
Special Issue on Artificial Intelligence Applications

- 75 -

I. Introduction

IN recent years, cloud environments are increasingly used in the
scientific field [1]. These environments are currently changing

dramatically because of the integration of new technologies such as
GPUs, sensors, etc.; thus providing scientists with high computing
power, storage, and bandwidth. However, the drawback of this power
lies in the heterogeneity of resources that makes its management more
complex. Other complexities arise because of the urgent need for scale-
up, reduced application response time, fault tolerance and infinite
storage space, which pushes scientists to use multiple applications
simultaneously, resources at the same time in a Workflow application.

Scientific workflows are used to model computationally intensive
and large-scale data analysis applications [2]. In recent years, cloud
computing has been evolving rapidly as a target platform for such
applications [3]. As a result, several workflow-specific resource
management systems have been developed by cloud providers, such
as the Amazon Simple Workflow Service (SWF) [4], to enable users to
dynamically provision resources.

The workflow-scheduling problem has been studied extensively
over past years focusing on multiprocessor system and distributed

environments like grids and clusters [5]. Workflow and directed
acyclic graph  (DAG) are usually interchangeable in the literature. It
is a well-known research area where the programming complexity is
NP-complete. [6].

The Workflow scheduling approaches can be classified according
to different aspects of optimization method such as heuristic,
clustering, critical path, fuzzy, greedy, market-driven, meta-heuristic,
mathematical modeling, and partitioning. Majority of the Workflow
scheduling approaches focus on employing heuristic and meta-heuristic
as an optimization method and focusing only on the execution time [7].
However, even in these cases, communication among tasks is assumed
to take zero time units. In our approach, we use Clustering scheduling
to achieve a better performance regarding effectiveness and accuracy
at the cost. Clustering-based scheduling is designed to optimize
transmission time between data dependent tasks [8]. DAG Clustering
is a mapping of all tasks onto clusters, where each cluster is a subset of
Tasks, and each cluster is executed on a separate resource. The basic
idea of clustering is to reduce the communication time between tasks.

Traditional techniques have examined the data sharing of workflows
tasks. These techniques that investigate the scheduling of scientific
workflows tasks have inspired us when developing our approach.
However, the tasks hierarchy in scientific workflows has not been
explored extensively. Therefore, we consider in this paper the tasks
hierarchy for workflow scheduling.

Keywords

Cloud Computing,
Workflow Data
Scheduling, Clustering,
Data Transformation,
Clustering Quality
Indexes, CloudSim.

Abstract

Scientific workflows benefit from the cloud computing paradigm, which offers access to virtual resources
provisioned on pay-as-you-go and on-demand basis. Minimizing resources costs to meet user’s budget is
very important in a cloud environment. Several optimization approaches have been proposed to improve the
performance and the cost of data-intensive scientific Workflow Scheduling (DiSWS) in cloud computing.
However, in the literature, the majority of the DiSWS approaches focused on the use of heuristic and meta-
heuristic as an optimization method. Furthermore, the tasks hierarchy in data-intensive scientific workflows
has not been extensively explored in the current literature. Specifically, in this paper, a data-intensive scientific
workflow is represented as a hierarchy, which specifies hierarchical relations between workflow tasks, and an
approach for data-intensive workflow scheduling applications is proposed. In this approach, first, the datasets
and workflow tasks are modeled as a conditional probability matrix (CPM). Second, several data transformation
and hierarchical clustering are applied to the CPM structure to determine the minimum number of virtual
machines needed for the workflow execution. In this approach, the hierarchical clustering is done with respect
to the budget imposed by the user. After data transformation and hierarchical clustering, the amount of data
transmitted between clusters can be reduced, which can improve cost and makespan of the workflow by
optimizing the use of virtual resources and network bandwidth. The performance and cost are analyzed using
an extension of Cloudsim simulation tool and compared with existing multi-objective approaches. The results
demonstrate that our approach reduces resources cost with respect to the user budgets.

* Corresponding author.
E-mail address: sidahmed.makhlouf@gmail.com

DOI: 10.9781/ijimai.2018.07.002

Data-Aware Scheduling Strategy for Scientific
Workflow Applications in IaaS Cloud Computing
Sid Ahmed Makhlouf*, Belabbas Yagoubi

L.I.O. Laboratory, Department of Computer Science, Faculty of Exact and Applied Sciences, University
of Oran1 Ahmed Ben Bella, P.O. Box 1524 El M’Naouer, Oran (Algeria)

Received 1 April 2018 | Accepted 5 July 2018 | Published 20 July 2018

- 76 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 4

The existing scheduling techniques have been categorized into
three parameters including static, dynamic, and static-dynamic.
Dynamic scheduling is efficient for a cloud computing environment
due to its ability to handle the arriving tasks [7]. Moreover, hierarchical
scheduling cooperates static and dynamic scheduling to generate
powerful solutions [8].

To address the challenge, we propose a novel approach for workflow
scheduling considering the hierarchy of scientific workflows tasks.
Significant contributions presented in this paper are summarized as
follows:
• Conditional probability for scientific workflows tasks is computed

leveraging their representation as a matrix. The conditional
probability reflects the possibility that scientific workflow tasks
can share or use the same data.

• Determining the exact number of workflow clusters using 13
clustering indexes. In this work, we focus on the following
research question: What is the number of virtual machines required
for the efficient and transparent execution of a workflow in a cloud
environment?

• Do a hierarchical clustering to determine the tasks hierarchy
in scientific workflows and to regroup the workflow tasks into
clusters. To minimize data transfer between clusters we have
measured the distance between each pair of tasks and regroup the
closer tasks into the same cluster.

• Extensive experiments are conducted for evaluating the effectiveness
and accuracy of our technique. The result shows that our approach
reduces the resources cost and total the data transfer time.

The paper is organized as follows. Section II presents related
work. Section III describes the problem statement and introduces
the proposed solution. In Section IV we introduce our system model
and assumptions. Section V contains a description of our proposed
approach, and Section VI and VII discuss the evaluation procedure
and the results by applying our approach. Finally, Section VIII outlines
general conclusions and exposes our future work.

II. Related Works

In the literature, researchers classify task-scheduling strategies into
two main classes: job scheduling, that focuses on scheduling a set of
independent tasks to be executed sequentially or in parallel, and the
workflow that map and manage the execution of interdependent tasks
on shared resources. Since the advent of cloud computing, several
scheduling techniques for workflow applications have been proposed.
These techniques take into account many aspects of the cloud
environment. For example, some techniques try to optimize costs,
while others try to optimize fault tolerance.

The cost has become an important objective in workflow cloud
scheduling research. The total cost incurred by running workflow can
include many components such as the cost of computing resources,
the cost of storage resources, and the cost of data transfer resources. A
budget is often defined as the number of the maximum virtual machines
to process workflow. Also in grid computing, several cost-aware
scheduling techniques have been introduced [9]. In [10], the authors
introduce a strategy called ADAS (Adaptive Data Scheduling) for
workflow applications. This work aims to reduce the monetary cost of
moving data while a workflow is running. The authors propose adaptive
scheduling based on dependencies between tasks. The scheduling
process is in two steps; The first one is to create initial clusters for
workflow tasks. They use a matrix approach to group tasks in some
data centers as initial clusters using the BEA algorithm (Bond Energy
Algorithm) [11]. The second step is to group the data/task pairs using
the cost-effective scheduling quality. The authors demonstrate that this

strategy can improve the processing time of a workflow and the use of
resources in a cloud environment. However, this strategy uses only one
clustering algorithm (BEA) to create clusters; in our strategy, we use
13 clustering indexes to determine the specific clusters numbers and
do a hierarchical clustering to regroups workflow tasks into clusters.
In [12], the authors propose a scheduling system for a data-intensive
workflow to minimize its processing time. To reduce data transfer
time, the proposed system uses task clustering when submitting a
workflow application. To do this, it calculates the dependencies of
the tasks in the workflow according to the conditional probability of
the common number of files for each pair of tasks. This clustering
method is validated with the simulator WorkflowSim. We note that
the authors count conditional probability of the number of common
files for each pair of tasks regardless of file size. So, in this strategy,
it is possible to group tasks around small files only, which involves
clustering tasks with a low communication rate. In our strategy, we use
the conditional probability to determine and count the possible bytes
number of common files for each pair of tasks. The priority is to group
only those tasks that communicate through large files. Our idea is to
avoid unnecessary moving large files, which will consequently speed
up the execution time of the workflow.

In addition to the makespan and cost criteria, the reliability of the
workflow execution is also taken into account. This criterion ensures
that the resources selected in a schedule can probably complete the
scheduled tasks. The failure of the task execution is usually handled
by checkpointing and replication mechanisms. On the other hand, the
existence of multiple replicas introduces a challenge for maintaining
the replicas consistency in the cloud environment. To solve the
problem of replica coherence in the cloud, in [13], the authors
propose a workflow partitioning approach that takes into account data
placement by grouping tasks into a cluster based on data replication in
cloud environments. The proposed approach improves the placement
of data and minimizes response time. According to the authors, this
is due to scheduling of tasks in data centers that contain the majority
of the replicated data. Replication-based scheduling approach achieves
shorter makespans. However, it makes the scheduling problem more
difficult. The scheduling algorithm not only needs to observe the
precedence constraints between tasks but also needs to recognize which
tasks and data to duplicate. In our strategy, we used the conditional
probability to determine the possible common set of data between
each pair of tasks. However, both mechanisms of checkpointing and
replicating the task may respectively cause the waste of time and
compute resources [14, 15]. Replication and checkpointing require
storage space for each task and for each file in the workflow. And
probably the transfer of replicas and checkpoint across the network,
which increases the makespan of the workflow. In addition, these
replication and checkpointing mechanisms require a reliable central
or distributed storage management system. We note that none of the
works cited in this paragraph measure, in terms of data storage and
transfer, the impact by using the replication and the checkpointing
mechanisms.

In [16] authors propose Workflow Partition Resource Clusters
algorithm for scientific workflows. In this work, scheduling is in two
phases: (i) on the global level the algorithm clusters workflow and
generate a set of sub-workflows to achieve high parallelism, and (ii)
on the local level sub workflows generated are dispatched to selected
resource clusters. The algorithm tries to minimize the cost of workflow
execution and the makespan. As in [16], many algorithms in the
literature suppose an unlimited number of available virtual resources.
In practice, it is not possible for a system to own an unlimited number
of virtual resources [17, 18, 19]. In our strategy, a limited resource
number is also taken into consideration, and a mechanism is proposed
to minimize the resource requirement.

- 77 -

Special Issue on Artificial Intelligence Applications

Several studies have used cluster analysis to schedule workflow
tasks into clusters. Authors in [20] propose an approach for dynamic
resources provisioning and present a cost- and deadline-constrained
workflow scheduling algorithm in a cloud environment. The work is
divided into two phases: (i) in the first phase, they use the k-means
clustering technique for determining the speed of VMs that would
be selected in scheduling; (ii) in the second phase, they propose an
approach for dynamic provisioning of VMs using a variant of “Subset
Sum” problem. The results of the simulation show that the proposed
approach achieves better performance with respect to the cost of
execution.

K-means is one of the most known cluster analysis algorithms.
However, the most important limitations of k-means are: (i) at the
beginning of algorithm, the user must specify the number of clusters -k-
and choosing the number -k- of clusters can be difficult; (ii) k-means
is mainly limited to Euclidean distances. In our strategy, we implement
an agglomerative hierarchical clustering to find the best step at each
cluster fusion to determine the best cluster number k. Hierarchical
clustering does not require a specific distance measure; any measure
can be used.

In most studies, data transfer between workflow tasks is not
considered, data uploading and downloading are assumed as part
of task execution. However, this is not always the case, especially
in the big data area. For a data-intensive workflow application, data
movement can dominate both the execution time and cost. In [21],
cloud storage resources are virtualized like Amazon S3 resources. The
S3 Cloud storage is used for data availability and data broadcasting.
However, in the design of the data placement strategies for resource
provisioning it is important to consider the intermediate data transfer
performance explicitly. Workflow tasks communicate through the
transfer of intermediate files. So, the choice of locality storage system
has a significant impact on workflow performance and cost. In our
strategy, we take into account the intermediate data transfer cost
between tasks when the VMs (Clusters) are deployed.

Based on this literature review, we find several issues that have not
been sufficiently studied. These are the gaps in the reviewed work that
will be directions for our works.

In this work, we try to understand the challenges of managing
virtual resources when running Scientific Workflow in the Cloud. We
will try to minimize the number of resources allocated to a Workflow
under budget constraints. The goal was to improve the efficiency of
resource provisioning in the cloud to execute the large-scale workflow
better. To do this, we have developed tasks and data clustering systems.
The clustering is done in relation to the underlying network load and
inter-task communication rates. We have experimented our resource
allocation strategy using an extension of the CloudSim [22] simulator.

III. Problem Statement

In the distributed execution paradigm, a workflow is divided into
small tasks, which are assigned to different data centers for execution.

When a task requires processing of data from different data centers,
data movement becomes a challenge. Some data are too large to be
moved. In a cloud, data centers are geographically distant, and data
movement would add monetary cost to the Workflow execution. Our
work aims to reduce the monetary cost of data movements during
workflow execution, to improve the use of the network in Cloud
environment. The data location problem is one of the important
challenges for planning a data-intensive application in Cloud
Computing.

In data-intensive scientific workflows, tasks require more than one
set of data to be executed. However, when these tasks are executed

in different datacenters, data transfer would become inevitable. To
resolve these issues, this work proposes a task dependency-based
clustering method to optimize scheduling and execution of workflows.
This work proposes a data-intensive workflow scheduling system to
minimize data movement between data centers. In the next section the
components of the proposed system are described.

IV. System Model and Assumptions

In this section, we present the main assumptions of our approach
and environment model.

A. Application Model
Scientific workflows are modeled as Directed Acyclic Graph

(DAG). A DAG, G(V, E), consists of a set of vertices V, and edges, E.
The edges represent constraints. Each edge represents a precedence
constraint that indicates that the task must complete its execution
before the next task begins. Each edge also represents the amount of
data between tasks involved; for example, Fig. 1 shows the amount of
data (in bytes) that the task should send to the next one.

A task is said to be ready if all of its parents have completed their
execution and cannot begin execution until all dependencies have been
satisfied. If two tasks are scheduled on the same data center, the cost of
communication between them is supposed to be zero.

Applications target are Workflows. Tasks Workflow runtime is
estimated, and it indicates how long it takes to execute them on a given
VM type. As for execution times, we assume that the size of the files
can be estimated on the basis of historical data. The files are assumed
to be write-once, read-many.

A task has zero or more input files that must be fully transferred to
a virtual machine before execution can begin; And has zero or more
output files which can be used as inputs for another task or as the
final result of a workflow. We suppose that file names are unique in
a workflow.

B. Execution Model
A cloud consists of an unlimited number of virtual machines (VMs)

that can be provisioned and de-provisioned on demand. A virtual
machine can execute only one task at a time. A virtual machine is
charged 1 $ for each interval of 60 minutes (one hour) of operation.
Partial usage of a billing interval is rounded.

C. Data Transfer Model
We use a global storage model to transfer input and output files

between tasks and to store the results of the Workflow. Each VM has
a local cache of files. This method of transfer is widely used in cloud
environments by using shared distributed file systems such as NFS
[23].

To transfer a file between virtual machines, a request must be sent to
the Global Storage Management System (GSMS). The performance of
transferring a file to its destination depends on the dynamic state of the
underlying network. The state of the network depends on the number
of files being transferred, the size of the files being transferred and the
presence of the files in the local cache of the VMs.

We assume that transfers between tasks always require the
downloading of whole files. We also consider the usage cost of global
storage. This means that the amount of data stored and transferred
affects the cost of the running Workflow. In our congestion model, to
transfer files to multiple tasks, starting multiple simultaneous transfers
could delay the execution of these transfers. Parallel transfers do not
offer benefit for a task. The bandwidth of a network link to a virtual
machine is a limiting factor.

- 78 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 4

A file cannot be transferred faster than a given maximum bandwidth.
Each request to the storage system is managed with latency measured
in milliseconds. We assume that we can calculate precisely the time
required to transfer a file. A virtual machine has a local disk that serves
as a file cache, and the disc price is included in the VM cost. The files
are cached in the First-In-First-Out (FIFO) policy.

V. Proposed Approach

Tasks clustering is a technique that consolidates fine-grained tasks
into coarse tasks. Task clustering has proven to be an effective method
of reducing overhead costs and improving the performance of scientific
workflow tasks. With task clustering, Workflow execution overhead
can be eliminated by grouping small tasks into a single job unit. This
Workflow reduction benefits the entire cloud environment by reducing
traffic between sites. For the efficient execution of a Workflow on a
cloud environment, we propose in this work, a policy of allocation and
management of virtual resources. This policy is based on the calculation
of the dependency between workflow tasks. The dependency is based
on the conditional probability of workflow tasks.

A. Task Clustering Based on Conditional Probability
The proposed system uses tasks clustering in the Workflow to

reduce data transfer time. As an illustration, we use the example of
the Scientific Workflow in Fig. 1. In this Workflow, there are seven
tasks. In scientific workflows, tasks communicate data by sending and
receiving intermediate files. In our workflow model, we assume that
the edges are files. So, we have a set of tasks T and set of files F.

In our model, first, we compute the task dependencies in the
workflow based on the conditional probability. Let xi ∊ T and yi ∊ T
two tasks of the same Workflow G. It is assumed that xi has non-zero
probability. The conditional probability of a task yi , knowing that
another task xi has finished, is the number noted P (xi | yi) and defined
by:

() ()
() ()| = , > 0i j

i j i
i

P x y
P x y P x

P x
∩

 (1)

The real P (xi | yi) is read “probability of yi , knowing xi” according to
the common use of the sets of data between xi and yi .

Fig. 1. Example of workflow instance.

The conditional probability imposes the creation of the conditional
probability matrix CPM [| T |][| T |] based on contingency table
CT [| T |+ 1][| T |+ 1] and the joint and marginal probability table
JMP [| T |+ 1][| T |+ 1] of each task pair in the workflow. First, we create
contingency table as expressed in (2).

[][] { } { } { }(),
= ;1 ,P i ji j

CT i j DataSize O I I i j T∩ ∩ ≤ ≤
 (2)

Pi,j is the set of common parents between each tasks xi , yi :

{ } { }{ }, =i j i jP P P∩
 (3)

Pi and Pj are respectively the parents set of the tasks xi , yi . The
dependency is calculated by measuring the total size of all the output
files of the set Pi,j . ,Pi j

O F⊂ is the set of the output files of Pi,j . Ii ∊ F
and Ij ∊ F are respectively inputs files set of task xi ∊ T and yj ∊ T. Each
value in the contingency table is the common size of the input files for
each task pair in the workflow:

[] [][]
=1

1 = ;1
T

j
CT i T CT i j i T + ≤ ≤ ∑

 (4)

[] [][]
=1

1 = ;1
T

i
CT T j CT i j j T + ≤ ≤ ∑

 (5)

[]
=1

1 1 = 1
T

i
CT T T CT i T + + + ∑

 (6)
The joint and marginal probability table can be created from the

contingency table. The joint probability of Ti and Tj is:

[][] [][]= ;1 ,
1 1

CT i j
JMP i j i j T

CT T T
≤ ≤

 + + (7)

The marginal probability of Ti is:

[] [] [] 1
1 = 1 =

1 1
CM i T

JMP i T JMP T i
CM T T

 + + + + + (8)

From Joint and Marginal Probability Table, the conditional
probability for each task pair can be calculated as follows:

[][] [][]
[]

= ;1 ;1
1

JMP i j
CPM i j i T j T

JMP i T
≤ ≤ ≤ ≤

 + (9)

To determine the number of clusters of the workflow, we apply our
clustering approach on the CPM matrix. However, before applying any
clustering method, we must first preprocess the CPM matrix data. Data
pre-processing has to do with the steps that are required to transform the
data we have in a way that allows applying further analysis algorithms
(e.g., Clustering techniques).

B. Transforming Data
The original CPM data matrix needs to go through some modification

to make it more useful for our analysis. Numeric variables sometimes
have slightly different scales. This can create problems for some data
analysis tools [24].

First, we identify Skewness distributions of CPM data matrix.
Skewness is a measure of shape distribution. Negative skewness
indicates that the mean of the data values is less than the median, so
the data distribution is skewed to the left. Positive skewness indicates
that the mean of the data values is larger than the median, so the data
distribution is skewed to the right.
• If the skewness is equal to 0, then the data is symmetrical and did

not need to be transformed.
• If the skewness is -1/2 and +1/2, the data is approximately

- 79 -

Special Issue on Artificial Intelligence Applications

symmetric, and need to be transformed.
• If the skewness is less than -1 or greater than +1, the data is highly

skewed, and need to be transformed.
• If the skewness is between -1 and -1/2 or between +1 and +1/2 then

the data is moderately skewed and need to be transformed.
For example, skewness value of the workflow of Fig. 1 is 2.34, so

we must do data transformation. Transforming data is used to coerce
different variables to have similar distributions.

Because some measurements in nature are naturally distributed
following a normal distribution, it is important to develop an approach
to transforming one or more variables into a normal distribution. Other
measures can be naturally logarithmic. In the literature, common data
transformations include the transformation of the square root, the cube
root, and the logarithm.

In data analysis, the transformation is the replacement of a variable
with a function of that variable; for example, replacing a variable
x with the square root of x ()x or the logarithm of x (Logbx).
A transformation changes the shape of distribution or relationship
between variables.
• The logarithm transformation transforms x to Log10 x, or x to

Logex, or x to Log2 x. It is a strong transformation with an effect on
the shape distribution. It is used to reduce the right skewness. It can
not be applied to null or negative values. So we cannot apply the
logarithm transformation for the CPM matrix data.

• The cube root transforms to
1
3x . It is a weaker transformation than

the logarithm but with a substantial effect on the shape of the
distribution. It is also used to reduce right skewness and has the
advantage of being able to be applied to null and negative values.

• The square root transforms x to
1
2x , is a weaker transformation

than the logarithm and cube root with a moderate effect on the
distribution shape. It is used to reduce the right skewness, and also
has the advantage of being able to be applied to null values.

The Table I shows skewness value of square and cube root
transformation. We can see that the cube root transformation
approximates the normal distribution. So the cube root transformation
is more powerful than the square root transformation, and we will
adopt it in our experiments in section VI.

TABLE I. Different Skewness Values of Fig. 1

Original skewness square root cube root

2.340348 1.899396 1.822186

After applying our clustering approach on the CPM matrix we
obtain the results of Fig. 2. In the following sections, we will discuss in
detail our clustering approach used for this example.

Fig. 2. Example of workflow clustering.

After the creation of theCPM matrix, we will fragment the workflow
into clusters of tasks. Each cluster will be assigned to a virtual machine,
so the number of virtual machines created depends on the number of
clusters. The goal of this work is to maximize the data transfer in a cluster
and minimize it between clusters. The question that arises then is: What is
the minimum number of clusters needed to execute the workflow to meet
user budget correctly? So, in our work, the workflow execution must be
efficient, meet the workflow budget and at a minimal cost. To answer
this question, we have implemented some algorithms and technics for
determining the optimal number of clusters in CPM dataset and offering
the best workflow clustering scheme from different results.

In [25], the authors identify 30 clustering quality indexes that
determine the optimal number of clusters in a dataset and offers the
best clustering scheme from different results to the user. We tried to
apply these 30 algorithms to our CPM matrix, and we found that only
13 algorithms are compatible with the CPM data matrix. For the rest of
the 17 algorithms, the clustering result tends to infinity.

The evaluation of the algorithms on the CPM matrix must deal
with problems such as the quality of the clusters, the quality of the
data compared to the clustering quality indexes, the degree which a
clustering quality indexes fit with the data of the CPM matrix and the
optimal number of clusters [25]. As a result, we used the following
clustering quality indexes:

1. Krzanowski and Lai 1988 [26]
2. Calin'ski and Harabasz 1974 [27]
3. Hartigan 1975 [28]
4. McClain and Rao 1975 [29]
5. Baker and Hubert 1975 [30]
6. Rohlf 1974 [31] and Milligan 1981 [32]
7. Dunn 1974 [33]
8. Halkidi et al. 2000 [34]
9. Halkidi and Vazirgiannis 2001 [35]
10. Hubert and Levin 1976 [36]
11. Rousseeuw 1987 [37]
12. Ball and Hall 1965 [38]
13. Milligan 1980, 1981 [39, 32]

C. Tasks Distance Measures
The data set is represented by the CPM matrix. Each element in

the CPM matrix represents the distance between two tasks in the
workflow. So, the clustering is done comparing the distance between
each pair of tasks of the matrix CPM. To measure the distance, we used
the following metrics:

Euclidean distance is the distance between two tasks x and y in a
Rn space and is given by (10).

()2

=1
= ; , 1, 1,

n

i i i i
i

d x y x y CPM T T − ∈ ∑
 (10)

It is the length of the diagonal segment connecting x to y.
Manhattan distance is the absolute distance between tasks x and y

in Rn space and is given by (11).

=1
= ; , 1, 1,

n

i i i i
i

d x y x y CPM T T − ∈ ∑
 (11)

As opposed to the diagonal distance in the Euclidean distance, the
distance between two tasks in a grid is based on a strictly horizontal/
vertical path. The Manhattan distance is the sum of the horizontal and
vertical components.

- 80 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 4

Minkowski distance: is the pth root of the sum of the pth powers of
the differences between the components. For two tasks x and y in Rn
space, Minkowski distance is given by (12).

1

=1
= ; , 1, 1,

n pp
i i i i

i
d x y x y CPM T T − ∈

∑
 (12)

Minkowski distance can be considered as a generalization of both
the Euclidean and the Manhattan distance [40]. p = 1 corresponds to the
Manhattan distance and p = 2, to the Euclidean distance. For p reaching
infinity, we obtain the Chebyshev distance.

D. Cluster Analysis Method and VMs Number Interval
As mentioned above, we used 13 partitioning algorithms to

determine the exact number of clusters needed. In addition to the CPM
matrix and the distance metric, these algorithms require other input
parameters, namely the cluster analysis method, the minimum and
maximum cluster interval. In our works, we have used the following
cluster analysis methods:

Single: The distance Dij between two clusters Ci and Cj is the
minimum distance between two tasks x and y, with x ∊ Ci , y ∊ Cj .

()
,

= ,minij
x C y Ci j

D d x y
∈ ∈ (13)

Complete: The distance Dij between two clusters Ci and Cj is the
maximum distance between two tasks x and y, with x ∊ Ci , y ∊ Cj .

()
,

= ,maxij
x C y Ci j

D d x y
∈ ∈ (14)

We have set the cluster interval calculation between 2 and 20
clusters. This interval choice is based on the Amazon EC2 resource
allocation policy [17, 18, 19]. Amazon EC2 allows the possibility
of reserving only 20 virtual machines. This is why we cannot create
more than 20 clusters. So, we have fixed the user budget to 20 virtual
machines.

Algorithm 1 models the first step of our approach, determining the
cluster number. We start by creating the CPM matrix in line 2. Then the
matrix created will be one of the input parameters to the 13 clustering
quality indexes cited above. In line 6 each algorithm will calculate the
possible cluster number for the CPM matrix. At the end of algorithm 1,
we calculate the average number of the clusters from all the proposed
numbers obtained from the 13 clustering quality indexes in line 8.

E. Hierarchical Clustering Method
The average obtained will be used to do a hierarchical clustering

of the CPM matrix. Hierarchical clustering is one of the domains
of automatic data analysis and data classification. Strategies for
hierarchical clustering are generally divided into two types:

Agglomerative: This is a “bottom-up” approach; this method starts
from a situation where all tasks are alone in a separate cluster, then
pairs of clusters are successively agglomerated until all clusters have
been merged into one single cluster that contains all tasks.

Divisive: This is a “top-down” approach, in which all tasks are in a
single cluster; we divide this cluster into two sub-clusters which are, in
turn, divided into two sub-clusters and so on. At each step, each cluster
is divided into two new clusters.

In our work, we have used agglomerative clustering of a set of tasks
T of n individuals. Our goal is to distribute these tasks in a certain
number of clusters, where each cluster represents a virtual machine.

The agglomerative hierarchical clustering assumes that there is
a measure of dissimilarity between tasks; in our case, we use CPM
matrix as a measure for dissimilarity calculation. The dissimilarity
between tasks x and y will be noted dissimcpm (x, y).

The agglomerative hierarchical clustering produces a hierarchy H
of tasks. H it is the set of clusters at all the steps of the clustering
approach and checks the following properties:

1. T ∊ H : at the top of the hierarchy, when grouping clusters to
obtain a single cluster, all tasks are grouped;

2. ∀ x ∊ T, {x} ∊ H: at the bottom of the hierarchy, all tasks are
alone;

3. ∀ (h,h') ∊ H 2 , h ⋂ h' = ø or h ⊂ h' or h' ⊂ h

Initially, in our approach, each task forms a cluster. We try to reduce
the number of clusters to the average calculated previously by the 13
clustering quality indexes; this is done iteratively. At each iteration,
two clusters are merged, which involves reducing the number of total
clusters.

The two clusters chosen to be merged are the most “similar”, in
other words, those whose dissimilarity is minimal (or maximal). This
dissimilarity value is called aggregation index. Since we first merge the
closest tasks, the first iteration has a low aggregation index, but it will
increase from iteration to another iteration.

For agglomerative clustering, and to decide which clusters should
be merged; a measure of dissimilarity between sets of clusters is
required. This is achieved by measuring a distance between pairs of
clusters discussed in section V.D.

The dissimilarity of two clusters Ci = {x}, Cj = {y}; 1 ≤ i, j ≤ n , each
containing one task, is defined by the dissimilarity between its tasks
dissim(Ci, Cj) = dissim (x, y); 1 ≤ i, j ≤ n.

When clusters have several tasks, there are multiple criteria for
calculating dissimilarity. We used the following criteria:

Single link: the minimum distance between tasks of Ci and Cj :

() ()()
,

, = , ;1 ,mini j cpm
x C y Ci j

dissim C C dissim x y i j T
∈ ∈

≤ ≤
 (15)

We have used this method to minimize data transfer between clusters
and maximize the data transfer inside a cluster.

Complete link: the maximum distance between tasks of Ci and Cj :

() ()()
,

, = , ;1 ,maxi j cpm
x C y Ci j

dissim C C dissim x y i j T
∈ ∈

≤ ≤
 (16)

Unlike the previous method, this one increases data transfer between
clusters. We suppose that this method will not give good results, but

- 81 -

Special Issue on Artificial Intelligence Applications

we have used it to prove the performance of our workflow clustering
policy.

Algorithm 2 models the agglomerative hierarchical clustering
of the CPM matrix. It receives as input parameters the CPM matrix
and the cluster number that we want to create. The cluster number
is the average of all cluster numbers obtained from the 13 clustering
quality indexes. The result of hierarchical clustering is presented in a
dendrogram. Fig. 3 is the result of clustering, a LIGO workflow of 50
tasks into 11 clusters using the Euclidean distance measurement and
the Single Link agglomeration method.

F. Objective Function
We have introduced an objective function that allows us to know the

granularity of our resource allocation system. The objective function
depends on the workflow resources allocation cost. When a task xi is
assigned to a VM Vk with price pk, we refer to this as a Resources
Allocation RAi. For each RAj its cost value is computed :

() () ,= cos , =i i k i k kCost RA t x v pω ⋅
 (17)

Where pk is the monetary cost per hour to execute a task xi on the VM
Vk . The execution takes ,i kω time units. The execution time includes
the transfer time of the input tasks data set to the virtual machine from
task yj to the task xi.

()
I O

, ,
=0

=
i j

i k i k l
l

E T fω
∩

+ ∑
 (18)

Ei,k is the execution time of task xi on the VM vk, Ii is the input set of
files of the task xi and Oj is the output set of files of the task yj. ()j

i lT f
is the transfer time of file fl of the task xi to the VM vk from the task yj .
For xi ∊ Ci and yj ∊ Cj , ()j

i lT f is defined as :

()
()

;

0;
=

Size f i jl
j Bw

i l OtherwiseT f
≠

 (19)

Bw is the bandwidth between cluster Ci and cluster Cj. In this work,
we aim to minimize the transfer time of the data set between the
virtual machines. To do this, we try to reduce the amount of data set
transferred between VM by clustering the highly connected tasks in the
same cluster. By this way, we will reduce the task execution time and
resource allocation costs.

() ()

()
()()

I O

=0

,

=
i j

j
i i l

l

i k

i

minimize DTT x T f

minimize

minimize Cost RA

ω

∩

⇒

⇒

∑

 (20)

DTT (xi) is the data transfer time of all inputs files of the task xi.

VI. Evaluation Methods

To validate the proposed approach, we have implemented our system
in a discrete event simulator “Cloud Workflow Simulator” (CWS)
[21]. The CWS is an extension of the “CloudSim” [22] simulator, has a
general architecture of IaaS Cloud and supports all of the assumptions
stated in the problem described in Section IV. We simulated workflow
scheduling with various parameters.

We evaluated our algorithm using synthetic workflows from the
Workflow Gallery [41]. We have selected workflows representing
several different classes of applications.

The selected applications include LIGO [42] (Laser Interferometer
Gravitational-Wave Observatory), a data-intensive application, it
is a network of gravitational-wave detectors, with observatories
in Livingston, LA and Hanford, WA, and MONTAGE [43], an I/O-
bound workflow used by astronomers to generate mosaics of the sky.
A summary of workflows used in this work and their characteristics is
presented in Table II. In our work, we simulated workflows whose size
does not exceed 200 tasks. Because, according to our simulations, the
execution of the workflows whose size is greater than 300 tasks will
exceed our budget, which is fixed to 20 virtual machines.

TABLE II. Simulated Workflows Characteristics

Size/
Type

Total Data Read (Gb) Total Data Read (Gb) Total Data Read (Gb)
MONTAGE LIGO MONTAGE LIGO MONTAGE LIGO

50
100
200

0,68
1,39
2,83

1,43
2,86
5,57

0,24
0,43
0,79

0,02
0,04
0,79

0,92
1,82
3,61

1,49
2,9
5,64

The experiments model cloud environments with an infinitely NFS-
like file system storage.

Fig. 3. Cluster dendrogram of LIGO workflow.

- 82 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 4

Table III shows the skewness of each CPM workflow, after and
before data transformation. We note that the cube root transformation
reduces the skewness of the two workflows, especially on the LIGO
workflow where it is significantly closer to the normal distribution.

TABLE III. Normalized Conditional Probability Matrix

Size/
Type

Original skewness Square root Cube root

MONTAGE LIGO MONTAGE LIGO MONTAGE LIGO

50
100
200

10,34
15,33
22,29

15,15
30,88
33,85

3,01
4,00
5,43

0,94
1,42
2,44

1,88
2,72
3,84

0,089
0,092
0,500

We have compared our approach with the following algorithms:
(i) Static Provisioning Static Scheduling (SPSS) [21]. SPSS is a
static algorithm that creates provision and schedules before running
workflow. The algorithm analyzes if the workflow can be completed
within the cost and deadline. The workflow is scheduled if it meets the
cost and deadline constraint. For a workflow, a new plan is created, and
if the cost of the plan is less than the budget, the plan is accepted. The
workflows are scheduled in the VM which minimizes the cost. If such
VM is not available, a new VM instance is created. In this algorithm,
file transfers take zero time; (ii) Storage-Aware Static Provisioning
Static Scheduling (SA-SPSS) [44], it is a modified version of the
original SPSS algorithm to operate in environments where file
transfers take non-zero time. It handles file transfers between tasks.
SA-SPSS dynamically calculates bandwidth and supports a replicas
reconfiguration number.

We chose these algorithms for the following reasons: (i) These two
algorithms are multi-objective. They aim to solve at both the cost and
the deadline which makes its scheduling decision more complicated.
Except that the SPSS supposes that the transfer time of the files is null
whereas the SA-SPSS supposes that the transfer time is not null. (ii) In
SPSS/SA-SPSS the user sets the cost and the deadline explicitly. On the
other hand, our approach is mono-objective, and it is limited to reduce
only the workflow cost. Our approach is iterative, and we suppose that
its scheduling decision is not complicated. In our approach, the optimal
cost to run the Workflow is calculated, and we suppose to do a right
tasks clustering around the same files, to reduce the data transfer time
and thus reduce the workflow execution time. By comparing our work
with SPSS/SA-SPSS, we want to show that a clustering algorithm is
as efficient as a multi-objective algorithm. Also, these algorithms are
already programmed in the CWS simulator, so we added our approach
in this simulator, and we compared it with these algorithms. This way
of working ensures that we have a validated simulation environment
because these algorithms and the simulator itself are already validated
through publications. So, we have simulated the following algorithms:
• Static Provisioning Static Scheduling (SPSS)
• Storage-Aware Static Provisioning Static Scheduling (SA-SASS)
• Data-Aware Euclidean Complete Clustering (DA-ECC)
• Data-Aware Euclidean Single Clustering (DA-ESC)
• Data-Aware Manhattan Complete Clustering (DA-MCC)
• Data-Aware Manhattan Single Clustering (DA-MSC)

To analyze the results relating to experimentation of our approach,
we measured the following metrics:

Resources costs is the number of allocated VMs to the workflow

()
=1

=
T

i
i

wCost Cost RA∑
.

Total Data Transfer Time: ()
=1

=
T

i
i

TDTT DTT x∑ ;

the total size of all transferred files between virtual machines.

The standard deviation of the transferred data:

()()2

=1=

V

k
k

DT v avgDT

V
σ

−∑
;

with V is the set of VM allocated to a workflow, DT is the amount
of data transferred to the VM vk, and avgDT is the average value of
the data transferred to all VMs allocated to the workflow. If we get
a small standard deviation, the values of transferred data to each VM
are closed to the average of the data transferred to all the VMs. A large
standard deviation means that the values of transferred data to each
VM are farther away from the average of the data transferred to all de
VMs. Our goal is to get a small standard deviation.

These metrics are used to evaluate the proposed approach compared
to the SPSS and SA-SPSS approach. To do this, we simulated the
execution of the synthetic workflows Montage and Ligo. We varied
the size of simulated workflows between 50 and 200. In our work, we
simulated workflows whose size does not exceed 200 tasks. Because,
according to our simulations, the execution of the workflows whose
size is greater than 300 tasks will exceed our budget, which is fixed
to 20 virtual machines. This limit choice is based on the Amazon
EC2 resource allocation policy [17, 18, 19]. Amazon EC2 allows the
possibility of creating only 20 virtual machines. For each experiment,
we measured the metrics cited above. Our objective is to study the
impact of the workflow type on the metrics cited above.

VII. Performance Evaluation And Results

A. Experiment 1: Impact of the Workflow Type on the Cost
From Fig. 4, we simulated the execution of the Montage workflows

and measured the execution costs in VMs number. We note that
regardless of the size of the workflow, our policies give good results
by reducing the number of VMs. Especially for large workflows whose
size is 200 tasks; we note that the DA-MCC and DA-MCS policies use
only 08 virtual machines. This result depends on the CPM matrix data
and proves that there is not a better distance measure. The distance
used depends on the data to be analyzed.

Fig. 4. Impact of the MONTAGE workflow on the cost.

From Fig. 5, we simulated the execution of LIGO workflows and
measured the execution costs. We note that regardless of the size of
the workflow, our policies give good results. We note that our policies
allocate between 17 and 20 virtual machines. In particular, the policies
DA-ECC and DA-ESC allocate 19 machines for the execution of

- 83 -

Special Issue on Artificial Intelligence Applications

the workflows whose size is 200 tasks. Those policies use “single”
agglomeration method coupled with the Euclidian/Complete metric
to measure the distances and distributes the tasks between virtual
machines so that the distance between the VMs is as minimal as
possible. This will naturally involve grouping highly dependent tasks
into the same virtual machines (cluster) and therefore reducing file
transfer between machines to a minimum.

Fig. 5. Impact of the LIGO workflow on the cost.

By comparing Fig. 4 and 5, we note that the Montage workflows
allocate fewer resources compared to the LIGO workflow. This
confirms the information in Table II: LIGO is data-aware workflows,
and Montage is processing-aware workflows. Therefore, the application
of a scheduling algorithm depends on the type of the workflow.

In [45] we have several types of scientific workflows, namely,
data-aware workflows, processing-aware workflows, memory-aware
workflows, etc. Through the two graphs, we note that the SPSS policy
gives in some cases good results. These results do not reflect reality
because this policy does not support the data transfer time. Hence the
importance of using a scheduling algorithm that is specific to the type
of workflow [46, 47].

B. Experiment 2: Impact of the Workflow Type on the Total Data
Transfer Time

From Fig. 6, we simulated the execution of the Montage workflows
and measured the total data transfer time (TDTT). We note that
regardless of the size of the workflow, our policies give good results.
For example, for large workflows whose size is 200 tasks, we note that
the DA-MCC policy completes the total data transfer of the workflow
in 456 seconds. This result reinforces our supposition of previous
experience according to which cost and TDTT depend on the data we
are analyzing, namely the CPM matrix. Therefore, the distance used
affects the execution time and depends on the data to be analyzed.

From Fig. 7, we simulated the execution of LIGO workflows and
measured the total data transfer time. We note that regardless of the size
of the workflow, our policies work well. We note that our policies give
good results. In particular, the DA-MCC policy that terminates the total
data transfer of workflows whose size is 200 tasks at 201 seconds. This
result reinforces our previous supposition in which the choice of an
agglomeration method has a direct impact on the workflow scheduling.
In this case, the “Complete” agglomeration method gives good results.
In addition to the previous section, the choice of an agglomeration
method also depends on the analyzed data, namely the CPM matrix.

Fig. 6. Impact of the MONTAGE workflow on the total data transfer time.

Fig. 7. Impact of the LIGO workflow on the total data transfer time.

From Fig. 6 and 7, we note that the Montage workflows has larger
TDTT than the LIGO workflows. This has a relationship with the result
of the previous simulation (Experiment 1), in which we noticed that
the Montage workflow allocates fewer resources; unlike the LIGO
workflow that allocates more resources which implies faster execution.
For example, for the Montage workflow of 200 tasks, with the policy
DA-MCC, it allocates 8 virtual machines and takes 456 seconds of
TDTT. For the LIGO workflow of 200 tasks, with the same policy, it
allocates 20 virtual machines and takes 201 seconds of TDTT.

Through Fig. 6 and 7, we note that the SA-SPSS policy gives in most
cases bad results compared to our policies. The SA-SPSS workflow
tasks scheduling is based on a network congestion subsystem that
allows prediction of file transfer times.

The predicted duration time will be included in the overall task time.
However, this subsystem does not take into consideration the dynamic
and unpredictable nature of the underlying network.

C. Experiment 3: Impact of the Workflow Type on the Standard
Deviation

From Fig. 8 and 9, we simulated the execution of the MONTAGE
and LIGO workflows respectively and measured the standard deviation
of the data transferred to the virtual machines. We note that, regardless
of the size of the workflow, our policies give bad results. Unlike the SA-
SPSS policy which gives excellent results by keeping a stable standard
deviation and this whatever the size of the workflow. We note that the
scheduling plan established by our policies is based on the CPM matrix
in which we store information about data dependencies between tasks.

- 84 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 4

Fig. 8. Impact of the MONTAGE workflow on the standard deviation.

Fig. 9. Impact of the LIGO workflow on the standard deviation.

Unlike SA-SPSS policy that uses a subsystem allowing it to make
dynamic scheduling with respect to network congestion.

Comparing Fig. 8 and 9 together, we note that the LIGO workflow
generates a reduced standard deviation compared to the Montage
workflow. This is because the Montage is processing-aware workflow
and the LIGO is data-aware workflow. Through the two graphs, we
also note that our policies give good results on LIGO workflow, which
proves that our policies are better suited for data-driven workflows.

 VIII. Conclusion

Cloud computing has gained popularity for the deployment and
execution of workflow applications. Often, tasks and data workflow
applications are distributed across cloud data centers on a global scale.
So, workflow tasks need to be scheduled based on the data layout in
the cloud. Since the resources obtained in the cloud are not free of
charge, any proposed scheduling policy must respect the budget of the
workflow.

In this paper, an approach was proposed to reduce the virtual
machines costs in Cloud Computing. The objective of this work is
to provide a scheduling strategy with low costs in cloud computing
environment. In our strategy, the amount of global data movement can
be reduced, which can decrease the inter-VMs communications rate
and improve, therefore, the workflow makespan and network devices
in the cloud. Our strategy model was built, based on the principles of
communication efficiency-aware scheduling.

In this work a clustering approach was proposed, that could improve
the use of resource efficiency and decrease virtual resources consumption
during the workflow scheduling. Experiment results demonstrated that

the proposed scheduling method could simultaneously decrease virtual
resources consumption and workflow makespan.

However, some of our policies have given us unexpected results, such
as policies based on the “complete” agglomeration method. We then
did extensive research and found that these results have a relationship
with the data to be analyzed [48]; in our case, it is the structure of the
CPM matrix. In [49] we found that there are several types of data,
namely, Interval-Scaled data, Dissimilarities, Similarities, Binary data,
Nominal, Ordinal, Ratio data, Mixed data. Typically, before applying
a distance measure or an agglomeration method, we first need to
understand the data type of the CPM matrix. As future work, we will
explore the field of data mining and classification to understand and
define the data type in the CPM matrix and apply the right distance
measure and the right agglomeration method.

In section V.B, we found that 17 clustering quality indexes do not
match the CPM matrix data. As a perspective, we will try to understand
the reasons why these indexes tend to infinity, and if possible to find
a solution to standardize or normalize the data of the CPM matrices.

Conditional probability is one of the disciplines of probability theory.
In this work, we automated the scheduling of a workflow by modeling
the relationships between the tasks of a workflow with the concept
of the conditional probability. As future work, we will implement our
approach in machine learning. Machine learning is one of the domains
of artificial intelligence which is based on statistics. This discipline is
strong about modeling NP problems [50].

References

[1] O. Achbarou, M. A. E. kiram, and S. E. Bouanani, “Securing cloud
computing from different attacks using intrusion detection systems,”
International Journal of Interactive Multimedia and Artificial Intelligence,
vol. 4, no. 3, pp. 61–64, 2017.

[2] R. J. Sethi and Y. Gil, “Scientific workflows in data analysis: Bridging
expertise across multiple domains,” Future Generation Computer Systems,
vol. 75, no. Supplement C, pp. 256 – 270, 2017.

[3] D. Talia, P. Trunfio, and F. Marozzo, “Chapter 3 - models and techniques for
cloud-based data analysis,” in Data Analysis in the Cloud, ser. Computer
Science Reviews and Trends, D. Talia, P. Trunfio, and F. Marozzo, Eds.
Elsevier, 2016, pp. 45–76.

[4] “Amazon Simple Workflow Service (SWF),” https://aws.amazon.com/
swf, accessed: 2017-10-29.

[5] R. Khorsand, F. Safi-Esfahani, N. Nematbakhsh, and M. Mohsenzade,
“Taxonomy of workflow partitioning problems and methods in distributed
environments,” Journal of Systems and Software, vol. 132, pp. 253–271,
2017.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman &
Co., 1990.

[7] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, “Cost optimization
approaches for scientific workflow scheduling in cloud and grid
computing: A review, classifications, and open issues,” Journal of Systems
and Software, vol. 113, pp. 1–26, 2016.

[8] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,” The
Journal of Supercomputing, vol. 71, no. 9, pp. 3373–3418, 2015.

[9] N. M. Ndiaye, P. Sens, and O. Thiare, “Performance comparison of
hierarchical checkpoint protocols grid computing,” International Journal
of Interactive Multimedia and Artificial Intelligence, vol. 1, no. 5, pp.
46–53, 2012.

[10] L. Zeng, B. Veeravalli, and A. Y. Zomaya, “An integrated task computation
and data management scheduling strategy for workflow applications in
cloud environments,” Journal of Network and Computer Applications,
vol. 50, pp. 39–48, 2015.

[11] W. T. M. Jr., P. J. Schweitzer, and T. W. White, “Problem decomposition
and data reorganization by a clustering technique,” Operations Research,
vol. 20, no. 5, pp. 993–1009, 1972.

[12] E. E. Mon, M. M. Thein, and M. T. Aung, “Clustering based on task
dependency for data-intensive workflow scheduling optimization,”

- 85 -

Special Issue on Artificial Intelligence Applications

in 9th Workshop on Many-Task Computing on Clouds, Grids, and
Supercomputers (MTAGS2016). IEEE Computer Society, 2016, pp. 20–
25.

[13] E. I. Djebbar, G. Belalem, and M. Benadda, “Task scheduling strategy
based on data replication in scientific cloud workflows,” Multiagent and
Grid Systems, vol. 12, no. 1, pp. 55–67, 2016.

[14] L. Zhao, Y. Ren, and K. Sakurai, “Reliable workflow scheduling with less
resource redundancy,” Parallel Computing, vol. 39, no. 10, pp. 567–585,
2013.

[15] X. Wang, C. S. Yeo, R. Buyya, and J. Su, “Optimizing the makespan and
reliability for workflow applications with reputation and a look-ahead
genetic algorithm,” Future Generation Computer Systems, vol. 27, no. 8,
pp. 1124–1134, 2011.

[16] R. Bagheri and M. Jahanshahi, “Scheduling workflow applications
on the heterogeneous cloud resources,” Indian Journal of Science and
Technology, vol. 8, no. 12, 2015.

[17] “Amazon AWS service limits,” http://docs.aws.amazon.com/general/
latest/gr/aws service limits.html, accessed: 2017-10-29.

[18] “Amazon EC2 on-demand instances limits,” https://aws.amazon.com/ec2/
faqs/#How many instances can I run in Amazon EC2, accessed: 2017-
10-29.

[19] “Amazon EC2 reserved instance limits,” http://docs.aws.amazon. com/
AWSEC2/latest/UserGuide/ec2-reserved-instances.html#ri-limits,
accessed: 2017-10-29.

[20] V. Singh, I. Gupta, and P. K. Jana, “A novel cost-efficient approach for
deadline-constrained workflow scheduling by dynamic provisioning of
resources,” Future Generation Computer Systems, vol. 79, pp. 95–110,
2018.

[21] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms for cost
and deadline-constrained provisioning for scientific workflow ensembles
in iaas clouds,” Future Generation Computer Systems, vol. 48, pp. 1–18,
2015, special Section: Business and Industry Specific Cloud.

[22] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya,
“Cloudsim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,”
Software: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[23] C. Wu and R. Buyya, “Chapter 12 - cloud storage basics,” in Cloud Data
Centers and Cost Modeling. Morgan Kaufmann, 2015, pp. 425–495.

[24] L. Torgo, Data mining with R: learning with case studies. CRC Press,
2016.

[25] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs, “Nbclust: An R
package for determining the relevant number of clusters in a data set,”
Journal of Statistical Software, vol. 61, no. 6, pp. 1–36, 2014.

[26] W. J. Krzanowski and Y. T. Lai, “A criterion for determining the number
of groups in a data set using sum-of-squares clustering,” Biometrics, vol.
44, no. 1, pp. 23–34, 1988.

[27] T. Cali´nski and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics-Simulation and Computation, vol. 3, no. 1,
pp. 1–27, 1974.

[28] J. A. Hartigan, Clustering Algorithms, 99th ed. John Wiley & Sons, Inc.,
1975.

[29] J. O. McClain and V. R. Rao, “Clustsiz: A program to test of the quality of
clustering a set of objects,” Journal of Marketing Research, vol. 12, no. 4,
pp. 456–460, 1975.

[30] F. B. Baker and L. J. Hubert, “Measuring the power of hierarchical cluster
analysis,” Journal of the American Statistical Association, vol. 70, no. 349,
pp. 31–38, 1975.

[31] F. J. Rohlf, “Methods of comparing classifications,” Annual Review of
Ecology and Systematics, vol. 5, pp. 101–113, 1974.

[32] G. W. Milligan, “A review of monte carlo tests of cluster analysis,”
Multivariate Behavioral Research, vol. 16, no. 3, pp. 379–407, 1981.

[33] J. C. Dunn, “Well-separated clusters and optimal fuzzy partitions,” Journal
of Cybernetics, vol. 4, no. 1, pp. 95–104, 1974.

[34] M. Halkidi, M. Vazirgiannis, and Y. Batistakis, Quality Scheme Assessment
in the Clustering Process. Springer Berlin Heidelberg, 2000, pp. 265–276.

[35] M. Halkidi and M. Vazirgiannis, “Clustering validity assessment: Finding
the optimal partitioning of a data set,” in Proceedings of the 2001 IEEE
International Conference on Data Mining, 29 November - 2 December
2001, San Jose, California, USA, 2001, pp. 187–194.

[36] L. J. Hubert and J. R. Levin, “A general statistical framework for assessing

categorical clustering in free recall,” Psychological Bulletin, vol. 83, no.
6, pp. 1072–1080, 1976.

[37] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, no. Supplement C, pp. 53–65, 1987.

[38] G. H. Ball and D. J. Hall, “Isodata, a novel method of data analysis and
pattern classification,” Stanford research inst Menlo Park CA, Tech. Rep.,
1965.

[39] G. W. Milligan, “An examination of the effect of six types of error
perturbation on fifteen clustering algorithms,” Psychometrika, vol. 45, no.
3, pp. 325–342, 1980.

[40] F. Z. Filali and B. Yagoubi, “Classifying and filtering users by similarity
measures for trust management in cloud environment,” Scalable
Computing: Practice and Experience, vol. 16, no. 3, pp. 289–302, 2015.

[41] R. F. da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman, “Community
resources for enabling research in distributed scientific workflows,” in
eScience. IEEE Computer Society, 2014, pp. 177–184.

[42] A. C. Zhou, B. He, and S. Ibrahim, “Chapter 18 - escience and big data
workflows in clouds: A taxonomy and survey,” in Big Data. Morgan
Kaufmann, 2016, pp. 431–455.

[43] M. A. Rodriguez and R. Buyya, “Chapter 18 - scientific workflow
management system for clouds,” in Software Architecture for Big Data
and the Cloud. Boston: Morgan Kaufmann, 2017, pp. 367–387.

[44] P. Bryk, M. Malawski, G. Juve, and E. Deelman, “Storage-aware
algorithms for scheduling of workflow ensembles in clouds,” Journal of
Grid Computing, vol. 14, no. 2, pp. 359–378, 2016.

[45] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682–692, 2013, special Section:
Recent Developments in High Performance Computing and Security.

[46] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, “Towards workflow
scheduling in cloud computing: A comprehensive analysis,” Journal of
Network and Computer Applications, vol. 66, no. Supplement C, pp.
64–82, 2016.

[47] J. Sahni and D. P. Vidyarthi, “Workflow-and-platform aware task
clustering for scientific workflow execution in cloud environment,” Future
Generation Computer Systems, vol. 64, no. Supplement C, pp. 61–74,
2016.

[48] C. C. Aggarwal, Ed., Data Classification: Algorithms and Applications.
CRC Press, 2014.

[49] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an Introduction
to Cluster Analysis. Wiley, 1990.

[50] S. I. Serengil and A. Ozpinar, “Workforce optimization for bank operation
centers: A machine learning approach,” International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 4, no. 6, pp. 81–87, 2017.

Sid Ahmed Makhlouf

Ph.D. candidate in the University of Oran1 Ahmed Ben
Bella (Algeria). His main research interests include
Distributed System, Cluster, Grid & Cloud Computing,
Load Balancing, Task & Workflow Scheduling, and
Machine Learning.

Belabbas Yagoubi

PhD in Computer Science, is a full professor at the
University of Oran1 Ahmed Ben Bella (Algeria). His field
of interests is Parallel and Distributed Systems including
Security, Fault Tolerance, Replication, Load Balancing and
Task Scheduling. He occupies the function of Dean of the
Faculty of exact and applied science since 2009.

