-order rules.

FIGURE D.3: Linear ODE dF/dξ+1000F = 3000−2000e−ξ;
F (0) = 0.
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Appendix E

Compact derivation for
nonuniform meshes

E.1 Introduction

Let us consider a mesh with nonuniform interval sizes. We are interested in
obtaining the point values of the first derivative if the values of the function
are known at the same locations. For that purpose implicit formulations
will be employed where a linear combination of derivatives is related to a
linear combination of the values of the function via Taylor series matching.
This technique is also known as compact derivation.

ξ0 ξ1 ξ2 ξ3 ξ4 ξ5

f(ξ)

ξ̃0 ξ̃1 ξ̃2 ξ̃3 ξ̃4 ξ̃5

f1(ξ̃)
f2(ξ̃)

f3(ξ̃)
f4(ξ̃)

f5(ξ̃)

FIGURE E.1: Nonuniform mesh (left) vs Uniform mesh
(right).

When deriving the coefficients of a compact derivative a constant in-
terval size is usually assumed. In order to employ a uniform mesh where
the coefficients of the linear combination are easier to derive, a mapping
is constructed between the original nonuniform mesh and a uniform one,
related to one another with the Jacobian, J , of the mapping. A traditional
way of defining the interval sizes in a nonuniform mesh is via an expan-
sion/contraction ratio, defined as the ratio between the sizes of two consec-
utive intervals. If such is the case, the Jacobian is constant in each interval
and discontinuous at the interval edges which causes the derivatives of the
function in the uniform mesh to be discontinuous at the same place, even
though the original derivatives were continuous. That is,

∂

∂ξ
=

1

J
∂

∂ξ̃
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E.2 Inner Coefficients

In the uniform mesh we seek to link a linear combination of the derivatives
of the function around the location ξ̃i to a linear combination of the function
values around ξ̃i,

αf
(1)k
i−1 + f

(1)k+1
i + βf

(1)k+2
i+1 =

1

∆ξ̃
[afi+2 + bfi+1 + cfi + dfi−1 + efi−2] .(E.1)

The notation adopted is that f (l)k+1
i represents the lth-derivative at ξ̃i of the

function fk+1 defined in the interval [ξ̃i, ξ̃i+1]. We use piecewise C∞ func-
tions, one for each interval, that come from the mapping of a function that
is C∞ over the whole domain. The jump in the derivatives at the interval
boundaries is associated to the ratio between Jacobians of the two consec-
utive mappings. The jump in the mth-derivative is this ratio to the mth
power.

Note that fi is the same at both sides of the edge but f (1) is not, that is
why it must be specified to which function (interval) the derivative belongs.
In the following, we will construct compact formulations for the derivatives
at the right of the discontinuity. We will match coefficients at point ξi for
(k + 1)-functions. The Taylor series expansion of fi+2 is

fi+2 =fi+1 + ∆ξ̃f
(1)k+2
i+1 +

∆ξ̃2

2!
f

(2)k+2
i+1 +

∆ξ̃3

3!
f

(3)k+2
i+1 + · · ·

=fi+1 + ∆ξ̃

(Jk+2

Jk+1

)
f

(1)k+1
i+1 +

∆ξ̃2

2!

(Jk+2

Jk+1

)2

f
(2)k+1
i+1

+
∆ξ̃3

3!

(Jk+2

Jk+1

)3

f
(3)k+1
i+1 + · · · .

In the second expression all terms belong to the (k + 1)-function which is
C∞, so we can develop each term in its Taylor series:

fi+1 = fi + ∆ξ̃f
(1)k+1
i +

∆ξ̃2

2!
f

(2)k+1
i +

∆ξ̃3

3!
f

(3)k+1
i + · · · ,

f
(1)k+1
i+1 = f

(1)k+1
i + ∆ξ̃f

(2)k+1
i +

∆ξ̃2

2!
f

(3)k+1
i + · · · ,

f
(2)k+1
i+1 = f

(2)k+1
i + ∆ξ̃f

(3)k+1
i +

∆ξ̃2

2!
f

(4)k+1
i + · · · ,

f
(3)k+1
i+1 = f

(3)k+1
i + ∆ξ̃f

(4)k+1
i +

∆ξ̃2

2!
f

(5)k+1
i + · · · .

Collecting like terms we obtain

fi+2 =fi + ∆ξ̃

(
1 +
Jk+2

Jk+1

)
f

(1)k+1
i +

∆ξ̃2

2!

(
1 +
Jk+2

Jk+1

)2

f
(2)k+1
i

+
∆ξ̃3

3!

(
1 +
Jk+2

Jk+1

)3

f
(3)k+1
i + · · · .
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On the other hand,

fi+1 =fi + ∆ξ̃f
(1)k+1
i +

∆ξ̃2

2!
f

(2)k+1
i +

∆ξ̃3

3!
f

(3)k+1
i + · · · ,

fi−1 =fi −∆ξ̃f
(1)k
i +

∆ξ̃2

2!
f

(2)k
i − ∆ξ̃3

3!
f

(3)k
i + · · ·

=fi −∆ξ̃
Jk
Jk+1

f
(1)k+1
i +

∆ξ̃2

2!

( Jk
Jk+1

)2

f
(2)k+1
i

− ∆ξ̃3

3!

( Jk
Jk+1

)3

f
(3)k+1
i + · · · .

Finally

fi−2 =fi−1 −∆ξ̃f
(1)k−1
i−1 +

∆ξ̃2

2!
f

(2)k−1
i−1 − ∆ξ̃3

3!
f

(3)k−1
i−1 + · · ·

=fi−1 −∆ξ̃
Jk−1

Jk
f

(1)k
i−1 +

∆ξ̃2

2!

(Jk−1

Jk

)2

f
(2)k
i−1

− ∆ξ̃3

3!

(Jk−1

Jk

)2

f
(3)k
i−1 + · · · .

Each term of the final expression has to be written in terms of fk+1 at ξi,
fi−1 has already been obtained so for the rest,

f
(1)k
i−1 =f

(1)k
i −∆ξ̃f

(2)k
i +

∆ξ̃2

2!
f

(3)k
i − · · ·

=
Jk
Jk+1

f
(1)k+1
i −∆ξ̃

( Jk
Jk+1

)2

f
(2)k+1
i +

∆ξ̃2

2!

( Jk
Jk+1

)3

f
(3)k+1
i − · · · .

Likewise for f (2)k
i−1 . Collecting all terms,

fi−2 =fi −∆ξ̃
Jk + Jk−1

Jk+1
f

(1)k+1
i +

∆ξ̃2

2!

(Jk + Jk−1

Jk+1

)2

f
(2)k+1
i

− ∆ξ̃3

3!

(Jk + Jk−1

Jk+1

)3

f
(3)k+1
i + · · · .
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Summing up. The expansions for the RHS are

fi+2 =fi + ∆ξ̃

(
1 +
Jk+2

Jk+1

)
f

(1)k+1
i +

∆ξ̃2

2!

(
1 +
Jk+2

Jk+1

)2

f
(2)k+1
i

+
∆ξ̃3

3!

(
1 +
Jk+2

Jk+1

)3

f
(3)k+1
i + · · · ,

fi+1 =fi + ∆ξ̃f
(1)k+1
i +

∆ξ̃2

2!
f

(2)k+1
i +

∆ξ̃3

3!
f

(3)k+1
i + · · · ,

fi =fi,

fi−1 =fi −∆ξ̃
Jk
Jk+1

f
(1)k+1
i +

∆ξ̃2

2!

( Jk
Jk+1

)2

f
(2)k+1
i

− ∆ξ̃3

3!

( Jk
Jk+1

)3

f
(3)k+1
i + · · · ,

fi−2 =fi −∆ξ̃
Jk + Jk−1

Jk+1
f

(1)k+1
i +

∆ξ̃2

2!

(Jk + Jk−1

Jk+1

)2

f
(2)k+1
i

− ∆ξ̃3

3!

(Jk + Jk−1

Jk+1

)3

f
(3)k+1
i + · · · .

whereas for the LHS,

f
(1)k
i−1 =

Jk
Jk+1

f
(1)k+1
i −∆ξ̃

( Jk
Jk+1

)2

f
(2)k+1
i

+
∆ξ̃2

2!

( Jk
Jk+1

)3

f
(3)k+1
i + · · · ,

f
(1)k+1
i =f

(1)k+1
i ,

f
(1)k+2
i+1 =

Jk+2

Jk+1

(
f

(1)k+1
i + ∆ξ̃f

(2)k+1
i +

∆ξ̃2

2!
f

(3)k+1
i + · · ·

)
.

The different compact derivatives will be obtained by matching terms in
both sides for fi and f (m)k+1

i up to the desired order. The equations for the
factors in the linear combination given in scheme (E.1) are

a+ b+ c+ d+ e = 0,

a

(
1 +
Jk+2

Jk+1

)
+ b− d JkJk+1

− eJk + Jk−1

Jk+1
= α

Jk
Jk+1

+ 1 + β
Jk+2

Jk+1
,

a

2!

(
1 +
Jk+2

Jk+1

)2

+
b

2!
+
d

2!

( Jk
Jk+1

)2

+
e

2!

(Jk + Jk−1

Jk+1

)2

= −α
( Jk
Jk+1

)2

+ β
Jk+2

Jk+1
,

a

3!

(
1 +
Jk+2

Jk+1

)3

+
b

3!
− d

3!

( Jk
Jk+1

)3

− e

3!

(Jk + Jk−1

Jk+1

)3

=
α

2!

( Jk
Jk+1

)3

+
β

2!

Jk+2

Jk+1
.

The coefficients until f (3)k+1
i have been written. If the coefficients are such

that they satisfy up to f (l)k+1
i the truncation error is of the order of ∆ξ̃l. In

general the equation that equalizes the terms containing f (l)k+1
i derivative
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in both linear combinations is

a

l!

(
1 +
Jk+2

Jk+1

)l
+
b

l!
+ (−1)l

d

l!

( Jk
Jk+1

)l
+ (−1)l

e

l!

(Jk + Jk−1

Jk+1

)l
= (−1)l+1 α

(l − 1)!

( Jk
Jk+1

)l
+

β

(l − 1)!

Jk+2

Jk+1
.

E.3 Boundary coefficients

For the node at the left boundary of the complete domain we have

f
(1)1
0 + αf

(1)2
1 =

1

∆ξ̃
(af0 + bf1 + cf2 + df3). (E.2)

The equations that link all factors to f0 and f (1)1
0 are

f0 =f0,

f1 =f0 + ∆ξ̃f
(1)1
0 +

∆ξ̃2

2!
f

(2)1
0 +

∆ξ̃3

3!
f

(3)1
0 + · · · ,

f2 =f0 + ∆ξ̃

(
1 +
J2

J1

)
f

(1)1
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∆ξ̃2

2!

(
1 +
J2

J1

)2

f
(2)1
0

+
∆ξ̃3

3!

(
1 +
J2

J1

)3

f
(3)1
0 + · · · ,

f3 =f0 + ∆ξ̃

(
1 +
J2
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J3

J1

)
f

(1)1
0 +

∆ξ̃2

2!

(
1 +
J2

J1
+
J3

J1

)2

f
(2)1
0

+
∆ξ̃3

3!

(
1 +
J2

J1
+
J3

J1

)3

f
(3)1
0 + · · · ,

f
(1)1
0 =f

(1)1
0 ,

f
(1)2
1 =

J2

J1

(
f

(1)1
0 + ∆ξ̃f

(2)1
0 +

∆ξ̃2

2!
f

(3)1
0 + · · ·

)
.

According to the linear combination (E.2), the equations to be satisfied from
f0 to f (4)1

0 are

a+ b+ c+ d = 0,

b+ c

(
1 +
J2

J1

)
+ d

(
1 +
J2

J1
+
J3

J1

)
= 1 + α

J2

J1
,

b

2!
+
c

2!

(
1 +
J2

J1

)2

+
d

2!

(
1 +
J2

J1
+
J3

J1

)2

= α
J2

J1
,

b

3!
+
c

3!

(
1 +
J2

J1

)3

+
d

3!

(
1 +
J2

J1
+
J3

J1

)3

=
α

2!

J2

J1
,

b

4!
+
c

4!

(
1 +
J2

J1

)4

+
d

4!

(
1 +
J2

J1
+
J3

J1

)4

=
α

3!

J2

J1
,
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and the lth-derivative for f (l)1
0 is

b

l!
+
c

l!

(
1 +
J2

J1

)l
+
d

l!

(
1 +
J2

J1
+
J3

J1

)l
=

α

(l − 1)!

J2

J1
.

For the right boundary

f (1)n+1
n + αf

(1)n
n−1 =

1

∆ξ̃
(afn + bfn−1 + cfn−2 + dfn−3). (E.3)

The terms are

fn =fn,

fn−1 =fn −∆ξ̃
Jn
Jn+1

f (1)n+1
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∆ξ̃2
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( Jn
Jn+1
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)2
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)3
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The equations for the coefficients in (E.3) from fn to f (4)n+1
n are

a+ b+ c+ d = 0,

− b JnJn+1
− c
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and the lth-derivative for f (l)n+1
n is
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