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Abstract

Solutions of Partial Differential Equations (PDEs) form the basis of many mathematical mod-
els in physics and medicine. In this work, a novel Tensor B-spline methodology for numerical
solutions of linear second-order PDEs is proposed. The methodology applies the B-spline
signal processing framework and computational tensor algebra in order to construct high-
performance numerical solvers for PDEs. The method allows high-order approximations, is
mesh-free, matrix-free and computationally and memory efficient.

The first chapter introduces the main ideas of the Tensor B-spline method, depicts the main
contributions of the thesis and outlines the thesis structure.

The second chapter provides an introduction to PDEs, reviews the numerical methods for
solving PDEs, introduces splines and signal processing techniques with B-splines, and describes
tensors and the computational tensor algebra.

The third chapter describes the principles of the Tensor B-spline methodology. The main
aspects are 1) discretization of the PDE variational formulation via B-spline representation
of the solution, the coefficients, and the source term, 2) introduction to the tensor B-spline
kernels, 3) application of tensors and computational tensor algebra to the discretized variational
formulation of the PDE, 4) tensor-based analysis of the problem structure, 5) derivation of
the efficient computational techniques, and 6) efficient boundary processing and numerical
integration procedures.

The fourth chapter describes 1) different computational strategies of the Tensor B-spline
solver and an evaluation of their performance, 2) the application of the method to the forward
problem of the Optical Diffusion Tomography and an extensive comparison with the state-
of-the-art Finite Element Method on synthetic and real medical data, 3) high-performance
multicore CPU- and GPU-based implementations, and 4) the solution of large-scale problems
on hardware with limited memory resources.
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Notation

N set of natural numbers

N0 set of natural numbers including zero

Z set of integer numbers

R Euclidean space

Rd d−dimensional Euclidean space, d ∈ N
H Hilbert space

L2 Lebesgue space of square integrable functions

W1,2 Sobolev space of L2-functions with weak L2-derivatives
up to the 1-st order

a scalar

a ∈ RN real vector of size N

A ∈ RM×N real matrix of size M ×N
Am
n ∈ RM×N real tensor of size M ×N

Am
n ∈ RM1×..×Mk×N1×..×Nl real tensor of size M1× ..×MK ×N1× ..×NL, K ∈ N,

L ∈ N
f(x) univariate scalar function, f : R→ R
g(x) multivariate scalar function, g : Rd → R
w(x) = (w1(x), ..., wm(x)) multivariate vector function, w : Rd → Rm

df
dx

derivative of a univariate scalar function f(x)
∂g
∂xi

partial derivative of a multivariate scalar function g(x)

∇g(x) =
(
∂g
∂x1
, · · · , ∂g

∂xd

)
gradient of a multivariate scalar function g(x)

∇2g(x) = ∇ · ∇g(x) = Laplacian of a multivariate scalar function g(x)
∂2g
∂x21

+ . . .+ ∂2g
∂x2d

∇ · u(x) = ∂u1
∂x1

+ . . .+ ∂ud
∂xd

divergence of a multivariate vector function u : Rd → Rd

βn(x) univariate B-spline of degree n ∈ N0, x ∈ R
βnk,h(x) = βn(x/h− k) univariate B-spline of degree n, attached to the k-th

node (k ∈ Z) of a regular grid with step size h ∈ R
βnk,h(x) = βn(x/h− k) multivariate B-spline of degree n, attached to the k-th

node (k ∈ Zd) of a multidimensional regular grid with
step size h ∈ Rd

a1 · a2 scalar product of two vectors

〈f1, f2〉 scalar product of two functions

∗ convolution

6



Chapter 1

Introduction

Partial Differential Equations (PDEs) play a significant role in many scientific, engineering, and
medical applications. They describe physical phenomena in electrostatics, electrodynamics,
optics, heat transfer, fluid dynamics, diffusion, solid mechanics, etc.

Various applications that require solutions of PDEs in a volume domain are of practical
importance in particular for applications in medicine. Applications include modelling of light
propagation (e.g. near-infrared light propagation in the tissue – the forward problem of Optical
Diffusion Tomography (ODT) [1]), modelling of the electrical potential distribution (e.g. the for-
ward problem of Electrical Impedance Tomography [2]), modelling of the current flow (e.g. the
forward problem of Electrical Capacitance Tomography [3]), modelling of the electrical poten-
tial distribution (e.g. the forward problem of electroencephalography [4]), modelling of the
heat transfer in the solid objects and living tissues (e.g. solving a bioheat equation [5]), fluid
simulation (e.g. weather prediction [6]), and many others.

In most real-life cases, it is too difficult or impossible to obtain an analytical solution of a
PDE. Therefore numerous numerical methods are employed to achieve an approximate solution
with sufficient precision. Often finding a numerical solution of a PDE is a computationally
intensive task. Therefore the development of fast and accurate PDE solvers is an essential field
of research.

1.1 Tensor B-spline Methodology for PDEs

1.1.1 Motivation

This work was motivated by the practical need to solve large PDEs for biomedical applications
and the intuition that the characteristics of tensor- and B-spline algorithms may fit well to the
data structure and algorithmic requirements encountered in solving PDEs. In particular, we
hoped that such a method:

1. Benefits from a signal processing framework that allows accurate transition from the
continuous nature of physical problems to discrete formulations suited for computing,
ideally for each, the coefficients, source and solution of a PDE.

2. Allows to employ high-degree basis functions easier in comparison to the state-of-the-art
high-order Finite Element Methods. This high-degree basis should be more computation-
ally efficient than one in FEM.

3. Does not require domain mesh construction, which is a difficult and expensive procedure,
but rather is based on a simple regular grid. At the same time the method should allow
to handle arbitrarily-shaped domains.

7



4. Allows to solve large-scale problems (up to billion unknowns) on the off-the-shelf computer
workstations, is scalable to high-performance computing architectures.

5. Can solve PDE of different type, and can be incorporated in the state-of-the-art medical
imaging frameworks as an alternative to FEM solvers.

1.1.2 B-Splines

B-splines are a perfect candidate for a powerful signal processing instrument that can be incor-
porated in the numerical solver of PDEs. B-splines have been used for computer graphics and
computer-aided design for a long time, and they have been applied to signal and image pro-
cessing and reconstruction as well. B-splines have been successfully applied to a wide range of
applications including signal interpolation, approximation, smoothing, resampling [7], multidi-
mensional reconstruction [8], multiresolution processing [7], parametric contour representation
[9], etc. B-splines provide high-quality representation of an underlying signal, accurate differ-
entiation and integration, and multi-scale transformations via a set of efficient filtering-based
techniques [10, 11].

1.1.3 Tensors

Tensors are the instrument that can help to exploit the structure of a discrete PDE formulation
represented with tensor-product B-splines. Tensors are widely used in physics and increasingly
used in signal processing for operations on multidimensional data and data analysis [12]. Ten-
sor decompositions are an important tool for revealing the hidden components in the data [13],
machine learning [14], etc. Compared to matrices, such tensors allow us to represent multi-
dimensional structures more compactly and naturally [13]. To some extent, tensors can help
to overcome the computational difficulties of large-scale problems. The computational tensor
algebra framework [15, 16] helps to preserve data structure and coherence and allows us to
derive efficient solving algorithms to solve multidimensional tensor problems. The use of the
tensor structure of a multidimensional signal reconstruction problem formulated in terms of
B-splines enables the computability of very large problems on standard hardware [8].

1.1.4 Tensor B-spline Method

In this thesis, an accurate and efficient Tensor B-spline numerical method for PDEs is developed.
The method can be applied to various PDE types in the context of different applications.

Fig. 1.1 highlights the main properties that make Tensor B-spline method a promising
candidate for numerical solutions of PDEs. B-splines naturally link continuous and discrete
domains [7] (Fig. 1.1 (a)), while providing excellent approximations of coefficients, sources, and
solutions. The combination of B-splines and tensor algebra preserves the intrinsic structure of
the problem and enforces both sparsity, separability and decomposed tensor structure in a very
natural way (Fig. 1.1 (b)). At the same time, it makes it easy to design highly efficient parallel
and matrix-free algorithms. As a result, highly accurate and efficient solutions can be obtained
(Fig. 1.1 (c)).
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in Numerical Methods
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Figure 1.1: Diagram of Tensor B-spline PDE solver main features.

The Tensor B-spline method described in this thesis has many appealing properties of a
“generic” numerical PDE solver: 1) it provides us with accurate and flexible discretizations
of PDE coefficients, sources, and solution, 2) it allows for efficient integration strategies, 3) it
makes it relatively simple to develop fast and memory-efficient algorithms, 4) the mathematical
elegance of computational tensor algebra [15] leads to natural and transparent models.

Tensor B-spline method can provide many advantages compared to the widely used FEM.
FEM uses Lagrange polynomials that tend to oscillate, relies on mesh that difficult to gen-
erate, uses sparse matrices that are inefficient for high-performance computations, consumes
significant amount of memory for large-scale problems or when high-order basis is used. Tensor
B-spline method provides accurate high-degree B-spline representations, efficient tensor-based
algorithms, requires no meshing of a domain. The Tensor B-spline methodology allows conver-
gence in a small number of iterations e.g., using the conjugate gradient (CG) or the multigrid
(MG) solver, and can be highly memory-efficient thanks to in-place computations enabled by a
tensor structure of the problem. Tensor B-spline method overcomes the integration difficulties
on the domain boundary via the use of the Divergence Theorem and B-spline properties.

The benefits of combining tensors and B-splines have been shown for solving diffusion PDEs
in Optical Diffusion Tomography [17, 18] resulting in a generic numerical method for PDEs [19].

1.2 Contributions of the Thesis

The main contributions of this thesis are:

1. A novel Tensor B-spline numerical method for PDEs. We show how an application of
B-spline functions and algorithms together with tensors and computational tensor algebra
results in efficient numerical solutions of PDEs. The method allows high-order approxi-
mations, is mesh-free, supports domains with complex boundaries and provides efficient
matrix-free parallel algorithms for numerical solutions of PDEs.

2. We propose a pervasive usage of a B-spline signal processing framework for numerical
solutions of PDEs in order to benefit from efficient representations and filter-based pro-
cessing of PDE coefficients, source and solution. We proposed an efficient integration
method in the proximity of the PDE boundaries. The integration method is based on the
Divergence Theorem and the properties of B-splines.

3. The decomposed tensor structure of the B-spline-based PDE formulation is shown. The
tensor B-spline kernels are introduces, and an elegant method of optimization of compu-
tations via tensor algebra approach is presented.

4. We apply the Tensor B-spline method to the forward problem of the ODT, perform an
extensive comparison with the state-of-the-art FEM on synthetic and real medical data

9



and show the method advantages. We show how high-performance multicore CPU- and
GPU-based implementations of the Tensor B-spline solver can be constructed, and large-
scale solutions with limited memory resources can be obtained.

The results were published in three papers:

1. D. Shulga, O. Morozov, and P. Hunziker “A Tensor B-spline Approach for Solving the
Diffusion PDE with Application to Optical Diffusion Tomography”, IEEE Transactions
on Medical Imaging 36 (4), 972-982, 2017.

2. D. Shulga, O. Morozov, and P. Hunziker “Solving 3-D PDEs by Tensor B-Spline Method-
ology: A High Performance Approach Applied to Optical Diffusion Tomography”, IEEE
Transactions on Medical Imaging 37 (9), 2115-2125, 2018.

3. D. Shulga, O. Morozov, V. Roth, F. Friedrich, and P. Hunziker “Tensor B-Spline Nu-
merical Methods for PDEs: a High-Performance Alternative to FEM”, preprint arXiv:
1904.03057, 2019.

1.3 Thesis structure

The thesis consists of four chapters. In the second chapter, the thesis background is presented
with an introduction to PDEs, review of the numerical methods of PDEs, introduction to splines
and B-spline signal processing, and finally, an introduction to tensors and computational tensor
algebra.

The third chapter presents the Tensor B-spline numerical method for PDEs. This chapter
describes the method’s motivation, begins with a PDE weak formulation, applies B-spline basis
functions, and constructs a tensor-based formulation of the problem. Then, the analysis of the
formulation is presented with examples of the tensor structures in two- and three-dimensions.
Then an efficient integration method is given, as well as the application of different boundary
conditions. The chapter is concluded with the method summary and discussion.

The fourth chapter presents the Tensor B-spline method implementation, evaluation, and
comparison with the state-of-the-art FEM. Efficient computational strategies are presented.
An extensive comparison with FEM is performed using an example of the Diffusion PDE in
the context of the ODT forward problem solution. The results of the comparison are presented
for two- and three-dimensional cases. A high-performance evaluation of large-scale system
operators and a large-scale solution on a heterogeneous workstation are presented. The chapter
is concluded with a discussion.

The thesis is concluded with a summary.
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Chapter 2

Background

2.1 Introduction

In this chapter, we provide an introduction to Partial Differential Equations (PDEs), describe
some commonly used PDEs and different boundary conditions. Then we review state-of-the-
art numerical methods for PDEs and discuss their advantages and disadvantages. We overview
splines, their properties, B-spline interpolation, and approximation via digital filtering. We give
an introduction to tensors and computational tensor algebra. Finally, we discuss the modern
numerical methods for PDEs and the potential of B-splines and tensors in application to the
numerical solutions of PDEs.

2.2 Partial Differential Equations

Partial Differential Equations (PDEs) play an important role in many disciplines, including
physics, engineering, biology, medicine, etc. PDEs describe physical phenomena in electrostat-
ics, electrodynamics, optics, heat transfer, fluid dynamics, diffusion, elasticity, sound propaga-
tion.

The unknown function in a PDE usually represents a physical quantity, often of spatially
continuous nature, and the derivatives represent its rates of change. A PDE for a real multi-
variate function ϕ(x), x ∈ Rd

ξ

(
x, ϕ,

∂ϕ

∂x1

, ...,
∂ϕ

∂xd
,
∂2ϕ

∂x1∂x1

, ...,
∂2ϕ

∂x1∂xd
, ...

)
= 0, x ∈ Ω, (2.1)

links the function ϕ(x) and its partial derivatives in some domain Ω ⊂ Rd (Fig. 3.12). In order
to obtain a unique solution of the PDE (2.1), boundary conditions (BC) have to be provided
to define the function behavior on the domain boundary ∂Ω.

In cases when the PDE unknown function depends on time t, equation 2.1 also includes
time derivatives ∂ϕ/∂t, ∂2ϕ/∂t2, ....
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∂Ω

Ω

n

Figure 2.1: An example of a two-dimensional domain Ω ⊂ R2 with a smooth boundary ∂Ω;
n ∈ R2 is an outward normal to the domain boundary.

A PDE is called linear if ξ(. . .) is a linear function of ϕ(x) and its derivatives. This work
considers linear second-order equations in one-, two-, and three- dimensions (d = 1, 2, 3). The
function ϕ(x) is assumed to be twice continuously differentiable in the domain Ω. The boundary
∂Ω is assumed to be Lipschitz-continuous [20].

2.2.1 Boundary Conditions and Initial Values

A PDE governs a family of possible solutions; a particular solution is defined by the auxiliary
conditions like boundary conditions and initial values. A PDE can be coupled with boundary
conditions of different types. For x ∈ ∂Ω, the following boundary conditions can be applied [21]:

1. Dirichlet BC ϕ(x) = g(x) (non-homogeneous) and ϕ(x) = 0 (homogeneous), specifies the
value of the function on the boundary;

2. Neumann BC ∇ϕ(x) ·n = g(x), specifies the value of the normal derivative ∇ϕ(x) ·n on
the boundary;

3. Robin BC α(x)(∇ϕ(x) · n) + β(x)ϕ(x) = g(x), specifies the combination of the function
value and the normal derivative on the boundary;

4. Cauchy BC ϕ(x) = a(x), ∇ϕ(x) · n = b(x) specifies separately the values of the function
and its normal derivative on the boundary;

5. Mixed BC specifies different boundary conditions on disjoint parts of the boundary.

For time-dependent problems, the auxiliary conditions consist of the initial value of the
function on the time boundary (t = 0) combined with any of the boundary conditions listed
above.

2.2.2 Green’s Function

The impulse response of the PDE (2.1) with subject to some specified boundary conditions is
called the Green’s function [22]. The Green’s function G(x, s), x, s ∈ Rd of a linear differential
operator L = L(x) acting on the collection of distributions over Ω ∈ Rd, is the solution (also
called the fundamental solution for L) of

LG(x, s) = δ(x− s), (2.2)

where δ(x) is the Dirac delta function. If the Green’s function G(x, s) can be determined for
a given operator L, then the solution of the equation Lϕ(x) = g(x) can be determined as the
convolution of G(x, s) with the right hand side g(x):

ϕ(x) = G ∗ g =

ˆ
Ω

G(x, s)g(s)ds. (2.3)
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2.2.3 Classification of Second-Order Linear PDEs

Let us consider the general form of a second-order linear PDE in two dimensions, x ∈ R2:

a(x)
∂2ϕ

∂x2
1

+ b(x)
∂2ϕ

∂x1∂x2

+ c(x)
∂2ϕ

∂x2
2

+ d(x)
∂ϕ

∂x1

+ e(x)
∂ϕ

∂x2

+ f(x)ϕ(x) = g(x). (2.4)

The PDE properties depend on the relative magnitudes of the coefficients a(x), b(x), and c(x).
Depending on the sign of the discriminant b(x)2 − 4a(x)c(x) [21]:

1. if b(x)2 − 4a(x)c(x) < 0, the PDE is called elliptic,

2. if b(x)2 − 4a(x)c(x) = 0, the PDE is called parabolic,

3. if b(x)2 − 4a(x)c(x) > 0, the PDE is called hyperbolic.

A given PDE may be of one type at a specific point x′, and of another type at some other
point x′′.

From a physical viewpoint, elliptic, parabolic, and hyperbolic PDEs represent a steady state
or equilibrium processes, time-dependent diffusion processes, and wave propagation correspond-
ingly. Elliptic equations describe systems in their minimal energy state. Parabolic equations
describe evolutionary phenomena that lead to a steady state described by an elliptic equation.
Hyperbolic equations often model the transport of some physical quantity, e.g. mass transfer
in fluids [21].

2.2.4 Examples of Second Order Linear PDEs

Here we review second order linear PDEs that describe some frequent physical problems. These
include wave equation, diffusion equation, heat equation, Poisson and Laplace equations, and
convection-diffusion equation.

Wave Equation

For a time-dependent pressure field ϕ(x, t), the wave equation [21] is defined as

∂2ϕ(x, t)

∂t2
= c2∇2ϕ(x, t) + f(x, t), x ∈ Ω, (2.5)

where c is the speed of the wave propagation in the media, and f(x, t) is the force term. The
wave equation is a hyperbolic equation that arises in the problems of vibrations, electrostatics,
electromagnetics, fluid dynamics, acoustics, etc.

Diffusion Equation

The linear diffusion equation [21] has the following form

∂ϕ(x, t)

∂t
= ∇ · [D(x)∇ϕ(x, t)], x ∈ Ω, (2.6)

where ϕ(x, t) is the density of the diffusing material, and D(x) is the diffusion coefficient. The
diffusion equation applies to problems in mass diffusion, momentum diffusion, heat diffusion,
etc. In physics, the Diffusion PDE describes the behavior of the collective motion of micro-
particles in a material, in optics, it describes the light propagation in a turbid media.

13



Heat Equation

The linear heat equation [23], which is a special case of the diffusion equation, is defined as

ρcp
∂ϕ(x, t)

∂t
−∇ · [k(x)∇ϕ(x)] = g(x), x ∈ Ω, (2.7)

where ϕ(x, t) is the temperature, k(x) is the thermal conductivity, ρ is the density, cp is the
heat capacity, and g(x) is the rate at which the energy is generated per unit volume of the
medium. In a steady state (∂ϕ(x, t)/∂t = 0), (2.7) reduces to

−∇ · [k(x)∇ϕ(x)] = g(x), x ∈ Ω. (2.8)

Poisson and Laplace Equations

A special case of the diffusion equation is the Laplace equation [21]

∇2ϕ(x) = 0, x ∈ Ω. (2.9)

The Laplace equation applies to steady-state problems in ideal fluid flow, mass diffusion, heat
transfer, electrostatics, etc.

Another particular case of the diffusion equation is the Poisson equation [21]

∇2ϕ(x) = q(x), x ∈ Ω, (2.10)

which is an inhomogeneous form of the Laplace equation.

Convection-diffusion equation

The convection-diffusion equation [21] is a combination of the diffusion and convection equa-
tions. The convection-diffusion equation is defined as

∂ϕ(x, t)

∂t
= ∇ · [D(x)∇ϕ(x, t)]−∇ · (vϕ(x, t)) + g(x), (2.11)

where ϕ(x, t) specifies the concentration for mass transfer, D(x) is the diffusion coefficient, v
is the velocity field that the quantity is moving with, g(x) describes sources or sinks of the
ϕ(x, t).

2.3 Review of Numerical Methods for PDEs

In most real-life cases, especially when a domain boundary has a complex geometry, it is too
difficult or impossible to solve a PDE analytically. Therefore, numerous numerical methods are
employed in order to get an approximate solution with sufficient precision. For many problems
finding a numerical solution of a PDE might be a very computationally intensive task. Each
numerical method for PDEs has its own strengths and weaknesses and may be better suited
for one problem and less suited for others.

Sobolev Spaces

Consider V be a vector space over a field R equipped with a scalar (inner) product. The scalar

product defines a norm ||f ||V = (f · f)
1
2 , f ∈ V. A space V is complete (with respect to the

given scalar product) if every Cauchy sequence fn ∈ V, n ∈ N converges to an element f ∈ V,
i.e. limn→∞ ||fn − f || = 0. A complete vector-space V is called a Hilbert space H.
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Consider a bounded domain Ω ⊂ Rd. A Lebesgue space L2(Ω) contains all functions v(x),
x ∈ Rd such that ˆ

Ω

v2(x)dx <∞. (2.12)

For u(x), v(x) ∈ L2(Ω) the scalar product is defined as

〈u, v〉L2(Ω) =

ˆ
Ω

u(x)v(x)dx, (2.13)

and the corresponding norm is defined as

||u(x)||L2(Ω) =
√
〈u, u〉 =

√ˆ
Ω

u2(x)dx. (2.14)

Sobolev space W1,2(Ω) contains all functions u(x) such that u(x) ∈ L2(Ω) and ∂u(x)/∂xi ∈
L2(Ω). Functions in W1,2(Ω) do not have to be differentiable at every point, and can be
continuous with piecewise continuous partial derivatives in the domain Ω.

The scalar-product of functions u(x), v(x) ∈W1,2(Ω) is defined as

〈u, v〉W1,2(Ω) =

ˆ
Ω

u(x)v(x)dx +

ˆ
Ω

∇u(x) · ∇v(x)dx, (2.15)

and the norm is defined as

||u(x)||W1,2(Ω) =

√ˆ
Ω

u2(x)dx +

ˆ
Ω

|∇u(x)|2dx. (2.16)

We assume that the domain boundary ∂Ω is Lipschitz continuous, meaning that such bound-
ary is continuous and does not have to be differentiable at each point [20]. For example, closed
polygonal boundaries satisfy this property.

Smoothness

The smoothness of a function is defined by the number of continuous derivatives it has. A real
function ϕ(x), x ∈ R is of class Ck if it has continuous derivatives ϕ′(x), ϕ′′(x), ... ϕ(k)(x). A
function is of class C∞, or smooth, if it has continuous derivatives of all orders.

2.3.1 Finite Difference Method

The finite difference method (FDM) [24] approximates the differential operator by a finite
difference.

Consider a C∞ real function ϕ(x), x ∈ R in the neighbourhood of x0. For ∆x = x−x0,∆x >
0 the Taylor series of ϕ(x) is defined as

ϕ(x0 + ∆x) = ϕ(x0) +
∂ϕ(x0)

∂x
∆x+

1

2

∂2ϕ(x0)

∂x2
(∆x)2 + . . . . (2.17)

Let ϕ(x) be a function of class C2. Using the first two terms in the expansion (2.17), we obtain

ϕ(x0 + ∆x) = ϕ(x0) +
∂ϕ(x0)

∂x
∆x+O(∆x2), (2.18)

whereO(∆x2) designates the approximation error proportional to ∆x2. Thus, an approximation
of the first derivative can be obtained as

∂ϕ

∂x
(x0) ≈ 1

∆x
[ϕ(x0 + ∆x)− ϕ(x0)] (2.19)
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for a sufficiently small ∆x. This approximation is known as forward difference. Similarly, a
backward and a central difference-based approximation can be obtained:

ϕ′(x0) ≈ 1

∆x
[ϕ(x0)− ϕ(x0 −∆x)] , (2.20)

ϕ′(x0) ≈ 1

2∆x
[ϕ(x0 + ∆x)− ϕ(x0 −∆x))] . (2.21)

An approximation of the second derivative can be determined as

ϕ′′(x0) ≈ 1

∆x
(ϕ′(x0 + ∆x)− ϕ′(x0 −∆x)) =

1

∆x

(
ϕ(x0 + ∆x)− ϕ(x0)

∆x
− ϕ(x0)− ϕ(x0 −∆x)

∆x

)
=

1

∆x2
(ϕ(x0 + ∆x)− 2ϕ(x0) + ϕ(x0 −∆x)) . (2.22)

We consider the Poisson equation in two dimensions

−∇2ϕ(x) = g(x), x ∈ Ω ⊂ R2, (2.23)

with defined boundary conditions on ∂Ω. In the FDM a regular rectangular grid with a grid
step h = (h1, h2) for each dimension is constructed as a tensor product of grids {(x1)i =
x0

1 + (i− 1)h1}Ii=1 and {(x2)j = x0
2 + (j − 1)h2}Jj=1. The point x0 = (x0

1, x
0
2) is the origin of the

grid. An example of an FDM grid is shown in Fig. 2.2. Domain nodes Ωe = ((x1)i, (x2)j) ∈ Ω
and boundary nodes ∂Ωe = ((x1)i, (x2)j) ∈ ∂Ω. A continuous function ϕ(x) is sampled at the
grid nodes ϕ((x1)i, (x2)j) = ϕi,j.

Using (2.22), the Laplacian of ϕ(x) can be approximated as

∇2
hϕ̂i,j =

ϕ̂i+1,j − 2ϕ̂i,j + ϕ̂i−1,j

h2
1

+
ϕ̂i,j+1 − 2ϕ̂i,j + ϕ̂i,j−1

h2
2

(2.24)

∂Ω

node

x1

x2

h1

h2

(i, j) (i+ 1, j)(i− 1, j)

(i, j − 1)

(i, j + 1)

Figure 2.2: An example of a two-dimensional FDM grid for a domain Ω; black nodes depict
the stencil corresponding to (2.24).

By setting h = h1 = h2 we get

−∇2
hϕ̂i,j =

1

h2
(4ϕ̂i,j − ϕ̂i+1,j − ϕ̂i−1,j − ϕ̂i,j+1 − ϕ̂i,j−1), (2.25)

that corresponds to a stencil (Fig. 2.2)



0 −1 0
−1 4 −1
0 −1 0


 . (2.26)
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The right-hand side is sampled at node values gi,j = g((x1)i, (x2)j). The resulting system of
equations

−∇2
hϕ̂i,j = gi,j, i = 1, 2, . . . I, j = 1, 2, . . . J, (2.27)

has to be solved with an application of appropriate boundary conditions. In a matrix-vector
form, it is represented as

Af = g, (2.28)

where A ∈ RIJ×IJ , f ∈ RIJ , and g ∈ RIJ .
In order to apply the Dirichlet BC the right-hand side of (2.28) is modified, and the system

of equations is solved for interior nodes only. The application of Neumann BC requires an
introduction of ghost points. A detailed description of the application of boundary conditions
in FDM can be found in the corresponding literature [24].

The FDM method is simple and easy to program. However, a major drawback of the method
is its lack of flexibility: the FDM requires uniform grid, C2-smoothness of the solution ϕ(x)
and it is problematic to impose boundary conditions.

2.3.2 Finite Element Method

The Finite Element Method (FEM) is a very popular and widely used numerical method for
solving PDEs [25, 26]. The FEM provides high flexibility in the handling of arbitrarily shaped
domains and yields high approximation quality, especially in its hp-variant [27].

Consider the Poisson equation with homogeneous Dirichlet boundary conditions:

−∇2ϕ(x) = g(x), x ∈ Ω, (2.29)

ϕ(x) = 0, x ∈ ∂Ω (2.30)

on a domain Ω ⊂ Rd, where g(x) is a known source function. The unknown function ϕ(x) can
be approximated by an expansion

ϕ(x) ≈ ϕ̂(x) =
∑

k∈Z

ckηk(x), (2.31)

where ηk(x) are linearly-independent basis functions. Let the basis functions satisfy the bound-
ary condition ηk(x) = 0, x ∈ ∂Ω. The residual RΩ(x) = ∇2ϕ̂(x) + g(x) is minimized over the
domain Ω. According to the method of weighted residualsˆ

Ω

ψl(x)RΩ(x)dx =

ˆ
Ω

ψl(x)(∇2ϕ̂(x) + g(x))dx = 0, l ∈ Z. (2.32)

The Ritz-Galerkin method [25] assigns the weight functions to be equal to basis functions
ψl(x) = ηl(x), that is equivalent to the least squares method:

ˆ
Ω

ηl(x)

(
∇2
∑

k∈R

ckηk(x) + g(x)

)
dx = 0, (2.33)

∑

k∈R

ck

ˆ
Ω

ηl(x)∇2ηk(x)dx = −
ˆ

Ω

g(x)ηl(x)dx. (2.34)

After integration by parts we get

∑

k∈R

ck

ˆ
Ω

∇ηk(x)∇ηl(x)dx =

ˆ
Ω

g(x)ηl(x)dx, (2.35)

ηk(x) = 0, ηl(x) = 0, x ∈ ∂Ω. (2.36)
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The main idea of FEM is to split the domain Ω into a set of non-overlapping sub-domains
(called elements) Ωe and define basis functions ηk(x) piecewisely within each element Ωe. In
two-dimensions the elements are usually represented by triangles, in three-dimensions by tetra-
hedrons. More complex geometrical object are also possible. Consider a domain Ω which is
approximated by a finite set Υ = {Ωe}Ee=1 of non-overlapping elements (triangles) Ωe, such

that a domain approximation Ω̃ = ∪Ωe∈ΥΩe. The domain boundary ∂Ω is approximated by a
polygon ∂̃Ω = ∪∂Ωe∈Υ′⊂Υ∂Ωe. An example of a two-dimensional conforming mesh with nodes
at vertices of triangles of a domain Ω is shown in Fig. 2.3.

∂Ω

node Ωe
x1

x2

Figure 2.3: An example of a two-dimensional mesh of a domain Ω.

After the domain meshing we obtain:

∑

k∈Z

ck

E∑

e=1

ˆ
Ωe

∇ηk(x)∇ηl(x)dx =
E∑

e=1

ˆ
Ωe

g(x)ηl(x)dx, (2.37)

ηk(x) = 0, ηl(x) = 0, x ∈ ∂Ω. (2.38)

The equation (2.37) boils down to the system of linear equations

Ac = b, (2.39)

where

A =
E∑

e=1

ˆ
Ωe

∇ηk(x)∇ηl(x)dx, A ∈ RK×K , (2.40)

b =
E∑

e=1

ˆ
Ωe

g(x)ηl(x)dx, b ∈ RK . (2.41)

Fig. 2.4 depicts an example of a two-dimensional basis function and an approximation of a
function in a FEM basis. Note that the basis function is composed of local basis functions. A
Lagrange polynomial of degree p is used as a local basis function, in the linear case (p = 1)

ηei = αei + βei x+ γei y. (2.42)

The coefficients α, β, and γ are generally dependent on a mesh geometry and have to be
determined.
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x2

ϕ̂(x)

ϕ(x)

i j

k

Ωe

i j

k
e

i j

kηei

i j

k
ηek

i j

k

1

ηej

x1

i j

k

η(x1, x2)

a)

b) c)

Figure 2.4: a) An example of a FEM basis function η(x1, x2) in 2-D; b) parts of the η(x1, x2)
are distributed over a mesh element e; c) an approximation ϕ̂(x1, x2) of a function ϕ(x1, x2)
using a FEM basis.

The quality of the approximation can be controlled by the mesh element size or by the degree
of the polynomial basis function. The combination of both is used in hp−FEM methods [27].

Given a set of k+1 data points (x0, y0), ..., (xj, yj), ..., (xk, yk) where no two xj are the same,
the interpolation polynomial in the Lagrange form is a linear combination

L(x) =
k∑

j=0

yjlj(x) (2.43)

of the Lagrange basis polynomials

lj(x) =
∏

0≤m≤k
m 6=j

x− xm
xj − xm

, 0 ≤ j ≤ k. (2.44)

All basis polynomials are zero at x = xi, except li(x), for which it holds that li(xi) = 1.
Figure 2.5 (a) shows an example of non-uniform Lagrange interpolation.

A Lagrange polynomial interpolating cubic B-spline at integer-valued nodes is shown in
Figure 2.5 (b).
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Figure 2.5: (a) Non-uniform Lagrange interpolation, (b) Lagrange polynomial interpolating
cubic B-spline at integer-valued nodes.

Despite the flexibility of FEM, solving a problem PDE by FEM may be computationally
very demanding on large-scale grids if high accuracy is required because:

1. FEM, especially when applied to 3-D domains of arbitrary shape, typically relies on an
unstructured conforming 3-D mesh [28, 29, 30, 31, 25]. The widely-used method to con-
struct a mesh is a Delaunay triangulation [32]. More advanced meshing methods provide
better-quality meshes [33, 34]. Generally, meshing is a time-consuming and challenging
procedure. Meshing automation defines a critical practical problem in FEM-based ap-
proaches, which heavily depends on the specific properties of the domain considered [35].
In FEM, distorted or low-quality meshes can lead to higher errors, but re-meshing is not
guaranteed to be feasible in finite time for complex three-dimensional geometries [36].

2. The use of high order polynomial bases can excessively increase the size of the underly-
ing sparse linear system and its density. High-order Lagrange polynomials are tend to
oscillate (2.5 (b)).

3. For some tasks like soft-field tomography, separation of bases used to represent the forward
solution and parameters [28] increases algorithmic complexity.

4. Approximation of boundaries with linear elements is not accurate in most cases, for
precise boundary approximation curved isoparametric elements are typically required.
Good surface approximation may be difficult to achieve with a low number of FEM
elements [37].

Discontinuous Galerkin FEM

Discontinuous Galerkin (DG) FEM methods have been successfully applied to practical prob-
lems involving elliptic PDEs [38, 39]. Such methods combine physical accuracy and flexibility
of mesh generation via weakly enforced continuity of discontinuous elements, however at the
price of relatively high computational cost [38].

2.3.3 Finite Volume Method

The finite volume method (FVM) [40] is based on a volume integral formulation of the PDE
with a finite partitioning set of volumes used to discretize the domain. The FVM applies
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conservation principles at each finite element volume ensuring global energy conservation in
the whole domain. For example, the FVM is commonly used for solving problems of fluid
dynamics.

Consider a steady transport equation for some quantity ϕ(x), x ∈ Rd

∇ · (vϕ(x)) = ∇ · (D(x)∇ϕ(x)) + g(x), x ∈ Ω, (2.45)

with defined boundary conditions on ∂Ω. Integration over the volume Ω produces

ˆ
Ω

∇ · (vϕ(x)−D(x)∇ϕ(x)) dx =

ˆ
Ω

g(x)dx. (2.46)

By applying the divergence theorem, the left-hand side volume integral can be transformed into
an integral over the boundary ∂Ω:

ˆ
∂Ω

(vϕ(x)−D(x)∇ϕ(x)) · ndS =

ˆ
Ω

g(x)dx. (2.47)

The domain Ω is approximated by a set of finite number of non-overlapping volume elements
Vi such as Ω̃ = ∪Ni=1Vi, Vi ∩ Vj = ∅, ∀i 6= j. An example of the domain discretization is shown
in Fig. 2.6. Therefore, the FVM method solves the following system of equations

ˆ
∂Vi

(vϕ(x)−D(x)∇ϕ(x)) · ndS =

ˆ
Vi

g(x)dx, Vi ⊂ Ω, i = 1, 2, . . . , N (2.48)

∂Ω

node

Ωe

n

∆S

Figure 2.6: An example of a two-dimensional finite volume mesh for a domain Ω.

Like in FEM, the problem (2.48) boils down to solving a system of linear algebraic equations,
where the unknown values ϕi represent some approximation of ϕ(x) in a volume element ∂Vi
[41]. The FVM requires domain meshing and poses difficulties in achieving high precision of
the solution.

2.3.4 Boundary Element Method

In Boundary Element Method (BEM) [42] the boundary ∂Ω is divided intoK elements (Fig. 2.7).
The method solves for K singularity solutions which, when superimposed, satisfies the required
conditions at the midpoint of each element. The system of K equations to be solved is much
smaller than the system needed to solve the same problem using FEM, although the system
matrix is no longer sparse.
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Ω

∂Ω

node

Figure 2.7: An example of a BEM discretization of a two-dimensional domain Ω.

After K solutions are obtained, the solution at any point in Ω can be constructed by Green’s
functions. The method is very accurate due to semi-analytical nature. It uses fewer dimensions
than FEM, therefore, the meshing is more efficient. It is well suited for modeling of thin shell-
like structures of materials. However, BEM matrices are dense and non-symmetrical that for
large problems poses high computational and memory requirements.

2.3.5 Meshless Methods

The meshless methods [43] do not rely on a finite element or volume mesh as FEM or FVM. The
automatic generation of a good quality mesh, especially volumetric, is difficult and consumes
significant time. In meshless methods, the approximation is built based on the nodes only.
The basis functions are placed at the nodes and the numerical integration is performed without
a mesh. An example of a domain discretization is shown in Fig. 2.8. A family of meshless
methods includes element-free Galerkin method (EFG), reproducing kernel particle method
(RKPM), the partition of unity finite element method (PUFEM), etc.

Ω

∂Ω

basisfunction

node

Figure 2.8: Domain discretization in meshless methods.

In most mesh-free methods, complicated non-polynomial interpolation functions are used
that make the integration difficult. Another problem is with Dirichlet BC, as the basis functions
do not satisfy the requirements on the domain boundary ∂Ω. Meshless methods are computa-
tionally less efficient [36] that finite element/volume methods mainly because of complicated
basis functions and inefficient integration [44].

2.3.6 Weighted Extended B-spline Method

The use of splines for solving PDEs has been studied by Höllig [20, 45, 46], who showed how
tensor-product B-splines can be used in the context of finite-element methods. Weighted Ex-
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tended B-splines (WEB) [46] complement a regular B-spline discretization with a basis extension
to satisfy the Dirichlet boundary condition and improve numerical stability. The method does
not require meshing, the basis is constructed on a regular grid.

Consider WEB method in two dimensions. A domain Ω with boundary ∂Ω is approxi-
mated with rectangular grid with grid step h ∈ R. The grid cells Q = lh + [0, 1]2h, l ∈ Z2

are partitioned into interior, boundary, and exterior cells, depending on whether Q ⊆ Ω, or
Q ∩ ∂Ω 6= ∅, or Q ∩ Ω = ∅. Fig. 2.9 (a, b) shows a two-dimensional domain with round
boundary, where interior, boundary and exterior cells are depicted by blue, red and gray colors
correspondingly.
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Figure 2.9: Construction of a two-dimensional WEB basis.

A bivariate tensor product B-spline bnk,h(x) of degree n with grid step h is placed at each
grid node, where multidimensional index k ∈ K ⊂ Z2 is assigned to lower left corner of B-
spline. All B-splines bk(x) are classified into inner B-splines bi(x), i ∈ I ⊂ K, which have at
least one interior cell Qi in their support, and outer B-splines bj(x), j ∈ J = K \ I for which
support of bj(x) consists entirely of boundary and exterior cells. Figure 2.9 (a, b) shows inner
and outer B-splines distinguished with black and red circles placed at the lower left corner of
their supports. For an outer index j ∈ J let I(j) = l + {0, ..., n}m ⊂ I be a set of inner indices
closest to j, assuming that h is small enough so that such an array exists. We denote by

ei,j =
m∏

v=1

n∏

µ=0
lv+µ 6=iv

jv − lv − µ
iv − lv − µ

(2.49)

the values of the Lagrange polynomials associated with I(j) and by J(i) the set of all j with
i ∈ I(j). Then, the WEB-splines

Bi =
w

w(xi)


bi(x) +

∑

j∈J(i)

ei,jbj(x)


 , i ∈ I, (2.50)

form a basis for the WEB-space weBnh(Ω). An example of a WEB-spline placed at the domain
boundary is shown in Fig. 2.9 (c).

The weak formulation of a given PDE is discretized using the WEB-basis, and the resulting
system of algebraic equations is solved using a sparse matrix approach [46].

2.3.7 Isogeometric Analysis Method

Historically, geometric representations used in Finite Element Analysis (FEA) software and in
Computer Aided Design (CAD) software are different. In engineering practice, a design may
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be developed in a CAD system, then its different geometric description (mesh) is generated to
enable FEA. In most cases, a mesh is only an approximation of the CAD model, and often its
generation is semi-automated and may occupy up to 80% of overall analysis time [37].

The main idea of isogeometric analysis [37, 47, 48, 49] is to use the same basis for analy-
sis and geometric representation of the model. Standard CAD designs are based on NURBS
(Non-Uniform Rational B-splines), and isogeometric analysis employs the same basis func-
tions for FEA. NURBS surfaces are transformed into NURBS solids. CAD design geometry
is represented exactly by a coarse mesh of “3-D NURBS elements”. However, NURBS-based
geometries often suffer from gaps, usually achieving only C0 continuity across patch boundaries,
the geometry refinement leads to an excessive overhead of NURBS control points [47]. NURBS
are standard for CAD systems, as they can reproduce conic sections, however, B-splines [48],
T-splines [47], etc., can be employed.

2.4 B-splines

The term B-spline is short for “basis spline”. A spline is a piecewise polynomial function with
segments smoothly connected with each other at nodes (points where the spline segments join).
The smoothness of a spline is defined by its degree n ∈ N0, which determines the number of
continuous derivatives of the spline. A spline can be represented as a weighted sum of shifted
B-spline functions. Since their introduction in the late ’60s [50, 51], B-splines have found many
applications in computer graphics [52], computer-aided design [37], medical imaging [7, 10, 11]
and particularly in numerical solutions of PDEs [20, 45, 46]. This work considers splines with
uniformly distributed nodes.

2.4.1 B-spline Expansion

A univariate spline function s(x), x ∈ R can be uniquely represented by an expansion [50]

s(x) =
∑

k∈Z

ckβ
n(x/h− k), h ∈ R, (2.51)

that involves basis splines (B-splines) functions βn(x/h − k) of degree n expanded by a grid
step h and shifted by an integer k, and the coefficients ck ∈ R. The spline (2.51) is uniquely
described by the B-spline coefficients ck.

B-spline functions are obtained from (n+ 1)-fold convolution of a rectangular pulse β0
+(x)

βn+(x) = β0
+(x) ∗ β0

+(x) ∗ ... ∗ β0
+(x)︸ ︷︷ ︸

(n+1) times

, β0
+(x) =

{
1, x ∈ [0, 1)
0, otherwise

, (2.52)

resulting in a family of functions (shown in Fig. 2.10 (a)) with remarkable properties. Further
in the work we consider only centered B-splines βn(x) = βn+(x+ n+1

2
).
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Figure 2.10: (a) A family of univariate B-spline functions βn+(x) of degrees n = 0...5 obtained
from (n + 1)-fold convolution of the rectangular pulse β0

+(x), (b) An example of interpolation
of samples s(k) using univariate cubic B-spline functions β3(x), s(x) =

∑
k ckβ

3(x− k).

2.4.2 Properties of B-splines

B-spline functions βn(x) are symmetrical and positive in their local support (−n+1
2
, n+1

2
). They

are (n− 1)-times continuously differentiable. The B-spline convolution property (2.52) induces
the following important relations:

βm+n+1(x) =

ˆ +∞

−∞
βm(x− y)βn(y)dy, y ∈ R, m ∈ N0, (2.53)

βm+n+1(k − l) =

ˆ +∞

−∞
βm(x− k)βn(x− l)dx, l ∈ Z. (2.54)

The first derivative of B-spline βn(x) can be determined as

∂βn(x)

∂x
= βn−1

(
x+

1

2

)
− βn−1

(
x− 1

2

)
. (2.55)

Similarly, the second derivative is represented as

∂2βn(x)

∂x2
= βn−2(x+ 1)− 2βn−2(x) + βn−2(x− 1). (2.56)

Analytical integration of a B-spline can be done as follows

ˆ x

−∞
βn(x)dx =

+∞∑

k=0

βn+1

(
x− 1

2
− k
)
. (2.57)

2.4.3 B-spline Interpolation

Often a spline function has to be constructed from a discrete set of data samples sk ∈ R,
k ∈ Z in a way that the spline coincides with input data samples. This scenario is called an
interpolation problem and consists in finding the coefficients ck of expansion (2.51):

∑

l∈Z

clβ
n(x− l)|x=k = sk. (2.58)
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For splines of degree n = 0 and n = 1 the coefficients are equal to data samples ck = sk. For
degrees n ≥ 2 the one should solve the system of equations with some boundary conditions.
Rather than employ a classical matrix-based approach (that is still commonly used by some
authors) this work considers the more efficient digital filtering approach, extensively studied by
Unser [7]. The approach of digital filtering is more efficient than matrix-based algorithms [11].
In this approach, the solution is found by inverse filtering

ck = (bn1 (k))−1 ∗ sk, (2.59)

where bn1 (k) = βn(x)|x=k is a discrete B-spline. The filter kernel (bn1 (k))−1 is called the direct
B-spline filter and can be implemented efficiently using a cascade of first-order casual and
anti-casual recursive filters. In the case of cubic B-spline

(bn3 (k))−1 z←→ 6

z + 4 + z−1
= 6

(
1

1− z1z−1

)( −z1

1− z1z

)
, (2.60)

where z1 = −2 +
√

3. The chain of filters is represented graphically in Fig. 2.11 (a). Note that
boundary conditions should be specified to define spline function behaviour on the boundary.
One could use mirror boundary conditions s(−k) = s(k), s(N) = s(N − 2) shown in the
Fig. 2.11 (b).

sk ck
6 1

1−z1z−1

−z1
1−z1z

a)

−1 0 1 2 3 N − 2
N − 1

N

b)

k

sk

Figure 2.11: a) B-spline inverse transform, b) an example of signal mirror-W boundary condi-
tion.

The spline interpolation can be considered in a broader sense as a sampling problem of a
band-limited function (an analogy with sinc-based interpolation):

s(x) =
∑

k∈Z

skζ
n(x− k), (2.61)

where ζn(x) is a cardinal spline of degree n:

ζn(x) =
∑

k∈Z

(bn1 )−1(k)βn(x− k). (2.62)

The cardinal spline ζn(x) converges to sinc(x) as n goes to infinity. An example of a one-
dimensional interpolation using cubic (n = 3) B-splines is shown in Fig. 2.10 (b).

2.4.4 B-spline Approximation

Sometimes a spline function has to approximate some continuous function g(x), x ∈ R. In this
scenario the initial function g(x) is approximated by a spline sa(x) in a way that minimizes
L2-norm

argmin
sa

||g(x)− sa(x)||L2 . (2.63)
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The solution to this problem is given by

ck =
1

h
〈g(x), ψ̊(x/h− k)〉, ck ∈ l2, (2.64)

where 〈ψ̊(x − k), ψ(x − l)〉 = δ(k − l), and ψ(x) =
∑

k∈Z pkβ
n(x − k). The coefficients can

be efficiently computed via digital filtering using prefiltering and postfiltering filter stages [7].
Once the coefficients ck are obtained, an approximation spline is constructed as

sa(x) =
∑

k∈Z

ckψ(x/h− k). (2.65)

2.4.5 Multivariate B-splines

A d−dimensional B-spline (multivariate B-spline) of degree n is defined as tensor (outer) prod-
uct of d univariate B-splines

βnk,h(x) = βn(x1/h1 − k1) · · · βn(xd/hd − kd), k ∈ Zd, h ∈ Rd (2.66)

that results in separability that is an important property of the multivariate B-spline. An
example of linear and cubic bivariate B-spline functions in presented in Fig. 2.12.

Figure 2.12: Bivariate linear (n = 1) and cubic (n = 3) B-spline functions βn(x).

The multidimensional signal processing benefits from the B-spline separability, for example
in three-dimensional case for s(x), x ∈ R3 the spline representation

s(x) =
∑

k∈Z

∑

l∈Z

∑

m∈Z

cklmβ
n(x1 − k)βn(x2 − l)βn(x3 −m) (2.67)

is separable. The coefficients cklm are found by a successive application of the direct B-spline
transform (2.59) or L2-projection (2.64) along each signal dimension.

2.4.6 Applications

B-splines found a wide application for

1. multidimensional signal zooming, rotation, re-sizing, warping[10, 11, 7, 53],

2. sampling and interpolation, signal reconstruction [8],

3. contour and surface representation, active contour models [9],

4. image pyramids [53], multi-resolution,

5. numerical methods for PDEs [20, 54].
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2.5 Tensors

Tensors are multidimensional objects that are used in numerous fields, including physics, psy-
chometrics, signal processing, data mining, machine learning, etc. and became a powerful
instrument for multidimensional data analysis. Tensors are replacing matrices more and more
in many problems that were originally described in terms of matrices because of the limitations
of flat-view matrix models [13]. One of the important tools in the tensor analysis is tensor de-
compositions [12] that play an important role in the data analysis, compression, noise removal,
and feature extraction [55], data mining and machine learning [14].

2.5.1 Definitions

A tensor A ∈ RK1×K2×···×KN of order N can be represented as an N−way array where ele-
ments ak1k2···kN are indexed by kn ∈ {1, 2, ..., KN}, n = 1, 2, ..., N . From a technical perspective,
tensors are straight-forward generalizations of vectors and matrices, that allow natural repre-
sentation of the functions of more than two indices k1, k2, k3..., as depicted in Fig. 2.13. At
the same time, scalar, vector and matrix can be treated as 0-way, 1-way and 2-way tensor
respectively.

scalarvector matrix

3-way 4-way0-way 1-way 2-way

A

a a A

Ak1 Ak1k2 Ak1k2k3 Ak1k2k3k4

tensor tensor tensor tensor tensor
N-way
tensor

Figure 2.13: Tensors as generalizations of scalars, vectors and matrices.

2.5.2 Tensor Decompositions

Tensor decompositions play an essential role in the multidimensional data analysis. The Canoni-
cal Decomposition (CANDECOMP) and Tucker Decomposition are higher-order generalizations
of the matrix singular value decomposition (SVD) and principal component analysis (PCA).
For example, a third-order tensor A ∈ RK×L×M can be factorized using CANDECOMP as the
sum of a finite number of rank-one tensors

A =
R∑

r=1

xr ◦ yr ◦ zr, (2.68)

where xr ∈ RK , yr ∈ RL, zr ∈ RM . The symbol ”◦” represents the vector outer product.
Fig. 2.14 represents the decomposition graphically.

A
x1

y1

z1

≈ +

x2

y2

z2

+ · · ·+

xR

yR

zR

Figure 2.14: Canonical decomposition of a three-way tensor.
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For example, a third-order tensor A ∈ RK×L×M can be factorized using Tucker decomposi-
tion as a core tensor multiplied by a matrix along each mode

A = G ×1 X×2 Y ×3 Z =
P∑

p=1

Q∑

q=1

R∑

r=1

gpqrxp ◦ yq ◦ zr, (2.69)

where X ∈ RI×P , Y ∈ RJ×Q, Z ∈ RK×R. The symbol ”◦” represents the vector outer product,
×n is n-mode product of a tensor with a matrix . Fig. 2.15 represents the decomposition
graphically.

A

X
= G

Z

Y

Figure 2.15: Tucker decomposition of a three-way tensor.

A more general form for the decomposition (2.69) called block term decomposition has the
following structure

B =
R∑

r=1

Gr ×1 Xr ×2 Yr ×3 Zr, (2.70)

that represents a sum of R Tucker decompositions.

2.5.3 Computational Tensor Algebra

A large number of different tensor products (matrix product, Kronecker product, Khatri-Rao
product, etc.) and limitation of classical tensor index order have been addressed by the Com-
putational Tensor Algebra [15]. This framework unifies the concepts from tensor analysis, mul-
tilinear algebra, and multidimensional signal processing. It facilitates tensor structure analysis
and derivation of efficient computational algorithms.

Tensor Notation

The computational tensor algebra notation is based on the original tensor analysis notation
with some modifications for more convenient manipulations with tensor indices.

We consider vector spaces X ⊆ RK , Y ⊆ RL, Z ⊆ RM , K, L,M ∈ Z. Let a tensor product
space X × Y × Z ⊆ RK×L×M define a scalar field on a discrete finite three-dimensional grid.
The corresponding tensor of this scalar field is denoted as Axyz, that is multidimensional array
with indices being in direct relation with corresponding vector spaces. Tensors indices can be
either covariant (e.g. Axyz), contravariant (e.g. Axyz), or mixed (e.g. Axy

z ).
Computational tensor algebra introduces the commutativity of the tensor product. In anal-

ogy to an ordered physical space, computational tensor algebra requires the vector spaces of
the tensor product space to have a unique predefined order. This constraint leads to the same
result of the tensor products that are evaluated in an arbitrary order because the indices of the
resulted tensor have unique positions determined by a predefined order of vector spaces. Com-
putational tensor algebra introduced the generalized tensor product which combines different
kinds of tensor products (Kronecker product, Khatri-Rao product, etc.).
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2.5.4 Tensor Operations

In this work, a multi-dimensional discrete formulation of a PDE is analysed from a tensor
viewpoint instead of the usual matrix-vector approach. Therefore, we depict the relevance and
generalization of the tensor operations to the matrix ones.

Scaling

For vectors u, v ∈ RN we define corresponding tensors U, V ∈ RN . The scalar a ∈ R. Vector
scaling is defined as [v1, v2, .., vn] = [au1, au2, ..., aun] or v = au. In tensor notation is defined
as

Vn = aUn (2.71)

Dot Product and Frobenius Inner Product

The dot product for vectors is defined as a = uTv or a =
∑N

n=1 unvn and for tensors is defined
as

a = UnV
n (2.72)

For matrices X ∈ RM×N and Y ∈ RM×N we define corresponding tensors X ∈ RM×N

and Y ∈ RM×N . The Frobenius inner product takes two matrices and results in a scalar
a =

∑
mn xmnymn = 〈X,Y〉F . In the tensor notation is defined as

a = XmnYmn (2.73)

Bilinear Form

For matrix A ∈ RN×N we define a corresponding tensor A ∈ RN×N . The bilinear form is
defines as a = uTAv and using tensor notation is defined as

a = Un1A
n1
n2
Vn2 (2.74)

Outer Product

The vector outer product is defines as A = uvT and for tensors

An1n2 = Un1Vn2 (2.75)

Matrix-Vector Product

For matrix B ∈ RM×N and vector g ∈ RM we define tensors B ∈ RM×N and G ∈ RM . The
matrix-vector product g = Bu in a tensor-based notation is defined as

Gm = Bm
n U

n (2.76)

Matrix-Matrix Product

For matrices D ∈ RM×L and C ∈ RN×L we define tensors D ∈ RM×L and C ∈ RN×L. The
matrix-matrix product dml =

∑N
n=1 bmncnl;m = 1, ...,M ;n = 1, ..., N or D = BC the tensor

notation is

Dm
l = Bm

n C
n
l (2.77)
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Elementwise Product

For a vector w ∈ RN we define corresponding tensor W ∈ RN . The elementwise product
[w1, w2, ...wn] = [u1v1, u2v2, ..., unvn] or w = u ◦ v has tensor notation

Wm = UmVm (2.78)

Tensor Product

For matrices F ∈ RMK×NL and E ∈ RK×L we define corresponding tensors F ∈ RM×N×K×L

and E ∈ RK×L. The tensor product F = B ⊗ E, where ⊗ is Kroneker product, in tensor
notation is defined as

Fmn
kl = BmnEkl (2.79)

Generalized Tensor Product

For tensors H ∈ RK×I×M×L and T ∈ RN×I×K the generalized tensor product is defined as

Gni
ml = Hki

mlT
ni
k (2.80)

resulting in a tensor G ∈ RN×I×M×L. There is no straightforward equivalent in the matrix
notation for this operation.

Subtensors

A subset of indices can be fixed in order to get a subtensor. For example, for a tensor Aklm we
fix index l to get a subtensor Ãkm = Aklm|l ∈ L.

2.5.5 Tensor Structure Analysis

A formulation of a multidimensional problem that is done in terms of computational tensor
algebra preserves the original data structure in comparison to the matrix-based formulation.
This information helps to derive efficient solving algorithms [16].

The computational tensor algebra framework has been successfully applied to the problem
of reconstruction of large sets of irregularly sampled multidimensional data [8]. In this case, the
sparse decomposition of the problem was revealed that allowed to implement a highly parallel
memory-efficient spline reconstruction algorithm.

In this work, the computational tensor algebra approach is applied to a discreet variational
formulation of PDEs, reveals its tensor structure and results in efficient computational algo-
rithms, extending the results published in application to Optical Diffusion Tomography forward
problem [17, 18].
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Chapter 3

Tensor B-Spline Numerical Method for
PDEs

3.1 Main Contributions

This chapter presents a new Tensor B-spline method for numerical solutions of PDEs. The
method relies on the use of B-spline functions and algorithms, takes advantage of a tensor
structure of a PDE discrete formulation and high-performance matrix-free computations. The
B-spline signal processing framework is used pervasively to represent all terms of a PDE. The
high-order B-spline representations of PDE coefficients and source are obtained efficiently by
means of separable digital filtering techniques. The method’s efficient integration procedures
result in a multilinear system of equations with a sparse tensor decomposition. This tensor
structure yields several specific computational strategies. No meshing is required, domains
with arbitrarily-shaped boundaries are supported and efficient integration on the boundary is
performed using the Divergence Theorem and properties of B-splines.

3.1.1 The Method Advantages

Common stages of any numerical method for PDE after an error minimization criteria was
chosen are: 1) approximation of the PDE unknown, coefficients and source functions; 2) an
integration process in order to construct the system of algebraic equation; 3) numerical solving
of the resulting algebraic equations. At each stage, the Tensor B-spline method provides some
distinctions in comparison with the state-of-the-art.

B-spline Representations via Digital Filtering

The B-spline-based representations of a PDE coefficients an source are obtained efficiently via
separable digital filtering algorithms. Although B-splines are used in the WEB method [46], the
WEB method does not represent PDE coefficients with B-splines, and spline representations
are treated rather in a traditional way using matrices. We propose to use a B-spline signal
processing framework [7] for PDEs that allows many useful techniques in a computationally-
efficient fashion.

Efficient High-degree Basis

The majority of FEM schemes often use low-degree polynomial elements [28, 30]. The reason
for this is the implementation difficulty and high memory consumption of high-degree FEM.
B-splines provide a less expensive high-degree basis allowing accurate approximation and fast
convergence.
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Mesh-free Discretization

The finite element/volume methods inherently rely on a domain meshing. The mesh conforms
the domain in the majority of cases. Mesh quality highly affects the accuracy and convergence
of an FEM solver [56], but high-quality meshes are challenging to generate [34, 56, 57] and may
consume a significant part of the solving time [37]. Moreover, the mesh requires additional
storage space. Meshless methods eliminate meshing; however, they have inefficient integration
procedures [44]. The B-spline basis is easily constructed on tensor-product grids allowing mesh-
free discretizations.

Efficient Numerical Integration

Meshless methods or methods that use non-conforming domain discretization suffer from inef-
ficient numerical integration [44]. The use of B-spline properties and the Divergence Theorem
provide efficient and straightforward integration techniques.

Tensor-based Optimizations

The analysis of the structure of the discrete formulation allows free optimization of the system
operator computations. The use of computational tensor algebra induces several variants of
the tensors “slicing” and ways of contraction along dimensions. This is rather impossible
with matrix algebra as it flattens the multidimensional structure and diminishes the space for
optimizations.

Efficient Matrix-free Computations

The state-of-the-art numerical methods like FEM [26, 28, 29, 30, 31, 25], WEB [46, 20, 45],
meshless methods [36], DG-FEM [38], and others, rely on a sparse matrix framework and sparse
matrix-vector multiplication (SpMV) for computations. This classical approach of matricizing
inherently multidimensional discrete formulation leaves no room for optimization, requires spe-
cial storage format and consumes additional storage space. Tensors preserve the multidimen-
sional structure of the problem, and, together with B-splines, result in matrix-free kernel-based
efficient computational techniques.

Parallelism and Scalability

Parallelization of the computations in the mesh-based domains might be difficult. Large-scale
problem solutions require a large amount of memory and therefore, expensive hardware. B-
splines are attached to a regular grid and allow intuitive parallelization techniques that are
well-scalable across a different number of CPU cores.

3.2 B-spline Discretization of a PDE

3.2.1 Approximation of the Solution

In most cases, it is either impossible or intractable to obtain an analytic solution of a PDE in
a domain Ω with specified boundary conditions on an arbitrarily-shaped domain boundary ∂Ω.
Therefore the solution is obtained numerically. For that, the unknown function ϕ(x), x ∈ Rd

is approximated by an expansion

ϕ(x) ≈ ϕ̂(x) =
∑

k∈Z

ckηk(x), x ∈ Ω. (3.1)
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From (3.1) it follows that for given basis functions ηk(x), the function ϕ̂(x) is fully described by
the expansion coefficients ck. It is highly important to choose appropriate basis functions ηk(x),
where “appropriate” typically refers to good approximation properties and linear independence.

3.2.2 Variational Formulation of a PDE

The error between the function ϕ(x) and its approximation ϕ̂(x) defines the residual, which is
minimized by specific numerical procedures. For instance, the method of weighted residuals [25]
requires ˆ

Ω

ψl(x)(ϕ(x)− ϕ̂(x))dx = 0, (3.2)

where ψl(x), l ∈ Z are some weight functions. Substitution of (3.1) into (3.2) results in

∑

k∈Z

ck

ˆ
Ω

ψlηk(x)dx =

ˆ
Ω

ψlϕ(x)dx, l ∈ Z. (3.3)

We consider an example of the Diffusion PDE coupled with Robin boundary conditions

−∇ · (D(x)∇ϕ(x)) + µa(x)ϕ(x) = q(x), x ∈ Ω,

2D(x)(∇ϕ(x) · n) + ϕ(x) = 0, x ∈ ∂Ω,
(3.4)

where ϕ(x) is the density of the diffusing material, D(x) is the diffusion coefficient, µa(x) is
the absorption coefficient and q(x) is the source density. We multiply (3.4) by weight functions
ψl(x), l ∈ Z and integrate over the domain Ω:

ˆ
Ω

(−∇ · (D(x)∇ϕ̂(x)))ψl(x)dx +

ˆ
Ω

µa(x)ϕ̂(x)ψl(x)dx−
ˆ

Ω

q(x)ψl(x)dx = 0. (3.5)

Expression under the integral in the first term in Eq. (3.5) can be represented as follows:

[∇ · (D(x)∇ϕ(x))]ψ(x) = ∇ · (ψ(x)D(x)∇ϕ(x))−D∇ϕ(x) · ∇ψ(x), (3.6)

that results in: ˆ
Ω

(−∇ · (D(x)∇ϕ̂(x)))ψl(x)dx =
ˆ

Ω

D(x)∇ϕ̂(x) · ∇ψl(x)dx−
ˆ

Ω

∇ · (ψl(x)D(x)∇ϕ̂(x))dx.

(3.7)

The second term on the right side of (3.7) can be expressed via surface integral using the
Divergence Theorem

ˆ
Ω

∇ · (ψl(x)D(x)∇ϕ̂(x))dx =

ˆ
∂Ω

ψl(x)D(x)∇ϕ̂(x) · nds. (3.8)

Arranging all together we get:

ˆ
Ω

D(x)∇ϕ̂(x) · ∇ψl(x)dx−
ˆ
∂Ω

ψl(x)D(x)∇ϕ̂(x) · nds+
ˆ

Ω

ψl(x)µa(x)ϕ̂(x)dx−
ˆ

Ω

ψl(x)q(x)dx = 0.

(3.9)
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We substitute the Robin boundary condition

∇ϕ̂(x) · n = − 1

2D(x)
ϕ̂(x) (3.10)

into (3.9) and obtain

ˆ
Ω

D(x)∇ϕ̂(x) · ∇ψl(x)dx+
ˆ

Ω

µa(x)ϕ̂(x)ψl(x)dx +
1

2

ˆ
∂Ω

ϕ̂(x)ψl(x)ds =

ˆ
Ω

q(x)ψl(x)dx.

(3.11)

Many formulations have a similar structure as (3.11), therefore it is useful to consider a
more general variational formulation of the form

a(ϕ(x), ψ(x)) = l(ψ(x)), (3.12)

where a(·, ·) is an elliptic bilinear form and l(·) is a bounded linear functional on a Hilbert
space H. Basis (trial) functions ϕ(x) and weight (test) functions ψ(x) belong to a Sobolev space
[58]: ϕ(x) ∈ W1,2(Ω) , ψ(x) ∈ W1,2(Ω), W1,2(Ω) = {f(x) : ||f(x)||L2(Ω) < ∞, ||f(x)||W1,2(Ω) <
∞}.

3.2.3 Ritz-Galerkin Formulation with B-splines

The approximation of the unknown function ϕ̂(x) is expanded over multivariate B-spline basis
functions βnk,h(x) = βn(x1/h1 − k1) · · · βn(xd/hd − kd), h ∈ Rd, attached to the nodes of a

rectangular grid with indices k ∈ Zd as

ϕ̂(x) =
∑

k1

· · ·
∑

kd

ck1···kdβ
nb(x1/h1 − k1) · · · βnb(xd/hd − kd)

=
∑

k∈Zd

ckβ
nb
k,h(x).

(3.13)

In the same way we represent the coefficients of the PDE

D(x) ≈
∑

m∈Zd

Dmβ
np

m,h(x),

µa(x) ≈
∑

m∈Zd

Mmβ
np

m,h(x),
(3.14)

and the light source

q(x) ≈
∑

j∈Zd

Qjβ
ns
j,h(x). (3.15)

The B-spline degrees used for representation of the unknown, coefficients and the source
can be different, we denote 1) nb is the B-spline degree of PDE unknown, 2) np is the B-spline
degree of PDE coefficients, 3) ns is the B-spline degree of a PDE source.

Functions D(x), µa(x), and q(x) in the expansions above are obtained by interpolation or
approximation (e.g. L2-projection) [7] of known distributions. The B-spline coefficients Dm,
Mm, and Qj are computed via efficient digital-filtering algorithms as will be described further
in this chapter.
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By choosing test functions ψl(x) = βnb
l,h(x), we obtain the following Ritz-Galerkin formula-

tion [25] (equivalent to the least squares method) of (3.11):

∑

k

Ck

∑

m

Dm

ˆ
Ω

(
∇βnb

k,h(x) · ∇βnb
l,h(x)

)
β
np

m,h(x)dx+

∑

k

Ck

∑

m

Mm

ˆ
Ω

βnb
k,h(x)βnb

l,h(x)β
np

m,h(x)dx+

1

2γ

∑

k

Ck

ˆ
∂Ω

βnb
k,h(x)βnb

l,h(x)ds =

∑

j

Qj

ˆ
Ω

βns
j,h(x)βnb

l,h(x)dx, k,m, l, j ∈ Zd.

(3.16)

3.3 Tensor Structure of the B-spline-based PDE Dis-

cretization

The discrete Ritz-Galerkin formulation (3.16) is inherently multidimensional. Indeed, the for-
mulation has more dimensions than the initial PDE problem. In three-dimensional case the
dimension of indices k, l and m equal to 3, the naive multiplication of basis functions prior to
the contraction with coefficients results in 3× 3× 3 = 9 dimensions.

In order to deal with this situation, two main ideas are commonly used:

1. the basis functions are chosen with small support in order to make the discretization
sparse and therefore the problem computationally feasible;

2. the multidimensional formulation is folded into sparse matrices and vectors to fit well-
established routines of Matrix Algebra [20, 45, 25, 59], and afterwards, the solution is
rearranged into the original dimensions of the problem.

However, the standard approach of matricizing the multidimensional formulation has its
limitations. While it flattens and merges the different dimensions, the underlying structure
(containing valuable information for efficient computations) appears to be hidden. Given this
flattened representation, there is only limited room for optimization, mainly dealing with values
and indices of the block-diagonal sparse matrix format. This format, however, typically has
little in common with the original problem structure. Moreover, the structure of the (sparse)
matrix needs to be represented, adding overhead to the implementation and rendering a software
framework less generic.

Tensors preserve the dimensional structure and data coherence. While being slightly more
complicated objects than matrices, tensors frequently allow for more elegant algorithms in a
simpler way.

3.3.1 Multidimensional Tensor Indices

When manipulating with multidimensional data it is convenient to use multidimensional index-
ing. We introduce a convenient extension for multidimensional indices to the computational
tensor framework. For tensors A ∈ RK1×K2×K3 and B ∈ RK1×K2×K3×L1×L2×L3 the dot product
along k−indices results in a tensor C ∈ RL1×L2×L3 that is defined as

Cl1l2l3 = Ak1k2k3B
k1k2k3l1l2l3 . (3.17)
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Combining indices l1, l2, l3: l = l1l2l3 and k1, k2, k3: k = k1k2k3 we end up with multidimensional
indexing notation

Cl = AkB
kl. (3.18)

Therefore the multidimensional indices like i = i1i2...iN = ((1, 1, ..), (1, 2, ...), (2, 1, ...), ...) will
be used further in this work.

3.3.2 Tensor Structure of the Formulation

We apply the computational tensor algebra symbols to the Ritz-Galerkin formulation (3.16)
and get the tensor formulation

CkDmWklm + CkMmFklm +
1

2
CkHkl = QjRjl ⇔ F (C) = T, (3.19)

where the tensors Wklm, Fklm, Hkl and Rjl represent the integrals in (3.16), the tensors Dm,
Mm, Qj, and CK represent the B-spline coefficients in the expansions of the PDE coefficients,
source and the unknown correspondingly.

In expression (3.19), the multidimensional integrals are encapsulated, and arithmetic oper-
ations can be considered in terms of tensor algebra indices. First, the expression suggests that
computations can be done either via an inner or an outer product. Second, it can be observed
that different algorithms are defined where one of the indices k, l or m is used in the algorithm’s
outermost loop.

The Number of Operations

We consider how a choice of a fixed index variance impacts on the number of performed op-
erations. For the sake of simplicity we consider a two-dimensional case of the second term
CkMmFklm in (3.19).

If we fix k1k2 we get:

B l̃1 l̃2 = C̃Mm̃1m̃2Fl̃1
m̃1

Fl̃2
m̃2
. (3.20)

If we fix l1l2 we get:

B = Ck̃1k̃2Mm̃1m̃2Fk̃1m̃1
Fk̃2m̃2

. (3.21)

If we fix m1m2 we get:

B l̃1 l̃2 = Ck̃1k̃2M̃Fl̃1
k̃1
Fl̃2
k̃2
. (3.22)

Inner product reduces the dimensionality, the outer product expands the dimensionality.
Giving a small span of indices for k̃1, k̃2, l̃1, l̃2, m̃1, m̃2 = −1, 0, 1 one can estimate the benefit of
a certain algorithm as shown in Table 3.1.

Fixed ind. Algorithm Expand dim. ops. Reduce dim. ops. Gain

k1k2 B l̃1 l̃2 = CMm̃1m̃2Fl̃1
m̃1

Fl̃2
m̃2

171⊗ 90⊕ 63⊗ 54⊕ 2.7⊗ 1.6⊕

l1l2 B = Ck̃1k̃2Mm̃1m̃2Fk̃1m̃1
Fk̃2m̃2

171⊗ 90⊕ 63⊗ 63⊕ 2.7⊗ 1.4⊕

m1m2 B l̃1 l̃2 = Ck̃1k̃2MFl̃1
k̃1
Fl̃2
k̃2

171⊗ 90⊕ 63⊗ 54⊕ 2.7⊗ 1.6⊕

Table 3.1: The number of operations (multiplications ”⊗” and additions ”⊕”) depending on
the order of tensor contractions.

37



3.3.3 Tensor B-spline Kernels

When the system of equations (3.19) has a large number of unknowns, the usual approach is an
application of an iterative solver. In such a solver, it is critical to compute the system operator
F (C) as efficiently as possible. At first glance, the tensors Wklm, Fklm could be of a large
size and their direct computation appears to be intractable due to huge memory requirements.
However, due to the finite support of B-spline functions these tensors have a large number of
zeros, i.e. they are sparse. Moreover, the non-zero values are localized around the grid nodes
and are translation invariant within the domain. Therefore, they have a kernel-like structure,
where the width of these kernels depends on the B-spline degree.

For the sake of simplicity, we take n = nb = np and h = 1. We define the support of the
product of three B-splines of degree n as Ωs. Consider the following integral from (3.16):

ˆ
Ωs

[∇βnk(x) · ∇βnl (x)] βnm(x)dx. (3.23)

Consider a three-dimensional case. With the use of B-spline separability

βnk(x) = βnk1(x1)βnk2(x2)βnk3(x3) (3.24)

the scalar product of gradients ∇βnk(x) · ∇βnl (x) becomes

∇{βnk1(x1)βnk2(x2)βnk3(x3)} · ∇{βnl1(x1)βnl2(x2)βnl3(x3)} =(
dβn

k1
(x1)

dx1
βnk2(x2)βnk3(x3) βnk1(x1)

dβn
k2

(x2)

dx2
βnk3(x3) βnk1(x1)βnk2(x2)

dβn
k3

(x3)

dx3

)
·

(
dβn

l1
(x1)

dx1
βnl2(x2)βnl3(x3) βnl1(x1)

dβn
l2

(x2)

dx2
βnl3(x3) βnl1(x1)βnl2(x2)

dβn
l3

(x3)

dx3

)
=

dβnk1(x1)

dx1

dβnl1(x1)

dx1

βnk2(x2)βnl2(x2)βnk3(x3)βnl3(x3)+

βnk1(x1)βnl1(x1)
dβnk2(x2)

dx2

dβnl2(x2)

dx2

βnk3(x3)βnl3(x3)+

βnk1(x1)βnl1(x1)βnk2(x2)βnl2(x2)
dβnk3(x3)

dx3

dβnl3(x3)

dx3

(3.25)

Then we can write the expression (3.23) as

ˆ
Ωs

dβnk1(x1)

dx1

dβnl1(x1)

dx1

βnm1
(x1)dx1

ˆ
Ωs

βnk2(x2)βnl2(x2)βnm2
(x2)dx2

ˆ
Ωs

βnk3(x3)βnl3(x3)βnm3
(x3)dx3+

ˆ
Ωs

βnk1(x1)βnl1(x1)βnm1
(x1)dx1

ˆ
Ωs

dβnk2(x2)

dx2

dβnl2(x2)

dx2

βnm2
(x2)dx2

ˆ
Ωs

βnk3(x3)βnl3(x3)βnm3
(x3)dx3+

ˆ
Ωs

βnk1(x1)βnl1(x1)βnm1
(x1)dx1

ˆ
Ωs

βnk2(x2)βnl2(x2)βnm2
(x2)dx2

ˆ
Ωs

dβnk3(x3)

dx3

dβnl3(x3)

dx3

βnm3
(x3)dx3.

(3.26)

The expression (3.26) consists of two types of integrals

Ŵklm =

ˆ
Ωs

∂

∂x
βnk,h(x)

∂

∂x
βnl,h(x)βnm,h(x)dx, (3.27)

F̂klm =

ˆ
Ωs

βnk,h(x)βnl,h(x)βnm,h(x)dx, (3.28)
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we call them tensor B-spline kernels. Due to the local support of B-splines these kernels expand
over a limited span of indices k, l and m. Table 3.2 and Fig. 3.1 show examples of one- and
two- dimensional B-spline kernels.

Table 3.2: B-splines functions of degree n = 1, 2, 3 and corresponding B-spline kernels ŵ and f̂
in the one-dimensional case for a fixed index l. The spans of indices corresponding to non-zero
values of the kernels ŵkm, f̂km are designated as k̃, m̃.

n Basis functions Plot of B-splines k̃ m̃ Size of ŵkm, f̂km

1 β1
k̃,h

(x) β1
h(x) β1

m̃,h(x) -1..1 -1..1 3× 3

2 β2
k̃,h

(x) β2
h(x) β2

m̃,h(x) -2..2 -2..2 5× 5

3 β3
k̃,h

(x) β3
h(x) β3

m̃,h(x) -3..3 -3..3 7× 7

β2(x)

β3(x)

a)

b)

c)

ŵkm f̂km

β1(x)

Figure 3.1: Bi-variate tensor-product B-splines corresponding tri-product kernels ŵkm =´ +∞
−∞

∂
∂x
βnk,1(x) ∂

∂x
βn0,1(x)βnm,1(x)dx and f̂km =

´ +∞
−∞ βnk,1(x)βn0,1(x)βnm,1(x)dx; x, k, m ∈ R. (a)

Linear n = 1, (b) quadratic n = 2, (c) cubic n = 3 cases. Support of β1(x), β2(x) and β3(x)
is [−1..1], [−1.5..1.5] and [−2..2] in each dimension respectively. Crosses in the kernel images
correspond to integer shifts.
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Remarkably, for B-splines fully inside the domain Ω, the kernels are translation-invariant
and separable:

Ŵklm = (1/h2)ŵk1l1m1 · · · f̂kdldmd
+ ...+ (1/h2)f̂k1l1m1 · · · ŵkdldmd

(3.29)

F̂klm = f̂k1l1m1 · · · f̂kdldmd
. (3.30)

This property allows efficient computations in the domain, even when high-degree B-splines
are used.

3.3.4 Two-dimensional Case

Let K = K1×K2 ⊂ N2, L = L1×L2 ⊂ N2, M = M1×M2 ⊂ N2, K1 = L1 = M1, K2 = L2 = M2,
where [K1, K2] is the size of the used rectangular grid. For an index l ∈ L we define tensors
wkm = Wklm|l, fkm = Fklm|l, hk = hkl|l and rj = Rjl|l. Then for each l, equation (3.19) reduces
to

CkDmwkm + CkMmfkm +
1

2
Ckhk = Qjrj,k ∈ K,m ∈M. (3.31)

Tensor kernels wkm, fkm, hk and rj in (3.31) have non-zero values only within sub-regions
[l−nb..l+nb, l−rbp..l+rbp], [l−nb..l+nb] and [l−rbs..l+rbs] respectively (rbp = b0.5(nb+np+1)c,
rbs = b0.5(nb + ns + 1)c). Kernels are classified into two types: 1) domain kernels ŵkm, f̂km
and r̂j, which correspond to B-splines fully inside Ω, 2) boundary kernels wkm, fkm, hk and rj,
which correspond to B-splines intersecting ∂Ω.

For the domain kernels in the two-dimensional case we get

ŵkm = (1/h1)ŵk1m1 f̂k2m2 + (1/h2)f̂k1m1ŵk2m2 , (3.32)

f̂km = f̂k1m1 f̂k2m2 , (3.33)

r̂j = r̂j1 r̂j2 , (3.34)

with the components shown in Fig. 3.1.
While B-spline properties provide advantages for computations inside the domain, special

treatment is needed for boundary handling. Boundary tensor kernels are non-separable and
have to be computed for each boundary node, though the number of boundary kernels is usually
only a small fraction of all kernels as shown further in this chapter.

Structure of the System Operator

After all tensor kernels are computed and PDE coefficients and source are represented using
B-splines, the solution Ck in (3.31) can be computed by a linear solver, e.g. the Conjugate
Gradient (CG) solver. In order to assemble the system operator F (C), B-spline coefficients
of diffusion D and absorption M have to be multiplied with kernels w and f respectively and
summed up with the boundary kernel h, as shown in Algorithm 1. In the two-dimensional case,
computations result in a L1×L2 set of kernels T of size (2nb + 1)× (2nb + 1) (cf. Fig. 3.2 (c)).
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ŵk1m1

D̃m1m2

f̂k2m2 f̂k1m1

D̃m1m2

ŵk2m2
f̂k1m1

M̃m1m2

f̂k2m2

D̃m1m2

wk1k2m1m2

M̃m1m2

fk1k2m1m2
hk1k2

a)

b)
2nb + 1

L2

L1

d)

2
n
b
+
1

c)

Tk1k2

Tk1k2

Tk1k2

L 1
× L

2

2
n
b
+
1

2nb + 1

− values in SIMD registers

l1l2

Figure 3.2: System operator computation and evaluation for nb = 3, np = 1 (a) Tensor com-
putations within the domain are implementable by SIMD, (b) Tensor computations on the
boundary, (c) The system operator tensor, (d) System operator evaluation by convolution.

Algorithm 1 System operator computation in 2-D.

for l1 = 1..L1 do
for l2 = 1..L2 do

D̃ ← Dl1−rbp..l1+rbp,l2−rbp..l2+rbp

M̃ ←Ml1−rbp..l1+rbp,l2−rbp..l2+rbp

if (l1, l2) ∈ Domain then . domain computations

Tk1k2 ← ŵk1m1D̃
m1m2 f̂k2m2 + f̂k1m1D̃

m1m2ŵk2m2+

f̂k1m1M̃
m1m2 f̂k2m2

else if (l1, l2) ∈ Boundary then . boundary computations

Tk1k2 ← D̃m1m2wk1k2m1m2 + M̃m1m2fk1k2m1m2
+

hk1k2

end if
Pk1k2l1l2 ← Tk1k2

end for
end for

A sparse system matrix of size (L1L2)×(L1L2) could be constructed here. However, keeping
the dense data structure of the tensor Pk1k2l1l2 (Fig. 3.2 (d)) allows optimal storage and block-
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wise access patterns. Then system operator evaluation at each linear solver iteration is defined
by

Yl1l2 = Pk1k2l1l2C
k1k2 , (3.35)

that is shown as pseudo-code in the Algorithm 2 and graphically in Fig. 3.2 (d). From the signal
processing viewpoint, this corresponds to convolution with a spatially varying two-dimensional
finite impulse response. By preserving kernel-based structure and data locality, efficient memory
transfers and high level of parallelism can be achieved. The structure of the tensor R allows
efficient computation of the right-hand side in (3.19) by FIR filtering.

On hardware with limited memory bandwidth but multiple cores, the performance of the
algorithm may be optimized by choosing the on-the-fly strategy, where the coefficients of the
tensor Pk1k2l1l2 can be recomputed at every linear solver iteration based on the Algorithm 1,
without storing the tensor explicitly. The fact that such on-the-fly computations heavily rely
on small dense matrix multiplication (cf. Fig. 3.2 (a, b)) allows efficient code vectorization,
e.g. through the use of SIMD. In this case, the spatially invariant domain tensor kernels can
be stored directly in vector registers (e.g. Intel AVX or GPU registers), implying a significant
reduction in memory transfers, and translating to efficient utilization of the parallel hardware.
The next chapter provides more detailed description of matrix-free algorithms, and performs
their evaluation and comparison.

Algorithm 2 System operator evaluation in 2-D.

for l1 = 1..L1 do
for l2 = 1..L2 do

C̃ ← Cl1−nb..l1+nb,l2−nb..l2+nb

P̃k1k2 ← P..,..,l1l2

Yl1l2 ← C̃k1k2P̃k1k2

end for
end for

3.3.5 Three-dimensional Case

Let K = K1 × K2 × K3 ⊂ N3, L = L1 × L2 × L3 ⊂ N3, M = M1 × M2 × M3 ⊂ N3,
K1 = L1 = M1, K2 = L2 = M2, K3 = L3 = M3, where [K1, K2, K3] is the size of the used
rectangular grid. For a given grid node with index l ∈ L, we define tensors wkm = Wklm|l,
fkm = Fklm|l, hk = Hkl|l and rj = Rjl|l. Then for each l equation (3.19) becomes

CkDmwkm + CkMmfkm +
1

2
Ckhk = Qjrj. (3.36)

The tensors wkm, fkm, hk and rj in (3.36) have non-zero values only within sub-regions [l −
nb..l+nb, l−rbp..l+rbp], [l−nb..l+nb] and [l−rbs..l+rbs] respectively (rbp = b0.5(nb+np+1)c,
rbs = b0.5(nb + ns + 1)c). Kernels can be of two types: 1) domain kernels ŵkm, f̂km and r̂j,
which correspond to B-splines fully inside Ω, and 2) boundary kernels wkm, fkm, hk and rj,
which correspond to B-splines intersecting ∂Ω. Domain kernels are separable

ŵkm = (1/h2
1)ŵk1m1 f̂k2m2 f̂k3m3 + (1/h2

2)f̂k1m1ŵk2m2 f̂k3m3 + (1/h2
3)f̂k1m1 f̂k2m2ŵk3m3 ,

f̂km = f̂k1m1 f̂k2m2 f̂k3m3 , (3.37)

r̂j = r̂j1 r̂j2 r̂j3 . (3.38)
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Structure of the System Operator

Convolutional structure and sparsity of (3.19), and separability of domain kernels along with
the natural tensor structure of Ritz-Galerkin formulation of the problem (shown in Fig. 3.3)
are the key factors for designing an efficient computational algorithm to solve for Ck. It is
interesting to note that the terms in the domain part of the algorithm (Fig. 3.3, (a)) have a
structure that corresponds to the tensor factorization [13].

ŵk1m1

f̂k2m2

f̂k3m3

D̃m1m2m3

f̂k1m1

ŵk2m2

f̂k3m3

D̃m1m2m3

f̂k1m1

f̂k2m2

ŵk3m3

D̃m1m2m3 M̃m1m2m3

f̂k2m2

f̂k1m1

f̂k3m3

D̃m1m2m3 M̃m1m2m3 hk1k2k3

wk1k2k3m1m2m3
f k1k2k3m1m2m3

Ck1k2k3

P̂k1k2k3Ĉk1k2k3

Yl1l2l3

P̂k1k2k3

P̂k1k2k3

L2

L1

L3

2n+ 1

2n+ 1

2n+ 1

Pk1k2k3l1l2l3

a)

b)

c) d)

Figure 3.3: (a) Tensor structure of computations for separable domain kernels corresponding to
block term decomposition, (b) structure of computations for non-separable boundary kernels,
(c) convolution strategy (corresponds to filtering with a spatially varying impulse response),
(d) structure of the system operator. The symbol ”×” designates the tensor-matrix product,
symbol ”•” designates the scalar product.

A real-life three-dimensional problem may result in a large system of equations. This re-
quires the use of memory efficient iterative methods, e.g. the Conjugate Gradient (CG) method.
In this method, a solution Ck is iteratively refined via the system operator evaluation. The
system operator Pkl = DmWklm + MmFklm + 1

2
Hkl is assembled from products of coefficients

D and M with respective kernels w and f and incorporates kernels h (Fig. 3.3, a, b) and

corresponds to an L1 × L2 × L3 set of kernels P̂k (Fig. 3.3, d). The system operator can be
assembled before the iterative solving (Fig. 3.3, c) (convolution strategy), or can be assembled
and convolved at each iteration (“on-the-fly” strategy). These two strategies are potentially
beneficial as they use the natural tensor structure of the problem that allows optimal storage,
data locality, efficient block-wise memory access and good parallelism in contrast to a standard
sparse matrix-vector multiplication (SpMV) approach (although it is still possible to apply
SpMV by rearranging the system operator into a sparse matrix).

3.3.6 Domain Tensors Filters

The kernel-based decomposition structure of the system operator induces filtering-like algo-
rithms, which makes it possible to define algorithms from a signal processing viewpoint. The
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translation invariant kernels are the crucial component in these efficient filtering-like algo-
rithms. Inside the domain, the operations are represented by multilinear convolution, with
shift-invariant separable kernels, as depicted in Fig. 3.4.

d̂m1m2m3

∗f̂k1m1 ∗ŵk2m2 ∗f̂k3m3

∗f̂k2m2 ∗ŵk3m3

∗ŵk1m1 ∗f̂k2m2 ∗f̂k3m3

m̂m1m2m3 ∗f̂k1m1 ∗f̂k2m2 ∗f̂k3m3

p̂k1k2k3

Figure 3.4: Domain computations are implemented as filtering algorithm.

3.4 Numerical Integration

Efficient integration is an important building block for any PDE numerical method. The
Tensor B-spline method uses shift-invariant kernels inside the domain for which the integration
performed only once and the values of domain tensor kernels are reused. For the boundary
kernels, the situation is different. Boundary tensor kernels are not shift-invariant and non-
separable and have to be computed for each boundary node, though the number of boundary
kernels is usually only a fraction of all kernels. They could be computed cell-wise by standard
numerical quadrature as done in [46]. Here, we introduce a different approach that exploits the
Divergence Theorem and the properties of B-splines for integration over boundary cells.

3.4.1 Domain Kernels

Separable domain kernels

ŵkm =

ˆ +∞

−∞

∂

∂x
βnb
k,1(x)

∂

∂x
βnb

0,1(x)β
np

m,1(x)dx, (3.39)

f̂km =

ˆ +∞

−∞
βnb
k,1(x)βnb

0,1(x)β
np

m,1(x)dx, (3.40)

r̂j =

ˆ +∞

−∞
βns
j,1(x)βnb

0,1(x)dx, (3.41)

are computed only once an are then reused everywhere in the domain. They can be computed
analytically using the properties of B-splines or using standard quadratures.

3.4.2 Boundary Kernels

When the domain boundary is of arbitrary shape, the rectangular grid of the B-spline basis
does not conform to the boundary geometry. Therefore, B-splines will be truncated on the
boundary. These truncated B-splines result in non-separable kernels.

With the increase of the problem size (number of degrees of freedom) the number of domain
kernels grows much faster than the number of boundary kernels. As an example, Fig. 3.5, and
Fig. 3.6 show the boundary kernels percentage for different problem sizes and B-spline degrees.
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Figure 3.5: Number of boundary kernels (Nb) in % for B-splines of degrees n = 1, n = 3 and
n = 5 for different degrees of freedom (circular domain) versus the number of unknowns (Nu).

Figure 3.6: Number of boundary kernels (Nb) in % for B-splines of degrees n = 1 and n = 3
for different degrees of freedom (spherical domain).

The relative amount of boundary kernels becomes very small (in the two-dimensional case
≈ 1−2%, and in the three-dimensional case ≈ 10−20% for circular, and for spherical domains,
respectively, with approx. 10E6 unknowns). This means that for very large problem sizes, the
relative amount of integration drops because domain kernels are computed only once.
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3.4.3 Integration Using the Divergence Theorem

We propose an efficient integration method for the boundary tensor B-spline kernels. The
method is based on the Divergence Theorem and properties of B-splines.

For a continuously differentiable vector field g(x), x ∈ R3, on a neighborhood of V ∈ R3,
which is closed by a piecewise smooth boundary S (closed surface), the Divergence Theorem
states that ˆ

V

(∇ · g(x))dV =

˛
S

(g(x) · n)dS, (3.42)

where n is the outward unit normal to the boundary surface S (see Fig. 3.7). The left side
of the equation (3.42) contains a volume integral over the V with the divergence of the vector
field g as integrand, the right side of (3.42) contains surface integral over the boundary S that
encloses the volume V .

V

S

n

Figure 3.7: Some volume V bounded by a surface S, and normal n to a surface S.

We re-write the expression above using vector field components:

ˆ
V

(
∂g1

∂x1

+
∂g2

∂x2

+
∂g3

∂x3

)
dV =

˛
S

(g1n1 + g2n2 + g3n3)dS. (3.43)

Let the vector field g has only one non-zero component, g(x) = (g1(x), 0, 0). Then (3.43)
reduces to ˆ

V

∂g1

∂x1

dV =

˛
S

g1n1dS. (3.44)

In case when a scalar field g1 is constructed via tensor product, i.e. g1 is separable

g1(x) = f(x1)f(x2)f(x3), (3.45)

we can write ˆ
V

f(x1)f(x2)f(x3)dV =

˛
S

F (x1)f(x2)f(x3)n1dS, (3.46)

where F (x) =
´
f(x)dx is the antiderivative of f(x).

We introduce dV = dx1dx2dx3 and n1dS = dx2dx3. Then we write
˚

V

f(x1)f(x2)f(x3)dx1dx2dx3 =

‹
S

F (x1)f(x2)f(x3)dx2dx3. (3.47)

We use parametric representation of the surface S:

x2 = x2(t1, t2), (3.48)

x3 = x3(t1, t2), (3.49)
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with the corresponding Jacobian

J =

[ ∂x2
∂t1

∂x2
∂t2

∂x3
∂t1

∂x3
∂t2

]
. (3.50)

Finally, the integration is performed as

‹
S

F (x1)f(x2)f(x3)dx2dx3 =
‹
S

Fx1(x1)fx2(x2)fx3(x3)|J |dt1dt2 =

‹
S

Fx1 [x1(t1, t2)]fx2 [x2(t1, t2)]fx3 [x3(t1, t2)]

(
∂x2

∂t1

∂x3

∂t2
− ∂x2

∂t2

∂x3

∂t1

)
dt1dt2

(3.51)

The described integration method enables the volumetric integration of a multivariate sep-
arable function g(x) via integration over the surface S that encloses this volume. The method
effectively reduces the number of dimensions over which the integration is performed by one.
In the three-dimensional case, the proposed method does not require building explicit 3-D
quadratures as in [46] but uses 2-D quadratures shared for computation of all volume and
surface integrals in (3.16) for a given curvilinear segment.

3.4.4 Two-dimensional Case

In the two-dimensional case (3.47) becomes

ˆ
Ω

f1(x1)f2(x2)dx1dx2 =

˛
C

F1(x1)f2(x2)dx2, (3.52)

where F1(t) =
´ t
−∞ f1(x)dx is an antiderivative of f1(x). In our case, functions f1(x) and f2(x)

are B-spline functions and their anti-derivatives can be computed analytically [17].
We represent the domain boundary ∂Ω by a parametric spline [9] of degree nc. In 2-D for

t ∈ R it is defined by:

u1(t) =
Nc−1∑

i=0

u1(i)βnc
i,1(t), u2(t) =

Nc−1∑

i=0

u2(i)βnc
i,1(t). (3.53)

Using (3.52) the integral along the parametric spline (3.53) within the interval t ∈ [t′, t′′]
bounded by a grid cell (see Fig. 3.8) is computed as:

I =

ˆ t′′

t′
F1[u1(t)]f2[u2(t)]

du2

dt
(t)dt. (3.54)
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t1

ti+2

t′

t′′ l1, l2

ti+1

boundary cell
domain cell

boundary ∂Ω

Figure 3.8: Domain Ω bounded by a parametric contour (u1(t), u2(t)), regular grid of tensor-
product cubic B-spline basis and cell classification.

Expression (3.54) can be evaluated efficiently using one-dimensional standard quadratures
[60]. When the parametric spline is linear (nc = 1, cf. Fig. 3.12), integration is straightforward
because du2

dt
(t) is constant along each segment and finding intersections is trivial. We approxi-

mated function F1(t) in (3.54) using B-spline expansions resulting in high accuracy at look-up
table computational complexity.

Knowing coordinates (x1(k), x2(k)) for t0, t1, ..., tk, ... we have to determine intersection
points (x′1, x

′
2), (x′′1, x

′′
2) with region boundary where function under integral is non-zero. Then

for (x′1, x
′
2), (x′′1, x

′′
2) we have to determine t′ and t′′. This is an inverse interpolation problem

when knowing the function value we have to find it’s argument. Fig. 3.9 clarifies the problem.

t0t1 t′
k = 0k = 1

x1(0)

x1(1)
x′1

β1(t)β1(t− 1)

Figure 3.9: B-spline interpolation of the contour.

From Fig. 3.9 we can write that

x′1 = x1(0)β1(t′) + x1(1)β1(t′ − 1), (3.55)

x′1 = x1(0)(t1 − t′) + x1(1)(t′ − t0), (3.56)

t′ =
x1(1)t0 − x1(0)t1 + x′1

x1(1)− x1(0)
. (3.57)

And the derivative

dx′1(t)

dt
= x1(1)− x1(0). (3.58)

3.4.5 Three-dimensional Case

For a single-component vector field g(x) = (g1(x), 0, 0), continuously differentiable on a neigh-
borhood of volume V ⊂ R3 bounded by a piecewise smooth boundary S, the Divergence
Theorem reduces to ˆ

V

∂g1

∂x1

dV =

˛
S

g1n1dS, (3.59)

48



where n1 is a component of the outward unit normal field of the closed boundary surface S.
By substituting g1 with its antiderivative we get

ˆ
V

g1dV =

˛
S

(ˆ
g1dx1

)
n1dS. (3.60)

When the scalar field g1 is constructed via tensor product (separable), i.e. g1 = f1(x1)f2(x2)f3(x3),
expression (3.60) becomes

ˆ
V

g1(x)dV =

˛
S

F1(x1)f2(x2)f3(x3)n1dS, (3.61)

where F1(x) =
´
f1(x)dx is the antiderivative of f1(x). Thus, rather than integrating the field

g1 over the volume V , it is integrated over its boundary S.
Using the Divergence Theorem the integration over the domain Ω can be reduced to the

integration over multiple (d− 1)− dimensional boundary segments δΩi ⊂ δΩ:

ˆ
Ω

g1(x)dx =
m∑

i=1

ˆ
δΩi

F1(x1)f2(x2)f3(x3)n1idS, (3.62)

where m is the number of segments.
According to the described integration strategy, boundary tensors Wklm, Fklm and Rkl are

computed as follows:

Wklm =

ˆ
S

F1(x1)f1(x2)f1(x3)n1dS+
ˆ
S

F2(x1)f2(x2)f1(x3)n1dS+
ˆ
S

F2(x1)f1(x2)f2(x3)n1dS,

(3.63)

Fklm =

ˆ
S

F2(x1)f1(x2)f1(x3)n1dS, (3.64)

Rkl =

ˆ
S

F3(x1)f3(x2)f3(x3)n1dS, (3.65)

where

F1(x) =

ˆ x

−∞

d

dt
{βnb

k (t)} d
dt
{βnb

l (t)}βnp
m (t)dt, (3.66)

F2(x) =

ˆ x

−∞
βnb
k (t)βnb

l (t)βnp
m (t)dt, (3.67)

F3(x) =

ˆ x

−∞
βns
k (t)βnb

l (t)dt, (3.68)

f1(x) = βnb
k (x)βnb

l (x)βnp
m (x), (3.69)

f2(x) =
d

dx
{βnb

k (x)} d
dx
{βnb

l (x)}βnp
m (x), (3.70)

f3(x) = βns
k (x)βnb

l (x). (3.71)

We found that antiderivatives F1(x), F2(x), F3(x) are smooth functions and can be accu-
rately approximated using uniform B-spline interpolation. This allows the replacement of an
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explicit computation of the antiderivatives with inexpensive evaluation of a spline and leads to
a significantly faster integration process.

Finally, the computation of Hkl is done as:

Hkl =

ˆ
∂Ω

fh(x1)fh(x2)fh(x3)d∂Ω, (3.72)

where

fh(x) = βnb
k (x)βnb

l (x). (3.73)

3.4.6 Boundary Surface Processing

The proposed integration method does not require building a three-dimensional mesh for inte-
gration, while at the same time, it allows integration over complicated, non-convex domains.

Fig. 3.10 presents the main steps of the geometry processing algorithm for the three-
dimensional case. Fig. 3.12 visualizes some of the steps, where boundary surface intersec-
tions with the regular grid cells are determined (Fig. 3.12, (a)), cells are classified into domain
and boundary cells (Fig. 3.12, (b)), complex boundary segments for each cell are triangulated
(Fig. 3.12, (c)), and two-dimensional quadratures are constructed on the triangles (Fig. 3.12,
(d)). More efficient adaptive quadrature schemes could be used directly on the polygons avoid-
ing any triangulation.

CTI or MRI volume data

3-D spline interpolation (optional smoothing)

Boundary parametric spline representation

Boundary cells processing 

Boundary cell surface tessellation

Intersections of boundary with grid cells

Tile-wise quadrature nodes construction

Integration using the Divergence Theorem

Figure 3.10: Geometry processing algorithm outline.

Domain Surface Representation

Different surface representations are possible, including 1) implicit form F (x) = 0; 2) parametric
form x = F (u, v); 3) polygon mesh form; 4) R-functions-based (Rvachev functions) [61].

In this work we consider a parametric surface representation. For example, in the medical
applications, CT and MRI scans can be used to construct a closed genus-zero domain surface.
The original volumetric data is smoothed with a low-pass filter and interpolated using regular
B-splines with the desired grid step, defining the quality of the surface approximation. Then
an iso-surface is extracted and transformed into a parametric spline surface

x1(u) =

N1−1∑

i1=0

N2−1∑

i2=0

x1i1i2β
nc(u1 − i1)βnc(u2 − i2), (3.74)

x2(u) =

N1−1∑

i1=0

N2−1∑

i2=0

x2i1i2β
nc(u1 − i1)βnc(u2 − i2), (3.75)
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x3(u) =

N1−1∑

i1=0

N2−1∑

i2=0

x3i1i2β
nc(u1 − i1)βnc(u2 − i2), (3.76)

where u ∈ R2 is the parameter vector, and i ∈ Z2 is the parametric grid node index. Here,
for simplicity reasons, we use linear B-spline basis nc = 1. To ensure closeness of the spline
surface, the periodic boundary condition is used.

Patch-Cell Intersections

The algorithm iterates through the parametric surface patches. Each patch is split into two
triangles to simplify patch-cell intersection algorithms. For each triangle, a three-dimensional
bounding box is determined that could contain neighboring cells that might intersect this
triangle. This reduces the amount of line-plane intersection procedure calls.

(a) (b) (c) (d)

Figure 3.11: The result of a boundary surface-cell intersection (a), a boundary cell (grid cell
cut by the boundary surface) (b), additional triangulation (c), quadrature nodes (d). Note the
concave geometry of the surface.

For a patch and each neighboring cell face, a standard line-plane intersection detector is
applied that returns coordinates of intersection points. The cases where patch vertices are
inside a cell and where an intersection polygon has edges inside a cell are handled carefully,
duplicated, and irrelevant intersection points are deleted. The result of a patch-cell intersection
is shown in Fig. 3.11, (a).

Polygons and Quadratures

In order to integrate over the surface of a three-dimensional volume that is a result of boundary
surface-cell intersection, the polygons that compose this surface have to be determined. The
surface of intersection is composed of 1) the subsurface that is a result of a boundary surface-cell
intersection (Fig. 3.11, (a), light gray), 2) cell faces trimmed by intersection segments (Fig. 3.11,
(b), dark gray), 3) full cell faces.

A subsurface usually comprises several polygons defined by intersection line segments and
in some cases involving cell edges; these polygons lie mostly in different planes. For each cell,
line segments that belong to the same parametric surface patch compose a polygon. Connec-
tions between those segments are determined with the knowledge about the information about
node sharing between adjacent line segments. The obtained polygons are split into triangles
(Fig. 3.11, (c)). For each obtained triangle a two-dimensional Gauss quadrature is constructed
(Fig. 3.12, (d) and (Fig. 3.11, (d)).
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a) b) c)

Figure 3.12: Domain polygonal surface dissected by three-dimansional grid cells (a), domain
cut shows domain cells (light gray), and boundary cells (dark gray) that are cells intersected
by domain surface (b), a boundary cell with domain surface side triangulated (c).

3.5 Application of Boundary Conditions

The Tensor B-spline method allows an application of different boundary conditions. Consider
the boundary condition of the form

−n · (D(x))∇ϕ(x) = γ(ϕ(x)− gD(x)) + gN(x), x ∈ ∂Ω. (3.77)

Using (3.77) the variational formulation (3.9) becomesˆ
Ω

D(x)∇ϕ̂(x) · ∇ψl(x)dx +

ˆ
Ω

µa(x)ϕ̂(x)ψl(x)dx+
ˆ
∂Ω

γϕ̂(x)ψl(x)ds+

ˆ
∂Ω

(γgD(x)− gN(x))ψl(x)ds =

ˆ
Ω

q(x)ψl(x)dx.

(3.78)

3.5.1 Dirichlet BC

The Dirichlet BC is obtained under the condition gN(x) = 0 and γ → +∞:

ϕ(x) = gD(x)− 1

γ
n · (D(x))∇ϕ(x), x ∈ ∂Ω, (3.79)

γ → +∞ : ϕ(x) = gD(x), x ∈ ∂Ω. (3.80)

This approach is used for Dirichlet BC approximation in the boundary penalty method [62, 63],
where

n · (D(x))∇ϕ(x) = ε−1(ϕ(x)− gD(x)),x ∈ ∂Ω, (3.81)

and ε > 0 is a penalty factor. It can be shown [62] that for ε ≤ hk+1 the solution of PDE
converges and the error is dominated by the interpolation factor.

3.5.2 Neumann BC

The inhomogeneous Neumann BC can be obtained from (3.77) by setting γ = 0:

−n · (D(x))∇ϕ(x) = gN(x), x ∈ ∂Ω. (3.82)

Setting the gN(x) = 0 in (3.82) gives the homogeneous Neumann BC :

−n · (D(x))∇ϕ(x) = 0, x ∈ ∂Ω. (3.83)
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3.5.3 Robin BC

The Robin BC can be easily obtained from (3.77) by setting ϕ(x) = 0:

−n · (D(x))∇ϕ(x) = γgD(x) + gN(x), x ∈ ∂Ω. (3.84)

3.5.4 Mixed BC

In the case of Mixed BC different boundary conditions are satisfied on disjoint parts of the
boundary ∂Ω, for example for ∂Ω1 ⊂ ∂Ω and ∂Ω2 ⊂ ∂Ω

ϕ(x) = ϕ0, x ∈ ∂Ω1, (3.85)

∇ϕ(x) · n = 0, x ∈ ∂Ω2. (3.86)

3.6 Solution of Time-dependent PDEs

The solution of a time-dependent problem is usually obtained using a finite difference ap-
proximation in time. Examples of finite difference methods are forward and backward Euler
methods [24], Crank–Nicolson method [64].

3.6.1 Solution of a Parabolic PDE

Consider an application of the Crank–Nicolson method to the time-dependent Diffusion PDE
with the Robin boundary condition

∂ϕ(x, t)

∂t
= ∇ · [D(x)∇ϕ(x, t)], x ∈ Ω, (3.87)

2D(x)(∇ϕ(x) · n) + ϕ(x) = 0, x ∈ ∂Ω, (3.88)

where ϕ(x, t) is the density of the diffusing material at location x and time t, and D(x) is the
diffusion coefficient at location x.

The Crank–Nicolson method is an implicit, numerically stable, second-order method in time.
Consider the unknown function discretized in time ϕ(x, k∆t) = ϕk(x), where k = 0, 1, 2..., and
∆t is a time step. The PDE discretization in time is written as

ϕk+1(x)− ϕk(x)

∆t
=

1

2

[
∇ · [D(x)∇ϕk+1(x)] +∇ · [D(x)∇ϕk(x)]

]
, (3.89)

and results in

−1

2
∇ · [D(x)∇ϕk+1(x)] +

1

∆t
ϕk+1(x) =

1

∆t
ϕk(x) +∇ · [D(x)∇ϕk(x)], (3.90)

which is a linear second-order elliptic PDE in respect to the unknown ϕk+1(x) at time (k+1)∆t.
This supports the applicability of our Tensor B-spline method to solve parabolic PDEs as (3.87).

3.6.2 Solution of a Hyperbolic PDE

Consider a wave equation

∂2ϕ(x, t)

∂t2
= c2∇2ϕ(x, t), x ∈ Ω, (3.91)

2D(x)(∇ϕ(x) · n) + ϕ(x) = 0, x ∈ ∂Ω, (3.92)
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where ϕ(x, t) is a pressure field, c is the speed of the wave propagation in the media, and f(x, t)
is a force term.

A discretization of (3.91) is written as

ϕk+1(x)− 2ϕk(x) + ϕk−1(x)

∆t2
= ∇ · [D(x)∇ϕk+1(x)], (3.93)

and results in

−∇ · [D(x)∇ϕk+1(x)] +
1

∆t2
ϕk+1(x) =

2

∆t2
ϕk(x)− 1

∆t2
ϕk−1(x), (3.94)

which is a linear second-order elliptic PDE in respect to the unknown ϕk+1(x) at time (k+1)∆t.
Thus, the wave equation is also amenable to solving by our method.

3.7 Solution of Convection-Diffusion PDEs

As an example of a convection-diffusion PDE we consider the Navier-Stokes Equation for in-
compressible and homogeneous fluid.

Given the initial values of the velocity and pressure, the state of the fluid over time can be
described by the Navier-Stokes equation for incompressible flow:

∂u(x, t)

∂t
= −(u(x, t) · ∇)u(x, t)− 1

ρ
∇p(x, t) + ν∇2u(x, t) + f(x), (3.95)

∇ · u(x, t) = 0, (3.96)

where u(x, t) is the vector velocity field, p(x, t) is the scalar pressure field, ρ is the fluid density,
ν is the kinematic viscosity and f represents external forces that act on the fluid.

One of the methods [65] of the solution of (3.95) is an application of Helmholtz-Hodge
Decomposition that states that vector field w(x) can be uniquely decomposed into the form:

w(x) = u(x) +∇p(x), (3.97)

where the field u(x) has zero divergence (∇ · u(x) = 0) and p(x) is scalar field.
We define an operator P which projects vector field w(x, t) onto its divergence free part

u(x, t) = Pw(x, t) = w(x, t)−∇p(x, t). (3.98)

In order to find p(x, t) we multiply (3.97) by ∇ and get

∇ ·w(x, t) = ∇ · u(x, t) +∇ · ∇p(x, t), (3.99)

∇2p(x, t) = ∇ ·w(x, t). (3.100)

The equation (3.100) is the Poisson equation that is solved for p(x, t).
We apply the projection operator P to (3.95):

P
∂u(x, t)

∂t
= P

(
−(u(x, t) · ∇)u(x, t)− 1

ρ
∇p(x, t) + ν∇2u(x, t) + f(x)

)
. (3.101)

Because u(x, t) is derivative-free P ∂u
∂t

(x, t) = ∂u
∂t

(x, t), also P∇p(x, t) = 0. Finally we obtain:

∂u(x, t)

∂t
= P

(
−(u(x, t) · ∇)u(x, t) + ν∇2u(x, t) + f(x)

)
. (3.102)

Given u(x, t) = w at time t the solving algorithms consists of the following steps:
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1. Computation of advection −(w · ∇)w;

2. Computation of diffusion ν∇2w;

3. Application of forces f ;

4. Projecting of w to divergence-free u = Pw in two steps:

(a) Find p from ∇2p = ∇ ·w;

(b) Find u = w −∇p. Obtained u = u(x, t+ ∆t). Return to step 1 with w := u.

Advection is the process by wich a fluid’s velocity transports itself and other quantities in
the fluid. To compute advection the method of characteristics can be used. It states that to
update a quantity q (that could be velocity, density, or any quantity carried by the fluid) the
following equation is used:

q(x, t+ ∆t) = q(x− u(x, t)∆t, t). (3.103)

It requires to compute the value of the field q at a new position x − u(x, t)∆t that is
accomplished by an interpolation procedure.

The viscous diffusion equation
∂u

∂t
= ν∇2u (3.104)

is solved in time as
− ν∆t∇2u(x, t+ ∆t) + u(x, t+ ∆t) = u(x, t). (3.105)

B-splines can be used pervasively at each step of the solving process. Computation of
the advection can be performed efficiently via B-spline interpolation. Solving of the diffusion
equation (3.104) as well as the computation of the pressure field p can be done efficiently
using the Tensor B-spline method. The divergence and gradient operations can be computed
analytically using B-spline properties. Thus, our method is a well-applicable building block for
solving convection-diffusion equations.

3.8 Method Summary

An overview of the Tensor B-spline numerical method for PDEs is given in Fig. 3.13. The
method starts in the continuous domain with the variational formulation of a PDE, given
coefficient and source functions 1©. The continuous formulation is discretized with Tensor B-
splines 2©. At this stage, the domain and boundary kernels are computed and both the source
and the coefficients are transformed into B-spline space via the direct B-spline transform. The
obtained system of equations is solved using an approach that meets a desirable criterion (speed,
memory-efficiency) 3©. Different methods for solving the system of equations are described in
the next chapter. The obtained coefficients of the solution are transformed back into the
continuous domain by way of the indirect B-spline transform 4©.
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Figure 3.13: An overview of the Tensor B-spline numerical method for PDEs.

3.8.1 Computation of B-spline Coefficients

For the B-spline approximations of PDE coefficients and source

D(x) ≈
∑

m

Dmβ
np

m,h(x), (3.106)

µa(x) ≈
∑

m

Mmβ
np

m,h(x), (3.107)

q(x) ≈
∑

j

Qjβ
ns
j,h(x), (3.108)

the B-splines coefficients Dm, Mm, and Qj have to be computed. This can be done either
according to the interpolation(2.59) or approximation (2.64), (minimization of L2 norm) criteria
as was described in Chapter 2. We propose to perform both tasks via separable digital filtering.

As an example, we consider the computation of coefficients Dm using B-spline interpolation
for the three-dimensional case. We define a regular tensor-product grid gm ∈ R. It is important
that the grid gm slightly extends beyond the domain of interest Ω.

For an analytically defined coefficient D(x) = fD(x), x ∈ R3, the computation of B-spline
coefficients consists of (see Fig. 3.14): 1) evaluation of fD(x) at grid points gm, 2) an application
of a boundary condition, 3) successive filtering along m1, m2, and m3.

6 1
1−z1z−1

−z1
1−z1z

fD(x)

Dm = fD(gm)

Evaluate
the function

on the grid gm

Dm Apply
boundary
condition
(Mirror-W)

D̃m

Dm

6 1
1−z1z−1

−z1
1−z1z

6 1
1−z1z−1

−z1
1−z1z

Filtration along m1

Filtration along m2 Filtration along m3

Figure 3.14: An example processing chian for a B-spline coefficients computation.

When the coefficients of PDE are represented as a set of samples {Dk ∈ R}K−1k=0 on a grid
gk, a simple way of representing the coefficient on another grid gm is as follows:
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1. the B-spline representation of the Dk is constructed Ds(x) =
∑

k ckβ
n
k,h(x),

ck = (bn1 (k))−1 ∗ Dk;

2. the spline Ds(x) is evaluated at the nodes of grid gm: Dm = Ds(gm);

3. B-spline boundary condition is applied and successive filtering along each dimension is
applied (Fig. 3.14).

Alternatively, a more optimal representation can be achieved using L2-projection.
The described approach allows efficient computation of B-spline coefficients using successive

1-D filtering of input data along dimensions. It requires less operations and memory space in
comparison to the classical approach, where a sparse matrix equations are solved [11].

3.8.2 Evaluation of the Solution

The computed B-spline coefficients Ck determine a continuous spline form of the PDE solution:

ϕ̂(x) =
∑

k

Ckβnk,h(x), x ∈ Ω. (3.109)

The evaluation of this function at integer nodes can be performed with high efficiency via
indirect B-spline digital filtering [7]. In a more general case, of arbitrarily-distributed points,
the evaluation of (3.109) can be performed with low computational complexity thanks to the
separability and finite support properties of tensor B-splines. Moreover, the differentiation
B-spline property (2.55) enables efficient evaluation of the derivatives of ϕ̂(x), for example

∂ϕ̂

∂xi
(x) =

∑

k

Ck
∂βnk,h
∂xi

(x). (3.110)

In the reconstruction problems like ODT, the solution Ck could be used directly in the iterative
reconstruction algorithm.

3.9 Discussion

In this chapter, the theory and principles of the Tensor B-spline numerical method for solving
PDEs were presented. The method can be used to solve a range of PDEs with different boundary
conditions. The method employs B-spline representations of the PDE terms and considers the
PDE discrete formulation from the computational tensor algebra viewpoint. The outcome is
a decomposed tensor structure of the discrete formulation within the domain. This tensor
decomposition consists of separable shift-invariant tensor B-spline kernels that are convolved
with B-spline coefficients representing all PDE terms. This allows efficient integration and
matrix-free computations of the system operator. The B-spline kernels that intersect the domain
boundary are non-separable, thought the ratio of such kernels is small. While separable domain
kernels are integrated only once and then are reused, boundary kernels are unique and have
to be stored. An efficient, novel integration method is proposed for integration of boundary
kernels.

3.9.1 B-splines

B-splines link the continuous signal domain with a discrete problem representation while pre-
serving analytical precision even if discrete algorithms are applied [7]. Excellent approximation
properties of B-splines are complemented by their efficient processing algorithms. Simple linear
and high-order approximations are possible, where cubic B-splines are of particular interest
because of their minimal curvature property [7].
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B-spline Representations via Digital Filtering

B-spline coefficients for the spline-based representations of the PDE coefficients and source
term are obtained via digital filtering algorithms; this approach is more efficient than its classic
matrix-based equivalent [11]. A comprehensive B-spline signal processing framework is inte-
grated into a Tensor B-spline numerical method such that it allows to work with large-scale
data in memory-efficient way. The solution of a PDE is obtained in the B-spline space, and then
is transformed into the signal space with the desired smoothness and resolution. High-quality
representations with limited resources are possible with cubic B-splines.

3.9.2 Tensor Structure

Tensor representations are more beneficial compared to flat-view matrix models in signal pro-
cessing applications [8, 13] and in numerical methods for PDEs as was shown in this work. In
the Tensor B-spline method, tensors allow the natural representation of the PDE formulation
where a multidimensional structure is preserved, in comparison to matrices, where the initial
spatial structure of the data is folded.

For example, the structure of the terms in the sum in Fig. 3.3 (a) corresponds to the Tucker
factorization (2.69) (Fig. 2.15), and the whole expression corresponds to the case of block
term decomposition (2.70). Remarkably, such a non-trivial decomposition results directly from
the PDE formulation, without any tedious numerical analysis. It is difficult to reveal such
structure from matrix-based representation, where the dimensions are merged and the structure
information is lost.

Tensor Decompositions

Tensor decompositions are widely used in signal processing applications [66, 13, 14] where a
multidimensional tensor is factorized in order to reveal its components based on some con-
straints (orthogonality, non-negativity, etc.). In this work, we showed the opposite case, where
the application of tensors and B-splines introduces the decomposition initially (Fig. 3.2 and
Fig. 3.3). Our approach eliminates any expensive analysis that might be needed if the problem
were boiled down, for example, to the sparse matrix format, and one would like to optimize the
computations afterward.

Tensor-inspired Computational Algorithms

An important aspect of tensors that comes from the computational tensor algebra [15, 16] is the
identification of repeated patterns, local kernels and convolution procedures in order to derive
efficient data processing algorithms. We showed that the discrete tensor formulation of the
Ritzh-Galerkin formulation (3.19) preserves and highlights the geometric structure of (3.16),
and thereby suggests multiple ways of operation order and helps to choose the optimal one.

Tensor-based Storage Format

When a discrete formulation benefits from sparsity, the sparse matrix and sparse matrix-vector
multiplication are commonly used. In comparison to this standard approach, the Tensor B-
spline method uses a kernel-based tensor array format in order to avoid the sparse matrix format
overhead, where indices of the non-zero elements have to be stored and accessed. Due to the
dense nature of small-size kernels, it allows more efficient memory access and optimal utilization
of CPU vector units (SIMD). Potentially, a matrix-free nature of the tensor formulation gives
more freedom for optimizations during algorithm implementations. At last, the decomposed
tensor format requires less memory than the sparse matrix and the full-tensor format.
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3.9.3 Domain Discretization

Any element-based numerical method relies on a specific domain discretization. This discretiza-
tion is represented either by elements (in case of FEM) or by grid cells (for Tensor B-splines).
A key aspect of many FEM-based approaches is the use of a domain-conforming mesh (which
is often unstructured). In FEM, meshing automation is a major field of study, and finding
suitable automation strategies is highly challenging in practice [35]. Meshless methods, on the
other hand, require much less effort when it comes to discretizing the domain, but the process
of numerical integration typically involves very high computational costs [44]. Contrary to
these approaches, tensor B-splines on regular grids have the advantage of regularity and shift-
invariance in the domain. For these methods, however, boundary integration is a challenging
problem, as well as the use of Dirichlet BC on non-rectangular domains. In our papers [17, 18],
as well as in this work, an efficient integration method was proposed, based on the Divergence
Theorem. Interestingly, recent advantages in FEM also consider similar approaches, where an
easy-to-build regular mesh is used inside the domain, and the conforming mesh is adjusted
to the domain boundaries [35]. Due to intrinsic B-spline multi-resolution properties, however,
local grid refinements – similar to such mesh adaptations in FEM – are also possible in Tensor
B-spline approaches.

3.9.4 B-spline Boundaries and Efficient Integration

B-splines are well suited for the parametric representation of contours [9], and their properties
allow for analytical integration [7] – these are the essential features we employed in the context
of solving PDEs. An accurate parametric description of a domain boundary allows us to
reduce grid density when compared to the more straightforward approach, where boundaries
are approximated using a limited number of simple elements as in [54].

Integration over domains with a complex shaped boundary is one of the most challenging
parts of numerical methods that do not use meshes. In meshless methods, for example, the
integration slows down the computations significantly [44]. In order to simplify the integra-
tion process, FEM splits a domain into primitive geometrical shapes that are boundary-fitted
such that the integration over them becomes trivial and boundary conditions apply naturally.
However, FEM needs mesh generation, which is, again, the most challenging part in FEM. We
found that as an alternative to using standard numeric quadrature schemes, the integration
steps required for solving PDE can be conveniently and efficiently achieved by the application
of the Divergence Theorem. We showed how the application of the Divergence Theorem and
the use of B-spline properties lead to an efficient integration method on the boundary. This
method reduces the dimensionality of integration and requires simple quadratures. Thus, our
approach is more straightforward geometrically and simpler to implement than those relying
on a mesh. Moreover, our algorithm can process non-convex volumes composed of non-convex
irregular polygons in contrast to algorithm [67] that supports only convex irregular polygons.

3.9.5 Dirichlet BC

The application of the Dirichlet BC is challenging in methods with basis functions that do not
conform to the domain boundary. As was proposed in [20], one can use a weighted basis that
vanishes on the boundary. The application of the Dirichlet boundary condition may require
the use of weighting functions. Rvachev R-functions are good candidates for that [61]. In this
work, we showed that Tensor B-spline solvers can successfully make use of the boundary penalty
method [63]. In this method, the Dirichlet BC is approximated with Robin BC weighted by
some penalty factor.
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3.9.6 Limitations

The efficiency of the Tensor B-spline method has a dependency on the percentage ratio of the
number of domain kernels to the number of boundary kernels - the higher is the prevalence of the
domain kernels, the higher is the efficiency. On contrary, with the growth of the relative number
of non-separable boundary tensor kernels, the method benefits less from efficient separable
domain computations, and requires more time for integration and more memory space for
storage. This could happen when the domain discretization is coarse or the boundary has a
very irregular non-convex shape. However, the memory space for boundary kernels can be
reduced when these kernels are pre-convolved with PDE coefficients right after the integration
stage and only such compressed tensors are stored.
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Chapter 4

Tensor B-spline Numerical Solver
Implementation and Evaluation

4.1 Main Contributions

This chapter presents Tensor B-spline numerical solver implementation, evaluation, and com-
parison with state-of-the-art FEM. Different computational strategies are analysed, imple-
mented, evaluated, and compared. The Tensor B-spline method is applied to the forward
problem of Optical Diffusion Tomography and compared with the FEM from an ODT recon-
struction framework. We present a high-performance solution of a large-scale problem consist-
ing of 0.8 billion nodes that was obtained in memory-efficient fashion on an high-performance
workstation.

4.1.1 Computational Strategies

The use of the decomposed tensor structure inspires efficient computational techniques for the
computation of the system operator. We describe a convolution-based and a so-called “on-
the-fly” techniques. These techniques are potentially more efficient than the classic sparse
matrix-vector multiplication (SpMV) approach.

4.1.2 Application to Optical Diffusion Tomography

The importance of the fast and accurate PDE numerical solver can be seen in the example of
ODT image reconstruction. For biological tissue, where light scattering dominates absorption,
light propagation is commonly modeled by the Diffusion PDE [1]. ODT image reconstruction
is a challenging non-linear inverse problem and is typically solved using iterative numerical
methods, e.g., Newton methods [1, 68] where each iteration step requires solving a number of
forward problems corresponding to different light source locations and parameter distributions
characterizing the optical properties of the tissue. Accuracy and computational performance of
the forward problem solver are critical for the overall efficiency of ODT image reconstruction [69,
70], especially in challenging cases of large whole-body imaging datasets [71]. We apply the
Tensor B-spline method to the forward problem of the ODT [17, 18], and show that the proposed
approach outperforms standard FEM in state-of-the-art ODT framework.

4.1.3 Comparison with state-of-the-art FEM

In order to prove the efficiency of the Tensor B-spline solver, we have performed a detailed
comparison with the state-of-the-art Finite Element Method. The comparison includes one-,
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two-, and three-dimensional cases, domains with regular and irregular boundaries, and is based
on synthetic and real-world data.

4.1.4 Solution of Large-Scale Problems

We have proved the method’s ability to solve problems on dense grids using hardware with
limited resources. For that, we have solved the heat transfer problem on a domain constructed
from a CT scan and consisting of 0.8 billions nodes.

4.2 Computational Strategies for System Operator Eval-

uation

Consider a system operator from an example in the previous chapter

F (C) = CkDmWklm + CkMmFklm +
1

2
CkHkl. (4.1)

The computation of F (C) is crucial because it is a fundamental building block of iterative
methods, and it defines the most time-consuming stage when solving large sparse linear systems.

The SpMV, tensor convolution and “on-the-fly” strategies are possible (Fig. 4.1). Here, we
briefly discuss their properties, while an extensive evaluation and comparison will be provided
in the next sections.

 SpMV 3-D convolution On-The-Fly

system operator computation strategy

-sparse matrix format overhead

-very low flop/byte ratio

-irregular memory access

-significant memory consumption

-low FLOP performance

-reasonably fast

-6-D blocked dense tensor
-regular memory access 
-low flop/byte ratio 

-less memory consumption 

-high FLOP performance

-fastest

-runtime computation, no storage  
-least number of memory transfers 
-very high flop/byte ratio 

-least memory consumption

-highest FLOP performance

-slower than 3-D convolution

a) b) c)

Figure 4.1: Computation strategies of the Tensor B-spline method.

4.2.1 Sparse Matrix Strategy

A classical sparse matrix-based approach can be applied via merging dimensions of the resulting
tensor after all tensors were contracted and summed-up in (4.1). This operation flattens the
multidimensional structure into a sparse two-dimensional matrix representation. Afterward,
a standard sparse matrix-vector multiplication (SpMV) procedure can be used for a system
operator evaluation.

We show that this approach appears to be the least efficient [17, 18]. This follows from
the overhead due to the sparse matrix format, from non-regular memory access, from a very
low flop-to-byte ratio [72, 73], and from problems concerning load imbalance [74] (Fig. 4.1, a).
Since SpMV is a memory-bound procedure, performance optimizations do not overcome the
issue of considerable memory consumption.
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4.2.2 Tensor-based Strategies

Tensor Convolution

The use of a tensor structure permits the implementation of more efficient computing algorithms
than SpMV. The first one uses a natural 6-D block tensor that reduces memory consumption
in comparison to SpMV and provides regular memory access. The 6-D block tensor

Pkl = DmWklm + MmFklm +
1

2
Hkl (4.2)

is assembled before the iterative solving. At each iteration, it is multiplied with Ck. This
algorithm is the fastest [17, 18] but still is not feasible for large systems (Fig. 4.1, b).

On-the-Fly Computations

A kernel-based structure of the system operator inspires the efficient in-the-runtime computa-
tions of the expression

CkDmWklm + CkMmFklm +
1

2
CkHkl (4.3)

when the tensor contractions are performed at each iteration without an explicit assembling
of the large tensor like in (4.2). This approach results in a significant reduction in memory
usage (Fig. 4.1, c). It has a very high flop-to-byte ratio and gains from the high floating point
performance of CPUs and GPUs, as we are showing in the next sections.

4.3 Tensor B-spline Method application to the Optical

Diffusion Tomography

The numerical solution of the forward problem PDEs in state-of-the-art image reconstruction
frameworks like Toast++ [28], NIRFAST [29] and EIDORS [30], etc. [31] is based on the use
of the Finite Element Method (FEM) [25]. So far, a B-spline-based forward model for ODT
was proposed in [54] but was limited to linear splines and simple boundary approximation.
WEB method was applied in physics to electromagnetism and in medicine for computing heat
distribution in the human eye [75, 76].

Motivation in a high-order, mesh-free, efficient, and simple method leads to the use of
B-splines functions together with tensors in a discrete PDEs formulation. The properties of
splines and computational tensor algebra resulted in an elegant and straightforward derivation
of remarkably efficient computational algorithms. In this work we apply the Tensor B-spline
solver to the forward problem of the ODT.

4.4 Comparison with FEM: One-dimensional Case

4.4.1 B-spline and Lagrange FEM bases

A comparison of B-spline and Lagrange polynomial bases reveals the important properties and
aspects of both the Tensor B-spline method and the FEM. We depict the univariate B-splines
in contrast to the Lagrange polynomial functions used in FEM in Fig. 4.2 (a, b). This simple
one-dimensional example shows some crucial differences between the bases.
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Figure 4.2: (a) univariate B-spline bases, (b) Lagrange polynomial FEM bases, (c) an intersec-
tion of a B-spine function and a domain boundary, (d) step function approximation with cubic
B-spline and an error of approximation.

While linear FEM and B-splines coincide, an increasing basis order introduces additional
nodes in FEM (white circles, Fig. 4.2 (b) and spreads the support of B-splines (Fig. 4.2 (a)). B-
splines do not conform to the domain boundary (Fig. 4.2 (c)): for n > 1, B-splines beyond the
domain also contribute to the solution. Fig. 4.2 (d) shows the approximation of the step function
with cubic B-spline and the approximation error. When the step function is sampled, the B-
splines coinciding with grid nodes will result in an exact representation of the step function.
High-order Lagrange basis functions in FEM a not shift-invariant and tend to oscillate (2.5 (b)).

4.4.2 One-dimensional comparison

We begin with a didactic one-dimensional example that compares the accuracies of a Tensor
B-spline solver and an FEM solver. The problem is defined by a Diffusion PDE with Robin BC
on a one-dimensional domain Ω ⊂ R:

−∇ · (D(x)∇ϕ(x)) + µa(x)ϕ(x) = q(x), x ∈ Ω, (4.4)

2D(x)
∂ϕ(x)

∂n
+ ϕ(x) = 0, x ∈ ∂Ω. (4.5)

The domain limits are [−25, 25], the source is defined as q(x) = exp(−(x
2
)2). The grid step

h was decreased using the expression h(µ) = 2−µ, µ = {0, 1, 2, 3}. Note that both method’s
bases correspond to the ones shown in Fig. 4.2. The L2 and W1,2 errors are computed between
the numerical solutions and the analytic reference solution. Two situations were studied, in
which: 1) additional nodes where introduced in FEM, and 2) FEM was forced to have the same
number of nodes as the Tensor B-spline method. The plots of errors are shown in Fig. 4.3.
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Figure 4.3: L2 and W1,2 (depicted as H1) norms of errors between the reference solution and
B-spline and the reference and FEM solution. FEM uses additional nodes (a), (b). FEM uses
the same number of nodes as B-splines use (c), (d).

Table 4.1: Number of operations for Fig. 4.3.

B-spline FEM (with additional nodes) FEM (same number of nodes)
h n=1 n=2 n=3 n=4 n=5 p=1 p=2 p=3 p=4 p=5 p=1 p=2 p=3 p=4 p=5
1 251 465 665 895 1095 251 701 1351 2201 3251 251 351 433 529 651

0.5 501 915 1315 1745 2145 501 1401 2701 4401 6501 501 701 892 1101 1301
0.25 1001 1815 2615 3445 4245 1001 2801 5401 8801 13001 1001 1401 1783 2201 2601

0.125 2001 3615 5215 6845 8445 2001 5601 10801 17601 26001 2001 2801 3592 4401 5201

From Fig. 4.3 one can observe that a high-order FEM with additional nodes is more accurate
than a high-order Tensor B-spline, but at the same time, the number of operations for a high-
order FEM grows dramatically (Table 4.1). With the same number of nodes, a high-order
Tensor B-spline is more accurate while requiring only slightly more operations.

4.5 Comparison with FEM: Two-dimensional Case

We implemented a Tensor B-spline forward ODT solver in MATLAB. The ODT forward prob-
lem solves the Diffusion PDE with Robin boundary condition (3.4). Performance critical code
parts were implemented in C and MathOberon [77] as MEX files. The regular structure of the
solver algorithm permitted extensive code vectorization including efficient use of AVX vector
instructions. The solver was tested on a Intel R© CoreTM i7-2720QM 2.2 GHz CPU with 8 GByte
of DDR3 1333 MHz memory.

4.5.1 Error Measures

For a reference solution ϕrefi,j and a test solution ϕ̂i,j the normalized discrete l2 norm is defined
as

||e||′2 =
||ϕref − ϕ̂||l2
||ϕref ||l2

=

√∑
i,j |ϕrefi,j − ϕ̂i,j|2√∑

i,j |ϕrefi,j |2
, (4.6)

and signal-to-noise ratio

SNR = 10log10

( ∑
i,j(ϕ

ref
i,j )2

∑
i,j(ϕ

ref
i,j − ϕ̂i,j)2

)
. (4.7)
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For a given linear system solution estimate x, the relative residual norm is defined as

||r||′2 =
||b−Op(x)||l2
||b||l2

, (4.8)

where b is the right-hand side and Op(·) is the linear system operator.

4.5.2 Solver Verification

We verified our Tensor B-spline solver implementation by comparison with reference FEM
solutions on very dense meshes, as analytical solutions are not generally available for the given
PDE and the associated boundary conditions on domains with arbitrary shapes [68]. FEM is
valid as a reference because it is known to converge to the true solution with decreasing element
size [25]. Fig. 4.4 shows solver convergence curves on a rectangular domain of size 1 cm× 1 cm
with constant diffusion and absorption coefficients. Each value of the normalized l2 error norm
||e||′2 along an abscissa axis from left to right corresponds to halving the grid step (equally in
each dimension). The convergence rate r = log2(||eh||′2/||e0.5h||′2) conforms to the theoretical
one (rtheor ≈ n+ 1) for linear and cubic B-spline as long as the reference solution is sufficiently
precise, consistent with the finding in [20] on page 74.
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Figure 4.4: Convergence of linear and cubic B-spline solver solution (photon density distri-
bution in the domain including boundary) on a rectangular domain of size 1 cm × 1 cm,
D = 0.33 cm, µa = 0.01 cm−1.

Our results confirm that with the increasing node count, the B-spline solver solution con-
verges to the reference solution, with a significantly higher convergence rate for cubic versus
linear splines. The error for the cubic spline improves up to a critical number of nodes, beyond
which it does not decrease further. The apparent rebound of the error in Fig. 4.4 is an artifact
related to the inaccuracy of the reference; it vanishes progressively with further refinement of
the reference. On non-rectangular domains, a similar behavior was observed. Further verifi-
cation of the B-spline solver was achieved by comparison of its performance versus FEM, as
shown below, also using very dense FEM solutions as the reference.
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4.5.3 Comparison of B-spline Method versus state-of-the art

Accuracy and computational performance of our solver were compared to standard FEM from
Matlab’s PDE Toolbox and the Toast++ framework. We used square and circular domains with
analytically defined domain boundaries and applied spatially varying diffusion and absorption
coefficients as shown in Fig. 4.5, Table 4.2. B-spline coefficients of the optical properties and the
source were obtained by spline interpolation [7]. Key results compared to FEM were: a) with a
given number of nodes, the B-spline solver converges to a significantly more accurate solution, b)
for achieving a prespecified error, the B-spline solver requires significantly fewer computations,
c) with a given computational budget, the B-spline solver converges to a significantly more
accurate solution. Results using Toast++ were very close to the Matlab FEM, and are therefore
not shown.
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Figure 4.5: B-spline-based solver (cubic B-splines) comparison with linear Matlab FEM
on square (1 cm × 1 cm) and circular domains (1 cm diameter). Source func-
tion Q(x, y) = exp(−10(x − 0.3)2)exp(−10(y − 0.2)2). Diffusion coefficient D(x, y) =
0.33cos(0.3x)cos(0.3y)/2+0.33, absorption coefficient µ(x, y) = 0.01sin(0.3x)sin(0.3y)/2+0.01,
refractive index-mismatch term γ = 1. (a) Reference solutions for square domain (2558465
nodes) and circular domain (2082817 nodes), (b) Normalized l2 error norm ||e||′2 and CG rela-
tive error norm ||r||′2, (c) B-spline grid and FEM meshes, (d) Error ϕ̂−ϕref after 17 iterations,
(e) Error ϕ̂− ϕref after CG convergence.
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4.5.4 Tensor B-spline Solver Performance

High degree of basis at limited computational cost

The nature of the B-spline basis, including compact support and shift invariance, allows increas-
ing the order of approximation at a limited computational cost. For a polynomial degree > 1,
discretization of the PDE by B-splines leads to sparse linear systems with fewer unknowns and
a lower number of non-zeros compared to polynomials in FEM. A change of the basis from
linear to cubic increases the number of non-zeros by a factor of ∼ 20 in FEM, while only an
increase by a factor of ∼ 6 is observed from linear to cubic B-spline (Fig. 4.6, “nnz, system
matrix” column in the table). This is because FEM requires the insertion of extra nodes in
contrast to B-splines.

Impact of domain boundary representation

The flexibility of the parametric, B-spline based boundary representation used here permits
tuning solver performance. Accuracy depends on the spline degree and the number of para-
metric nodes [9]. Linear B-splines proved to yield sufficiently high accuracy at low complexity
in our case, but higher degree splines are feasible in principle. In contrast to FEM, where the
quality of boundary approximation is mesh-dependent, we can control boundary representation
independent from the domain discretization.

Table 4.2: Tensor B-spline method comparison with FEM.

Square Circle

B-spline FEM S1 FEM S2 FEM S3 B-spline FEM C1 FEM C2 FEM C3

(same Nu)
(same
||e||′2)

(same FLOP) (same Nu)
(same
||e||′2 )

(same
FLOP)

Nu 169 170 5421 614 81 81 866 321

nnz(A) 6241 1104 37493 4140 2601 513 5896 2145

FLOP/it
12313 2038 69565 7666 5121 945 10926 3969

Fixed error ||e||′2 = 10−2

Iters 9 21 108 37 5 14 40 25

FLOP 110817 42798 7513020 283642 25605 13230 437040 99225

Fixed CG relative residual norm ||r||′2 = 10−10

Iters 72 66 384 124 66 42 149 87

FLOP 886536 134508 26712960 958250 337986 39690 1627974 345303

||e||′2 0.000063 0.002414 0.000067 0.000616 0.000876 0.009658 0.000850 0.002618

Nu - number of unknowns, nnz(A) - number of non-zeros in the system matrix,

FLOP/it - floating-point operations per iteration, Iters - numer of iterations

Computational complexity of integration and solver initialization

The computational cost for solver initialization is dominated by computation of the tensor
kernel coefficients of the basis functions intersecting the domain boundary (here ∼ 10% of
nodes). This can be done by standard 2-D numeric quadratures as in [25, 46]. We found,
however, that integration based on the Divergence Theorem, combined with B-spline-based
approximation of the parametric integrands (look-up table complexity) significantly reduces
computational complexity. For example, to achieve a relative error < 10−14 over a single grid
cell intersected by a single boundary segment, using a 7×7-point 2-D Gauss quadrature rule for
the cubic B-spline requires ∼ 25.9 million operations, while our integration algorithm requires
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a 7-point 1-D parametric quadrature with a complexity of ∼ 6.6 million operations and does
not require the generation of quadratures adapted to the geometry of each and every boundary
cell. The initialization of our solver requires computing the tensor kernels only once. To solve
the inverse problem iteratively, the precomputed tensor kernels can be reused at every iteration
with an additional cost of about 3920 operations for cubic B-spline (96n3 + 128n2 + 56n+ 8, n
is spline degree) per node per iteration for recomputing the system operator, about 1000 times
less than the standard integration approach, used in [46]. Thus, this tensor kernel approach
can reduce the overall computational complexity of the ODT forward problem solutions.
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Figure 4.6: B-spline-based solver comparison with Toast++ on a brain phantom of size 180×
125 mm. Light source is modeled as a collimated source [78] of Gaussian shape q(x1, x2) =
[1/(2πσ2)]exp(−[(x1 − x0

1)2 + (x2 − x0
2)2]/(2σ2)), with σ = 8 (’Isotropic’ source type with

’Gaussian’ profile in Toast++). Refractive index mismatch term γ = 2.74 that corresponds
to the skin-air boundary relative refractive index n = 1.4 reported in the literature [78]. (a)
Reduced scattering distribution µ′s, mm

−1, (b) Absorption distribution µa, mm
−1, [79] (c)

Diffusion distribution D = 1/(3[µa + µ′s]), (d) Reference FEM solution ϕref (5678977 nodes),
(e) Normalized l2 error norm ||e||′2 vs iterations, (f) CG relative residual norm ||r||′2 vs iterations,
(g) Absolute errors ϕ̂− ϕref after 100 iterations.
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Efficient and flexible mesh-free basis

The shift-invariant B-spline basis does not require the potentially expensive mesh generation
needed in FEM. It allows efficient sampling of the involved spline representations [7], in con-
trast to FEM, where more costly mesh-dependent sampling is required. The B-spline degree to
represent solution, diffusion and absorption coefficients, and light source can be chosen indepen-
dently (Fig. 4.6). This gives added flexibility for tuning the solver towards speed or accuracy,
a feature of particular benefit for the on-the-fly solving strategy. Computational efficiency also
benefits from the multiresolution B-spline properties that permit simple filtering-based geomet-
ric tensor multigrid solving schemes [8] not requiring the generation of scale-dependent meshes
implied by FEM [80]. Filtering-based analytical differentiation and integration of B-spline rep-
resentations permit efficient implementation of the inverse problem regularization strategies
based on squared l2 norms of differential operators [8] and sparse regularizers [81].

Table 4.3: Tensor B-spline Method comparison with FEM.

Method degree Nu nnz, FLOP/ ||e||′2 SNR, Iter-s CPU time Memory [MB],
system iteration dB (||r||′2 = (CG), s system matrix
matrix 10−7) (double prec.)

FEM (Toast) p=1 10282 71368 132454 0.004734 46.50 210 0.27 1.2
FEM (Toast) p=3 91630 1552294 3012958 0.000281 71.04 975 15.3 24.4

B-spline

nb = 1
np = 1 10202 (125x98) 90493 170766 0.005515 45.17 187 0.11 1.8
ns = 1
nb = 1

B-spline np = 3 10202 (125x98) 90493 170766 0.003347 49.51 187 0.11 1.8
ns = 3
nb = 3

B-spline np = 1 10652 (125x98) 503024 995396 0.001268 57.94 124 0.17 9.6
ns = 3
nb = 3

B-spline np = 3 10652 (125x98) 503024 995396 0.000194 74.24 124 0.17 9.6
ns = 3

Summary on methods, where p - degree of polynomial basis function in Toast++, degrees of B-spline basis functions for solution,
parameters and source are nb, np and ns, Nu - number of unknowns, nnz, sys. matrix - number of non-zeros in the system matrix

4.5.5 Comparisons on Medical Synthetic Data

We performed comparisons using the MRI brain phantom from [82]. Domain boundaries are
represented by parametric splines fitted as an active contour [9] to the phantom. Typical
absorption and scattering coefficients were assigned to gray and white matter, bone, and water
areas. These images of optical properties were pre-filtered with a Gaussian filter to avoid aliasing
and assure non-negativity and were transformed to the B-spline domain by direct filtering [7].
Results computed using our solver performed with several B-spline degrees for the solution,
coefficients, and source terms were compared to the results obtained by Matlab FEM and by
Toast++. The results shown in Fig. 4.6 document a significant advantage in the accuracy and
computational performance of our solver.
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Figure 4.7: B-spline-based solver with/without extension and with/without preconditioner.
Solutions obtained on circular domain of radius 25 mm. Reference solution computed by FEM
with 8.8 million nodes. Source is a Gaussian of width 4 placed at (24,0). Diffusion and
absorption coefficients are smooth, spatially variable functions. a) Normalized l2 norm of error
||e||′2 vs iterations and CG relative residual norm ||r||′2 vs iterations for grid of size 21x21.

Table 4.4: A summary of results presented in Fig. 4.7.

Grid Method ext. precond. Nu ||e||′2 SNR, dB

16x16

Bspl1 no no 300 1.40e-03 57.09
Bspl2 yes no 232 2.59e-03 51.74
Bspl3 no yes 300 1.40e-03 57.09
Bspl4 yes yes 232 2.59e-03 51.74

21x21

Bspl1 no no 475 3.47e-04 69.18
Bspl2 yes no 387 6.36e-04 63.93
Bspl3 no yes 475 3.47e-04 69.18
Bspl4 yes yes 387 6.36e-04 63.93

32x32

Bspl1 no no 996 5.00e-05 86.02
Bspl2 yes no 864 7.90e-05 82.03
Bspl3 no yes 996 4.99e-05 86.02
Bspl4 yes yes 864 7.90e-05 82.03

4.5.6 Solver Convergence

Tensor B-spline solver error and CG residual are presented in Fig. 4.7. The use of the extension
for the B-spline basis [45] led to a major improvement of convergence, but we found that a simple
Jacobi preconditioner provided even better results. The extension procedure slightly degraded
the l2 error, which could be explained by the effective reduction of the number of nodes. Spikes
in the CG residual convergence curves that we observed with the Jacobi preconditioner at high
grid density could be overcome by a simple thresholding scheme applied to the system operator
coefficients, with a threshold of 10−7 in our setup. Even after convergence of the solution
error norm ||e||′2, the CG relative residual norm ||r||′2 still decreases steadily. This nonlinear
behaviour is found because the two measures correspond to different mathematical spaces; such
behaviour is observed in other applications of CG, a Krylov subspace method [8].
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Figure 4.8: Performance plots of sparse matrix-vector multiplication (SpMV), convolution al-
gorithm and on-the-fly algorithm with multiple threads. Here N is a number of nodes along
one side of square grid, size of sparse system matrix is N2 × N2, size of the system tensor is
7 × 7 × N × N . (a) Convolution speed-up compared to sparse matrix-vector multiplication
(SpMV), (b) On-the-fly performance compared to convolution (c) Execution time for SpMV,
convolution and on-the-fly algorithms.

4.5.7 Performance of the System Operator Evaluation

System operator evaluation, performed iteratively by CG, is a critical performance factor for
the Tensor B-spline solver. In a standard implementation, this is often done with standard
sparse matrix libraries. However, we have shown that the full exploitation of the problem
structure can improve performance [15], a finding confirmed in the current work. Fig. 4.8 (a)
shows that our spatially variant filtering algorithm for evaluation of the system operator is
as twice as fast as the sparse matrix-vector multiplication-based equivalent. A comparison of
operation count/CPU clock with CPU time showed that the achieved performance is limited
by the memory bottleneck. The tensor structure induced an alternative, on-the-fly version for
system operator evaluation based on a decomposition of the system operator (Fig. 3.2). Such
an on-the-fly, matrix-free, tensor kernel-based algorithm trades memory transfers for additional
CPU load and was found to be highly parallelizable (cf. Fig. 4.8 (b)) and well suited for parallel
hardware e.g., SIMD and GPU. The reduction in memory requirement for the system operator
renders this algorithm variant very attractive for computing platforms such as FPGA.

4.6 Comparison with FEM: Three-dimensional Case

Compared to 2-D, real-world 3-D problems present new challenges for efficient numerical solving
as 1) in FEM, the meshing process becomes challenging and mesh-free solutions may offer
advantages [37] but require suited boundary handling algorithms [46], 2) the computation cost
of solving increases sharply with increased dimensionality, grid size and higher order of basis
functions [8].

We have implemented a three-dimensional Tensor B-spline forward ODT solver in MAT-
LAB. Performance-critical code parts were implemented in C as MEX files using AVX vector
instructions and multithreading. The solver was tested and compared with the standard FEM
solver from the Toast++ framework [28] on Intel Core i7-2760QM 2.4 GHz with 16GB DDR3
1333 MHz memory. The computations were performed using double precision arithmetic. For
the sake of simplicity, in all experiments we used nb = np = ns = n. All comparisons were made
in respect to reference solutions computed using an FEM on dense meshes using the strategy
proposed in [17].
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4.6.1 Error Measures

For a reference volume image ϕrefi,j,k and a test volume image ϕ̂i,j,k absolute error is defines as

εa =

√∑

i,j,k

(ϕrefi,j,k − ϕ̂i,j,k)2, (4.9)

and relative error is defined as

εr =

√∑
i,j,k(ϕ

ref
i,j,k − ϕ̂i,j,k)2

√∑
i,j,k(ϕ

ref )2
i,j,k

. (4.10)

4.6.2 Solver Verification

Tensor B-spline solver feasibility, correctness, high accuracy and performance is confirmed by
the obtained results presented in Fig. 4.9, Fig. 4.10 and Table 4.6, and Table 4.7.

4.6.3 Advantages of the Tensor B-spline Methodology

Tensor-product B-splines, when used as basis functions in a Ritz-Galerkin formulation of a
PDE, result in a very regular data structure that 1) is sparse due to the compact support of
B-splines, 2) separable due to the tensor-product basis of B-splines, 3) regular due to the shift-
invariance of B-spline, and therefore 4) has a convolutional structure. As a consequence, the
Ritz-Galerkin formulation enjoys a regular tensor decomposition structure that is a key factor
of efficient computations and memory usage.

Computationally Efficient High-order Basis

The tensor decomposition of a Ritz-Galerkin formulation of a PDE represents the system op-
erator as coefficients contracted with small separable dense kernels in the domain and non-
separable sparse kernels on the domain boundary (Fig. 3.3). The separability of domain kernels
results in a fewer number of operations, as explained in Table 4.5, where Ononsep = 4M6 − 1,
Osep = 24M4 − 10M3 − 1, M = 2n+ 1.

Table 4.5: Number of operations for separable and non-separable algorithms.

n Ononsep Osep Ratio, non-sep/sep
1 2915 1673 1.7424
2 62499 13749 4.5457
3 470595 54193 8.6837
4 2125763 150173 14.1554
5 7086243 338073 20.9607

The comparison shows a substantial benefit from separability with the increase of the B-
spline degree. For example, in the case of a cubic basis, the separable algorithm requires almost
nine times fewer operations than its non-separable equivalent.
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Figure 4.9: B-spline solver performance and comparison with FEM solver on a spherical
domain. MRI scan used only for domain surface extraction, and smooth spatially vari-
able absorption µa and reduced scattering µ′s coefficients were assigned with mean values
0.01 mm−1 and 1.0 mm−1 respectively (µa = 0.01sin(0.1x1)sin(0.1x2)sin(0.1x3)/2 + 0.01,
µ′s = cos(0.1x1)cos(0.1x2)cos(0.1x3)/2 + 1.0).

Mesh-free Integration

The proposed integration method based on the Divergence Theorem enables integration over
complex non-convex geometry of the boundary without 3-D meshing. The boundary discretiza-
tion is independent of the domain discretization, and fine boundary discretizations combined
with moderate domain grids are possible (see Fig. 4.10).

Benefits of Tensor Decomposition

The advantage of Tensor B-spline methodology is that the tensor decomposition that comes
literally for free enables suppression of memory requirements that is a key factor in solving large-
scale problems. The benefit from this decomposition increases with the growth of problem size
and degree of basis functions (Table 4.10).

Computational Strategy: 3-D convolution

The results show that a 3-D convolution computational strategy, even in a single-threaded im-
plementation, outperforms the sparse matrix-vector multiplication (SpMV) algorithm (Matlab
2017) and achieves even higher performance with multiple threads (Table 4.8).
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Figure 4.10: B-spline solver performance and comparison with FEM solver on a head
domain. CT scan used only for domain surface extraction, and smooth spatially vari-
able absorption µa and reduced scattering µ′s coefficients were assigned with mean values
0.01 mm−1 and 1.0 mm−1 respectively (µa = 0.01sin(0.1x1)sin(0.1x2)sin(0.1x3)/2 + 0.01,
µ′s = cos(0.1x1)cos(0.1x2)cos(0.1x3)/2 + 1.0).

Table 4.6: B-spline solver performance and comparison with FEM solver on a spherical domain.

Method degree number of number of FLOP/iter absolute relative Iterations CPU time Memory [MB],
unknowns non-zeros, error, error, of CG* (CG*), system matrix

(nodes) sys. mat. εa εr seconds (double prec.)

FEM
p=1 986 14002 27018 0.01477 0.07186 180 0.0582 0.22118
p=2 7494 206076 404658 0.00122 0.00592 300 0.4895 3.20165
p=3 24706 1157470 2290234 N/A N/A N/A N/A 17.85009

B-spline
n=1 984 21070 41156 0.01631 0.07938 23 0.0182 0.32902
n=2 1482 126504 251526 0.00111 0.00542 100 0.0675 1.94161
n=3 1778 370490 739202 0.00047 0.00230 500 0.48 5.66680

*- CG is without a preconditioner.

Table 4.7: B-spline solver performance and comparison with FEM solver on a head domain.

Method degree number of number of FLOP/iter absolute relative Iterations CPU time Memory [MB],
unknowns non-zeros, error, error, of CG* (CG*), system matrix

(nodes) sys. mat. εa εr seconds (double prec.)

FEM
p=1 3725 52685 101645 0.15512 0.05359 153 0.13 0.83234
p=2 28156 769276 1510396 0.00441 0.00152 500 3.61 11.95304
p=3 92663 4318495 8544327 N/A N/A N/A N/A 66.6020

B-spline
n=1 3704 85168 166632 0.10341 0.03573 200 0.29 1.32783
n=2 4901 471739 938577 0.00731 0.00253 50 0.09 7.23557
n=3 5551 1328223 2650895 0.00394 0.00143 500 1.5 20.31

*- CG is without a preconditioner.
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Table 4.8: System operator evaluation performance comparison: 3-D convolution vs sparse
matrix-vector multiplication (SpMV).

n Grid size GFLOPS CPU time, GFLOPS CPU time,
s s

SpMV (Matlab)

1
32x32x32 1.4 0.0011
64x64x64 1.3 0.0097

2
32x32x32 1.4 0.0050
64x64x64 1.3 0.043

3
32x32x32 1.4 0.013
64x64x64 1.4 0.109

3-D convolution
1 thread 4 threads

1
32x32x32 1.7 0.00076 2.0 0.00065
64x64x64 1.7 0.00689 2.8 0.0042

2
32x32x32 1.8 0.00281 2.8 0.0018
64x64x64 1.8 0.0269 3.7 0.014

3
32x32x32 2.3 0.00491 3.3 0.003
64x64x64 2.3 0.054 4.0 0.031

Table 4.9: Performance and scalabily of the On-the-fly algorithm*.

1 thread 2 threads 4 threads
n Grid size time, GFLOPS time, GFLOPS time, GFLOPS

(L1xL2xL3) s s s

1

32x32x32 0.009 6.4 0.005 12 0.003 19.4
64x64x64 0.08 5.6 0.04 10.8 0.03 18.4

128x128x128 0.79 4.6 0.4 9.2 0.22 16.6
256x256x256 6.5 4.5 3.2 9.0 2.0 15

2

32x32x32 0.08 5.6 0.04 11.2 0.03 17.8
64x64x64 0.88 4.1 0.47 7.8 0.26 14.2

128x128x128 8.25 3.6 4.1 7.1 2.6 11.4
256x256x256 81.8 2.9 36.5 6.5 22.1 10.7

3

32x32x32 0.17 10.3 0.09 19.5 0.06 28
64x64x64 2.2 6.5 1.2 12 0.7 21

128x128x128 22.5 5.1 11.7 10 7.56 15.3
256x256x256 225.2 4.1 104.5 8.8 69.3 13.3

* - the boundary tensor kernels are recomputed and contracted
with the coefficient tensors D and M according to 3.3(b).
The computational load is dominated by the domain tensor
kernel computations.
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Table 4.10: Comparison of memory requirements (double precision) for SpMV, convolution and
on-the-fly computational algorithms.

Grid size SpMV Convolution On-the-fly
n MxMxM L1xL2xL3 memory* memory** memory***

30% 50%
of boundary of boundary

kernels kernels

1 3x3x3

32x32x32 13.40 MB 7.25 MB 2.26 MB 2.94 MB
64x64x64 110.70 MB 58.00 MB 18.10 MB 23.50 MB

128x128x128 ≈ 928 MB 464.00 MB 144.80 MB 188.00 MB
256x256x256 ≈ 7.5 GB 3.62 GB 1.13 GB 1.47 GB
512x512x512 ≈ 58 GB 29.00 GB 9.05 GB 11.75 GB

2 5x5x5

32x32x32 56.50 MB 31.75 MB 5.94 MB 9.06 MB
64x64x64 478.40 MB 254.00 MB 47.50 MB 72.50 MB

128x128x128 ≈ 4 GB 1.98 GB 380.00 MB 580.00 MB
256x256x256 ≈ 32 GB 15.88 GB 2.97 GB 4.53 GB
512x512x512 ≈ 254 GB 127.00 GB 23.75 GB 36.25 GB

3 7x7x7

32x32x32 146.10 MB 86.25 MB 14.11 MB 22.69 MB
64x64x64 1.24 GB 690.00 MB 112.90 MB 181.50 MB

128x128x128 ≈ 11 GB 5.39 GB 903.20 MB 1.42 GB
256x256x256 ≈ 87 GB 43.12 GB 7.06 GB 11.34 GB
512x512x512 ≈ 690 GB 345.00 GB 56.45 GB 90.75 GB

* - the memory is needed to store 2-D sparse system matrix A, C and Q

** - the memory is needed to store 6-D array Pk1k2k3l1l2l3 , C and Q

*** - the memory is needed to store 3-D arrays mask, D, M, C and Q

Computational Strategy: On-the-fly algorithm

The results show that the “on-the-fly” algorithm has better CPU utilization than the 3-D
convolution algorithm and the SpMV algorithm (Table 4.9). For example, for cubic B-splines
on a grid of 64× 64× 64, the “on-the-fly” algorithm shows 21 GFLOPS, while only 4 GFLOPS
with the convolution algorithm and 1.4 with the SpMV algorithm are achieved. Despite our
sub-optimal implementation, the “on-the-fly” algorithm provides good parallelization and CPU
utilization. As expected, for a fixed problem size, an increase in the number of threads results
in shorter execution times, and higher GFLOPS numbers. A decrease of GFLOPS with the
increase of the grid size in Table 4.9 can be explained by the limited size of the CPU cache
memory used in the computing hardware.

Efficient Memory Usage

The 3-D convolution algorithm needs two times less memory than the SpMV, however, the
“on-the-fly” algorithm has the lowest memory requirements (Table 4.10). To achieve that,
the boundary kernels are computed and convolved with coefficients without explicit storage of
6-D tensor kernels. It was found that the sparsity of boundary kernels reduces the size of the
resulting tensor at least by a factor of two. Although the memory consumption depends on the
percentage of boundary kernels, even in the case of 50% boundary kernels, the problems up to
256×256×256 can be solved with cubic B-splines on desktop computers equipped with 16 GB
of memory.
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4.6.4 Tensor B-spline Solver Comparison with FEM

We compared the properties of the 3-D Tensor B-spline ODT forward solver with the state-
of-the-art FEM solver from the Toast++ framework. The support of cubic basis functions
in FEM is not implemented in any of the ODT frameworks, however we provide some esti-
mated numbers for this case. For 3-D mesh generation we used the “gmsh” software [83].
The reference, FEM, and B-spline solutions were compared on a grid of size 128 × 128 ×
128. The light source was modelled as a collimated source [78] of Gaussian shape q(x) =
(1/(

√
(2π)3σ3))exp{− ||x− x0| |2/(2σ2)}, where σ = 2 (“Isotropic” source type with “Gaus-

sian” profile in Toast++), x0 defines the position of the source. The range of values of absorp-
tion and reduced scattering coefficients in the presented simulations corresponds to realistic
optical properties of biological tissues [79]. The results are presented in Fig. 4.9, Fig. 4.10,
Table 4.6, and Table 4.7.

Spherical domain

Fig. 4.9 and Table 4.6 show the results of the comparison on a spherical domain. The reference
solution was obtained by quadratic FEM on a mesh with 171910 nodes. The domain bounding
box is [−5, 5] × [−5, 5] × [−5, 5]. The grid size is 11 × 11 × 11 for n = 1 and 13 × 13 × 13 for
n = 2, 3. The grid step is h = 1 in all dimensions. The source is placed at x0 = [−5,−5,−5].

Human head domain

Fig. 4.10 and Table 4.7 show the results of the comparison on a human head domain. The
reference solution was obtained by quadratic FEM on a mesh with 135548 nodes. The domain
bounding box is [−10, 10] × [−10, 10] × [−10, 10]. The grid size is 21 × 21 × 21 for n = 1 and
23 × 23 × 23 for n = 2, 3. The grid step is h = 1 in all dimensions. The source is placed at
x0 = [−7,−4, 0].

From Fig. 4.9 and Fig. 4.10 one can observe that the most significant error values are concen-
trated around the light source position and resemble the pattern of the underlying discretization
that is regular in case of B-splines and unstructured in case of FEM.

In our comparison, both the Tensor B-spline solver and the FEM solver had the same
number of unknowns for the case of linear basis functions; the order of basis was gradually
increased (Table 4.6, 4.7). The comparison showed that:

1. The Tensor B-spline solver requires fewer floating point operations per iteration in com-
parison to the FEM solver when high-order (n, p > 1) basis functions are used. For ex-
ample, with cubic basis functions the Tensor B-spline solver and the FEM solver require
0.74 MFLOP/iteration and 2.3 MFLOP/iteration respectively (column ”FLOP/iter” in
Table 4.6, 4.7). This result is explained by a sparser system operator (system matrix)
of the Tensor B-spline solver rather than of the FEM solver. Indeed, the growth of the
number of non-zeros in the system operator of the Tensor B-spline solver is slower than
in the system operator of the FEM solver. In particular, in the case when a linear basis
was extended to a cubic basis the number of non-zeros increased by a factor of 17.5 for
the Tensor B-spline solver and by 83 for the FEM solver (column ”number of non-zeros”
in the Table 4.6, 4.7).

2. The Tensor B-spline solver provides solutions of equivalent or higher accuracy (columns
“absolute error” and “relative error” in Table 4.6, 4.7) while requiring fewer iterations.

3. The Tensor B-spline solver requires less memory space for storing the system operator
(system matrix) then the FEM solver when a high-order basis (n, p > 1) is applied (last
column in Tabels 4.6, 4.7).
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As seen from Tables 4.6 and 4.7, column 3, the increase of basis degree results in the rapid
growth of the number of unknowns for FEM, while for Tensor B-splines the number of unknowns
grows only slightly. In the case of FEM, this is explained by the insertion of nodes for each
element of the mesh, when the B-spline solver requires the addition of a limited number of
nodes at the boundary only. As observed from our experiments (e.g., Table III and our results
in [17]) and supported by the results in [20], an increase of the B-spline degree can be more
beneficial in terms of both the accuracy and the computational cost than a mere increase of
the grid size.

A limited number of grid nodes in the presented examples was chosen to allow a simple
didactic comparison with FEM. However, for practical problems significantly larger grid sizes
could be required. Table 4.9 and 4.10 document that the approach is feasible and performant
for more than 16 million grid nodes. Increasing the number of grid nodes will improve accuracy
as described in [20] and verified experimentally by us in [17].

4.7 High-performance Solution of Large-scale Problems

The performance of the system operator as well as the performance of the solution in three-
dimensions was evaluated on the heterogeneous workstation. The computation of the system
operator is stated to be the most critical part of the Tensor B-spline solver. The memory
consumption depends on the problem size and on the computational strategy. In this section,
we perform the evaluation of the system operator performance and conjugate iterative solver
on a problem with a large number of nodes.

4.7.1 Target Platform for Numerical Computations

A simplified diagram of the architecture of the workstation is shown in Fig. 4.11. The worksta-
tion’s CPU AMD EPYC 7401P has four non-uniform memory access (NUMA) nodes (shown
in dark gray). Each node is connected to its own random-access memory (RAM) domain and
to the other nodes. There are 128 GB (4× 2× 16 GB) of RAM in total. Each node contains a
multi-core processor with floating-point SIMD units and several levels of cache memory. Three
nodes are connected to GPUs AMD Radeon Vega Frontier Edition. Each GPU has 4096 stream
processors (shown in light gray) and 16 GB of RAM.
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Figure 4.11: The target high-performance workstation consisting of the AMD EPYC 7401P
2.0 GHz 24 cores CPU, 128GB RAM, and three AMD Radeon Vega Frontier Edition 16 GB
RAM GPUs.

4.7.2 Multi-threaded Implementation

The platform’s massive parallelism and non-uniform memory access could challenge the efficient
implementation of a numerical algorithm. However, the Tensor B-spline method allows us to use
data parallelism in a very intuitive way. Fig. 4.12 depicts a possible pattern of data distribution
that was applied to the CPU-based computations in this paper. The rectangular domain of size
L1 × L2 × L3 is divided into rectangular sub-domains (chunks) of size L1 × L2 × L3/4. The
chunks are bound to NUMA nodes and further divided into blocks of size L1/M × L2/M ×
L3/4/N in order to be processed independently and simultaneously by threads involving SIMD
instructions. One can adjust the number of threads per node (N) as well as the number of
blocks per node (M) to tune the performance and CPU load. The majority of computations is
represented by filtering of input data (see Fig. 3.3) performed with the use of fused multiply-add
(FMA) SIMD instructions.

L1

L2

L3

L3/4 L3/4 L3/4 L3/4

chunk 1 chunk 2 chunk 3 chunk 4

L3/4/N

L1/M

L2/M

NUMA Node 1

L3/4/N

L1/M

L2/M

NUMA Node 2

L3/4/N

L1/M

L2/M

NUMA Node 3

L3/4/N

L1/M

L2/M

NUMA Node 4

N - number of threads per NUMA node

M - number of blocks per NUMA node

Figure 4.12: The pattern of data distribution for CPU-based computations.

80



The workstation runs 64-bit Linux Ubuntu 16.04.5 LTS. We used GCC 8.1.0 compiler,
POSIX threads for parallelization, and “libnuma” library for memory management and threads
binding to NUMA nodes, AVX instructions for vectorized floating point computations. The
GPU-based computations were performed using an Active Oberon tensor runtime with OpenCL
support.

4.7.3 NUMA-optimized Conjugate Gradient

The main steps of a multi-threaded conjugate gradient solver with Jacobi preconditioner are
presented below. Note that synchronization procedures (barriers) are not shown for the sake of
simplicity. The visual representation of “copy blocks” CB(. . .) and “sum blocks” SB(. . .) pro-
cedures are shown in Fig. 4.13 and Fig. 4.14. The computation of system operator SysOp(. . .)
is performed with “on-the-fly” strategy according to the Fig. 3.2 or Fig. 3.3.

We define M = 2n + 1, where n is the B-spline degree. Terms of domain kernels decom-
positions ŵkm, f̂km ∈ RM×M , and r̂j ∈ RM . Boundary kernels wkm ∈ RM×M×M×M×M×M ,
rj, hj ∈ RM×M×M . Tensor MASKn ∈ ZL1×L2×L3/N contains types of B-spline kernels, tensors
Cn, Kn, Qn, Un ∈ RL1×L2×L3/N contains PDE solution, coefficient, source, values of Dirichlet
BC. Tensors SY SOPn, DIAGn, RHSn, RESIDn, P ∈ RL1×L2×L3/4 are used for intermediate
results.

CG Initialization for n-th NUMA node

1. initialize RHSn := 0, SY SOPn := 0, DIAGn := 0, Cn := 0;

2. compute diagonal DIAGn := diag(MASKn, Kn, ŵ, f̂ , r̂,wn, rn, hn);
sum blocks SB(node, thread,DIAGn);
inverse diagonal values;

3. compute right-hand side RHSn = rhs(MASKn, Qn, Un, r̂, rn, hn);
copy blocks CB(node, thread,RHSn);

4. compute right-hand side norm rhsNorm :=
√∑

n ||(RHSn||;

5. compute the system operator
RESIDn = SysOp(MASKn, Cn, Kn, Un, ŵ, f̂ , r̂,wn, rn, hn);
copy blocks CB(node, thread,RESIDn);

6. compute residual RESIDn := RHSn −RESIDn;

7. compute norm of the residual residNorm :=
√∑

n ||RESIDn||;

8. compute preconditioner Pn := RESIDnDIAGn;
Pn := RHSn;
copy blocks CB(node, thread, Pn);

9. compute ρ :=
∑

nRESIDnPn.

CG Iterations

1. compute the system operator
SY SOPn = SysOp(MASKn, Pn, Kn, Un, ŵ, f̂ , r̂,wn, rn, hn);

2. compute α := 1
ρ

∑
n(Pn · SY SOPn);
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3. compute Cn := αPn;

4. compute RESIDn = RESIDn − αSY SOPn;

5. compute norm of the residual residNorm :=
√∑

n ||(RESIDn||;
ρ−1 = ρ;

6. application of the preconditioner SY SOPn := RESIDnDIAGn;

7. compute ρ :=
∑

nRESIDnSY SOPn;

8. update Pn := (ρ/ρ−1)Pn + SY SOPn;
copy blocks CB(node, thread, Pn).

Figure 4.13: Simplified visual diagram of the “copy blocks” CP (node, tread, Pn) procedure for
n = 1. For three-dimensional problems blocks are two-dimensional.

Figure 4.14: Simplified visual diagram of the “sum blocks” CB(node, tread,DIAGn) procedure
for n = 1. For three-dimensional problems blocks are two-dimensional.
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4.7.4 System Operator Performance

Multi-Core Scalability

The critical property of any numerical algorithm is its scalability since it allows us to understand
the potential performance that can be achieved on different platforms and even supercomputers.
The scalability of the method is presented in Table 4.11, showing the performance of the on-
the-fly algorithm for different numbers of exploited NUMA nodes and threads.

Table 4.11: On-the-fly algorithm scalability performance on the AMD EPYC 7401P CPU. Grid
of size 240x240x960, cubic splines.

NUMA nodes threads time, s GFLOPS

1
4 84.93 36
8 72.43 42
12 50.90 60

2
8 48.10 64
16 31.67 96
24 26.00 117

4
12 27.78 110
24 17.55 174
48 14.69 208

CPU Performance

The Tensor B-spline method shows a significant increase in performance when more and more
NUMA nodes and threads are used. Table 4.12 shows the performance of the on-the-fly algo-
rithm for different B-spline degrees, grids, and precisions.

Table 4.12: On-the-fly algorithm performance on the AMD EPYC CPU only.

double precision single precision
n Grid GFLOP MEM R/W, time, GFLOPS MEM R/W, time, GFLOPS

(L1 × L2 × L3) GB s GB s
1 240x240x960 97 2.11/0.42 1.07 91 1.06/0.21 0.87 111
2 240x240x960 781 2.16/0.44 6.93 113 1.08/0.22 3.65 213
3 240x240x960 3054 2.22/0.44 15.11 202 1.11/0.22 9.87 309
1 480x480x960 388 8.38/1.68 3.81 102 4.19/0.84 3.72 104
2 480x480x960 3124 8.52/1.70 21.75 144 4.26/0.85 14.14 221
3 480x480x960 12214 8.66/1.73 59.81 204 4.33/0.87 40.10 305
1 960x960x960 1552 33.37/6.67 14.34 108 16.69/3.34 13.36 116
2 960x960x960 12496 33.79/6.76 83.85 149 16.89/3.38 57.05 219
3 960x960x960 48857 34.21/6.84 237.90 205 17.10/3.42 163.76 298
1 1200x1200x1200 3031 65.02/13.00 28.70 106 32.51/6.50 26.62 114
2 1200x1200x1200 24406 65.67/13.13 172.94 141 32.83/6.57 111.65 219
3 1200x1200x1200 95424 66.32/13.26 474.72 201 33.16/6.63 324.12 294

Table 4.12 shows that the Tensor B-spline method achieved 200 GFLOPS in double precision
and 300 GFLOPS in single precision when cubic basis functions are used. Despite the very large
problem sizes, the on-the-fly strategy provides conservative memory usage; thus, the problem
of 1.7 billion nodes requires only 66.3 GB to read and 13.26 GB to write. The amount of used
memory almost does not depend on the B-spline degree.
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GPU Performance

Table 4.13 depicts GPU performance of the on-the-fly algorithm for single precision.

Table 4.13: AMD RADEON Vega GPU performance for the on-the-fly algorithm.

One GPU Two GPUs Three GPUs
n Grid Memory,GB time GFLOPS time GFLOPS time GFLOPS
3 72x72x72 0.00695 68 ms 212 71 ms 204 - -
3 144x144x144 0.0556 510 ms 227 512 ms 226 - -
3 258x258x258 0.3198 3.821 s 243 1.912 s 485 1.333 s 711
3 522x522x522 2.649 21.079 s 352 10.54 s 703 7.4486 s 1055

4.7.5 Large-Scale Solution of the Heat Equation

In the last example, we present the solution of the heat equation in steady state with Mixed
BC (Dirichlet and Neumann) in a volume domain Ω ⊂ R3:

−∇ · (k(x)∇ϕ(x)) = g(x), x ∈ Ω, (4.11)

ϕ(x) = ϕ0, x ∈ ∂Ω1, (4.12)

∇ϕ(x) · n = 0, x ∈ ∂Ω2, (4.13)

where ϕ(x) is the temperature, k(x) is the thermal conductivity, and g(x) is the rate of heat
generation.

The domain of numerical computations is obtained by segmentation of computed tomogra-
phy (CT) scan of a human leg. Skin, blood vessels, surrounding tissue, and the internal volume
of the leg were separated based on gray-scale values, holes were closed and the air is added
around the skin. The resulting domain size is 600 × 600 × 2400 (≈ 0.8 billions of unknowns).
The grid step (resolution) is h = 0.3 mm. The visualization of the leg’s skin and arteria is
shown in Fig. 4.15.

Figure 4.15: The volumetric visualization of the leg’s skin and arteria obtained from a CT
dataset.

For the numerical computations, a data distribution pattern was used as depicted in Fig. 4.12.
There are 98.5 % of domain kernels and 1.5 % of boundary kernels. A linear B-spline basis was
used. The solution was computed in double precision. The Dirichlet BC was approximated
with Robin BC using the boundary penalty method [63]. The Dirichlet BC sets the temper-
ature on the boundary to 20 ◦C . The advantage of this method is that it does not require
the basis functions to vanish on the boundary. The solver uses the parallel implementation of
the on-the-fly algorithm of the system operator because neither sparse matrices nor 6-D ten-
sors would fit into the 128 GB of RAM available. A parallel version of the conjugate gradient
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algorithm with the Jacobi preconditioner was used. In order to speed-up the convergence on
such a large grid, the solver was initialized with a solution obtained on a reduced grid of size
120× 120× 480. The solution is presented in Fig. 4.16 as maximum-projections images. Each
solution was computed in 4 h 4 min for 1000 conjugate gradient iterations.

c)

b)

a)

Figure 4.16: The solution of the heat equation in the leg domain. The color bar shows the
temperature values in ◦C. The source of heat is a) arteria, b) tissue, c) skin.

4.8 Discussion

This chapter describes the implementation details of the Tensor B-spline method, the evaluation
of one-, two- and three- dimensional solvers, and the comparison with the state-of-the-art FEM
in application to the forward problem of the optical diffusion tomography.

A general requirement for numerical PDE solvers is the accurate representation of the
underlying continuous mathematical model, and from a practical point of view, it is crucial
to utilize the computational resources available as efficiently as possible. Both aspects can be
addressed successfully if the solution strategy used is flexible enough to adapt to the intrinsic
problem structure, and if the algorithms used can be adapted easily to the architecture of the
hardware.

4.8.1 Tensor-based High-Performance Computational Strategies

An essential aspect of the Tensor B-spline method is the pervasive application of tensors starting
from the PDE formulation and keeping a tensor structure through the solver implementation.
This approach preserves the multidimensional data structure in comparison to the classic matrix
approach when dimensions are merged and an inherently multidimensional formulation is folded
into a two-dimensional matrix structure. Keeping the tensor structure at the implementation
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stage allows less memory consumption in comparison to the sparse matrix structure where
indices of non-zero elements have to be stored.

The data structure of a tensor is more regular in comparison to a sparse matrix; therefore,
tensors allow more efficient memory access and use of CPU vector instructions (higher flop/byte
ratio). This is confirmed by the “tensor convolution” strategy that requires less memory and
is faster than SpMV. Runtime computation of the system operator (“on-the-fly” strategy)
reduces the space requirements dramatically. The “on-the-fly” strategy does not compute the
multidimensional system operator, but operates on the data and small kernels and needs fewer
memory transfers.

Matrix-Free Approach for High-order B-splines

In the case of cubic B-spline basis functions the system operator is represented by a symmetric
block-band diagonal matrix of width seven, where each block is symmetric and a band diagonal
of width seven. A standard sparse format can be used for efficient storage and matrix-vector
multiplication of the system matrix. The drawback of this approach is in high memory space
requirement, which grows exponentially with grid size and non-regular memory access that lim-
its the performance of numerical computations (Table 4.10). As we show here, our decomposed
tensor-based computational algorithm significantly reduces storage requirements, permits effi-
cient block-wise memory access, and is well-parallelizable. The significant reduction of memory
space, however, comes at the cost of a somewhat larger number of computations. The latter,
as we showed, can be amortized by using multicore CPUs and GPUs equipped with vector
instructions. Moreover, SpMV operations are known for their low computational efficiency
[72] [73]. Tensor B-spline methods allow us to use tensor-based computational kernels (3-D
convolutions and on-the-fly) that are more efficient than SpMV [17, 18]. This strategy allows
solving large-scale problems on inexpensive off-the-shelf hardware and scales naturally to high
performance computing on very large systems.

4.8.2 Tensor B-spline Method Comparison with FEM

Regular B-spline Basis

Tensor B-splines do not require meshing and give more sparsity in the system operator in
comparison to high-order FEM. In FEM, the increase of the degree of polynomial basis functions
leads to significant growth of the number of coefficients (Table 4.6, and Table 4.7) and therefore,
the number of non-zeroes in the system matrix. B-splines naturally enable parallelization of
computations and structural computational algorithms that can be implemented efficiently on
CPU, GPU as we showed, and, potentially, on FPGA. In the Tensor B-spline approach, the
solution is defined in the continuous domain and can be evaluated with high efficiency using
simple algorithms e.g,. by digital filtering. Due to the irregular geometry of the mesh, the
parallelization of computations in FEM is non-trivial, and special methods have to be applied.
FEM solution must be resampled numerically if it is to be evaluated on a regular grid.

Efficient High-Order B-spline Basis

The use of high-order approximations is beneficial because faster convergence rates can be
achieved [27, 84, 85]. For a specified level of accuracy, high-order methods are typically more
efficient than low-order methods. Even more important, high-order Tensor B-splines are usually
more efficient than high-order polynomial FEM basis, see [17, 18]. Further, such high-order
B-splines require less memory and operations per iteration, and often, the convergence rate is
faster, too.
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4.8.3 B-splines Approximations

The source term, material properties, and the solution of ODT PDE are consistently expressed
as B-spline representations of different orders. We find that the application of cubic B-splines
is advantageous in terms of both accuracy and computational performance when compared to
lower degree splines. Moreover, the excellent approximation properties of B-splines enable us
to use regular grids with a relatively small number of nodes, translating to high computational
performance while still allowing to achieve accurate results.

4.8.4 PDE Coefficients representation

Splines are well-known for their excellent interpolation properties [7] that we used for an accu-
rate representation of the coefficients D and µa. The accuracy of such representations tends to
improve with the increase of B-spline degree and the grid density. We experimentally verified
that the use of higher-degree approximations of the coefficients typically leads to significant im-
provements of the solution accuracy, which was particularly studied in [17] compared to FEM
where usually 0-th or 1-st order approximations are used. The increase of the computational
cost associated with the use of higher degree representations of the coefficients is moderate,
due to the separability of the tensor kernels (see Fig. 3.3 and Table 4.5).

4.8.5 Solving Large-Scale Problems

We have presented a parallel high-performance implementation for multi-core CPU with shared
memory and GPUs, and we show numerical results for a large-scale problem consisting of 0.8
billion nodes. We demonstrated that tensor B-spline methods are indeed capable of solving such
large-scale problems within reasonable time limits, whereas standard FEM methods run into
severe memory problems. Recent advances in element-based methods for large-scale weather
forecasting problems [6] suggest a huge potential application field for such tensor B-spline meth-
ods. Tensor B-spline methodology can be used for numerical computation of high-performance
problems like fluid simulation or weather forecast. The method relaxes the curse of dimension-
ality without the application of multivariate analysis, has good parallelization properties and
allows efficient memory access.

4.8.6 Extended and WEB-Splines

The concept of extended and weighted-extended B-splines for solving PDEs [45], [46] was intro-
duced to reduce instability of the linear system caused by B-splines with only small overlap with
the boundary. We examined this approach here and found that it indeed improves stability and
convergence, at the price of decreasing regularity of the linear system structure, and increasing
computational and memory cost of the solver. Application of a simple preconditioner to the it-
erative solver leads to similar benefits while keeping the solving algorithm significantly simpler;
therefore, we did not use extended B-splines in our final implementation. In our method, like in
any mesh-free method where domain discretization does not conform to the domain boundary,
the difficulties in the application of Dirichlet boundary conditions arise. To overcome this, the
WEB-method [45] can be applied at the cost of more numerical computations and a partial
loss of structure regularity due to the multiplication by a weighting function. It is typical for
mesh-free methods that integration procedures on the domain boundary are costly. In our work
we developed a Divergence theorem-based method that is enabled by the B-spline separability
property and, we believe, provides a good trade-off in terms of simplicity, accuracy and numer-
ical cost in comparison to other methods like [86]. Due to tiny contributions of boundary basis
functions into the domain, solver convergence instability is potentially possible. According to
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our experiments, the stability of the solver convergence can be improved by the application of
the multigrid solver.

4.8.7 Application to the Optical Diffusion Tomography

The Finite Element Method is state-of-the-art for ODT algorithms. FEM can achieve high
precision by combining a domain-adapted mesh with a suited degree of the polynomial basis,
where higher degrees often lead to improved approximation quality. This comes at the price
of loss of regularity in data structures and integration procedures, the need for creating and
maintaining a good mesh and a significant increase of the linear system size. We found that
the meshless Tensor B-spline methodology, even with a limited number of grid nodes, is highly
competitive with state-of-the-art FEM solvers applied to ODT, even when they are using higher
order basis functions. The forward solver implemented here is compatible with ODT frameworks
like Toast++, EIDORS so that it can be used as a high-performance plugin.

4.8.8 Integration into Existing Frameworks

The numerical solution of the forward problem PDEs in state-of-the-art image reconstruction
frameworks like Toast++ [28], NIRFAST [29] and EIDORS [30], etc. [31] is based on the use
of the Finite Element Method (FEM) [25]. These frameworks might benefit from the Tensor
B-spline Solver.

4.8.9 Problem-Specific Hardware

Despite ubiquitous utilization of general-purpose CPUs and GPUs, recent studies suggest
domain-specific hardware as a future solution for efficient computations [87]. An example
of this kind is Google’s Tensor Processing Unit containing 65,536 8-bit MAC matrix multiply
units with a peak throughput of 92 TeraOps/second. The specialized computing units of such
hardware rely on specific properties of the data structure and data flow, as well as on specific
data locality patterns [88]. One interesting aspect of tensor B-spline methods is that they may
be naturally deployed on such domain-specific hardware, a combination which – at least in our
view – has a huge potential in future high-performance computing problems. On the other
hand, tensor B-spline methods allow us to solve large-scale problems solution using limited
computing resources. This might also suggests the use of these methods in embedded systems
with their typical restrictions in terms of on-chip memory and flops-per-watt ratio.

4.8.10 Relevance for Clinical and Biomedical Imaging Applications

Future clinical and biomedical applications of ODT will be made feasible by progress in image
acquisition hardware, reconstruction algorithms, and suitable clinical scenarios. Development
in ODT has a high potential for the future clinical benefit because it does not require ion-
izing radiation, radioactive isotopes or physically large machines built upon low-temperature
superconducting magnets. Optical imaging is also amenable to clinical molecular imaging us-
ing diagnostic, receptor-targeting nanosystems that are currently developed [89], [90]. Progress
in ODT technology as reported here may also contribute to lean algorithm implementations
running on compact imaging systems and contribute to improved imaging as required for the
Personalized Medicine of the Future, and may furthermore render this imaging technique also
applicable in healthcare systems with limited resources. Optical tomographic imaging tech-
nologies are also increasingly used in biomedical imaging because they enable noninvasive,
longitudinal imaging in organ- and cell-specific fashion.
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4.8.11 Application to Other Fields of Science and Engineering

In this chapter, an application of the Tensor B-spline methodology was shown based on the ex-
amples of the Diffusion and Heat PDEs. Many problems rely on the variant of Diffusion PDEs
with certain boundary conditions. However, the methodology has a much broader range of po-
tential applications. Variational formulations of many PDEs share common building blocks like
integrals over products of basis functions and their gradients. The Tensor B-spline methodol-
ogy can be applied to the mechanical problems and problems in physics and biology. Examples
of potential applications are elasticity, sound propagation, and fluid dynamics. In the previ-
ous chapter we have described the method’s approach to solve time-dependent and convection
diffusion PDEs, however the evaluation of numerical results will need further work.
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Summary

Tensor B-spline method Advantages Disadvantages
B-spline representations high-quality interpolation,

approximation,
exact differentiation

B-spline minimal support systems of equations
for a given degree with high sparsity
Tensor product B-splines separability, less flexible than

tensor decompositions, non-separable bases
1-D filtering along dimensions,
much less computations compared
to non-separable bases
especially for high-degree basis

B-spline digital filtering efficient computations
algorithms of B-spline coefficients
tensor-product grid mesh-free non-conforming grid

for arbitrarily-shaped
domain,
special handling
on domain boundary

tensor decomposition tensor B-spline kernels,
efficient in-domain
computations

tensor structure preserves spatial coherence
that is lost in matrix formulations,
highly sparse matrix-free computations,
low memory consumption,
parallelism and scalability

integration using efficient integration
Divergence Theorem on boundaries
and B-spline properties

This work was motivated by the search for a numerical method to solve large PDEs that is simple
and generic, benefits from recent progress in signal processing algorithms, employs high-degree
basis functions in an efficient fashion, does not require domain meshing but handles arbitrarily-
shaped domain boundaries, allows to solve large-scale problems on off-the-shelf computers, has
efficiently parallelizable algorithms and is scalable to high performance computing. To this
end, we employed a B-spline signal processing framework together with computational tensor
algebra. As a result, a novel Tensor B-spline method for numerical solution of PDEs is proposed
here. The method permits simple and efficient high-order approximations, benefits from the
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decomposed tensor structure of a discrete PDE formulation, is mesh-free, supports domains with
non-convex boundaries of arbitrary shapes and provides efficient matrix-free parallel algorithms
for the numerical solution of PDEs.

The use of a B-spline signal processing framework permits a spectrum of efficient filter-
based techniques for PDE terms representation and processing. These includes B-spline-based
interpolation or approximation, differentiation, integration of the PDE term functions. A com-
putational tensor algebra approach revealed the decomposed tensor nature of the PDE dis-
crete formulation. The tensor formulation of the PDE exposes structure patterns amenable to
processing by small kernels, and therefore induces highly performing solving algorithms. We
introduced tensor B-spline kernels that are important building-blocks of the method that sig-
nificantly contribute to the method’s computational efficiency. We introduced a decomposed
tensor-based storage format that requires less memory then sparse matrix format. Its extreme
case of the “on-the-fly” contractions of decomposed B-spline kernels leads to a large reduction
in required memory size and allows large-scale solutions with limited memory resources.

Due to the shift-invariant B-spline kernel structure, integration is extremely efficient inside
the domain. The integration over the domain surface and its surroundings is performed with the
proposed integration method based on the Divergence Theorem and B-spline properties. This
integration method effectively reduces the dimensionality of integration and thereby provides
efficient integration scenarios. The integration method also benefits from the B-spline-based
representation of the domain boundary. We found that the approximation of the Dirichlet
boundary condition with the boundary penalty method can be successfully used in the Tensor
B-spline method.

The Tensor B-spline solver was successfully applied to the forward problem of Optical
Diffusion Tomography. An extensive comparison with state-of-the-art FEM on synthetic and
real medical data showed the advantages of our new method. We built high-performance
multicore CPU- and GPU-based implementations of the Tensor B-spline solver. The method’s
parallel implementations exhibit good scalability, that makes it applicable to high performance
computing with very large numbers of CPU cores or GPU accelerators. These properties were
proved in the method’s application to a large-scale problem, where the solution consisting of
0.8 billion of unknowns was obtained on on a 24 CPU / 3 GPU hybrid workstation.

The decomposed tensor aspects of the Tensor B-spline method are used efficiently on large-
scale problems. Some limitations are introduced on coarse grids or domains with complicated
boundaries where the number of non-separable boundary computations increases. We have
proposed a boundary handling approach that can help to overcome these limitations.

Our novel method can solve a variety of PDEs types, can be incorporated in the existing
medical imaging frameworks as alternative to standard FEM. The Tensor B-spline method
might find applications in many fields, where an efficient, mesh-free, parallel, and scalable
numerical method for solving PDEs is needed.
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Appendix

Verification of the Bilinear Form

We define two smooth scalar fields f(x) = f(x1, x2) and g(x) = g(x1, x2) are functions on the
two-dimensional real space x ∈ R2 that have continuous 1-st derivative. Let us also define the
domain Ω ⊂ R2 with boundary ∂Ω.

We have to compute

a =

ˆ
Ω

∇f(x1, x2) · ∇g(x1, x2)dx1dx2 (4.14)

over the domain Ω.
We approximate functions f(x1, x2) and g(x1, x2) by splines of degree n

f̂(x1, x2) =
∑

k1,k2

ck1,k2β
n(x1/h1 − k1)βn(x2/h2 − k2),

ĝ(x1, x2) =
∑

k1,k2

mk1,k2β
n(x1/h1 − k1)βn(x2/h2 − k2),

(4.15)

where ck1,k2 and mk1,k2 are coefficients of tensor-product B-spline functions βnk,h(x). The coef-
ficients can be found by recursive 1-D filtration along the scalar fields dimensions.

Substituting (4.15) into (4.14) we get:

a = CkMl

ˆ
Ω

∇βnk(x) · βnl (x)dx = CkMlWkl = Ck1k2Ml1l2Wk1k2l1l2 (4.16)

Using B-spline properties we compute gradients ∇f̂(x1, x2) and ∇ĝ(x1, x2)

∂f̂(x1, x2)

∂x1

=
1

h1

∑

k1,k2

ck1,k2

[
βn−1

(
x1

h1

− k1 −
1

2

)
− βn−1

(
x1

h1

− k1 +
1

2

)]
βn
(
x2

h2

− k2

)
,(4.17)

∂f̂(x1, x2)

∂x2

=
1

h2

∑

k1,k2

ck1,k2β
n

(
x1

h1

− k1

)[
βn−1

(
x2

h2

− k2 −
1

2

)
− βn−1

(
x2

h2

− k2 +
1

2

)]
,(4.18)

∂ĝ(x1, x2)

∂x1

=
1

h1

∑

k1,k2

mk1,k2

[
βn−1

(
x1

h1

− k1 −
1

2

)
− βn−1

(
x1

h1

− k1 +
1

2

)]
βn
(
x2

h2

− k2

)
,(4.19)

∂ĝ(x1, x2)

∂x2

=
1

h2

∑

k1,k2

mk1,k2β
n

(
x1

h1

− k1

)[
βn−1

(
x2

h2

− k2 −
1

2

)
− βn−1

(
x2

h2

− k2 +
1

2

)]
.(4.20)

and integral over Ω explicitly:

a =

ˆ
Ω

∇f̂(x1, x2) · ∇ĝ(x1, x2)dx1dx2 =

ˆ
Ω

∂f̂(x)

∂x1

∂ĝ(x)

∂x1

+
∂f̂(x)

∂x2

∂ĝ(x)

∂x2

dx1dx2. (4.21)
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Computation of Tensor B-spline Kernels

Consider the computation of tensor kernel r in two-dimensional case. In the domain

r̂j1j2 =

ˆ
Ω

βns
j,1(x)βnb

0,1(x)dx = βns+nb+1(j1)βns+nb+1(j2), (4.22)

on boundary

rj1j2l1l2 =

˛ b

a

F1[u1(t), j1, l1]f2[u2(t), j2, l2]
du2(t)

dt
dt, (4.23)

F1(t, j1, l1) =

ˆ t

−∞
βns(x− j1)βnb(x− l1)dx, (4.24)

f2(t, j2, l2) = βns(t− j2)βnb(t− l2). (4.25)

Tri-product tensor kernels wkm and fkm can be computed using analytical recursions based on
B-spline properties.

Some Geometrical Procedures

Line-line Intersection in 3-D

First line contains points x1 = [x1, y1, z1] and x2 = [x2, y2, z2]. Second line contains points
x3 = [x3, y3, z3] and x4 = [x4, y4, z4]. The intersection of these two lines can be found directly
by solving system of equations:

x = x1 + (x2 − x1)s (4.26)

x = x3 + (x4 − x3)t (4.27)

Lines have to be not skew. We solve for

s =
(c× b) · (a× b)

|a× b|2 , (4.28)

where

a = x2 − x1 (4.29)

b = x4 − x3 (4.30)

c = x3 − x1 (4.31)

(4.32)

The point of intersection
x = x1 + as. (4.33)

Line-plane Intersection in 3-D

A line is represented by a parametric from

la + (lb − la)t, t ∈ R, (4.34)

where, la = (xa, ya, za), lb = (xb, yb, zb).
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A plane is represented as

p0 + (p1 − p0)u+ (p2 − p0)v, u, v ∈ R, (4.35)

where pk = (xk, yk, zk), k = 0, 1, 2.
To find line-plane intersection point a parametric equation

la + (lb − la)t = p0 + (p1 − p0)u+ (p2 − p0)v (4.36)

has to be solved.
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[27] B. Guo and I. Babuška, “The hp version of the finite element method,” Computational
Mechanics, vol. 1, no. 1, pp. 21–41, 1986.

[28] M. Schweiger and S. Arridge, “The toast++ software suite for forward and inverse modeling
in optical tomography,” Journal of biomedical optics, vol. 19, no. 4, pp. 040801–040801,
2014.

[29] H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter,
B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algo-
rithm for numerical model and image reconstruction,” International Journal for Numerical
Methods in Biomedical Engineering, vol. 25, no. 6, pp. 711–732, 2009.

96



[30] N. Polydorides and W. R. Lionheart, “A matlab toolkit for three-dimensional electrical
impedance tomography: a contribution to the electrical impedance and diffuse optical
reconstruction software project,” Measurement Science and Technology, vol. 13, no. 12,
p. 1871, 2002.

[31] J. Vorwerk, C. Engwer, S. Pursiainen, and C. H. Wolters, “A mixed finite element method
to solve the eeg forward problem,” IEEE transactions on medical imaging, vol. 36, no. 4,
pp. 930–941, 2017.

[32] D.-T. Lee and B. J. Schachter, “Two algorithms for constructing a delaunay triangulation,”
International Journal of Computer & Information Sciences, vol. 9, no. 3, pp. 219–242,
1980.

[33] P.-O. Persson and G. Strang, “A simple mesh generator in matlab,” SIAM review, vol. 46,
no. 2, pp. 329–345, 2004.

[34] D. S. Lo, Finite Element Mesh Generation. CRC Press, 2014.

[35] K.-J. Bathe, “The amore paradigm for finite element analysis,” Advances in Engineering
Software, vol. 130, pp. 1–13, 2019.

[36] V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, “Meshless methods: a review and
computer implementation aspects,” Mathematics and computers in simulation, vol. 79,
no. 3, pp. 763–813, 2008.

[37] T. J. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: Cad, finite elements,
nurbs, exact geometry and mesh refinement,” Computer methods in applied mechanics and
engineering, vol. 194, no. 39, pp. 4135–4195, 2005.

[38] P. Kaufmann, S. Martin, M. Botsch, and M. Gross, “Flexible simulation of deformable
models using discontinuous galerkin fem,” Graphical Models, vol. 71, no. 4, pp. 153–167,
2009.

[39] C. Engwer, J. Vorwerk, J. Ludewig, and C. H. Wolters, “A discontinuous galerkin method
to solve the eeg forward problem using the subtraction approach,” SIAM Journal on Sci-
entific Computing, vol. 39, no. 1, pp. B138–B164, 2017.

[40] R. J. LeVeque, Finite volume methods for hyperbolic problems, vol. 31. Cambridge univer-
sity press, 2002.
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