43 research outputs found

    Evolution of NOMA Toward Next Generation Multiple Access (NGMA) for 6G

    Full text link
    Due to the explosive growth in the number of wireless devices and diverse wireless services, such as virtual/augmented reality and Internet-of-Everything, next generation wireless networks face unprecedented challenges caused by heterogeneous data traffic, massive connectivity, and ultra-high bandwidth efficiency and ultra-low latency requirements. To address these challenges, advanced multiple access schemes are expected to be developed, namely next generation multiple access (NGMA), which are capable of supporting massive numbers of users in a more resource- and complexity-efficient manner than existing multiple access schemes. As the research on NGMA is in a very early stage, in this paper, we explore the evolution of NGMA with a particular focus on non-orthogonal multiple access (NOMA), i.e., the transition from NOMA to NGMA. In particular, we first review the fundamental capacity limits of NOMA, elaborate on the new requirements for NGMA, and discuss several possible candidate techniques. Moreover, given the high compatibility and flexibility of NOMA, we provide an overview of current research efforts on multi-antenna techniques for NOMA, promising future application scenarios of NOMA, and the interplay between NOMA and other emerging physical layer techniques. Furthermore, we discuss advanced mathematical tools for facilitating the design of NOMA communication systems, including conventional optimization approaches and new machine learning techniques. Next, we propose a unified framework for NGMA based on multiple antennas and NOMA, where both downlink and uplink transmissions are considered, thus setting the foundation for this emerging research area. Finally, several practical implementation challenges for NGMA are highlighted as motivation for future work.Comment: 34 pages, 10 figures, a survey paper accepted by the IEEE JSAC special issue on Next Generation Multiple Acces

    Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective

    Get PDF
    Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-MultipleAccess (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication

    Nonorthogonal Multiple Access for 5G and Beyond

    Get PDF
    This work was supported in part by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/N029720/1 and Grant EP/N029720/2. The work of L. Hanzo was supported by the ERC Advanced Fellow Grant Beam-me-up

    Performance analysis of biological resource allocation algorithms for next generation networks.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF.Publications listed on page iii

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    A Survey on Applications of Cache-Aided NOMA

    Get PDF
    Contrary to orthogonal multiple-access (OMA), non-orthogonal multiple-access (NOMA) schemes can serve a pool of users without exploiting the scarce frequency or time domain resources. This is useful in meeting the future network requirements (5G and beyond systems), such as, low latency, massive connectivity, users' fairness, and high spectral efficiency. On the other hand, content caching restricts duplicate data transmission by storing popular contents in advance at the network edge which reduces data traffic. In this survey, we focus on cache-aided NOMA-based wireless networks which can reap the benefits of both cache and NOMA; switching to NOMA from OMA enables cache-aided networks to push additional files to content servers in parallel and improve the cache hit probability. Beginning with fundamentals of the cache-aided NOMA technology, we summarize the performance goals of cache-aided NOMA systems, present the associated design challenges, and categorize the recent related literature based on their application verticals. Concomitant standardization activities and open research challenges are highlighted as well

    Network Optimisation for Robotic Aerial Base Stations

    Get PDF
    One attractive application of unmanned aerial vehicles (UAVs) is to provide wireless coverage when acting as aerial base stations (ABSs). Compared to terrestrial small cells, ABSs have the benefit of flexible deployment, controllable mobility, and dominant line-of-sight channels, so they are expected to play a significant role in next-generation cellular networks. However, introducing this novel non-terrestrial communication device would also bring new challenges, such as requiring different evaluation criteria and being restricted by unexpected resource constraints. With this in mind, this thesis mainly focuses on the network optimisation problems of ABS-assisted networks.Specifically, we first investigate two contradictory metrics, i.e., the information freshness and energy consumption, when an ABS is employed to collect data from ground terminals. A novel multi-return-allowed serving mode is proposed to explore the Pareto optimal trade-off between these two metrics. Secondly, to overcome the functional endurance issue of conventional ABSs, we propose a novel prototype named robotic aerial base stations (RABSs) with grasping capabilities, which can attach autonomously in lampposts or land on other tall urban landforms to serve as small cells with prolonged endurance. By employing this novel ABS prototype, we first study the optimal deployment and operation strategy for RABSs when the mobile traffic demand shows heterogeneity in both spatial and temporal domains. Afterwards, to further explore the use of RABSs in the upcoming 6G era, we investigate two novel application scenarios, that is, an RABS-assisted integrated sensing and communication (ISAC) system and an RABS-aided millimetre-wave (mmWave) backhaul network.The proposed scenarios are formulated as various non-convex problems. By analyzing their constructions, we propose a variety of algorithms to solve them in a reasonable time. A wide set of simulation results shows that the proposed novel prototypes and serving schemes have immense potential in future cellular networks.<br/
    corecore