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Abstract—While the use of cloud computing is on the rise,
many obstacles to its adoption remain. One of the weaknesses
of current cloud offerings is the difficulty of developing highly
customizable applications while retaining the increased scalability
and lower cost offered by the multi-tenant nature of cloud
applications. In this paper we describe a Software Product Line
Engineering (SPLE) approach to the modelling and deployment
of customizable Software as a Service (SaaS) applications. After-
wards we define a formal feature placement problem to manage
these applications, and compare several heuristic approaches to
solve the problem. The scalability and performance of the algo-
rithms is investigated in detail. Our experiments show that the
heuristics scale and perform well for systems with a reasonable
load.

Index Terms—Distributed computing, Clouds, SPLE

I. INTRODUCTION

Nowadays, there is a trend for moving applications to

cloud infrastructure, consolidating hardware, saving costs and

allowing applications to react faster to sudden changes in

demands. Despite the many advantages of cloud computing,

different obstacles to its adoption still exist.

Many existing cloud applications only deliver a limited

amount of customizability, often using a one-size-fits-all ap-

proach or limiting customizations to mainly cosmetic changes.

However, for some use cases in areas such as document

processing, medical information management, and medical

communication systems, applications must be tailored for spe-

cific customer needs. Often requiring different service configu-

rations for different clients such as hospital-specific interfaces,

custom workflows, and varying access and security policies.

Current cloud platforms offer insufficient customizability for

these cases. The CUSTOMSS[1] project seeks to create so-

lutions to develop, deploy and manage highly configurable

software and services on multi-tenant cloud infrastructures.

To build configurable desktop applications, the concepts

of Software Product Line Engineering (SPLE)[2] are often

used. In this approach, the software is modeled as a collection

of features. By selecting and deselecting features, different

software variants can be created. Features themselves are

organized by relating them to each other in a feature model.
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Fig. 1: A representation of the feature placement problem.

Most approaches in SPLE have focused on the development

of statically configured products using core assets with static

configuration of variation points. That is, all variations are

instantiated before a product is delivered to customers and,

once the decisions are made, it is difficult for users to alter

them. This approach to SPLE can be used to create a large

amount of applications, that can subsequently be run on cloud

infrastructure. This approach would however create a unique

application for every feature combination, making it impossi-

ble to exploit many of the interesting possibilities of clouds,

such as multi-tenancy. In multi-tenant applications, multiple

end users can make use of the same application instances,

increasing the scalability of applications and lowering the cost

per user. On the other hand, creating multi-tenant services to

represent every feature, can cause individual feature instances

to be underused, especially if many features and variants

exist. For this purpose, current cloud application placement

techniques [3], [4], that do not take relationships between

services into account, are inadequate.

In this paper, we focus on the design of algorithms for

placing high-variability applications on cloud infrastructure.

The applications are built by composing them from a set

of multi-tenant feature instances using a Service-Oriented

Architecture (SOA). For this purpose we designed a variation

of the application placement problem [5], which we refer to978-1-4673-0269-2/12/$31.00 c© 2012 IEEE
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as the feature placement problem. An overview is shown in

Figure 1. The feature placement problem determines which

servers will execute which feature instances, taking into ac-

count the datacenter server configuration, applications to be

placed, and the feature model of which the applications are

instantiations. A single feature instance is capable of serving

multiple applications, ensuring applications composed of a

set of features are themselves multi-tenant. In this paper, the

following research questions are addressed: (i) How can the

feature placement problem be represented formally? (ii) Which

heuristic and optimal approaches can be designed to solve this

problem? and (iii) What is the performance of the heuristic

solutions to this problem compared to the optimal solution,

both in placement quality, and execution speed?

In the next section, we will discuss related work. Af-

terwards, in Section III we describe the feature modelling

approach, and how it can be applied to cloud applications.

In Section IV we formally describe the feature placement

problem. This is followed by Section V, where we describe

different approaches to solve the placement problem. In Sec-

tion VI we describe the setup of the evaluation. Subsequently,

in Section VII we evaluate the heuristics. Finally, Section VIII

contains our conclusions.

II. RELATED WORK

Industrial research has been done on configuration policies

and methodologies to support customizations of Software

as a Service (SaaS). In [6], Zhang et al. discuss a policy-

based framework for publishing customization options of web

services and building customizations on top of this, enabling

clients to build their own customizations. They however do not

take multi-tenancy and runtime aspects into account, nor do

they propose a software development methodology to create

the customizable applications. Sun et al. [7] proposed an

approach choosing configuration over customization to create

modifiable applications, and propose a software development

methodology to develop such applications. We, by contrast,

focus on the customization aspect by using SPLE methods in

combination with a SOA development approach. In Mietzner

et al. [8] an approach for modelling customizable applications

built using SOA is described. The application is linked to a

feature model, allowing automatic generation of deployment

scripts. Our approach is similar in its use of SOA in the

proposed development approach. We however focus on the

runtime management of customizable applications, proposing

optimal and heuristic algorithms to determine where to run

specific features. Recent work in the SPLE community [9],

[10] further works towards the development of customizable

SaaS applications, but to the authors’ knowledge there has

been no work concerning the runtime management of these

applications.

The application placement problem has previously been

described formally [3], [4], [5], [11], and many different

approaches to application placement in clouds have been

developed over the recent years. Specific requirements have

however led to the creation of many application placement

TABLE I: Graphical representation of feature models, descrip-

tion of relations, and formal representation.

�

�

�

Mandatory
If the parent is selected the child
must be selected as well.
Mandatory(fA, fB)
Mandatory(fA, fC)

�

�

�

Optional
If the parent is selected the optional
children can be selected.
Optional(fA, fB)
Optional(fA, fC)

�

�

�

Alternative
If the parent is selected exactly one
of the child nodes must be selected.
Alternative(fA, {fB , fC})

�

�

�

Or
If the parent is selected at least one
of the child nodes must be selected.
Or(fA, {fB , fC})

variants, each focusing on different parameters. Whalley et al.

[12] extended a Virtual Machine (VM) management system to

take into account the complexities of software licensing. In a

similar way, Breitgand et al. [13] added the consideration of

Service Level Agreements (SLAs) to the placement problem.

The consideration of energy consumption and carbon emis-

sions was added in [14] using a system that works in parallel

with existing datacenter brokering systems. Similarly, we

extend the generic application placement problem formulation

to place the features of applications in a cloud environment.

III. FEATURE MODELLING CONCEPTS

Using SPLE, an application is modeled as a collection of

features and relations between these features. Sometimes the

inclusion of some features can imply the inclusion of other

features and conversely the inclusion of some features can

exclude other features. To make it easier to reason on these

relations, feature models are often created in a hierarchical

fashion. Typically, four different relation types: mandatory,

optional, alternative, and or are used. Feature models can be

represented graphically. When doing so, we use the notation

used in [15]. Table I contains the different relation types, a

description and graphical representation, and a formal notation

which will be used later on in this paper.

An example feature model is shown in Figure 2. The figure

shows an illustrative fragment of the feature model for a

medical data processing application. The application contains

an interfacing engine feature to connect to individual hospitals,

which is capable of handling input in one or more different

formats. Additional encryption can optionally be added to the

interfacing engine. Finally, parts of the application can be

hosted at the hospital or they can be hosted by the application

provider. An application created for a hospital using their

own datacenter and a hospital specific interface will differ

significantly from the application created for a hospital using

public cloud infrastructure and a HL7 data interface.
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Features can be implemented in various ways. Sometimes a

feature can be implemented by simply changing configuration

files. This could for example be changing the logo of an

applications. More complicated changes can be created by

adding code changes. The most complicated changes lead to

completely different modules being used by the applications.

The first method is variation by configuration, the latter two

variation types are considered customization [7].

In this paper, we only consider customization as it leads

to the creation of applications that are different at the code

level. Configuration-based features can already be adapted

into a cloud context using existing software development

techniques [7]. Because of this, the feature models used further

on in this paper will only contain features that cause changes

in the executed code.

The development of applications will be driven using the

feature model, building an application using a SOA, in which

the individual services map to the different features defined

in the feature model. Deploying the application then comes

down to allocating feature instances and connecting them.

We assume that the individual services are multi-tenant and

can serve multiple applications. The allocation of the different

feature instances is the main focus of this paper.

It is important to make a distinction between internal and

external variability [2]. External variability is visible for end

users and communicated to them, whereas internal variability

only leads to changes that are visible to developers and usually

pertains to non-functional system qualities. This enables a

configurator to leave the internal variability undecided, cre-

ating open variation points [8], which allows the placement

algorithm to fill in these variation points when an application

is deployed or moved. This way, an application with regular

availability requirements could use high availability instances

when such instances exist with remaining capacity, instead of

creating a new instance with a lower reliability, thus lowering

the total resource usage.

IV. FORMAL PROBLEM DESCRIPTION

In this section we will formally describe the feature place-

ment problem. For ease of reference, the variables used in the

model are listed in Table II.
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Fig. 2: A feature model fragment for a medical data processing

application.

TABLE II: The different symbols used in Section IV.

Input Variables

Symbol Description
S The set of servers

Ra
γ
s The available resources on a server s for a resource type

γ ∈ {CPU,mem}
F The feature model used by the applications
F The set of features contained in F
R The set of relations contained in F , using relations as

described in Table I
A The set of applications

sel(a) The features that must be included for application a
excl(a) The features that must not be included for application a

FICPU
f1

(f2) The impact on the CPU requirement for feature f2 if
feature f1 is included in the selected features of an
application

IRmem
f The memory requirement of a single instance of a

feature f

CV (f, a) The cost of failing to place a feature f for an application
a

CV (a) The cost of failing to place an application a

Decision Variables

Symbol Description

MCPU
s,f,a The amount of CPU to be allocated for a given server

s, feature f and application a
Φf,a A boolean variable indicating whether application a

includes feature f
ICs,f The instance count is a boolean variable, indicating

whether a feature f is instantiated on a server s
Auxiliary Variables

Symbol Description

AICPU
f,a The application impact. It contains the actual CPU

impact per feature f of a specific application a.
pa A boolean variable indicating whether the CPU demand

of any of the features of an application a is not correctly
provisioned.

pf,a A variable indicating whether the CPU demand of a
single feature f of an application a is not correctly
provisioned

A. Variable description

1) Input variables: Each problem has a set of servers

S with an amount of available resources. There are two

resource types: memory and CPU. For a server s ∈ S the

available resources are given by Ramem
s and RaCPU

s for

memory and CPU respectively. The goal of the optimization

is to allocate the required CPU capacity for applications at a

minimal cost. To achieve this, the amount of CPU is measured

globally across all servers and optimized. Feature instances are

allocated on different servers and consume memory on each

server. For a placement to be valid, every feature instance must

be assigned its required amount of memory.

The problem also contains a set of applications A that must

be placed. Each of the applications is a specific instantiation

of a global feature model F . This feature model contains a

set of features F and a collection of relations R, formally

describing the feature model tree. The possible relations are

described in Section III and Table I. We note that this approach

still allows the placement of entirely distinct applications with

separate feature models Fi by creating a set containing the

roots of every feature model, R, and linking these different

feature models in a global feature model by the addition of a

new root feature r and a relation Alternative(r,R).
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Every application a ∈ A contains a set sel(a) ∈ F with

features that have been selected in the application and a set

excl(a) ∈ F , containing features that have been excluded

(sel(a) ∩ excl(a) = ∅). The configuration of both is assumed

to be valid according to F .

It is possible for features to impact the CPU needs of other

features. For instance, adding the encryption feature to the

application in Figure 2 can increase the load on the interfacing

engine, and applications hosted by the application provider

will require more CPU resources than applications partially

hosted at the client site. We represent this using a feature

impact matrix FI . FICPU
f1

(f2) represents the CPU impact

of feature f1 on feature f2. Every instance of a feature f

also requires a specific amount of memory IRmem
f . In this

paper we assume that the resource need of an application is

defined entirely by the selected application features, if needed

an additional demand variable could also be added.

To be able to optimize application placement, the cost of

failed placement must also be used as an input. The cost of

failure can be considered in two different ways:

• The cost of violating the SLA for a specific feature f

of an application a is given by CV (f, a). This can be

used if failure of specific features needs to be taken into

account.

• The cost of violating the SLA for any feature of an

application is given by CV (a).

2) Decision variables: The output of the placement algo-

rithm is an allocation matrix MCPU . For a server s, feature

f , and application a, MCPU
s,f,a contains the amount of CPU that

needs to be allocated.

Another output is the feature matrix Φ, indicating which

applications are selected and excluded for a given application.

For application a and feature f , Φf,a = 1 if the application

contains the feature and Φf,a = 0 if it does not. At the start

of the algorithm a large part of this matrix can be filled in by

using sel(a) and excl(a).
Finally, the variable ICs,f determines the amount of in-

stances of feature f on server s. This variable is needed to

determine the total memory usage of feature f on server s.

3) Auxiliary variables: Next to the in- and output variables,

additional variables are needed to construct the final cost func-

tion and constraints. First there is the application impact matrix

AICPU
f,a which contains for every feature f and application a

the actual CPU requirement. It can be constructed using the

selected features and the feature impacts matrix.

Secondly, a set of boolean variables is needed to express

whether an application is correctly provisioned. We make a

distinction between two different groups:

• For every application a there is a variable pa, indicating

whether the provisioning of an application has failed.

If pa = 1, a feature exists that has not been allocated

sufficient CPU resources.

• For every application a and feature f there is a variable

pf,a. This variable indicates whether a single feature of

the application is insufficiently provisioned.

TABLE III: Conversion of F to constraints.

Relation Conversion
Mandatory(fA, fB) fA = fB
Optional(fA, fB) fA ≥ fB
Alternative(fA, {fB , fC}) fA = fB + fC
Or(fA, {fB , fC}) fA ≥ fB

fA ≥ fC
fA ≤ fB + fC

B. Constraint details

1) Feature-based constraints: The feature matrix Φ is used

to indicate whether a feature f is present in an application

a. For an application a we add the constraints Φf,a = 1 if

f ∈ sel(a) and Φf,a = 0 if f ∈ excl(a).

The relations between features R must also be converted

into constraints. Elements of R define relations between indi-

vidual features. As the constraints of the feature model affect

all applications, they must be applied to all application features

in the feature matrix. Because of this, we define fi = Φi,∗ a

row of the feature matrix. We describe the conversion for the

relation types to constraints in Table III.

2) Application resource requirement constraints: Appli-

cation resource requirements can be determined using the

feature impact matrix FI . Each feature f can have resource

requirements, but it can also impact resource requirements

of other features. If feature f is selected, it’s impact matrix,

FICPU
f will be added to the total resource requirement for

the application. A feature fi can only affect a feature fj if fi
requires fj according to the feature model as otherwise the

feature impact matrix would be able to add feature constraints

not included in the feature model.

Using the selected features Φ and the feature impact ma-

trices FICPU
f , an application impact matrix AICPU

f,a can

be constructed. This application impact matrix, expressed

in Equation (1), displays the actual CPU requirements for

individual features f , of an application a.

AICPU
f,a =

∑
f ′∈F

Φf ′,a × FICPU
f ′ (f) (1)

3) Resource constraints: A set of constraints are added due

to the limited amount of resources available in de model. CPU

and memory constraints are both expressed for every server

s, but both are expressed in different way: The used CPU is

determined using the allocation matrix MCPU , of which the

requirement is aggregated over all features and applications.

This is expressed in Equation (2). Memory limitations follow

from the instance count IC for the service, indicating whether

a service is allocated, and the required amount of memory per-

instance, as shown in Equation (3).

∑
f∈F

∑
a∈A

MCPU
s,f,a ≤ RaCPU

s (2)

∑
f∈F

(IRmem
f × ICs,f ) ≤ Ramem

s (3)
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4) Application provisioning constraints: Additional con-

straints are needed to ensure the variables pf,a and pf ,

introduced in Section IV-A3, correctly express whether the

application and features are insufficiently provisioned. Logi-

cally, we can express this using Equation (4).

pf,a ≡
∑
s∈S

MCPU
f,s,a < AICPU

a,f (4)

This statement can be turned into constraints using the trans-

formation of Equation (5) to Equation (6), with x ∈ {0, 1},

M a number larger than any possible value of expr. If

x = 0, it follows from Equation 6 that expr ≤ 0, while

x = 1 yields the constraint expr ≤ M, which is always true.

Consequently, this transformation holds only in optimizations

where the objective function value improves when x = 0.

x ≡ expr ≥ 0 (5)

expr ≤ x×M (6)

Once the different pf,a variables, we can use these to

determine the value of pa, as the failure of a single feature

implies the failure of the entire application. This can be

expressed by adding the constraint pa ≥ pf,a for every feature

f and application a.

C. Optimization objective

The goal is to minimize the cost of non-realized demand.

Using the variables pa and pf,a, the cost of application failure

CV
a , and the cost of feature failure CV

f,a, we can express the

cost of non-realized demand:

CD =
∑
a∈A

⎛
⎝pa × CV

a +
∑

f∈sel(a)

pf,a × CV
f,a

⎞
⎠ (7)

Equation (7) considers all the applications and adds costs

based on the failure to provision entire applications and the

failure to provision individual application features.

V. SOLUTION TECHNIQUES

A. Integer Linear Programming (ILP)

The formal formulation, discussed in the previous section,

can be used to define an ILP. This program can be solved

using a commercial ILP solver, and yields the optimal problem

solution using Simplex and Branch and Bound algorithms.

B. Heuristic solutions

Algorithm 1 shows the body of a heuristic solution to the

feature-based application placement problem. The algorithm

is based on the classic first-fit algorithm for bin packing. The

algorithm iterates over a list of all application features, ordered

before place is called using a featureOrder function, and

tries to place them on the servers one by one. The order in

which servers are visited is determined using a serverOrder

function. A findServer operation iterates over a list of servers

and returns the first server on which a given resource demand

can be placed. The feature is placed on the server returned by

this findServer operation and the placement continues for the

next application. To determine exactly which features are to be

placed, an additional function, featureConversion is executed

before placement. This method ensures all features in a feature

model are either selected or excluded.

Data: problem P

Data: Instance Count for a feature on a server ICs,f

Data: current placement matrix Ms,f,a

Data: list of applications and features to place Lista,f

Data: list of servers with remaining resources Lists

if List is empty then
return (IC, M );

else

(a, f) ← head of Lista,f ;

sort Lists using serverOrder;

s ← findServer(Lists, remainingDemand(a, f));
if no s found then

placeNext ← tail of Lista,f ;

return place(placeNext);
end

if no remaining capacity for f on currentServer then
create new instance of f ;

end

add remaining demand to this instance;

adjust remaining CPU to place;

if all CPU placed then

placeNext ← tail of Lista,f ;

else

placeNext ← Lista,f ;

end

return place(placeNext);
end

Algorithm 1: The place function executed by the heuristic.

The effectiveness of the algorithm is largely determined

by the featureOrder, serverOrder, and featureConversion

functions. In the following sections different possible imple-

mentations for these functions will be presented.

1) Feature ordering: The Cost Feature Order (CFO) ap-

proach orders application features according to their cost

of failure (CV (f, a) + CV (a)), placing the most expensive

application features first.

We also designed an Instance Count Based (ICB) approach

where the order of features to be instantiated is determined

by the amount of instances required for them, thereby placing

applications with more features that are more difficult to place

first, ensuring their requirements will not be violated.

2) Server ordering: We consider an Instance Based server

ordering, which orders servers according to the best fit for the

feature f and application a that is to be placed: applications

having instances of f with remaining capacity will be pre-

ferred, and of those the server with the best fit will be selected.

3) Feature model conversion: The Cheapest Application

(CA) approach seeks the cheapest feature combination consid-

ering only the application itself, and not the other applications

present in the model. This implies that every feature configu-

2012 IEEE Network Operations and Management Symposium (NOMS) 21
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Fig. 3: Different feature model selections for two applications.

Features with a solid border are selected, features with a dotted

border are undecided.

ration can be determined when applications are added to the

system, and not when placement executes.

Using Cheapest Shortened (CS), the cheapest feature combi-

nation is determined, taking into account all of the applications

that must be placed. This approach is capable of yielding better

results as all of the different applications and their combina-

tions are taken into account, but has a higher computational

cost. As the amount of combinations increases exponentially,

at each point in time the list of possibilities is shortened. In the

evaluations we use two variants, one shortening to 10 elements

and the other using 100 elements.

In the context of these conversions we consider cheapest to

be the combination requiring the smallest amount of memory

for all required instances. Figure 3 shows two applications

with the same feature model. Application 1 is fully configured

while Application 2 is only partially configured, and still has

open variation points. Feature model conversion will need to

select either feature B, C or D for Application 2. Using CA,

this will be the cheapest of the different alternatives. CS on the

other hand may select feature D, even if it isn’t the cheapest

when it is considered on its own, ensuring less different feature

instances have to be created.

Calculating CA or CS is of and exponential complexity,

severely limiting the size of the feature models that can be

considered. Part of the required information can however be

calculated before placement. In the case of CA, the cheapest

application can be calculated when applications are added to

the system, using the stored result when the actual placement

is executed. For CS, a list containing the best feature com-

binations can be determined when the application is added.

During the execution, the latter variant will still require com-

putations to determine the cheapest combination based on the

generated list. The prepared CA (pCA) and prepared CS (pCS)

approaches execute the algorithm assuming this information

has been calculated and stored when applications are added to

the system.

VI. EVALUATION SETUP

We implemented the Integer Linear Programming (ILP)

problem and the heuristics using Scala. The ILP solver uses

CPLEX[16] as its backend. We also implemented a problem

generator, capable of creating a wide range of random prob-

lems. The generator creates a collection of servers, a feature

model, and a set of applications.

First, the servers S are generated. For these tests we assume

a uniform server configuration with 4000MiB memory and a

2000MHz processor.

To create a random feature model F , first, a collection of

features F is generated with random memory requirements

from a set {500MiB, 1000MiB, 2000MiB, 2500MiB}. Subse-

quently a feature model tree R is created. This is done by

iteratively selecting nodes that are not in the tree yet and

adding them in a relation with a node in the tree as the parent

node. To start this process, a random feature is selected as root

of the feature tree. There is an equal chance of picking any of

the four relation types, and Alternative and Or relations have

between two and six child nodes. Feature models generated

in this fashion are similar in structure to those used for the

applications in the CUSTOMSS project, and enable us to

evaluate the algorithms for a larger set of configurations.

Next, we generate the impact matrix FICPU . Each feature

impacts itself and has a chance of impacting any feature

required by it. This is enforced by only letting a feature impact

parent features. The CPU impact of a feature is randomly cho-

sen from the set {100MHz, 200MHz, 500MHz, 1000MHz}.

As stated earlier, we assume a homogeneous host capacity.

Selecting features is done by randomly selecting or ex-

cluding features, and checking the validity of the resulting

feature model with SAT4J[17], an open source SAT solver.

This ensures that the selection is feasible according to feature

model F . Features are randomly removed from either the

collection of selected features, or from the collection of

excluded features. All dependent features are removed as well,

ensuring an open variation point is added.

Finally, random applications A are generated using the

generated feature selections. Each application and application

feature is also assigned costs for failure, randomly chosen from

the set {1, 20, 50, 100, 500, 1000}. The applications with cost

of failure 1 could correspond with a free service that is being

offered: the placement algorithm should try its best to place

it, but the cost of failure is minimal.

The performance tests of the algorithms were executed on a

Linux server with an Intel Core i3 CPU (2.93GHz) with 4GiB

of memory, and using Scala version 2.9.0.1.

VII. EVALUATION RESULTS

We first compare the cost of using the heuristics. We

generated 1000 problem models with each between 10 and 100

applications, features and servers. For each of these models we

determined the load of the problem. We do this by filling in the

feature model for every application using the same approach

as CA, filling in the open variation points with the cheapest

alternative, determining the total demand of all features for all

applications, and dividing it by the total available resources.

A higher load indicates that it is more difficult to place all

applications on the servers.

We then filter out all applications with a load > 3, as

we believe such heavy loads would be better handled using
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Fig. 4: The quality of different feature orderings using the

CS100 feature conversion.

admission policies. In the case of our model, this left 160

problem models to be considered.

CPLEX was used to solve the feature placement for the

selected problems. For some randomly generated problems

there was however insufficient memory, while larger problem

models could be solved without difficulty. Similarly, CPLEX

had trouble to evaluate some of the problems due to the

finite precision representation of double values, yielding lower

quality solutions that sometimes contain non-integer results for

integer variables, causing constraint violations. These prob-

lematic models were removed and replaced with equally large

models that did not yield any problems for CPLEX.

The probability of impacting other features mainly influ-

ences the problem model load, as a high impact chance implies

a higher CPU demand, making placement more complicated.

In the application cases, features commonly impact each other,

as for example an encryption feature can impact many different

components and a BPEL engine used in an application feature

can be influenced by the features that make use of it. Because

of these consideration we use an impact chance of 50%. We

repeated the following tests for different impact chances, but

this did not significantly change the results.

A. Evaluation of the feature orderings

We first compared the different feature orderings. A com-

parison of both is shown in Figure 4. In this evaluation the

feature configuration is filled in using Cheapest Shortened

100 (CS100). The load is defined as explained earlier in this

section, and the different problems are aggregated in bins of

size 0.1. The cost determined by the cost of failed placement

as defined in Section IV-C.

The data points in Figure 4 are subject to a large standard

deviation. This is to be expected as we make use of a large

amount of different feature models and problem configura-

tions. Despite this, some interesting trends can be discerned:

CFO, which takes the costs of failed placement into account

yields significantly better results than the ICB approach. We

also see that CFO yields results very close to those of the ILP
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Fig. 5: The quality of different feature conversions using the

CFO feature ordering.

solution for problems having a load of up to 2, and even for

higher loads, the results remain quite good.

B. Evaluation of the feature conversions

The effects of feature conversion are shown in Figure 5.

The impact of the feature conversion on the cost is more

limited than the impact of feature orderings. In general, CS

yields better results than CA, but some corner cases can

be found there CA actually performs better. The difference

between the two cheapest combination variations is even

smaller, with CS100 sometimes improving the results of CS10

but, sometimes performing worse. This implies shortening to

only 10 elements, and considering only a small collection of

good alternative feature model configurations, is sufficient to

improve the quality of the placement.

C. Execution speed considerations

We compare the execution speed as a function of server

counts, feature counts, and application counts. Each time, we

vary one of the parameters while keeping the others fixed.

Every data point in the graphs in this section is an average of

10 different executions. Only the feature conversion function

has an impact on the performance as the different feature

orderings merely by changing the order in which features are

considered by the algorithm.

As is typical for ILP solution algorithms, there is a high

variability in the performance of executions, with some prob-

lems taking hours to solve. Because of this, we do not include

the execution speed of the ILP solver in these evaluations.

As shown in Figure 6a, increasing the amount of servers

only slowly increases the execution time of the algorithm, as

the main execution time follows from generating the different

feature combinations, which is dependent on the amount of

features and must be done for every application. The perfor-

mance of the CS solution is strongly dependent on the amount

of feature models considered: considering 100 solutions leads

to a much larger computation cost while considering only 10

solutions only yields a minor overhead when compared to the
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CA approach. Considering the minor performance improve-

ment caused by using 100 entries compared to using 10 entries

we suggest using the latter variant. The last two variants, pCS

and pCA show the effect on placement execution if part of

the computation is prepared before execution. When it comes

to varying server counts the impact of this change is limited.
When the number of applications is increased, as shown in

Figure 6b, we observe a steady increase in execution time, as

for every new application, feature model combinations must be

considered. The benefit of preparing part of the computation

before placement using pCS or pCA is limited.
The CS100, CS10 and CA algorithms scale badly in the

number of features in the feature model, as shown in Figure 6c.

In this case, preparing part of the computation before the actual

execution, as done in pCS10 and pCA, causes a significant

improvement in execution performance, greatly improving

the execution speeds and scalability of the algorithm, and

making it capable of provisioning applications containing large

numbers of features.

VIII. CONCLUSIONS

In this paper we addressed three issues. First, we discussed

an approach for managing applications with high variability

using feature modelling techniques. We then presented a

formal description of the feature placement problem, used to

place these applications on cloud infrastructures, and devel-

oped heuristic solutions. Finally, we studied the performance

of the heuristics, comparing them to an optimal ILP-based

algorithm. We found that the best of the heuristics perform

close to the optimal solution and and scale well, executing

within 1s for the considered evaluation scenarios.
In future work we will extend the presented problem to

take quality metrics such as reliability into account. Within

the scope of the CUSTOMSS project, the designed algorithms

will be incorporated in the overall framework.
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