10,972 research outputs found

    Scalable and Cost Efficient Algorithms for Virtual CDN Migration

    Full text link
    Virtual Content Delivery Network (vCDN) migration is necessary to optimize the use of resources and improve the performance of the overall SDN/NFV-based CDN function in terms of network operator cost reduction and high streaming quality. It requires intelligent and enticed joint SDN/NFV migration algorithms due to the evident huge amount of traffic to be delivered to end customers of the network. In this paper, two approaches for finding the optimal and near optimal path placement(s) and vCDN migration(s) are proposed (OPAC and HPAC). Moreover, several scenarios are considered to quantify the OPAC and HPAC behaviors and to compare their efficiency in terms of migration cost, migration time, vCDN replication number, and other cost factors. Then, they are implemented and evaluated under different network scales. Finally, the proposed algorithms are integrated in an SDN/NFV framework. Index Terms: vCDN; SDN/NFV Optimization; Migration Algorithms; Scalability Algorithms.Comment: 9 pages, 11 figures, 4 tableaux, conference Local Computer Networks (LCN), class

    Feature placement algorithms for high-variability applications in cloud environments

    Get PDF
    While the use of cloud computing is on the rise, many obstacles to its adoption remain. One of the weaknesses of current cloud offerings is the difficulty of developing highly customizable applications while retaining the increased scalability and lower cost offered by the multi-tenant nature of cloud applications. In this paper we describe a Software Product Line Engineering (SPLE) approach to the modelling and deployment of customizable Software as a Service (SaaS) applications. Afterwards we define a formal feature placement problem to manage these applications, and compare several heuristic approaches to solve the problem. The scalability and performance of the algorithms is investigated in detail. Our experiments show that the heuristics scale and perform well for systems with a reasonable load

    Data-Aware Scheduling Strategy for Scientific Workflow Applications in IaaS Cloud Computing

    Get PDF
    Scientific workflows benefit from the cloud computing paradigm, which offers access to virtual resources provisioned on pay-as-you-go and on-demand basis. Minimizing resources costs to meet user’s budget is very important in a cloud environment. Several optimization approaches have been proposed to improve the performance and the cost of data-intensive scientific Workflow Scheduling (DiSWS) in cloud computing. However, in the literature, the majority of the DiSWS approaches focused on the use of heuristic and metaheuristic as an optimization method. Furthermore, the tasks hierarchy in data-intensive scientific workflows has not been extensively explored in the current literature. Specifically, in this paper, a data-intensive scientific workflow is represented as a hierarchy, which specifies hierarchical relations between workflow tasks, and an approach for data-intensive workflow scheduling applications is proposed. In this approach, first, the datasets and workflow tasks are modeled as a conditional probability matrix (CPM). Second, several data transformation and hierarchical clustering are applied to the CPM structure to determine the minimum number of virtual machines needed for the workflow execution. In this approach, the hierarchical clustering is done with respect to the budget imposed by the user. After data transformation and hierarchical clustering, the amount of data transmitted between clusters can be reduced, which can improve cost and makespan of the workflow by optimizing the use of virtual resources and network bandwidth. The performance and cost are analyzed using an extension of Cloudsim simulation tool and compared with existing multi-objective approaches. The results demonstrate that our approach reduces resources cost with respect to the user budgets

    Migration of Virtual Machine to improve the Security of Cloud Computing

    Get PDF
    Cloud services help individuals and organization to use data that are managed by third parties or another person at remote locations. With the increase in the development of cloud computing environment, the security has become the major concern that has been raised more consistently in order to move data and applications to the cloud as individuals do not trust the third party cloud computing providers with their private and most sensitive data and information. This paper presents, the migration of virtual machine to improve the security in cloud computing. Virtual machine (VM) is an emulation of a particular computer system. In cloud computing, virtual machine migration is a useful tool for migrating operating system instances across multiple physical machines. It is used to load balancing, fault management, low-level system maintenance and reduce energy consumption. Virtual machine (VM) migration is a powerful management technique that gives data center operators the ability to adapt the placement of VMs in order to better satisfy performance objectives, improve resource utilization and communication locality, achieve fault tolerance, reduce energy consumption, and facilitate system maintenance activities. In the migration based security approach, proposed the placement of VMs can make enormous difference in terms of security levels. On the bases of survivability analysis of VMs and Discrete Time Markov Chain (DTMC) analysis, we design an algorithm that generates a secure placement arrangement that the guest VMs can moves before succeeds the attack
    • …
    corecore