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I. Introduction

IN recent years, cloud environments are increasingly used in the 
scientific field [1]. These environments are currently changing 

dramatically because of the integration of new technologies such as 
GPUs, sensors, etc.; thus providing scientists with high computing 
power, storage, and bandwidth. However, the drawback of this power 
lies in the heterogeneity of resources that makes its management more 
complex. Other complexities arise because of the urgent need for scale-
up, reduced application response time, fault tolerance and infinite 
storage space, which pushes scientists to use multiple applications 
simultaneously, resources at the same time in a Workflow application.

Scientific workflows are used to model computationally intensive 
and large-scale data analysis applications [2]. In recent years, cloud 
computing has been evolving rapidly as a target platform for such 
applications [3]. As a result, several workflow-specific resource 
management systems have been developed by cloud providers, such 
as the Amazon Simple Workflow Service (SWF) [4], to enable users to 
dynamically provision resources.

The workflow-scheduling problem has been studied extensively 
over past years focusing on multiprocessor system and distributed 

environments like grids and clusters [5]. Workflow and directed 
acyclic graph  (DAG) are usually interchangeable in the literature. It 
is a well-known research area where the programming complexity is 
NP-complete. [6].

The Workflow scheduling approaches can be classified according 
to different aspects of optimization method such as heuristic, 
clustering, critical path, fuzzy, greedy, market-driven, meta-heuristic, 
mathematical modeling, and partitioning.  Majority of the Workflow 
scheduling approaches focus on employing heuristic and meta-heuristic 
as an optimization method and focusing only on the execution time [7]. 
However, even in these cases, communication among tasks is assumed 
to take zero time units. In our approach, we use Clustering scheduling 
to achieve a better performance regarding effectiveness and accuracy 
at the cost. Clustering-based scheduling is designed to optimize 
transmission time between data dependent tasks [8]. DAG Clustering 
is a mapping of all tasks onto clusters, where each cluster is a subset of 
Tasks, and each cluster is executed on a separate resource. The basic 
idea of clustering is to reduce the communication time between tasks.

Traditional techniques have examined the data sharing of workflows 
tasks. These techniques that investigate the scheduling of scientific 
workflows tasks have inspired us when developing our approach. 
However, the tasks hierarchy in scientific workflows has not been 
explored extensively. Therefore, we consider in this paper the tasks 
hierarchy for workflow scheduling.
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The existing scheduling techniques have been categorized into 
three parameters including static, dynamic, and static-dynamic. 
Dynamic scheduling is efficient for a cloud computing environment 
due to its ability to handle the arriving tasks [7]. Moreover, hierarchical 
scheduling cooperates static and dynamic scheduling to generate 
powerful solutions [8].

To address the challenge, we propose a novel approach for workflow 
scheduling considering the hierarchy of scientific workflows tasks. 
Significant contributions presented in this paper are summarized as 
follows:
• Conditional probability for scientific workflows tasks is computed 

leveraging their representation as a matrix. The conditional 
probability reflects the possibility that scientific workflow tasks 
can share or use the same data.

• Determining the exact number of workflow clusters using 13 
clustering indexes. In this work, we focus on the following 
research question: What is the number of virtual machines required 
for the efficient and transparent execution of a workflow in a cloud 
environment?

• Do a hierarchical clustering to determine the tasks hierarchy 
in scientific workflows and to regroup the workflow tasks into 
clusters. To minimize data transfer between clusters we have 
measured the distance between each pair of tasks and regroup the 
closer tasks into the same cluster.

• Extensive experiments are conducted for evaluating the effectiveness 
and accuracy of our technique. The result shows that our approach 
reduces the resources cost and total the data transfer time.

The paper is organized as follows. Section II presents related 
work. Section III describes the problem statement and introduces 
the proposed solution. In Section IV we introduce our system model 
and assumptions. Section V contains a description of our proposed 
approach, and Section VI and VII discuss the evaluation procedure 
and the results by applying our approach. Finally, Section VIII outlines 
general conclusions and exposes our future work. 

II. Related Works

In the literature, researchers classify task-scheduling strategies into 
two main classes: job scheduling, that focuses on scheduling a set of 
independent tasks to be executed sequentially or in parallel, and the 
workflow that map and manage the execution of interdependent tasks 
on shared resources. Since the advent of cloud computing, several 
scheduling techniques for workflow applications have been proposed. 
These techniques take into account many aspects of the cloud 
environment. For example, some techniques try to optimize costs, 
while others try to optimize fault tolerance.

The cost has become an important objective in workflow cloud 
scheduling research. The total cost incurred by running workflow can 
include many components such as the cost of computing resources, 
the cost of storage resources, and the cost of data transfer resources. A 
budget is often defined as the number of the maximum virtual machines 
to process workflow. Also in grid computing, several cost-aware 
scheduling techniques have been introduced [9]. In [10], the authors 
introduce a strategy called ADAS (Adaptive Data Scheduling) for 
workflow applications. This work aims to reduce the monetary cost of 
moving data while a workflow is running. The authors propose adaptive 
scheduling based on dependencies between tasks. The scheduling 
process is in two steps; The first one is to create initial clusters for 
workflow tasks. They use a matrix approach to group tasks in some 
data centers as initial clusters using the BEA algorithm (Bond Energy 
Algorithm) [11]. The second step is to group the data/task pairs using 
the cost-effective scheduling quality. The authors demonstrate that this 

strategy can improve the processing time of a workflow and the use of 
resources in a cloud environment. However, this strategy uses only one 
clustering algorithm (BEA) to create clusters; in our strategy, we use 
13 clustering indexes to determine the specific clusters numbers and 
do a hierarchical clustering to regroups workflow tasks into clusters. 
In [12], the authors propose a scheduling system for a data-intensive 
workflow to minimize its processing time. To reduce data transfer 
time, the proposed system uses task clustering when submitting a 
workflow application. To do this, it calculates the dependencies of 
the tasks in the workflow according to the conditional probability of 
the common number of files for each pair of tasks. This clustering 
method is validated with the simulator WorkflowSim. We note that 
the authors count conditional probability of the number of common 
files for each pair of tasks regardless of file size. So, in this strategy, 
it is possible to group tasks around small files only, which involves 
clustering tasks with a low communication rate. In our strategy, we use 
the conditional probability to determine and count the possible bytes 
number of common files for each pair of tasks. The priority is to group 
only those tasks that communicate through large files. Our idea is to 
avoid unnecessary moving large files, which will consequently speed 
up the execution time of the workflow.

In addition to the makespan and cost criteria, the reliability of the 
workflow execution is also taken into account. This criterion ensures 
that the resources selected in a schedule can probably complete the 
scheduled tasks. The failure of the task execution is usually handled 
by checkpointing and replication mechanisms. On the other hand, the 
existence of multiple replicas introduces a challenge for maintaining 
the replicas consistency in the cloud environment. To solve the 
problem of replica coherence in the cloud, in [13], the authors 
propose a workflow partitioning approach that takes into account data 
placement by grouping tasks into a cluster based on data replication in 
cloud environments. The proposed approach improves the placement 
of data and minimizes response time. According to the authors, this 
is due to scheduling of tasks in data centers that contain the majority 
of the replicated data. Replication-based scheduling approach achieves 
shorter makespans. However, it makes the scheduling problem more 
difficult. The scheduling algorithm not only needs to observe the 
precedence constraints between tasks but also needs to recognize which 
tasks and data to duplicate. In our strategy, we used the conditional 
probability to determine the possible common set of data between 
each pair of tasks. However, both mechanisms of checkpointing and 
replicating the task may respectively cause the waste of time and 
compute resources [14, 15]. Replication and checkpointing require 
storage space for each task and for each file in the workflow. And 
probably the transfer of replicas and checkpoint across the network, 
which increases the makespan of the workflow. In addition, these 
replication and checkpointing mechanisms require a reliable central 
or distributed storage management system. We note that none of the 
works cited in this paragraph measure, in terms of data storage and 
transfer, the impact by using the replication and the checkpointing 
mechanisms. 

In [16] authors propose Workflow Partition Resource Clusters 
algorithm for scientific workflows. In this work, scheduling is in two 
phases: (i) on the global level the algorithm clusters workflow and 
generate a set of sub-workflows to achieve high parallelism, and (ii) 
on the local level sub workflows generated are dispatched to selected 
resource clusters. The algorithm tries to minimize the cost of workflow 
execution and the makespan. As in [16], many algorithms in the 
literature suppose an unlimited number of available virtual resources. 
In practice, it is not possible for a system to own an unlimited number 
of virtual resources [17, 18, 19]. In our strategy, a limited resource 
number is also taken into consideration, and a mechanism is proposed 
to minimize the resource requirement.



- 77 -

Special Issue on Artificial Intelligence Applications

Several studies have used cluster analysis to schedule workflow 
tasks into clusters. Authors in [20] propose an approach for dynamic 
resources provisioning and present a cost- and deadline-constrained 
workflow scheduling algorithm in a cloud environment. The work is 
divided into two phases: (i) in the first phase, they use the k-means 
clustering technique for determining the speed of VMs that would 
be selected in scheduling; (ii) in the second phase, they propose an 
approach for dynamic provisioning of VMs using a variant of “Subset 
Sum” problem. The results of the simulation show that the proposed 
approach achieves better performance with respect to the cost of 
execution. 

K-means is one of the most known cluster analysis algorithms. 
However, the most important limitations of k-means are: (i) at the 
beginning of algorithm, the user must specify the number of clusters -k- 
and choosing the number -k- of clusters can be difficult; (ii) k-means 
is mainly limited to Euclidean distances. In our strategy, we implement 
an agglomerative hierarchical clustering to find the best step at each 
cluster fusion to determine the best cluster number k. Hierarchical 
clustering does not require a specific distance measure; any measure 
can be used.

In most studies, data transfer between workflow tasks is not 
considered, data uploading and downloading are assumed as part 
of task execution. However, this is not always the case, especially 
in the big data area. For a data-intensive workflow application, data 
movement can dominate both the execution time and cost. In [21], 
cloud storage resources are virtualized like Amazon S3 resources. The 
S3 Cloud storage is used for data availability and data broadcasting. 
However, in the design of the data placement strategies for resource 
provisioning it is important to consider the intermediate data transfer 
performance explicitly. Workflow tasks communicate through the 
transfer of intermediate files. So, the choice of locality storage system 
has a significant impact on workflow performance and cost. In our 
strategy, we take into account the intermediate data transfer cost 
between tasks when the VMs (Clusters) are deployed.

Based on this literature review, we find several issues that have not 
been sufficiently studied. These are the gaps in the reviewed work that 
will be directions for our works.

In this work, we try to understand the challenges of managing 
virtual resources when running Scientific Workflow in the Cloud. We 
will try to minimize the number of resources allocated to a Workflow 
under budget constraints. The goal was to improve the efficiency of 
resource provisioning in the cloud to execute the large-scale workflow 
better. To do this, we have developed tasks and data clustering systems. 
The clustering is done in relation to the underlying network load and 
inter-task communication rates. We have experimented our resource 
allocation strategy using an extension of the CloudSim [22] simulator.

III. Problem Statement

In the distributed execution paradigm, a workflow is divided into 
small tasks, which are assigned to different data centers for execution. 

When a task requires processing of data from different data centers, 
data movement becomes a challenge. Some data are too large to be 
moved. In a cloud, data centers are geographically distant, and data 
movement would add monetary cost to the Workflow execution. Our 
work aims to reduce the monetary cost of data movements during 
workflow execution, to improve the use of the network in Cloud 
environment. The data location problem is one of the important 
challenges for planning a data-intensive application in Cloud 
Computing.

In data-intensive scientific workflows, tasks require more than one 
set of data to be executed. However, when these tasks are executed 

in different datacenters, data transfer would become inevitable. To 
resolve these issues, this work proposes a task dependency-based 
clustering method to optimize scheduling and execution of workflows. 
This work proposes a data-intensive workflow scheduling system to 
minimize data movement between data centers. In the next section the 
components of the proposed system are described.

IV. System Model and Assumptions

In this section, we present the main assumptions of our approach 
and environment model.

A. Application Model
Scientific workflows are modeled as Directed Acyclic Graph 

(DAG). A DAG, G(V, E), consists of a set of vertices V, and edges, E.  
The edges represent constraints. Each edge represents a precedence 
constraint that indicates that the task must complete its execution 
before the next task begins. Each edge also represents the amount of 
data between tasks involved; for example, Fig. 1 shows the amount of 
data (in bytes) that the task should send to the next one.

A task is said to be ready if all of its parents have completed their 
execution and cannot begin execution until all dependencies have been 
satisfied. If two tasks are scheduled on the same data center, the cost of 
communication between them is supposed to be zero.

Applications target are Workflows. Tasks Workflow runtime is 
estimated, and it indicates how long it takes to execute them on a given 
VM type. As for execution times, we assume that the size of the files 
can be estimated on the basis of historical data. The files are assumed 
to be write-once, read-many.

A task has zero or more input files that must be fully transferred to 
a virtual machine before execution can begin; And has zero or more 
output files which can be used as inputs for another task or as the 
final result of a workflow. We suppose that file names are unique in 
a workflow.

B. Execution Model
A cloud consists of an unlimited number of virtual machines (VMs) 

that can be provisioned and de-provisioned on demand. A virtual 
machine can execute only one task at a time. A virtual machine is 
charged 1 $ for each interval of 60 minutes (one hour) of operation. 
Partial usage of a billing interval is rounded.

C. Data Transfer Model
We use a global storage model to transfer input and output files 

between tasks and to store the results of the Workflow. Each VM has 
a local cache of files. This method of transfer is widely used in cloud 
environments by using shared distributed file systems such as NFS 
[23].

To transfer a file between virtual machines, a request must be sent to 
the Global Storage Management System (GSMS). The performance of 
transferring a file to its destination depends on the dynamic state of the 
underlying network. The state of the network depends on the number 
of files being transferred, the size of the files being transferred and the 
presence of the files in the local cache of the VMs.

We assume that transfers between tasks always require the 
downloading of whole files. We also consider the usage cost of global 
storage. This means that the amount of data stored and transferred 
affects the cost of the running Workflow. In our congestion model, to 
transfer files to multiple tasks, starting multiple simultaneous transfers 
could delay the execution of these transfers. Parallel transfers do not 
offer benefit for a task. The bandwidth of a network link to a virtual 
machine is a limiting factor.
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A file cannot be transferred faster than a given maximum bandwidth. 
Each request to the storage system is managed with latency measured 
in milliseconds. We assume that we can calculate precisely the time 
required to transfer a file. A virtual machine has a local disk that serves 
as a file cache, and the disc price is included in the VM cost. The files 
are cached in the First-In-First-Out (FIFO) policy.

V. Proposed Approach

Tasks clustering is a technique that consolidates fine-grained tasks 
into coarse tasks. Task clustering has proven to be an effective method 
of reducing overhead costs and improving the performance of scientific 
workflow tasks. With task clustering, Workflow execution overhead 
can be eliminated by grouping small tasks into a single job unit. This 
Workflow reduction benefits the entire cloud environment by reducing 
traffic between sites. For the efficient execution of a Workflow on a 
cloud environment, we propose in this work, a policy of allocation and 
management of virtual resources. This policy is based on the calculation 
of the dependency between workflow tasks. The dependency is based 
on the conditional probability of workflow tasks.

A. Task Clustering Based on Conditional Probability
The proposed system uses tasks clustering in the Workflow to 

reduce data transfer time. As an illustration, we use the example of 
the Scientific Workflow in Fig. 1. In this Workflow, there are seven 
tasks. In scientific workflows, tasks communicate data by sending and 
receiving intermediate files. In our workflow model, we assume that 
the edges are files. So, we have a set of tasks T and set of files F.

In our model, first, we compute the task dependencies in the 
workflow based on the conditional probability. Let xi ∊ T and yi ∊ T 
two tasks of the same Workflow G. It is assumed that xi has non-zero 
probability. The conditional probability of a task yi , knowing that 
another task xi  has finished, is the number noted P (xi | yi) and defined 
by:

( ) ( )
( ) ( )| = , > 0i j

i j i
i

P x y
P x y P x

P x
∩

 (1)

The real P (xi | yi) is read “probability of yi , knowing xi” according to 
the common use of the sets of data between xi and yi .

Fig. 1. Example of workflow instance.

The conditional probability imposes the creation of the conditional 
probability matrix CPM [| T |][| T |] based on contingency table  
CT [| T |+ 1][| T |+ 1] and the joint and marginal probability table 
JMP [| T |+ 1][| T |+ 1]  of each task pair in the workflow. First, we create 
contingency table as expressed in (2).

[ ][ ] { } { } { }( ),
= ;1 ,P i ji j

CT i j DataSize O I I i j T∩ ∩ ≤ ≤
 (2)

Pi,j is the set of common parents between each tasks xi , yi :

{ } { }{ }, =i j i jP P P∩
 (3)

Pi and Pj are respectively the parents set of the tasks xi , yi . The 
dependency is calculated by measuring the total size of all the output 
files of the set Pi,j . ,Pi j

O F⊂  is the set of the output files of Pi,j . Ii ∊ F 
and Ij ∊ F are respectively inputs files set of task xi ∊ T  and  yj ∊ T. Each 
value in the contingency table is the common size of the input files for 
each task pair in the workflow:
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The joint and marginal probability table can be created from the 

contingency table. The joint probability of Ti and Tj is:

[ ][ ] [ ][ ]= ;1 ,
1 1

CT i j
JMP i j i j T

CT T T
≤ ≤

 +   +      (7)

The marginal probability of Ti is:

[ ] [ ] [ ] 1
1 = 1 =

1 1
CM i T

JMP i T JMP T i
CM T T
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From Joint and Marginal Probability Table, the conditional 
probability for each task pair can be calculated as follows:

[ ][ ] [ ][ ]
[ ]

= ;1 ;1
1

JMP i j
CPM i j i T j T

JMP i T
≤ ≤ ≤ ≤

 +     (9)

To determine the number of clusters of the workflow, we apply our 
clustering approach on the CPM matrix. However, before applying any 
clustering method, we must first preprocess the CPM matrix data. Data 
pre-processing has to do with the steps that are required to transform the 
data we have in a way that allows applying further analysis algorithms 
(e.g., Clustering techniques).

B. Transforming Data
The original CPM data matrix needs to go through some modification 

to make it more useful for our analysis. Numeric variables sometimes 
have slightly different scales. This can create problems for some data 
analysis tools [24].

First, we identify Skewness distributions of CPM data matrix. 
Skewness is a measure of shape distribution. Negative skewness 
indicates that the mean of the data values is less than the median, so 
the data distribution is skewed to the left. Positive skewness indicates 
that the mean of the data values is larger than the median, so the data 
distribution is skewed to the right. 
• If the skewness is equal to 0, then the data is symmetrical and did 

not need to be transformed.
• If the skewness is -1/2 and +1/2, the data is approximately 
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symmetric, and need to be transformed. 
• If the skewness is less than -1 or greater than +1, the data is highly 

skewed, and need to be transformed. 
• If the skewness is between -1 and -1/2 or between +1 and +1/2 then 

the data is moderately skewed and need to be transformed. 
For example, skewness value of the workflow of Fig. 1 is 2.34, so 

we must do data transformation. Transforming data is used to coerce 
different variables to have similar distributions. 

Because some measurements in nature are naturally distributed 
following a normal distribution, it is important to develop an approach 
to transforming one or more variables into a normal distribution. Other 
measures can be naturally logarithmic. In the literature, common data 
transformations include the transformation of the square root, the cube 
root, and the logarithm.

In data analysis, the transformation is the replacement of a variable 
with a function of that variable; for example, replacing a variable 
x with the square root of x ( )x  or the logarithm of  x (Logbx).  
A transformation changes the shape of distribution or relationship 
between variables. 
• The logarithm transformation transforms x to Log10  x, or x to  

Logex, or x to Log2  x. It is a strong transformation with an effect on 
the shape distribution. It is used to reduce the right skewness. It can 
not be applied to null or negative values. So we cannot apply the 
logarithm transformation for the CPM matrix data. 

• The cube root transforms to 
1
3x . It is a weaker transformation than 

the logarithm but with a substantial effect on the shape of the 
distribution. It is also used to reduce right skewness and has the 
advantage of being able to be applied to null and negative values. 

• The square root transforms x to 
1
2x , is a weaker transformation 

than the logarithm and cube root with a moderate effect on the 
distribution shape. It is used to reduce the right skewness, and also 
has the advantage of being able to be applied to null values.

The Table I shows skewness value of square and cube root 
transformation. We can see that the cube root transformation 
approximates the normal distribution. So the cube root transformation 
is more powerful than the square root transformation, and we will 
adopt it in our experiments in section VI.

TABLE I. Different Skewness Values of Fig. 1

Original skewness square root cube root

2.340348 1.899396 1.822186

After applying our clustering approach on the CPM matrix we 
obtain the results of Fig. 2. In the following sections, we will discuss in 
detail our clustering approach used for this example.

Fig. 2. Example of workflow clustering.

After the creation of theCPM matrix, we will fragment the workflow 
into clusters of tasks. Each cluster will be assigned to a virtual machine, 
so the number of virtual machines created depends on the number of 
clusters. The goal of this work is to maximize the data transfer in a cluster 
and minimize it between clusters. The question that arises then is: What is 
the minimum number of clusters needed to execute the workflow to meet 
user budget correctly? So, in our work, the workflow execution must be 
efficient, meet the workflow budget and at a minimal cost. To answer 
this question, we have implemented some algorithms and technics for 
determining the optimal number of clusters in CPM dataset and offering 
the best workflow clustering scheme from different results.

In [25], the authors identify 30 clustering quality indexes that 
determine the optimal number of clusters in a dataset and offers the 
best clustering scheme from different results to the user. We tried to 
apply these 30 algorithms to our CPM matrix, and we found that only 
13 algorithms are compatible with the CPM data matrix. For the rest of 
the 17 algorithms, the clustering result tends to infinity.

The evaluation of the algorithms on the CPM matrix must deal 
with problems such as the quality of the clusters, the quality of the 
data compared to the clustering quality indexes, the degree which a 
clustering quality indexes fit with the data of the CPM matrix and the 
optimal number of clusters [25]. As a result, we used the following 
clustering quality indexes:

1. Krzanowski and Lai 1988 [26] 
2. Calin'ski and Harabasz 1974 [27] 
3. Hartigan 1975 [28] 
4. McClain and Rao 1975 [29] 
5. Baker and Hubert 1975 [30] 
6. Rohlf 1974 [31] and Milligan 1981 [32] 
7. Dunn 1974 [33] 
8. Halkidi et al. 2000 [34] 
9. Halkidi and Vazirgiannis 2001 [35] 
10. Hubert and Levin 1976 [36] 
11. Rousseeuw 1987 [37] 
12. Ball and Hall 1965 [38] 
13. Milligan 1980, 1981 [39, 32] 

C. Tasks Distance Measures
The data set is represented by the CPM matrix. Each element in 

the CPM matrix represents the distance between two tasks in the 
workflow. So, the clustering is done comparing the distance between 
each pair of tasks of the matrix CPM. To measure the distance, we used 
the following metrics:

Euclidean distance is the distance between two tasks x and y in a  
Rn space and is given by (10).

( )2

=1
= ; , 1, 1,

n

i i i i
i

d x y x y CPM T T   − ∈    ∑
 (10)

It is the length of the diagonal segment connecting x to y.
Manhattan distance is the absolute distance between tasks x and y 

in Rn space and is given by (11).

=1
= ; , 1, 1,

n

i i i i
i

d x y x y CPM T T   − ∈    ∑
 (11)

As opposed to the diagonal distance in the Euclidean distance, the 
distance between two tasks in a grid is based on a strictly horizontal/
vertical path. The Manhattan distance is the sum of the horizontal and 
vertical components.
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Minkowski distance: is the pth root of the sum of the pth powers of 
the differences between the components. For two tasks x and y in Rn 
space, Minkowski distance is given by (12).

1

=1
= ; , 1, 1,

n pp
i i i i

i
d x y x y CPM T T     − ∈      

∑
 (12)

Minkowski distance can be considered as a generalization of both 
the Euclidean and the Manhattan distance [40]. p = 1 corresponds to the 
Manhattan distance and p = 2, to the Euclidean distance. For p reaching 
infinity, we obtain the Chebyshev distance.

D. Cluster Analysis Method and VMs Number Interval
As mentioned above, we used 13 partitioning algorithms to 

determine the exact number of clusters needed. In addition to the CPM 
matrix and the distance metric, these algorithms require other input 
parameters, namely the cluster analysis method, the minimum and 
maximum cluster interval. In our works, we have used the following 
cluster analysis methods:

Single: The distance Dij between two clusters Ci and Cj is the 
minimum distance between two tasks x and y, with x ∊ Ci , y ∊ Cj .

( )
,

= ,minij
x C y Ci j

D d x y
∈ ∈  (13)

Complete: The distance Dij between two clusters Ci and Cj  is the 
maximum distance between two tasks x and y, with x ∊ Ci , y ∊ Cj .

( )
,

= ,maxij
x C y Ci j

D d x y
∈ ∈  (14)

We have set the cluster interval calculation between 2 and 20 
clusters. This interval choice is based on the Amazon EC2 resource 
allocation policy [17, 18, 19]. Amazon EC2 allows the possibility 
of reserving only 20 virtual machines. This is why we cannot create 
more than 20 clusters. So, we have fixed the user budget to 20 virtual 
machines.

Algorithm 1 models the first step of our approach, determining the 
cluster number. We start by creating the CPM matrix in line 2. Then the 
matrix created will be one of the input parameters to the 13 clustering 
quality indexes cited above. In line 6 each algorithm will calculate the 
possible cluster number for the CPM matrix. At the end of algorithm 1, 
we calculate the average number of the clusters from all the proposed 
numbers obtained from the 13 clustering quality indexes in line 8.

E. Hierarchical Clustering Method
The average obtained will be used to do a hierarchical clustering 

of the CPM matrix. Hierarchical clustering is one of the domains 
of automatic data analysis and data classification. Strategies for 
hierarchical clustering are generally divided into two types:

Agglomerative: This is a “bottom-up” approach; this method starts 
from a situation where all tasks are alone in a separate cluster, then 
pairs of clusters are successively agglomerated until all clusters have 
been merged into one single cluster that contains all tasks.

Divisive: This is a “top-down” approach, in which all tasks are in a 
single cluster; we divide this cluster into two sub-clusters which are, in 
turn, divided into two sub-clusters and so on. At each step, each cluster 
is divided into two new clusters.

In our work, we have used agglomerative clustering of a set of tasks  
T of n individuals. Our goal is to distribute these tasks in a certain 
number of clusters, where each cluster represents a virtual machine.

The agglomerative hierarchical clustering assumes that there is 
a measure of dissimilarity between tasks; in our case, we use CPM  
matrix as a measure for dissimilarity calculation. The dissimilarity 
between tasks x and y will be noted dissimcpm (x, y).

The agglomerative hierarchical clustering produces a hierarchy H  
of tasks. H it is the set of clusters at all the steps of the clustering 
approach and checks the following properties:

1. T ∊ H : at the top of the hierarchy, when grouping clusters to 
obtain a single cluster, all tasks are grouped; 

2. ∀ x ∊ T, {x} ∊ H: at the bottom of the hierarchy, all tasks are 
alone; 

3. ∀ (h,h') ∊ H 2 , h ⋂ h' = ø or  h ⊂ h' or h' ⊂ h

Initially, in our approach, each task forms a cluster. We try to reduce 
the number of clusters to the average calculated previously by the 13 
clustering quality indexes; this is done iteratively. At each iteration, 
two clusters are merged, which involves reducing the number of total 
clusters.

The two clusters chosen to be merged are the most “similar”, in 
other words, those whose dissimilarity is minimal (or maximal). This 
dissimilarity value is called aggregation index. Since we first merge the 
closest tasks, the first iteration has a low aggregation index, but it will 
increase from iteration to another iteration.

For agglomerative clustering, and to decide which clusters should 
be merged; a measure of dissimilarity between sets of clusters is 
required. This is achieved by measuring a distance between pairs of 
clusters discussed in section V.D.

The dissimilarity of two clusters Ci = {x}, Cj = {y}; 1 ≤ i, j ≤ n , each 
containing one task, is defined by the dissimilarity between its tasks 
dissim(Ci, Cj) = dissim (x, y); 1 ≤ i, j ≤ n. 

When clusters have several tasks, there are multiple criteria for 
calculating dissimilarity. We used the following criteria:

Single link: the minimum distance between tasks of Ci and Cj :

( ) ( )( )
,

, = , ;1 ,mini j cpm
x C y Ci j

dissim C C dissim x y i j T
∈ ∈

≤ ≤
 (15)

We have used this method to minimize data transfer between clusters 
and maximize the data transfer inside a cluster.

Complete link: the maximum distance between tasks of Ci and Cj :

( ) ( )( )
,

, = , ;1 ,maxi j cpm
x C y Ci j

dissim C C dissim x y i j T
∈ ∈

≤ ≤
 (16)

Unlike the previous method, this one increases data transfer between 
clusters. We suppose that this method will not give good results, but 
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we have used it to prove the performance of our workflow clustering 
policy.

Algorithm 2 models the agglomerative hierarchical clustering 
of the CPM matrix. It receives as input parameters the CPM matrix 
and the cluster number that we want to create. The cluster number 
is the average of all cluster numbers obtained from the 13 clustering 
quality indexes. The result of hierarchical clustering is presented in a 
dendrogram. Fig. 3 is the result of clustering, a LIGO workflow of 50 
tasks into 11 clusters using the Euclidean distance measurement and 
the Single Link agglomeration method. 

F.  Objective Function
We have introduced an objective function that allows us to know the 

granularity of our resource allocation system. The objective function 
depends on the workflow resources allocation cost. When a task xi is 
assigned to a VM Vk with price pk, we refer to this as a Resources 
Allocation RAi. For each RAj its cost value is computed :

( ) ( ) ,= cos , =i i k i k kCost RA t x v pω ⋅
 (17)

Where pk is the monetary cost per hour to execute a task xi on the VM 
Vk . The execution takes ,i kω  time units. The execution time includes 
the transfer time of the input tasks data set to the virtual machine from 
task yj to the task xi.

( )
I O

, ,
=0

=
i j

i k i k l
l

E T fω
∩

+ ∑
 (18)

Ei,k  is the execution time of task xi on the VM vk, Ii is the input set of 
files of the task xi and Oj is the output set of files of the task yj. ( )j

i lT f  
is the transfer time of file fl of the task xi to the VM vk  from the task yj . 
For xi ∊ Ci and yj ∊ Cj , ( )j

i lT f  is defined as :

( )
( )

;

0;
=

Size f i jl
j Bw

i l OtherwiseT f
≠



  (19)

Bw is the bandwidth between cluster Ci and cluster Cj. In this work, 
we aim to minimize the transfer time of the data set between the 
virtual machines. To do this, we try to reduce the amount of data set 
transferred between VM by clustering the highly connected tasks in the 
same cluster. By this way, we will reduce the task execution time and 
resource allocation costs.

( ) ( )

( )
( )( )

I O

=0

,

=
i j

j
i i l

l

i k

i

minimize DTT x T f

minimize

minimize Cost RA

ω

∩ 
 
  
 

⇒

⇒

∑

 (20)

DTT (xi) is the data transfer time of all inputs files of the task xi.

VI. Evaluation Methods

To validate the proposed approach, we have implemented our system 
in a discrete event simulator “Cloud Workflow Simulator” (CWS) 
[21]. The CWS is an extension of the “CloudSim” [22] simulator, has a 
general architecture of IaaS Cloud and supports all of the assumptions 
stated in the problem described in Section IV. We simulated workflow 
scheduling with various parameters.

We evaluated our algorithm using synthetic workflows from the 
Workflow Gallery [41]. We have selected workflows representing 
several different classes of applications. 

The selected applications include LIGO [42] (Laser Interferometer 
Gravitational-Wave Observatory), a data-intensive application, it 
is a network of gravitational-wave detectors, with observatories 
in Livingston, LA and Hanford, WA, and MONTAGE [43], an I/O-
bound workflow used by astronomers to generate mosaics of the sky. 
A summary of workflows used in this work and their characteristics is 
presented in Table II. In our work, we simulated workflows whose size 
does not exceed 200 tasks. Because, according to our simulations, the 
execution of the workflows whose size is greater than 300 tasks will 
exceed our budget, which is fixed to 20 virtual machines. 

TABLE II. Simulated Workflows Characteristics

Size/
Type

Total Data Read (Gb) Total Data Read (Gb) Total Data Read (Gb)
MONTAGE LIGO MONTAGE LIGO MONTAGE LIGO

50
100
200

0,68
1,39
2,83

1,43
2,86
5,57

0,24
0,43
0,79

0,02
0,04
0,79

0,92
1,82
3,61

1,49
2,9
5,64

The experiments model cloud environments with an infinitely NFS-
like file system storage.

Fig. 3.  Cluster dendrogram of LIGO workflow.
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Table III shows the skewness of each CPM workflow, after and 
before data transformation. We note that the cube root transformation 
reduces the skewness of the two workflows, especially on the LIGO 
workflow where it is significantly closer to the normal distribution.

TABLE III. Normalized Conditional Probability Matrix

Size/
Type

Original skewness Square root Cube root

MONTAGE LIGO MONTAGE LIGO MONTAGE LIGO

50
100
200

10,34
15,33
22,29

15,15
30,88
33,85

3,01
4,00
5,43

0,94
1,42
2,44

1,88
2,72
3,84

0,089
0,092
0,500

We have compared our approach with the following algorithms: 
(i) Static Provisioning Static Scheduling (SPSS) [21]. SPSS is a 
static algorithm that creates provision and schedules before running 
workflow. The algorithm analyzes if the workflow can be completed 
within the cost and deadline. The workflow is scheduled if it meets the 
cost and deadline constraint. For a workflow, a new plan is created, and 
if the cost of the plan is less than the budget, the plan is accepted. The 
workflows are scheduled in the VM which minimizes the cost. If such 
VM is not available, a new VM instance is created. In this algorithm, 
file transfers take zero time; (ii) Storage-Aware Static Provisioning 
Static Scheduling (SA-SPSS) [44], it is a modified version of the 
original SPSS algorithm to operate in environments where file 
transfers take non-zero time. It handles file transfers between tasks. 
SA-SPSS dynamically calculates bandwidth and supports a replicas 
reconfiguration number. 

We chose these algorithms for the following reasons: (i) These two 
algorithms are multi-objective. They aim to solve at both the cost and 
the deadline which makes its scheduling decision more complicated. 
Except that the SPSS supposes that the transfer time of the files is null 
whereas the SA-SPSS supposes that the transfer time is not null. (ii) In 
SPSS/SA-SPSS the user sets the cost and the deadline explicitly. On the 
other hand, our approach is mono-objective, and it is limited to reduce 
only the workflow cost. Our approach is iterative, and we suppose that 
its scheduling decision is not complicated. In our approach, the optimal 
cost to run the Workflow is calculated, and we suppose to do a right 
tasks clustering around the same files, to reduce the data transfer time 
and thus reduce the workflow execution time. By comparing our work 
with SPSS/SA-SPSS, we want to show that a clustering algorithm is 
as efficient as a multi-objective algorithm. Also, these algorithms are 
already programmed in the CWS simulator, so we added our approach 
in this simulator, and we compared it with these algorithms. This way 
of working ensures that we have a validated simulation environment 
because these algorithms and the simulator itself are already validated 
through publications. So, we have simulated the following algorithms:
• Static Provisioning Static Scheduling (SPSS) 
• Storage-Aware Static Provisioning Static Scheduling (SA-SASS) 
• Data-Aware Euclidean Complete Clustering (DA-ECC) 
• Data-Aware Euclidean Single Clustering (DA-ESC) 
• Data-Aware Manhattan Complete Clustering (DA-MCC) 
• Data-Aware Manhattan Single Clustering (DA-MSC) 

To analyze the results relating to experimentation of our approach, 
we measured the following metrics:

Resources costs is the number of allocated VMs to the workflow 

( )
=1

=
T

i
i

wCost Cost RA∑
.

Total Data Transfer Time: ( )
=1

=
T

i
i

TDTT DTT x∑ ; 

the total size of all transferred files between virtual machines.

The standard deviation of the transferred data:

 
( )( )2

=1=

V

k
k

DT v avgDT

V
σ

−∑
;

with V is the set of VM allocated to a workflow, DT is the amount 
of data transferred to the VM vk, and avgDT is the average value of 
the data transferred to all VMs allocated to the workflow. If we get 
a small standard deviation, the values of transferred data to each VM 
are closed to the average of the data transferred to all the VMs. A large 
standard deviation means that the values of transferred data to each 
VM are farther away from the average of the data transferred to all de 
VMs. Our goal is to get a small standard deviation.

These metrics are used to evaluate the proposed approach compared 
to the SPSS and SA-SPSS approach. To do this, we simulated the 
execution of the synthetic workflows Montage and Ligo. We varied 
the size of simulated workflows between 50 and 200. In our work, we 
simulated workflows whose size does not exceed 200 tasks. Because, 
according to our simulations, the execution of the workflows whose 
size is greater than 300 tasks will exceed our budget, which is fixed 
to 20 virtual machines. This limit choice is based on the Amazon 
EC2 resource allocation policy [17, 18, 19]. Amazon EC2 allows the 
possibility of creating only 20 virtual machines. For each experiment, 
we measured the metrics cited above. Our objective is to study the 
impact of the workflow type on the metrics cited above.

VII.  Performance Evaluation And Results

A. Experiment 1: Impact of the Workflow Type on the Cost
From Fig. 4, we simulated the execution of the Montage workflows 

and measured the execution costs in VMs number. We note that 
regardless of the size of the workflow, our policies give good results 
by reducing the number of VMs. Especially for large workflows whose 
size is 200 tasks; we note that the DA-MCC and DA-MCS policies use 
only 08 virtual machines. This result depends on the CPM matrix data 
and proves that there is not a better distance measure. The distance 
used depends on the data to be analyzed.

Fig. 4.  Impact of the MONTAGE workflow on the cost.

From Fig. 5, we simulated the execution of LIGO workflows and 
measured the execution costs. We note that regardless of the size of 
the workflow, our policies give good results. We note that our policies 
allocate between 17 and 20 virtual machines. In particular, the policies 
DA-ECC and DA-ESC allocate 19 machines for the execution of 
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the workflows whose size is 200 tasks. Those policies use “single” 
agglomeration method coupled with the Euclidian/Complete metric 
to measure the distances and distributes the tasks between virtual 
machines so that the distance between the VMs is as minimal as 
possible. This will naturally involve grouping highly dependent tasks 
into the same virtual machines (cluster) and therefore reducing file 
transfer between machines to a minimum.

Fig. 5.  Impact of the LIGO workflow on the cost.

By comparing Fig. 4 and 5, we note that the Montage workflows 
allocate fewer resources compared to the LIGO workflow. This 
confirms the information in Table II: LIGO is data-aware workflows, 
and Montage is processing-aware workflows. Therefore, the application 
of a scheduling algorithm depends on the type of the workflow.

In [45] we have several types of scientific workflows, namely, 
data-aware workflows, processing-aware workflows, memory-aware 
workflows, etc. Through the two graphs, we note that the SPSS policy 
gives in some cases good results. These results do not reflect reality 
because this policy does not support the data transfer time. Hence the 
importance of using a scheduling algorithm that is specific to the type 
of workflow [46, 47].

B. Experiment 2: Impact of the Workflow Type on the Total Data 
Transfer Time

From Fig. 6, we simulated the execution of the Montage workflows 
and measured the total data transfer time (TDTT). We note that 
regardless of the size of the workflow, our policies give good results. 
For example, for large workflows whose size is 200 tasks, we note that 
the DA-MCC policy completes the total data transfer of the workflow 
in 456 seconds. This result reinforces our supposition of previous 
experience according to which cost and TDTT depend on the data we 
are analyzing, namely the CPM matrix. Therefore, the distance used 
affects the execution time and depends on the data to be analyzed.

From Fig. 7, we simulated the execution of LIGO workflows and 
measured the total data transfer time. We note that regardless of the size 
of the workflow, our policies work well. We note that our policies give 
good results. In particular, the DA-MCC policy that terminates the total 
data transfer of workflows whose size is 200 tasks at 201 seconds. This 
result reinforces our previous supposition in which the choice of an 
agglomeration method has a direct impact on the workflow scheduling. 
In this case, the “Complete” agglomeration method gives good results. 
In addition to the previous section, the choice of an agglomeration 
method also depends on the analyzed data, namely the CPM matrix.

Fig. 6.  Impact of the MONTAGE workflow on the total data transfer time.

Fig. 7.  Impact of the LIGO workflow on the total data transfer time.

From Fig. 6 and 7, we note that the Montage workflows has larger 
TDTT than the LIGO workflows. This has a relationship with the result 
of the previous simulation (Experiment 1), in which we noticed that 
the Montage workflow allocates fewer resources; unlike the LIGO 
workflow that allocates more resources which implies faster execution. 
For example, for the Montage workflow of 200 tasks, with the policy 
DA-MCC, it allocates 8 virtual machines and takes 456 seconds of 
TDTT. For the LIGO workflow of 200 tasks, with the same policy, it 
allocates 20 virtual machines and takes 201 seconds of TDTT.

Through Fig. 6 and 7, we note that the SA-SPSS policy gives in most 
cases bad results compared to our policies. The SA-SPSS workflow 
tasks scheduling is based on a network congestion subsystem that 
allows prediction of file transfer times. 

The predicted duration time will be included in the overall task time. 
However, this subsystem does not take into consideration the dynamic 
and unpredictable nature of the underlying network.

C. Experiment 3: Impact of the Workflow Type on the Standard 
Deviation

From Fig. 8 and 9, we simulated the execution of the MONTAGE 
and LIGO workflows respectively and measured the standard deviation 
of the data transferred to the virtual machines. We note that, regardless 
of the size of the workflow, our policies give bad results. Unlike the SA-
SPSS policy which gives excellent results by keeping a stable standard 
deviation and this whatever the size of the workflow. We note that the 
scheduling plan established by our policies is based on the CPM matrix 
in which we store information about data dependencies between tasks. 
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Fig. 8.  Impact of the MONTAGE workflow on the standard deviation.

Fig. 9.  Impact of the LIGO workflow on the standard deviation.

Unlike SA-SPSS policy that uses a subsystem allowing it to make 
dynamic scheduling with respect to network congestion.

Comparing Fig. 8 and 9 together, we note that the LIGO workflow 
generates a reduced standard deviation compared to the Montage 
workflow. This is because the Montage is processing-aware workflow 
and the LIGO is data-aware workflow. Through the two graphs, we 
also note that our policies give good results on LIGO workflow, which 
proves that our policies are better suited for data-driven workflows.

  VIII.  Conclusion

Cloud computing has gained popularity for the deployment and 
execution of workflow applications. Often, tasks and data workflow 
applications are distributed across cloud data centers on a global scale. 
So, workflow tasks need to be scheduled based on the data layout in 
the cloud. Since the resources obtained in the cloud are not free of 
charge, any proposed scheduling policy must respect the budget of the 
workflow.

In this paper, an approach was proposed to reduce the virtual 
machines costs in Cloud Computing. The objective of this work is 
to provide a scheduling strategy with low costs in cloud computing 
environment. In our strategy, the amount of global data movement can 
be reduced, which can decrease the inter-VMs communications rate 
and improve, therefore, the workflow makespan and network devices 
in the cloud. Our strategy model was built, based on the principles of 
communication efficiency-aware scheduling.

In this work a clustering approach was proposed, that could improve 
the use of resource efficiency and decrease virtual resources consumption 
during the workflow scheduling. Experiment results demonstrated that 

the proposed scheduling method could simultaneously decrease virtual 
resources consumption and workflow makespan.

However, some of our policies have given us unexpected results, such 
as policies based on the “complete” agglomeration method. We then 
did extensive research and found that these results have a relationship 
with the data to be analyzed [48]; in our case, it is the structure of the 
CPM matrix. In [49] we found that there are several types of data, 
namely, Interval-Scaled data, Dissimilarities, Similarities, Binary data, 
Nominal, Ordinal, Ratio data, Mixed data. Typically, before applying 
a distance measure or an agglomeration method, we first need to 
understand the data type of the CPM matrix. As future work, we will 
explore the field of data mining and classification to understand and 
define the data type in the CPM matrix and apply the right distance 
measure and the right agglomeration method.

In section V.B, we found that 17 clustering quality indexes do not 
match the CPM matrix data. As a perspective, we will try to understand 
the reasons why these indexes tend to infinity, and if possible to find 
a solution to standardize or normalize the data of the CPM matrices.

Conditional probability is one of the disciplines of probability theory. 
In this work, we automated the scheduling of a workflow by modeling 
the relationships between the tasks of a workflow with the concept 
of the conditional probability. As future work, we will implement our 
approach in machine learning. Machine learning is one of the domains 
of artificial intelligence which is based on statistics. This discipline is 
strong about modeling NP problems [50].
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