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Abstract

One attractive application of unmanned aerial vehicles (UAVs) is to provide wireless
coverage when acting as aerial base stations (ABSs). Compared to terrestrial small
cells, ABSs have the benefit of flexible deployment, controllable mobility, and
dominant line-of-sight channels, so they are expected to play a significant role in
next-generation cellular networks. However, introducing this novel non-terrestrial
communication device would also bring new challenges, such as requiring different
evaluation criteria and being restricted by unexpected resource constraints. With
this in mind, this thesis mainly focuses on the network optimisation problems of
ABS-assisted networks.

Specifically, we first investigate two contradictory metrics, i.e., the information
freshness and energy consumption, when an ABS is employed to collect data from
ground terminals. A novel multi-return-allowed serving mode is proposed to explore
the Pareto optimal trade-off between these two metrics. Secondly, to overcome the
functional endurance issue of conventional ABSs, we propose a novel prototype
named robotic aerial base stations (RABSs) with grasping capabilities, which can
attach autonomously in lampposts or land on other tall urban landforms to serve
as small cells with prolonged endurance. By employing this novel ABS prototype,
we first study the optimal deployment and operation strategy for RABSs when the
mobile traffic demand shows heterogeneity in both spatial and temporal domains.
Afterwards, to further explore the use of RABSs in the upcoming 6G era, we
investigate two novel application scenarios, that is, an RABS-assisted integrated
sensing and communication (ISAC) system and an RABS-aided millimetre-wave
(mmWave) backhaul network.

The proposed scenarios are formulated as various non-convex problems. By
analyzing their constructions, we propose a variety of algorithms to solve them in
a reasonable time. A wide set of simulation results shows that the proposed novel
prototypes and serving schemes have immense potential in future cellular networks.
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Chapter 1

Introduction

1.1 Research Motivations

Unmanned aerial vehicles (UAVs), commonly known as drones, are remotely con-
trolled aircraft that operate without onboard pilots. Thanks to the advancements in
manufacturing technologies, UAVs have shown a significant expansion in their clas-
sifications based on various criteria, such as payload capacity, size and weight, wing
configuration, operational altitude, flying speed, and energy supply methods. This
expansion aims to accommodate a broader range of applications and meet diverse
environmental requirements. With increased flexibility and cost reduction, UAVs are
now extensively employed beyond military domains and finding new applications
in wider areas, i.e., remote monitoring, contamination detection, emergency rescue
operations, and cargo delivery. Notably, one particularly appealing use of UAVs is
employing them as aerial base stations (ABSs) to construct three-dimensional (3D)
cellular networks. Compared to traditional terrestrial networks, aerial networks offer
numerous advantages, such as enhanced flexibility, predominant line-of-sight (LoS)
channel conditions, cost-effective deployment, and 3D manoeuvrability.

Several ABS prototypes have been showcased to the public at exhibitions and
commercial events. For instance, the Zephyr project is a solar-powered stratospheric
ABS developed by Airbus [1]. The key component of this system is an unmanned
aerial system with a wingspan of 25m and a weight of 75kg, which operates at an
altitude of 20 km above the ground and is powered by solar energy. Utilizing a
dual rechargeable battery design, Zephyr can provide theoretically uninterrupted
wireless service from the air. In the test flight conducted in 2018, Zephyr achieved a
remarkable endurance of 25 days, 23 hours, and 57 minutes without being recharged.
Thanks to the high operating altitude and long battery life, Zephyr has the potential
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1.1 Research Motivations

(a) Airbus Zephyr project [1]. (b) AT&T Flying COW project [2].

Fig. 1.1 Different prototypes of ABS.

to offer uninterrupted wireless coverage to previously unconnected areas. It is
calculated that the coverage provided by Zephyr is equivalent to that of 250 terrestrial
cell towers. Besides, AT&T has developed an ABS project known as the Flying
Cell on wings (COW), which operates at a much lower altitude, i.e., approximately
100 meters [2]. The Flying COW is designed to provide 5G coverage to an area of
approximately 25 km2. Its intended applications include offering wireless service to
ground users during disasters and boosting capacity during major events. A detailed
survey of the ABS prototypes can be found in [3], which covers a wider range of
commercial ABS projects such as Facebook Aquila, Google Loon, Nokia F-Cell,
Eurecom Perfume and Huawei Digital Sky.

Thanks to the flexibility and wide coverage, ABSs have been effectively applied
to provide emergency wireless service in the aftermath of natural disasters. A
notable example occurred in July 2021 when Henan province, located in central
China, experienced abrupt and extensive heavy rainfall, resulting in floods in this
area. Consequently, the telecommunication infrastructures in Mihe county of Henan
province were severely disrupted, leaving over 20,000 residents stranded. To address
this critical situation, the Wing Loong UAV, equipped with an ABS, was deployed
to establish emergency connections in the disaster-affected region [4]. Specifically,
Wing Loong UAV took off from Guizhou province and completed a journey of
approximately 1,200 kilometres in 4.5 hours to reach the mission area. It operated
for a total of 8 hours in the affected zone. Within the initial two hours of operation,
it facilitated connectivity for 2,572 users, resulting in 1,089.89 MB of data traffic.
During the peak hour, there were at most 648 users connecting with the ABS
simultaneously. In the following days, Wing Loong UAV continued to provide
wireless connections to the Fuwai Central China Cardiovascular Hospital, which
was among the hardest-hit medical facilities requiring emergency rescue operations.

14



1.2 Thesis Outcomes

This exemplary use case clearly demonstrates the significant potential of ABSs in
fulfilling urgent communication requirements after natural disasters.

The study of ABSs has attracted significant attention from both academia and
industry in recent years and has already been employed in recovering communi-
cation networks after natural disasters. However, this emerging field still presents
numerous challenges that require further research and exploration. Firstly, due to
the different service modes of ABSs compared to traditional terrestrial base stations,
new performance metrics, such as propulsion energy consumption and air-to-ground
path loss depending on their three-dimensional positioning, need to be introduced
to evaluate aerial networks. Accordingly, how to achieve a balanced design among
these different performance metrics remains a challenge for researchers. Secondly,
while UAV communication has been utilised for emergency network reconstruction
after natural disasters, employing ABSs to provide daily network services in urban
areas still faces several challenges. For instance, the operational duration of ABSs is
constrained by onboard battery capacity, the high mobility poses new safety risks
in urban environments, and they would introduce new sources of noise pollution.
Consequently, designing novel ABS prototypes that could provide aerial access to
urban users safely and sustainably remains a valuable open problem.

1.2 Thesis Outcomes

This thesis aims to address the two key challenges raised in the above paragraph.
Firstly, the competitive performance metrics in ABS-assisted networks are studied.
As later discussed in Section 2.2, various metrics are employed to evaluate aerial
network performance, and some of these metrics are contradictory. In other words,
optimizing the network along certain dimensions may come at the cost of lowering
other metrics. Therefore, it is crucial to design ABS-assisted networks in alignment
with practical service requirements. Secondly, primarily constrained by the onboard
battery capacity, the limited endurance of ABSs presents a practical implementation
barrier, especially when they are involved in daily cellular networks rather than
providing service to sporadic emergency communications. With this in mind, a
novel ABS prototype called robotic aerial base station (RABS) is proposed to
address this endurance issue, following which several fundamental use cases are
proposed to demonstrate its advantages over other types of ABS. Specifically, the
key contributions of this thesis are summarised as follows:

15



1.2 Thesis Outcomes

• A UAV-assisted wireless sensor network is studied in Chapter 3 where a UAV
is dispatched to gather information from ground sensor nodes (SN) and trans-
fer the collected data to a depot. The information freshness is captured by
the age of information (AoI) metric, whilst the energy consumption of the
UAV is seen as another performance criterion. Most importantly, the AoI and
energy efficiency are inherently competing metrics, since decreasing the AoI
requires the UAV to return to the depot more frequently, leading to higher
energy consumption. To this end, UAV paths are designed to optimise these
two competing metrics jointly and reveal the Pareto frontier. To formulate
this problem, a multi-objective mixed integer linear programming (MILP) is
proposed with a flow-based constraint set and solved by Bender’s decompo-
sition algorithm. Numerical results show that the proposed method allows
for deriving non-dominated solutions among two competing metrics when
designing the UAV path.

• To overcome the endurance issue of ABSs, in Chapter 4, a novel ABS proto-
type named robotic aerial base station (RABS) with grasping end-effectors is
proposed, which can autonomously perch at tall urban landforms. Thanks to
the energy-efficient grasping operation, RABSs are expected to offer seamless
wireless connectivity in an energy-efficient manner. Specifically, the key com-
ponents of such aerial platforms including both hardware and communication
designs are discussed. By comparing with other types of non-terrestrial com-
munication infrastructure such as hovering-based, tethered and laser-powered
ABSs, RABSs show several advantages such as energy efficiency, flexible
deployment, low noise pollution and adaptability to working on hash weather.
A case study shows that RABSs can improve the minimum data rate of cellular
networks significantly thanks to their flexibility and agility.

• In Chapter 5, the optimal deployment (fly to another grasping location or
remain in the same one) and operation (active or sleep mode at an epoch)
of a swarm of RABSs is studied based on the spatial-temporal distribution
of underlying traffic load, which is formulated as an integer linear program-
ming (ILP) aiming to maximise the volume of served traffic load under the
on-board energy constraints. To tackle the curse of dimensionality of this
ILP formulation, a special case with a single RABS in the system is first
studied and solved by the proposed Lagrangian heuristic algorithm by exploit-
ing the totally unimodularity structure. A polynomial-time method is then
proposed to decompose the multi-RABS problem into several single-RABS

16



1.2 Thesis Outcomes

cases based on the Hungarian algorithm. In terms of aggregated traffic that can
be supported, numerical results reveal that a single RABS outperforms four
(4) fixed micro cells when the serving duration ranges from 12 to 24 hours,
allowing in that sense efficient network densification. The traffic loaded in an
RABSis 3.2 times higher than a fixed small cell when the traffic distribution is
highly heterogeneous. Finally, the efficiency and performance of the proposed
algorithms are also detailed.

• In Chapter 6, two novel application scenarios are studied to show the potential
of RABSs in the upcoming 6G era. Firstly, an RABS is employed to bring
further flexibility to integrated sensing and communication (ISAC) systems.
Specifically, characterizing the spatial traffic distribution on a grid-based
model, the RABS-assisted ISAC system is formulated as a robust optimisation
problem to maximise the minimum satisfaction rate (SR) under a cardinality-
constrained uncertainty set. The problem is reformulated as a mixed-integer
linear programming (MILP) and solved approximately by the iterative linear
programming rounding algorithm. Numerical investigations show that the
minimum SR can be improved by 28.61% on average compared to fixed
small cells. Secondly, a swarm of RABSs are expected to construct a flexible
millimetre-wave (mmWave) multi-hop backhaul network according to the
traffic spatial distribution and relocate their positions in subsequent time epochs
according to the traffic temporal dynamic. The overall energy efficiency of
the proposed framework is maximised by determining the RABS deployment,
relocation and route formation under the channel capacity and hop constraints.
The problem is formulated as a mixed-integer linear fractional programming
(MILFP) and a two-stage method is developed to overcome the computational
complexity. A wide set of numerical investigations reveals that compared to
fixed small cells, only half as many RABSs are required to cover the same
volume of traffic demand.

Fig. 1.2 clarifies the thesis organisation and emphasises the coherence between
chapters. Through a review of existing ABS research in Section 2.2, two main
research gaps are identified and studied in this thesis. Firstly, Chapter 3 presents
a novel trajectory design framework to explore the trade-off between conflicting
metrics. Secondly, in order to prolong the serving time of ABS, Chapter 4 proposes
a novel ABS prototype named RABS, and the fundamental network operations
are discussed in Chapter 5. Furthermore, in Chapter 6, RABS is introduced to
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1.2 Thesis Outcomes
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Chapter 2

Background Study

2.1 Introduction

This chapter provides a comprehensive background study for this thesis, encompass-
ing the following two main components. In the first Section 2.2, several state-of-the-
art works in the area of ABS-assisted networks are reviewed to build up a high-level
background for this thesis. The literature review aims to answer the following two
questions. Firstly, compared to conventional terrestrial networks, which advantages
and research opportunities of aerial base stations (ABSs) have attracted researchers
focusing on this field. The second one is about how interdisciplinary advances, such
as new radio technologies, artificial intelligence, and robotics research, have cross-
fertilized the progress of research on ABS. In the second Section 2.3, a preliminary
introduction of the mathematical theories and methods in integer linear programming
would be provided, which will cover most of the mathematical tools used in the
following chapters.

2.2 Literature Review: Aerial Base Stations in 5G
Networks

As mentioned in Chapter 1, although ABS has been utilised to satisfy a wide range
of practical requirements, such as constructing emergency connections, balancing
the traffic load and covering unconnected areas, the use of aerial communications
would also introduce new challenges to the network configurations. For example,
ABS-assisted communication is more sensitive to energy consumption because UAVs
are powered by onboard batteries with limited capacity. The inter-cell interference
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(a) ABS-assisted wireless communication.

Backhaul link Access link

(b) UAV acts as relay.

(c) UAV acts as data collector/disseminator.

Reflected signal

Direct signal

(d) UAV carries a RIS.

Fig. 2.1 Typical use cases of UAV-assisted communication.

might be extremely large due to the dominant line of sight (LoS) channel conditions.
A number of researchers started to contribute to this topic initially from the year of
2012 and a big wave has been shown since the year 2018 [5].

By exploring the inherent advantages of ABSs, the authors of [6, 7] envision
different typical use cases of ABS-assisted networks shown in Fig. 2.1,

1) ABSs could be utilised to provide ubiquitous coverage when ground base
stations (BSs) are damaged by natural disasters or overloaded in extremely
crowded areas. The work [8] further studies this use case, in which an ABS
flies cyclically with a ground BS as the centre when providing service to
cell-edge users. The minimum throughput is maximised by optimizing the
spectrum allocation, flying trajectory and user association.

2) ABSs could also act as relays to offer wireless connectivity between macro
BSs and user clusters. In [9], an ABS is deployed as a two-way relay node to
support multi-pair users.

3) ABSs are employed to disseminate and collect delay-tolerant to/from internet-
of-things (IoT) devices. The work [10] continues to investigate this application
scenario, in which an ABS is employed as a data collector to harvest informa-
tion from sensor nodes.
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2.2 Literature Review: Aerial Base Stations in 5G Networks

4) ABSs are utilised as aerial platforms to carry reconfigurable intelligent surfaces
(RIS). In [11], an RIS is carried by an ABS, in which system the worst-case
signal-to-noise ratio (SNR) is maximised by optimizing the ABS placement,
transmit beamforming as well as the 3D passive beamforming of the RIS.

Furthermore, considering the new radio requirements in future networks, ABSs
are expected to play different roles in B5G/6G cellular networks, e.g., mobile edge
computing (MEC) nodes [12], mobile cache devices [13], road side units (RSUs)
in vehicular networks [14], and remote health monitoring [15]. In [16], a group of
ABSs equipped with MEC devices cooperates to process computing tasks with the
aim of optimizing the total energy consumption, job loss, and system delay jointly.
The reinforcement learning algorithm is applied to determine the optimal offloading
strategy and the proposed strategy is tested on a video surveillance system installed at
the Catania University campus. The authors of [17] investigate a network including
a swarm of ABSs with caching capability, in which the quality of experience is
maximised by determining the ABS deployment, caching placement as well as user
association. The high altitude platform station (HAPS) with computing, caching and
communication capabilities is employed to assist intelligent transportation systems
in [18].

Several metrics are used to evaluate the system performance of ABS-assisted net-
works. On the one hand, there are various metrics similar to conventional terrestrial
communications, e.g., signal-to-interference-plus-noise ratio (SINR), communica-
tion throughput, delay, information freshness and energy efficiency. On the other
hand, some new evaluation metrics are introduced to ABS systems for practical inter-
ests, such as the number of required ABSs, mission time and energy consumption. In
[19], a group of ABSs is placed in a large-scale area where there are already several
terrestrial BSs distributed, in which system the median SINR value (the SINR value
that 50% of the users can achieve) is utilised as one of the performance metrics. The
work in [20] studies a multi-ABS communication system. The aggregate throughput
is maximised by determining the ABS trajectory and power allocation jointly. The
authors of [21] investigate an ABS-assisted MEC network, in which the system la-
tency is minimised by optimizing the ABS placement, user association and resource
allocation. In [22, 23], an ABS is applied to collect data from a group of sensor nodes
with the aim of minimizing the information freshness, which is captured by the age
of information (AoI). The work [24] studies an ABS-enabled multicasting system.
The completion time of this task is minimised by determining the ABS trajectory
when ensuring the file recovery success probability. In [25], the number of ABSs
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2.2 Literature Review: Aerial Base Stations in 5G Networks

required in an IoT network is minimised, following which the optimal positions are
determined. The energy-efficient trajectories for fixed-wing and rotary-wing UAVs
are studied in [26] and [27], respectively. Notably, the aforementioned metrics are
always inherently competing with each other, therefore, they are always included
in a problem as objective functions and constraints to explore the trade-off. The
following Table 2.1 investigates the fundamental trade-off in ABS-assisted networks.

To improve the aforementioned performance of ABS-assisted networks, a number
of novel communication techniques are expanding from terrestrial to non-terrestrial
networks, such as mmWave/THz communication, beamforming technique, non-
orthogonal multiple access (NOMA), integrated access and backhaul (IAB) and
cell-free massive multiple-input multiple-output (MIMO). The air-to-ground chan-
nel operating on mmWave frequencies is modelled in [28, 29], following which
the authors of [30] study the 3D placement and orientation of ABSs to satisfy the
LoS coverage. In [31], the user association and spectrum allocation problem for
an mmWave-enabled ABS is solved via the machine learning method. Supposing
an ABS is equipped with a multi-antenna array, the beamforming technique is em-
ployed to improve the communication performance in [32–34]. A survey of the
beamforming-enabled ABS systems can be found in [35]. Furthermore, NOMA is a
promising technique to improve spectrum efficiency and has presented huge poten-
tial in future wireless networks. Compared to orthogonal multiple access, NOMA
shows significant benefits when users suffer from different channel conditions. The
prototype design of NOMA-enabled ABS systems is proposed in [36] and the fol-
lowing works [37–40] study the deployment, trajectory design and power allocation
problems, respectively. Besides, to overcome the limited capacity of the backhaul
link when ABSs act as relays between mobile terminals and macro BSs, IAB is a
promising technique to enhance the network capacity via allocating limited resources
on both access and backhaul links [41], and firstly be introduced to ABS-assisted
networks in [42]. In [43, 44], the placement and resource allocation problem of an
in-band full-duplex enabled ABS is studied, and the following work [45] extends
this model to multiple ABSs cases. To satisfy the extremely high wireless demands
in B5G/6G networks, the cell-free massive MIMO technique is introduced to ABS-
aided systems. The work in [46] studies the power allocation and user scheduling
strategies for such a system and shows the benefit of the cell-free protocol compared
to the conventional multi-cell configuration.

Furthermore, after formulating the mathematical models of the above problems,
several interdisciplinary analytical frameworks are introduced to solve them effi-
ciently, such as optimization algorithms, optimal transport theory, game theory and
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machine learning methods. Although most of the problems in communications are
non-convex, several efficient algorithms are developed to obtain an approximated
solution in polynomial time. In [47], the UAV trajectory planning problem with
interference consideration is formulated as non-convex programming and solved
by successive convex approximation (SCA) method. The following work in [20]
proposes a parallel algorithm based on the alternating direction method of multipliers
method to make the problem implementable efficiently on multi-core CPUs. In
[48], the penalty dual decomposition method is employed to achieve a near-optimal
solution for the ABS-assisted NOMA system. The block successive upper-bound
minimization algorithm is introduced to the ABS-assisted MEC system and shows
a better computational efficiency than the conventional block coordinate descent
algorithm. In [49], a cache-enable ABS system with a limited capacity of backhaul
channel is investigated and solved by the semidefinite relaxation technique. How-
ever, due to the complexity and non-convex properties of the formulated problems,
mathematical programming tools cannot always provide a satisfactory solution in
a reasonable time. Therefore, a number of researchers have developed heuristic
algorithms to handle these complex problems. In [22], a genetic algorithm is used
to capture a trajectory when minimizing the AoI. In [44], an approximation method
with a provable performance guarantee is proposed to obtain the optimal 3D positions
of ABSs. Moreover, the optimal transport theory is a mathematical tool that can
obtain an optimal mapping between two arbitrary probability measures. It is utilised
in [50–52] to determine the ABS hovering time and user association, respectively.
Game theory is also exploited to design the ABS-assisted networks. For instance,
the authors of [53] propose a game-theoretic approach to deploy ABSs in hostile
jamming environments. In [54], game theory is utilised to allocate limited spectrum
resources in a task-driven network. Besides these conventional mathematical tools,
several machine learning based methods are introduced to enable ABSs to operate in
a more complex environment. For instance, since the ABS flight can be modelled
as a Markov decision process naturally, reinforcement learning has been employed
to determine the UAV trajectory to optimise the AoI [55–57], completion time [58],
operating energy [59] and request satisfaction rate [60]. The deep learning method
uses multi-layer neural networks to explore higher-level features from the raw input
data. In [61], the users’ distribution and ABS deployment are used as the input
and output to train a convolutional neural network (CNN). Afterwards, the ABS
deployment can be predicted by simply inputting users’ location to this trained CNN.
In [62], the deployment and user association problem for a swarm of ABSs with
visible light communications is formulated as a non-convex problem, which is di-
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rectly solved by a proposed machine learning framework. Moreover, learning-based
methods are also utilised to determine the caching placement, MEC task offloading
and resource allocation in [63–66], respectively. The following Table 2.2 compares
different methods and clarifies their pros and cons.

To further evaluate the performance of ABSs in realistic scenarios, a number of
ABS simulation platforms have been developed to simulate ABS operations in dif-
ferent environments and conditions. In [68], a multi-UAVs communication network
simulation platform based on OPNET Modeler is developed to evaluate the network
performance and verify real applications. The authors of [69] develop a simulator for
integrated space-air-ground networks that supports various mobility traces and pro-
tocols. Furthermore, researchers also design and implement experiments for ABSs
to verify the proposed protocol and algorithms. In [70], authors develop an ABS
with a Raspberry Pi1 set with a static WiFi channel, employing a novel technique to
localise and reposition itself closer to ground users to provide optimal connectivity.
The authors of [71] employ a combination of simulations and measurements to
quantify the impact of Long Term Evolution (LTE) enabled ABSs on an existing
ground LTE network. The results show that ABSs have a significant impact on the
coverage area and interference to macro cells, even with reduced transmit power.
The work in [72] employs the Helikite, a combination of kite and balloon, to act as
an ABS to provide wireless coverage when backhauling to a satellite. The authors
of [73] employs the ABS as a relay between a ground user and a ground BS by
using COTS Quad-Rotor carbon body frame, DJI propulsion system and open source
PIXHAWK 2 flight controller. An optimal deployment algorithm is also developed
to enhance the network capacity. In [74], an aerial relay carried by a Parrot Drone
Mk2 UAV is tested in both rural and urban areas by using the decode-and-forward
protocol. Besides, the works [75–79] measure the air-to-ground channel model and
[80] validates the energy consumption model via flight experiments.

Besides, more comprehensive reviews in the area of ABS-aided networks can
be further found in [81–83] and the specific literature reviews closely related to the
research topics of this thesis can be found in the following Chapters 3-6 separately.

2.3 Integer Linear Programming

Integer programming focuses on maximizing or minimizing an objective function
subject to a set of constraints and integer restrictions on some or all of the variables. A
remarkable number of practical problems can be formulated as integer programming
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Table 2.1 Fundamental tradeoffs in ABS-assisted networks

Paper Objective function Constraint Method1

[8] Minimum throughput Spectrum resource OPT
[9, 47, 48] Minimum throughput Transmission power OPT
[10] Energy consumption Required volume of col-

lected data
OPT

[16] Energy consumption , job
loss, delay

- RL

[17] Quality of experience Caching capacity OPT
[18] Delay Spectrum resource, com-

puting capacity
RL, OPT

[11] SNR - OPT
[20] Sum rate Interference OPT
[21] Latency Computing capacity OPT
[22, 23] Maximum and average AoI - HEU
[24] Completion time Job loss OPT
[25] Number of covered users Number of ABSs HEU
[30] SNR Number of ABSs HEU
[32] Sum rate Minimum throughput OPT
[33] Minimum throughput Transmission power OPT
[34] Number of connected users - RL
[37] Sum rate Transmission power, qual-

ity of service (QoS)
OPT

[38] Minimum throughput Transmission power, spec-
trum resource

OPT

[40] Minimum secure comput-
ing capacity

Communication and com-
putation resource

OPT

[43] Sum rate Transmission power HEU
[53] Volume of collected data - GT
[55] Average AoI Onboard energy RL
[57] Average AoI, Energy con-

sumption
Spectrum resource RL

[58] Completion time Onboard energy RL
[59] Energy consumption Time requirements HEU,

RL
[60] Service success rate Flight time RL
[61] Number of connected users - DL
[62] Transmission power Rate requirements DL
[64] Network utility Communication and com-

putation capacity
RL

[65] Number of offloaded tasks QoS RL
1 OPT, HEU, GT, RL and DL represent the optimization, heuristic, game theory, reinforcement

learning and deep learning methods.
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Table 2.2 Comparision of different methods

Method1 Advantages Disadvantages

OPT
Exact algorithms
for NP-hard prob-
lems (e.g. cutting
plane, branch and
bound)

Could achieve the global
optimal solutions. Have
been packaged by several
commercial solvers such as
gurobi [67].

Computational complexity
is exponential.

Approximation
programming
methods (e.g.
SCA, difference
of convex algo-
rithm)

Low computational com-
plexity. The quality of so-
lutions can be guaranteed.
(e.g. It is proven that the
SCA can converge to the
KKT point.)

Cannot achieve the global
optimal solution. Solving
large-scale problems is still
time-consuming.

HEU
Approximation
algorithms (e.g.,
greedy algorithm,
random rounding
method)

Computational complexity
is polynomial so that they
can solve problems effi-
ciently. The quality of so-
lutions can be guaranteed by
approximation ratio.

There are no general meth-
ods so they are designed
case by case. Some prob-
lems are proven to be inap-
proximatable which means
that there is no algorithm
with approximation ratio.

Meta-heuristic
algorithms (e.g.
GA, simulated
annealing)

They are general methods so
that can be used for different
problems. Especially pow-
erful for combinatorial opti-
mization problems.

The quality of solutions can-
not be guaranteed.

ML
RL (including
deep reinforce-
ment learning)

No requirements on the
properties of functions, such
as monotonicity and convex-
ity. Powerful for dynamic
environments.

Some problems cannot be
modelled as the MDP. The
design of the reward func-
tions is not as straightfor-
ward as objective functions.

DL (e.g. CNN) Can make decisions effi-
ciently once the neural net-
works are trained.

Training neural networks is
time-consuming. Needs a
large number of data to en-
sure the training accuracy.

GT Powerful for the problems
with special structures, such
as matching, association and
allocation.

Some problems cannot be
modelled as a game.

1 OPT, HEU, GT, RL and DL represent the optimization, heuristic, game theory, reinforcement learning
and deep learning methods.

due to its robustness, e.g., resource assignment, machine scheduling, transportation
design, capital budgeting, and stock investment. Moreover, some other branches of
mathematics are closely related to integer programming and mutually reinforce each

27



2.3 Integer Linear Programming

other. For example, several problems in graph theory, such as matching, colouring,
and clique problems, can be formulated as equivalent integer programming problems.
Some integer programming problems can be solved optimally or approximately via
results in graph theory, such as the shortest-path problem and the max-flow min-cut
theorem.

In this section, the integer linear programming (ILP) in which both the objective
function and constraints are linear is investigated. It can be written as the following
formulation,

min{cT x+hT y : Ax+Gy ≤ b, x ∈ Zn
+, y ∈ Rp

+}, (2.1)

where Zn
+ denotes the set of non-negative integer n-dimensional vectors and Rp

+

indicates the set of non-negative real n-dimensional vectors. x and y are integer and
continuous variables, respectively. Notably, because maximizing an objective func-
tion is equal to minimizing its negative and an equality constraint can be represented
by two inequality constraints, (2.1) could normalise all of ILP problems.

2.3.1 Totally Unimodular Matrices

Most ILP problems are NP-hard, obtaining the global optimal solution in polyno-
mial time is generally not possible unless P=NP. However, in this subsection, the
special structure of a type of ILP that can be solved optimally in polynomial time is
investigated. Hereafter, consider an ILP with only integer variables as,

min{cT x : Ax ≤ b, x ∈ Zn
+}, (2.2)

The linear relaxation of (2.2) is obtained by relaxing the integer variables into the
real field and can be written as,

min{cx : Ax ≤ b, x ∈ Rn
+}, (2.3)

The following definition defines a special type of constraint matrix A.
Definition 2.1: An integer m× n matrix A is totally unimodular (TU) if the

determinant of each square submatrix of A is equal to 0, 1, or -1.

The following proposition illustrates the property of a TU matrix, which could
ease the solving process for (2.2).

Proposition 2.1: If A is TU, then P(b) = {x ∈ Rn
+ : Ax ≤ b} is an integer

polyhedron for all b ∈ Zm for which it is not empty.
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The integer polyhedron means that all extreme points of a polyhedron take integer
values. The proof and more extensions of Proposition 1 can be found in Section
III.1.2 of [84]. Moreover, the fundamental theorem of linear programming indicates
that if there is an optimal solution for linear programming, there must be at least one
extreme point that achieves the optimal value [85]. Considering Proposition 1, it can
be observed that if the linear programming (2.3) is feasible and A is TU matrix, there
is at least one integer optimal solution for (2.3). In other words, if the ILP problem
(2.2) has a TU constraint matrix A and b ∈ Zm, the optimal solution of which can be
obtained by solving its linear relaxation (2.3) via polynomial-time algorithms, such
as interior point method [85].

In order to check whether a matrix is TU conveniently, the following proposition
is proposed to characterise the totally unimodularity derived from Definition 2.1 and
a sufficient condition as the corollary. Note that the proof of them can be found in
Section III.1.2 of [84].

Proposition 2.2: The following statements are equivalent. 1) A is TU. 2) For

every J ⊆ N = {1,2, ...,n}, there exists a partition J1, J2 of J such that,∣∣∣ ∑
j∈J1

ai j − ∑
j∈J2

ai j

∣∣∣≤ 1, ∀i ∈ {1, ...,m}, (2.4)

Corollary 2.1: If the (0, 1, -1) matrix A has no more than two nonzero entries in

each column, and if ∑i ai j = 0 if column j contains two nonzero coefficients, then A

is TU.

2.3.2 Lagrangian Relaxation, Duality and Subgradient Method

Assume that the constraints in (2.2) can be partitioned into two sets, one is the set of
complicating constraints means that the ILP problem after removing these constraints
can be solved easily, and the other is the set of nice constraints. Problem (2.2) can
be written as,

zIP =min cT x, (2.5a)

s.t. Acx ≤ bc, (complicating constraints) (2.5b)

Anx ≤ bn, (nice constraints) (2.5c)

x ∈ Zn
+, (2.5d)

where (2.5b) are complicating constraints and (2.5c) are nice constraints. In other
words, by dropping the constraints in (2.5b), the relaxed problem is easier to solve
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𝑧𝐿𝑅(𝜆)

𝜆

𝑐𝑥1 + 𝜆(𝐴𝑐𝑥1 − 𝑏𝑐)

𝑐𝑥2 + 𝜆(𝐴𝑐𝑥2 − 𝑏𝑐)

𝑐𝑥3 + 𝜆(𝐴𝑐𝑥3 − 𝑏𝑐)

𝑐𝑥4 + 𝜆(𝐴𝑐𝑥4 − 𝑏𝑐)

Fig. 2.2 The form of zLR(λ ) in one-dimension case.

than the original problem (2.2). Notably, ’easy to solve’ means the problem has been
solvable in polynomial or pseudo-polynomial time for most applications [86].

The idea of Lagrangian relaxation is to drop the complicating constraints to the
objective function by multiplying a non-negative Lagrangian multiplier λ , that is,

zLR(λ ) =min cT x+λ
T (Acx−bc), (2.6a)

s.t. Anx ≤ bn, (2.6b)

x ∈ Zn
+, (2.6c)

where zLR(λ ) denotes the Lagrangian relaxation. The relaxed problem (2.6) does
not include the complicating constraints thus it is easy to solve. Moreover, observing
that the constraint (2.5b) is introduced to the objective function as a penalty term and
λ is required to be non-negative. It can be realised that violation of the constraints
(2.5b) makes the penalty term positive, thus (2.5b) could be satisfied if λ is suitably
large. Moreover, the Lagrangian relaxation problem (2.6) is certainly a lower-bound
for (2.5) with any value of λ , that is, zLR(λ )≤ zIP. The Lagrangian dual problem
calculating the largest lower-bound can be expressed as,

zLD = max
λ≥0

zLR(λ ), (2.7)

Subsequently, a key issue is to determine an appropriate value of λ such that the
Lagrangian dual zLD can be achieved. It can be observed from (2.6) is a piece-wise
concave function as shown in Fig. 2.2, thus the problem (2.7) is a non-differential
convex problem. There are several algorithms to solve the Lagrangian dual (2.7),
e.g., subgradient method, outer-approximation method, and Bundle method. Here a
brief introduction to the subgradient method is provided.
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Definition 2.2: A vector g is a subgradient for the function f : Rn → R at x0 if

f (x)≤ f (x0)+gT (x− x0), ∀x ∈ Rn.

It can be easily verified that the vector (Acxλ −bc) is a subgradient at any λ for
which xλ is optimal for the problem (2.6) because for any µ ∈ Rm, the following
inequality always holds,

zLR(µ) = min
x∈X

{cT x+µ
T (Acx−bc)}

≤ cT xλ +µ
T (Acxλ −bc)

= cT xλ +λ
T (Acxλ −bc)+(Acxλ −bc)

T (µ −λ )

= zLR(λ )+(Acxλ −bc)
T (µ −λ ),

(2.8)

where X is the feasible region defined by (2.6b) and (2.6c).
Generalizing from the conventional gradient method, the subgradient method

can be adapted straightforwardly by replacing gradients with subgradients. Given an
initial point λ 0, a sequence {λ k} is generated following the rule,

λ
k+1 = λ

k +α
k(Acxλ k −bc), (2.9)

where xλ k is optimal by solving zLR(λ
k) in (2.6) and αk is a positive scalar step size.

Unlike the gradient method for differential functions, the subgradient may not be
an ascent direction for non-differential functions. However, it is proved that {λ k}
converges to the optimal solution λ ∗ for Lagrangian dual (2.7) if αk → 0, k → ∞

and ∑
∞
k=0 αk = ∞ [87]. Therefore, the step size {αk} should be chosen carefully to

guarantee the convergence.

2.3.3 Bender’s Decomposition

Bender’s decomposition is a promising technique for solving large-scale ILP prob-
lems, which could partition the original problem into a group of smaller sub-problems
and solve them iteratively. Because Bender’s decomposition decentralises the overall
computation burden, it has been widely used in the design of large-scale communica-
tion systems [88].

Consider an ILP problem including both integer and real variables as follows,

min cT x+hT y, (2.10a)

s.t. Ax = b, (2.10b)

Cx+Dy = d, (2.10c)
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x ∈ Zn
+, y ∈ Rp

+, (2.10d)

where (2.10b) are the constraints containing only integer variables and (2.10c) are in
terms of both integer and real variables. Notably, the inequality constraint can be
rewritten as the equality form by adding slack variables. Bender’s decomposition
partitions the problem (2.10) into two smaller problems: a master problem contains
integer variables and a primal sub-problem includes real variables. Firstly, write the
problem (2.10) in terms of the x-variables as,

min cT x+g(x), (2.11a)

s.t. Ax = b, (2.11b)

x ∈ Zn
+, (2.11c)

where g(x) is a function of x and defined by the following primal sub-problem,

min hT y, (2.12a)

s.t. Dy = d −Cx, (2.12b)

y ∈ Rp
+, (2.12c)

Note that (2.12) contains only the real variable y once the value of x is given, thus it
is linear programming. It can be observed that if (2.12) is unbounded for some x, the
original problem (2.10) is also unbounded. Moreover, the dual problem of (2.12) can
be written as the following (2.13) and the duality gap is 0 for linear programming,
thus (2.12) and (2.13) have the same optimal value.

max
π

π
T (d −Cx), (2.13a)

s.t. π
T D ≤ h, (2.13b)

where π is the associated dual variable. The key observation is that the constraint
(2.13b) is not related to the values of x. Furthermore, the feasible region defined
by (2.13b) is not empty if and only if (2.12) is unbounded. Assuming the feasible
region is not empty, all extreme points (β 1

p , ...,β
I
p) and extreme rays (β 1

r , ...,β
J
r ) of

this feasible region are enumerated, where I and J are the numbers of extreme points
and extreme rays, respectively. Recalling the polyhedral theory in the Section I.4.4
of [84], for a given value of x, the dual problem (2.13) can be solved by checking 1)
(β

j
r )

T (d −Cx)> 0 for an extreme ray β
j

r , in which case the dual problem (2.13) is
unbounded and the primal formulation (2.12) is infeasible. 2) an extreme point β i

p
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Algorithm 1 Bender’s Decomposition
1: Initialise the RMP without any cuts in (2.15b)-(2.15c). Set k = 0.
2: repeat
3: Solve the RMP. Denote the solution as xk and θ k.
4: Introduce xk to the dual sub-problem (2.13). Solve (2.13) and denote the optimal

objective value as g(xk).
5: if g(xk)< ∞ then
6: Acquire an extreme point from the solution of (2.13) and add an optimality cut

(2.15c) to RMP.
7: else
8: Acquire an extreme ray and add a feasibility cut (2.15b).
9: end if

10: k = k+1.
11: until g(xk) = θ k

maximises the value of (β i
p)

T (d−Cx), in which case both primal and dual problems
have finite optimal solutions. Therefore, the dual problem (2.13) can be reformulated
as,

min
θ

θ , (2.14a)

s.t. (β j
r )

T (d −Cx)≤ 0, j = 1, ...,J, (2.14b)

(β i
p)

T (d −Cx)≤ θ , i = 1, ..., I. (2.14c)

Note that the constraints in (2.14b) and (2.14c) are always named as feasibility and
optimality cuts, respectively. Introducing (2.14) into the master problem (2.11), the
following equal reformulation for the original problem can be written as,

min cT x+θ , (2.15a)

s.t. (β j
r )

T (d −Cx)≤ 0, j = 1, ...,J, (2.15b)

(β i
p)

T (d −Cx)≤ θ , i = 1, ..., I. (2.15c)

Ax = b, (2.15d)

x ∈ Zn
+. (2.15e)

Although the above process shows the equality between (2.10) and (2.15), gener-
ating all of the constraints in (2.15b)-(2.15c) is not practical because of the exponen-
tial number of extreme points and extreme rays. To this end, a problem with a similar
form as (2.15) but which does not consist of all the constraints in (2.15b)-(2.15c)
is constructed and referred to as the relaxed master problem (RMP). According to
the nominal use of Bender’s decomposition, add the optimality and feasibility cuts
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2.3 Integer Linear Programming

according to the solution of the dual sub-problem (2.13) to the RMP and solve it
iteratively. The procedure of Bender’s decomposition is summarised as Algorithm 1.

In [89], the following proposition is illustrated to prove the convergence of
Algorithm 1.

Proposition 2.3: The upper and lower bounds for the optimal solution of the

original problem (2.10) can be obtained from the step 3 and (4) in Algorithm 1 as,

{
LBk = cT xk +θ

k,

UBk = cT xk +g(xk),

(2.16a)

(2.16b)

Therefore, when the gap between LBk and UBk is tightened to 0, the optimal solution
for the original problem (2.10) is achieved, as shown by the stopping condition in
the step (11) of Algorithm 1.
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Chapter 3

Energy and Age Pareto Optimal
Trajectories in UAV-assisted Wireless
Data Collection

3.1 Introduction

In this chapter, an unmanned aerial vehicle (UAV) is dispatched to gather information
from ground sensor nodes (SN) and transfer the collected data to a depot. To make
real-time decisions and enable seamless operation in such networks, the freshness of
received information, which is measured by the so-called age of information (AoI),
is of critical significance and has received significant attention recently [90]. Besides,
due to the limited capacity of onboard batteries, the aspect of energy consumption is
seen as a key challenge in UAV-enabled wireless networks. Revealing the underlying
trade-off between those two inherently competing metrics is the main focus of this
chapter. The two extreme points in the Pareto curve are when only the AoI is
minimised and when only the energy consumption is taken into account. In the first
case, the UAV creates a star trajectory meaning that the UAV returns to the depot
every time data are collected from a ground SN to minimise the AoI. On the other
extreme, the trajectory will be a Hamiltonian path with minimal energy consumption.
Between those two extreme scenarios are the cases where the UAV returns to the
depot after serving a subset of SNs, as shown in Fig. 3.1. The focus of this work is
to reveal the non-dominated operating points in the continuum between those two
extreme points of operation.

As reviewed in Section 2.2, several existing works concentrated on information
freshness, i.e., AoI, in UAV-aided wireless networks. In [22, 23], a UAV is applied to
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3.1 Introduction

Depot

Sensor node

Fig. 3.1 Illustration of the proposed multi-return-allowed mode.

collect data from a group of SNs and then return to the depot for further processing
with the aim of minimizing the AoI. The following work extends this model to a
multi-UAV use case in [91], whereas [92] provides overarching architectural aspects
of networked operation and connection of multiple UAVs. In [93], the UAV is
deployed as a relay between a source node and a destination node, and the focus is to
provide efficient trajectory design in order to minimise the peak AoI. An AoI-aware
UAV trajectory is designed through a reinforcement learning based approach in [94].
Furthermore, the UAV is applied to sense information from the target area directly
and the trade-off between the sensing and communication is investigated in [95].

In parallel, several existing research works investigated energy-efficient path
planning since the onboard battery limitation is one of the key challenges in UAV-
assisted networks. In [10, 50], the UAV is deployed to collect data from static
SNs and moving ground devices, respectively, in which the energy is minimised by
trajectory design. A UAV is deployed to cover most users with minimum transmit
power in [96]. The energy-efficient trajectory of a rotary-wing UAV is designed with
a guaranteed communication requirement in [27]. Furthermore, a closely relevant
problem of energy trade-off between the UAV and ground terminals is studied in
[97].

Considering the aforementioned competing nature between energy consumption
and AoI, a multi-return-allowed serving mode is proposed to capture the balance
between them, in which the UAV is allowed to return to the depot at any time during
the serving cycle. Furthermore, although the AoI-aware path has been considered
in [22, 23, 91], these works considered only Hamiltonian paths whereas this work
allows several returns to the depot during a serving cycle. Therefore, these previous
works can be considered as a special case of the proposed framework. Moreover,
to obtain the UAV visiting order initially, a multi-objective mixed integer linear
programming (MILP) based on a flow-based constraint set is formulated under the
assumption that the UAV can only collect data when hovering, which is then solved
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3.2 System Model and Problem Formulation

by Bender’s decomposition in a decentralised manner. Afterwards, a more general
trajectory in which the UAV can communicate while flying is studied to further
improve both metrics. Numerical investigations show that the multi-return-allowed
mode achieves the Pareto optimal trade-off between the two competing metrics.

3.2 System Model and Problem Formulation

Hereafter, consider a wireless sensor network with K SNs denoted by the set K =

{1,2, ...,K}, the Cartesian coordinates of which are known and fixed at wi ∈R2, ∀i ∈
K. A rotary-wing UAV acts as a collector to gather information from all SNs and
subsequently transmit/offload the data to the depot located at w0 ∈R2. For notational
convenience, the depot and SNs are combined as an extended set Ka = {0}

⋃
K, in

which the depot is indexed by 0.

3.2.1 System Model and Age of Information

To obtain the UAV visiting order first, the fly-hover-communication protocol pro-
posed by [27] is adopted in sections 3.2 and 3.3 for the communication between
UAV and SNs, in which the UAV gather information only when hovering right above
SNs. Afterwards, a more general solution in which the UAV can communicate while
flying is studied in Section 3.4. Similar to [22, 93, 94], the UAV is assumed to fly at a
constant altitude H corresponding to authority regulations and safety considerations.1

Because the 3GPP specification [98] specifies that the air-to-ground channel can be
well approximated by the free-space path loss model when the UAV altitude is higher
than 40m and 100m in the rural and urban scenarios, respectively, the achievable rate
R for the communication between UAV and SNs can be calculated as follows,

R = B · log2

(
1+

Ptρ0

σ2H2

)
, (3.1)

where B is the available bandwidth, Pt is the transmission power of SNs and σ2

is the power of channel noise. The reference channel power gain at 1 m distance
is denoted by ρ0 and can be calculated via Friis transmission equation, that is,
ρ0(dB) =−20log10(4π fc/c), where fc is the carrier frequency and c is the speed of
light [99]. Furthermore, the hovering duration when the UAV collects data from SN

1In the free-space channel model (3.1), it can be seen that R is monotonically decreasing with H.
Thus, the UAV would fly at the lowest height corresponding to regulations and safety considerations
to achieve the best R.
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3.2 System Model and Problem Formulation

i can be calculated by T h
i = Di/R, where Di is the data size to be uploaded from SN

i. Accordingly, the energy consumption of the UAV when hovering and gathering
data from SN i can be calculated by Eh

i = PhT h
i , where Ph is the hovering power of

the UAV.
Similar to [22, 23, 91, 93], the UAV is assumed to keep a fixed speed V so that

the flying time between two adjacent SNs can be calculated by T f
i j = ∥wi −w j∥/V ,

where ∥·∥ denotes the 2-norm for a vector 2. The corresponding energy consumption
is E f

i j = P f T f
i j , where P f is the propulsion power of the UAV and given by [27] as a

function of V ,

P f (V ) = P0

(
1+

3V 2

U2
tip

)
+Pi

(√
1+

V 4

4v4
0
− V 2

2v2
0

)1/2
+

1
2

d0ρsAV 3, (3.2)

where P0 and Pi represent blade profile power and induced power, respectively. Utip

is the tip speed of the rotor blade. v0 denotes the mean rotor induced velocity when
hovering. d0 and s are the fuselage drag ratio and rotor solidity, respectively. Also, ρ

and A denote the air density and rotor disc area, respectively. More details regarding
the propulsion power can be found in Appendix A. Subsequently, define a graph
G = (Ka,E), where E denotes the set of edges, that is, E ≜ {(i, j)

∣∣∀i, j ∈ Ka, i ̸= j}.
For clarity of exposition, the hovering time and energy consumption at the depot is
seen as zero, that is, T h

0 = 0 and Eh
0 = 0. Accordingly, the time consumption to the

edge (i, j) is defined as,

Ti j = T h
i +T f

i j

=


∥wi−w j∥

V , if i = 0, (i, j) ∈ E ,
Di

B log2

(
1+ Pt ρ0

σ2H2

) +
∥wi−w j∥

V , if i ̸= 0, (i, j) ∈ E .
(3.3)

Similarly, the energy consumption for edge (i, j) is defined as,

Ei j = Eh
i +E f

i j

=


P f ∥wi−w j∥

V , if i = 0, (i, j) ∈ E ,
PhDi

B log2

(
1+ Pt ρ0

σ2H2

) +
P f ∥wi−w j∥

V , if i ̸= 0, (i, j) ∈ E .
(3.4)

2Initially, the UAV speed is assumed as a constant to better focus on the visiting order, whilst it
can be further optimized as the case in Section 3.4.
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Note that both Ti j and Ei j can be seen as constants once the environment is given. The
energy consumption for a given trajectory Q can be calculated as E = ∑(i, j)∈QEi j,
where (i, j) ∈Q means that the UAV travels from i to j adjacently; observe that E is
a function of Q.

The concept of AoI is used to measure the freshness of information for each
SN and derive the average AoI among all SNs to evaluate the performance of the
system. Similar to [22, 23, 91], the AoI of SN i is defined as the time interval from
when the UAV starts collecting information from i to when it returns to the depot.
Mathematically, given a cycle consisting of r SNs with the depot as the start (end)
vertex, the UAV visits i0 → i1 → i2...→ ir → ir+1 in tandem, where i0 = ir+1 = 0
and ik ∈ K,k = 1,2, ...,r. Define the AoI of SNs visited by this cycle recursively,
that is, {

Air = Tirir+1 = Tir0,

Aik = Tikik+1 +Aik+1, k = 1,2, ...,r−1,

(3.5a)

(3.5b)

where (3.5a) defines the AoI of last visited SN ir and (3.5b) calculates others.
Furthermore, the average AoI among all SNs, calculated by A = ∑i∈K Ai/K, is

adopted to evaluate the performance of the system. Observe that A is a function of
the UAV trajectory. However, since the trajectory cannot be explicitly expressed,
A is challenging to formulate. However, Lemma 3 in [22] provides an alternative
expression of A when the trajectory Q is given, that is,

A = ∑
(i, j)∈Q

fi j

K
Ti j, (3.6)

where fi j denotes the number of visited SNs during the period between the most
recent departure from the depot and arrival at j. For instance, given a cycle as
i0 → i1 → i2...→ ir → ir+1 where i0 = ir+1 = 0, the values of fi j can be obtained as
fi0i1 = 0, fi1i2 = 1, ..., firir+1 = r.

3.2.2 Flow-based Constraint Set and Problem Formulation

In this subsection, a multi-objective optimisation problem is formulated based on a
flow-based constraint set [100] to achieve the trade-off between the average AoI and
energy consumption by designing the UAV path.

min
X ∑

(i, j)∈E
Ei jxi j, (3.7a)
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min
Y ∑

(i, j)∈E
Ti j

yi j

K
, (3.7b)

s.t. ∑
i∈K

x0i = ∑
i∈K

xi0, (3.7c)

∑
i∈Ka

xi j = 1, ∀ j ∈ K, (3.7d)

∑
i∈Ka

x ji = 1, ∀ j ∈ K, (3.7e)

∑
(i, j)∈E

yi j − ∑
( j,i)∈E

y ji = 1, ∀i ∈ K, (3.7f)

yoi = 0, ∀i ∈ K, (3.7g)

0 ≤ yi j ≤ Kxi j, ∀(i, j) ∈ E , (3.7h)

xi j ∈ {0,1}, ∀(i, j) ∈ E , (3.7i)

where xi j are binary variables and xi j = 1 represents that the edge (i, j) is travelled by
the UAV, yi j are the flow variables associated to all edges, X ≜ {xi j

∣∣(i, j) ∈ E} and
Y ≜ {yi j

∣∣(i, j) ∈ E} are the set of variables. Observe that (3.7c)-(3.7e) impose the
degree constraints for all SNs and depots. Also, (3.7i) reflects the binary restriction
for the variable xi j. The following two Lemmas illustrate how the constraints (3.7f)-
(3.7h) operate for the aforementioned multi-return-allowed mode.

Lemma 3.1: The constraint (3.7f) guarantees that if a vertex set K′ ⊆Ka consti-

tutes a cycle, the depot must be included by K′, i.e., 0 ∈ K′.

Proof: Lemma 3.1 can be proven this by induction. Assume that there is a cycle
without the depot, and choose an SN i1 ∈ K′ as the start (end) point. Thus, all SNs
in this K′ are visited in tandem and denote the path as i1 → i2 → ...→ ir → i1. Now
set yi1i2 = c. According to (3.7f), it follows that yi2i3 = c+ 1, ..., yiri1 = c+ r− 1.
Therefore, it can be easily seen that ∑(i1, j)∈E yi1 j −∑( j,i1)∈E y ji1 = c− (c+ r−1) =
1− r, which contradicts with (3.7f). This completes the proof of Lemma 3.1. □

Lemma 3.2: The constraints (3.7f)-(3.7h) guarantee that the following equation

is achieved,

yi j =

 fi j, if xi j = 1,

0, otherwise.
(3.8)

Proof: Lemma 3.1 shows that a cycle generated by problem (3.7) must consist of
the depot. Choosing the depot as the start (end) point, the UAV would fly along the
trajectory 0 → i1 → i2...→ ir → 0. (3.7h) guarantees that yi j can achieve a nonzero
value only when xi j = 1, otherwise, yi j is forced to 0 when xi j = 0. Recalling the
constraints (3.7f) and (3.7g), it follows that y0i1 = 0, yi1i2 = 1, ..., yir0 = r. Since the
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3.3 Single Objective and Bender’s decomposition

inequality r ≤ K is satisfied, the constraints (3.7h) would not be broken when xi j = 1.
This completes the proof of Lemma 3.2. □

Lemma 3.1 illustrates that there is a feasible multi-return-allowed path generated
by problem (3.7) and Lemma 3.2 shows that the second objective function (3.7b)
calculates the average AoI. Thus, problem (3.7) solves the proposed multi-return-
allowed serving mode with A and E as the objective functions. Also, the proposed
flow-based formulation can be easily extended to characterise other AoI-aware path
planning problems in the aforementioned existing papers. For example, the previous
paper [22] limits the UAV back to the depot after all SNs have been visited, which
mode can be formulated as a MILP by removing the energy objective (3.7a) and
replacing the constraint (3.7c) by ∑i∈K x0i = 1, ∑i∈K xi0 = 1.

3.3 Single Objective and Bender’s decomposition

Hereafter Problem (3.7) is transformed to a single objective problem via the weighted
linear combination technique and Bender’s decomposition is applied to decentralise
the overall computational burden when the problem scale is large.

3.3.1 Weighted Linear Combination

Various techniques are proposed to handle multi-objective optimisation problems,
e.g., mathematical programming methods [101] and machine learning-based strate-
gies [102]. In this chapter, a widely used method is utilised, i.e., associate the
objective functions (3.7a) and (3.7b) with weighting coefficients and minimise the
weighted sum after normalisation, that is,

min
X,Y

λ
∑(i, j)∈E Ti j

yi j
K −Amin

Amax −Amin
+(1−λ )

∑(i, j)∈E Ei jxi j −Emin

Emax −Emin
, (3.9a)

s.t. (3.7c)− (3.7i), (3.9b)

where Amin and Amax are the minimal and maximal achieved value of A respectively,
Emin and Emax are the minimal and maximal energy consumption respectively, λ and
(1−λ ) denote the weights of two matrices. Theorem 4 in [101] establishes that the
solution of problem (3.9) is Pareto optimal if λ ∈ [0,1].

To derive an explicit expression of the objective function in problem (3.9), the
extreme values of A and E should be obtained first. Since {Ti j

∣∣∀(i, j) ∈ E} satisfy
the triangle inequality, the UAV would return to the depot immediately after visiting
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3.3 Single Objective and Bender’s decomposition

each SN to minimise A. The corresponding energy consumption is certainly the
maximal value of E. Similarly, as shown in (3.4), {Ei j

∣∣∀(i, j) ∈ E} satisfy the
triangle inequality and are monotonically increasing of ∥wi −w j∥. Therefore, the
most energy-efficient path would include exactly one cycle with the shortest flying
distance, that is, a Travelling Salesman Problem (TSP) solution. The corresponding
average AoI can be seen as Amax. Notably, although TSP is an NP-hard problem, it
has been well researched so that it is reasonable to assume that the TSP solution, as
well as its corresponding Emin and Amax, are known hereafter.

Moreover, it is worth noting that choosing the value of weights in the weighted
sum method is a crucial step as it should incorporate accurately the preferences
of the decision-maker. There are two broad classes of approaches identified in
recent years. Firstly, with the ranking method, the authors of [103] first compare the
importance of different objective functions pairwise and yield a comparison matrix
via the analytical hierarchy process, following which the eigenvalues of this matrix
can be used as the weights. However, this method is inefficient for the problem (3.7)
because it only involves two objective functions. In such cases, the ranking method
converges to the second approach for selecting weight values, namely the rating
method. When using the rating method, the decision-maker assigns independent
values of relative importance to both AoI and energy consumption based on their
preferences, expert judgment, and analytical methods. After solving the converted
single-objective problem (3.9), sensitivity analysis could be conducted to understand
how changes in the weights affect the solution and whether the chosen weights are
appropriate. The value of weights can be then adjusted based on the performance of
the optimisation results [104].

3.3.2 Applying Bender’s Decomposition

For notational convenience, the constant terms in (3.9a) are ignored and Problem
(3.9) can be rewritten as,

min
X,Y ∑

(i, j)∈E
CT

i jyi j + ∑
(i, j)∈E

CE
i jxi j, (3.10a)

s.t. (3.7c)− (3.7i), (3.10b)

where CT
i j ≜ λTi j/(KAmax −KAmin) and CE

i j ≜ (1−λ )Ei j/(Emax −Emin) are coeffi-
cients defined for simplicity.
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Because Bender’s decomposition exploits the problem structure and decentralises
the overall computation burden [89], it is seen as a promising approach for large-scale
MILP. To apply Bender’s decomposition for problem (3.10), first rewrite it as the
following (3.11) without loss of optimality,

min
X ∑

(i, j)∈E
CE

i jxi j +g(X), (3.11a)

s.t. (3.7c)− (3.7e), (3.7i), (3.11b)

where g(X) is defined to be the optimal solution of the following problem,

min
Y ∑

(i, j)∈E
CT

i jyi j, (3.12a)

s.t. (3.7f)− (3.7h). (3.12b)

Problem (3.12) is certainly a linear programming with respect to Y for a given value
of xi j ∈ X. Then, write the dual for (3.12) as,

max
{αi}{βi}{γi j}

∑
i∈K

αi − ∑
(i, j)∈E

Kxi jγi j, (3.13a)

s.t. −αi +βi − γ0i ≤CT
0i, ∀i ∈ K, (3.13b)

αi − γi0 ≤CT
i0, ∀i ∈ K, (3.13c)

αi −α j − γi j ≤CT
i j, ∀(i, j) ∈ E , i ̸= 0, j ̸= 0, (3.13d)

γi j ≥ 0, ∀(i, j) ∈ E , (3.13e)

where {αi
∣∣ i ∈ K}, {βi

∣∣ i ∈ K} and {γi j
∣∣(i, j) ∈ E} are dual variables. The key

observation is that the constraints (3.13b)-(3.13e) are not related to the values of
X. Supposing the polyhedron constructed by the constraints (3.13b)-(3.13e) has M

extreme points and N extreme rays, (3.13) has an equivalent form as follows [89].

min
θ

θ , (3.14a)

s.t. ∑
i∈K

α
p,m
i − ∑

(i, j)∈E
Kxi jγ

p,m
i j ≤ θ , ∀m = 1, ...,M, (3.14b)

∑
i∈K

α
r,n
i − ∑

(i, j)∈E
Kxi jγ

r,n
i j ≤ 0, ∀n = 1, ...,N, (3.14c)

where (α p,m
1 , ...,α p,m

K ,β p,m
1 , ...,β p,m

K ,γ p,m
01 , ...,γ p,m

K−1K) and (αr,n
1 , ...,αr,n

K ,β r,n
1 , ...,β r,n

K ,

γ
r,n
01 , ...,γ

r,n
K−1K) denote the mth extreme point and nth extreme ray of the polyhedra
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Algorithm 2 Applying Bender’s Decomposition to (3.10)
1: Initialise the RMP without any cuts in (3.15c). Set k = 0.
2: repeat
3: Solve the RMP. Denote the solution as Xk and θ k.
4: Introduce Xk to the dual sub-problem (3.13). Solve (3.13) and denote the optimal

objective value as g(Xk).
5: if g(Xk)< ∞ then
6: Acquire an extreme point from the solution of (3.13) and add an optimality cut

(3.14b) to RMP.
7: else
8: Acquire an extreme ray and add a feasibility cut (3.14c).
9: end if

10: k = k+1.
11: until g(Xk) = θ k

constructed by (3.13b)-(3.13e), respectively. The constraints in (3.14b) and (3.14c)
are named optimality and feasibility cuts, respectively. Since problem (3.12) is a
linear programming of which the strong duality is held, (3.12), (3.13) and (3.14)
achieve the same optimal solution. Accordingly, replacing the component g(X) by
(3.14), (3.11) can be rewritten as the following form without loss of optimality,

min
X,θ

∑
(i, j)∈E

CE
i jxi j +θ , (3.15a)

s.t. (3.7c)− (3.7e), (3.7i), (3.15b)

(3.14b)− (3.14c). (3.15c)

Problems (3.15) and (3.12) are always referred as master problem and sub-problem,
respectively.

However, since the number of the constraints in (3.14b) and (3.14c) is extremely
large, generating all of them is impractical. To this end, a problem having a sim-
ilar form as (3.15) but which does not consist of all the constraints in (3.15c) is
constructed and referred to as the relaxed master problem (RMP). According to
the nominal use of Bender’s decomposition, adding the optimality and feasibility
cuts according to the solution of dual sub-problem (3.13) to the RMP and solving it
iteratively. The procedure of Bender’s decomposition is summarised as Algorithm 2,
a realisation of which implemented by the Python API of Gurobi 9.1.2 [67] can be
found in github.com/Yuanliaoo/BDforUavPath.

Hereafter, the optimality and convergence of Bender’s decomposition are re-
viewed. Firstly, denoting the optimal solution of problem (3.10) as ψ∗, the Propo-
sition 2.3 in Section 2.3 shows that at iteration k, the lower and upper bounds of
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ψ∗ can be obtained by step 3 and 4 of Algorithm 2 by LBk = ∑(i, j)∈E CE
i jx

k
i j + θ k

and UBk = ∑(i, j)∈E CE
i jx

k
i j + g(Xk), respectively. i.e. LBk ≤ ψ∗ ≤ UBk. Therefore,

when the gap between LBk and UBk is equal to 0, the global optimal solution ψ∗ is
surely achieved, shown as the stopping criteria in the step 11 of Algorithm 2. Also,
Theorem 3.1 and Section 4 in [89] illustrate that the procedures would terminate and
converge to ψ∗ within a finite number of iterations.

3.4 General Trajectory Optimisation

The fly-hover-communication protocol in the preceding section determines the
visiting order of the UAV. However, both the average AoI and energy can be further
optimised when the UAV is allowed to collect data while flying instead of the binary
flying status. In this section, assuming the visiting order has been solved by problem
(3.7), the UAV trajectory is further optimised to improve the system performances
without the fly-hover-communication assumption.

Denote the UAV location at time t projected onto the horizontal plane by q(t) ∈
R2. The achievable rate between UAV and the SN i at time t can be rewritten from
(3.1) as a function of q(t),

R(q(t)) = B · log2

(
1+

Ptρ0

σ2(H2 +∥q(t)−wi∥2)

)
, (3.16)

To guarantee the successful decoding and the quality of service (QoS), the signal-
to-noise-ratio (SNR) at the UAV, defined by SNR ≜ Ptρ0

σ2(H2+∥q(t)−wi∥2)
, is required

to greater than a pre-specified threshold [50, 96]. Because SNR is monotonically
decreasing with ∥q(t)−wi∥2, this QoS requirement can be satisfied by a distance
constraint, i.e., ∥q(t)−wi∥2 ≤ dth. As shown in Fig. 3.2, the UAV can only receive
data from SN i when it is located in a circular disc with the centre wi and radius dth,
which is named as coverage area hereafter.

The UAV trajectory only needs to be determined within the coverage areas
because in other areas the UAV would fly along line segments to decrease both the
flying time and energy. Firstly, select the initial and final locations for the UAV
trajectory within a certain circular coverage area. As shown in Fig. 3.2, when the
UAV visits ir−1 and ir adjacently, the intersection point of the line segment wir−1wir

and the edge of the coverage area is defined as the initial location of the UAV
trajectory when it flies and connects to SN ir, denoted by qI

ir , while the intersection
of wirwir+1 and the edge is defined as the final point and denoted by qF

ir . Once the
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𝑖𝑟−1 𝑖𝑟
𝑑𝑡ℎ

Sensor node

Initial and final locations𝐪𝑖𝑟𝐼 𝐪𝑖𝑟𝐹
Fig. 3.2 Illustration of further trajectory optimisation. The blue line represents the
path solved by problem (3.7) while the red line shows a possible solution of the
optimised trajectory obtained by (3.17).

start and final locations are fixed, the UAV trajectory when flying across the coverage
area of SN ir can be optimised by the following problem,

min
{q(t)},Tir

∫ Tir

0
P f (∥q̇(t)∥) dt, (3.17a)

min
{q(t)},Tir

fir−1ir

K
Tir , (3.17b)

s.t.
∫ Tir

0
R(q(t))dt ≥ Dir , (3.17c)

q(0) = qI
ir , q(Tir) = qI

ir , (3.17d)

∥q(t)−wir∥2 ≤ dth, ∀t ∈ [0,Tir ], (3.17e)

∥q̇(t)∥ ≤V max, ∀t ∈ [0,Tir ], (3.17f)

where Tir denotes the flying time when the UAV travels through the coverage area of
SN ir, ∥q̇(t)∥ calculates the norm of the UAV velocity at time t and V max denotes
the maximum UAV speed. The objective functions (3.17a) and (3.17b) optimise the
partial energy consumption and average AoI, respectively. (3.17c) guarantees that
the data collection is completed during this period and (3.17f) is the maximum speed
constraint.

Similar to Section 3.3, problem 3.17 is first converted to a single-objective
problem by applying the linear combination technique, that is,

min
{q(t)},Tir

CE
∫ Tir

0
P f (∥q̇(t)∥) dt +CT Tir , (3.18a)

s.t. (3.17c)− (3.17f), (3.18b)
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where CE ≜ (1−λ )/(Emax −Emin) and CT ≜ λ fir−1ir/(KAmax −KAmin) are combi-
nation coefficients similar to section III-A. Notably, because the UAV is allowed to
collect data while flying in this section, Emax, Emin, Amax and Amin may not be the
bounds of the system performances anymore. However, involving them in the coeffi-
cients can provide a scaling balance between these two performances, i.e. average
AoI and energy, because they are in different measurements. (A in second and E in
Joule).

Problem (3.17) is challenging to solve for the following two main reasons. First,
(3.17) involves an infinite number of variables {q(t)} that is over continuous time t.
Second, both the objective function (3.17a) and the constraint (3.17c) are non-convex
with respect to decision variables. Fortunately, after being converted to a single
objective problem by linear combination technique, (3.17) has been solved perfectly
in the previous work [27]. Specifically, in Section IV of [27], the path discretisation
technique is applied to discretise the variables {q(t)} and the successive convex
approximation (SCA) method is then utilised to solve the non-convex problem. The
solving procedure proposed by [27] is reviewed in the following two subsections.

3.4.1 Path Discretisation

Path discretisation is a method which can discretise the continuous variables and is
suitable for the case without the mission time information [27]. In (3.18), the flying
time Tir is one of the optimisation variables and cannot be pre-specified, thus the
path discretisation technique is employed.

With path discretisation, the UAV trajectory when it flies in the coverage area
of SN ir, i.e., {q(t)}, is discretised into M+1 line segments, which are represented
by M + 2 waypoints {qm}M+1

m=0 . Thus, the constraint (3.17d) could be rewritten as
q0 = qI

ir , qM+1 = qI
ir . Moreover, the adjacent waypoints should satisfy the following

constraints,

∥qm+1 −qm∥ ≤ ∆max, ∀m ∈ {0,1, ...,M}, (3.19)

where ∆max is a pre-specified maximum value of each line segment, in which the
UAV velocity and the distance between the UAV and SN are both approximately
unchanged. [27] suggests that the value of ∆max can be chosen as ∆max ≪ H and
M should be set as M ≥ 2dth

∆max
− 1. Denote T ir

m as the duration time when the UAV
is in the line segment m. Then the velocity along this line segment is given by
vm = qm+1−qm

T ir
m

and the total flying time within the coverage area can be calculated by

Tir = ∑
M
m=0 T ir

m .
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Afterwards, rewrite the transmission rate and propulsion power by the discrete
variables. According to (3.16), the rate when the UAV located at the waypoint qm

can be expressed as,

R(qm) = B · log2

(
1+

Ptρ0

σ2(H2 +∥qm −wi∥2)

)
, (3.20)

Denoting the length of line segment m as ∆m ≜ ∥qm+1−qm∥ and introducing V = ∆m
T ir

m
to the equation (2), the propulsion power can be rewritten as,

P f (
∆m

T ir
m
)

=P0

(
1+

3
U2

tip

(∆m

T ir
m

)2
)
+Pi

(√
1+

1
4v4

0

(∆m

T ir
m

)4 − 1
2v2

0

(∆m

T ir
m

)2
)1/2

+
1
2

d0ρsA
(∆m

T ir
m

)3
,

(3.21)
As a result, problem (3.18) can be reformulated as,

min
{qm},{T ir

m }
CE

(
P0

M

∑
m=0

(
T ir

m +
3∆2

m

U2
tipT ir

m

)
+Pi

M

∑
m=0

(√
T ir

m
4
+

∆4
m

4v4
0
− ∆2

m

2v2
0

)1/2
+

1
2

d0ρsA
M

∑
m=0

∆3
m

T ir
m

2

)
︸ ︷︷ ︸

partial energy consumption

+ CT
M

∑
m=0

T ir
m︸ ︷︷ ︸

partial average AoI

, (3.22a)

s.t. B
M

∑
m=0

T ir
m log2

(
1+

Ptρ0

σ2(H2 +∥qm −wi∥2)

)
≥ Dir , (3.22b)

q0 = qI
ir , qM+1 = qI

ir , (3.22c)

∥qm −wir∥2 ≤ dth, ∀m ∈ {0,1, ...,M+1}, (3.22d)

∥qm+1 −qm∥ ≤ min{∆max, T ir
m V max}, ∀m ∈ {0,1, ...,M}, (3.22e)

T ir
m ≥ 0, ∀m ∈ {0,1, ...,M}. (3.22f)

Compared with (3.18), it can be observed that there are a finite number of optimisa-
tion variables in (3.22). However, problem (3.22) is still challenging to solve due
to the non-convex objective function (3.22a) and constraint (3.22b). Thus, the SCA
technique is then utilised to obtain a high-quality solution of (3.22) satisfying the
Karush-Kuhn-Tucker (KKT) conditions.
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3.4.2 Successive Convex Approximation

Firstly, considering the objective function (3.22a) in (3.22), it can be observed that
only the second term in (3.22a) is non-convex with respect to the variables, while
all other terms are convex. To tackle this issue, the non-negative slack variables
{zm ≥ 0} are introduced to (3.22) such that,

z2
m =

√
T ir

m
4
+

∆4
m

4v4
0
− ∆2

m

2v2
0
, (3.23)

which can be rewritten as,
T ir

m
4

z2
m

= z2
m +

∆2
m

v2
0
, (3.24)

Secondly, another set of slack variables {Am} are introduced to deal with the non-
convexity in the constraints (3.22b),

A2
m = T ir

m log2

(
1+

Ptρ0

σ2(H2 +∥qm −wi∥2)

)
, (3.25)

Therefore, the problem (3.22) can be reformulated as,

min
{qm},{T irm },
{zm},{Am}

CE
(

P0

M

∑
m=0

(
T ir

m +
3∆2

m

U2
tipT ir

m

)
+Pi

M

∑
m=0

zm +
1
2

d0ρsA
M

∑
m=0

∆3
m

T ir
m

2

)
+CT

M

∑
m=0

T ir
m ,

(3.26a)

s.t.
M

∑
m=0

A2
m ≥ Dir

B
, (3.26b)

q0 = qI
ir , qM+1 = qI

ir , (3.26c)

∥qm −wir∥2 ≤ dth, ∀m ∈ {0,1, ...,M+1}, (3.26d)

∥qm+1 −qm∥ ≤ min{∆max, T ir
m V max}, ∀m ∈ {0,1, ...,M}, (3.26e)

T ir
m

4

z2
m

≤ z2
m +

∥qm+1 −qm∥2

v2
0

, ∀m ∈ {0,1, ...,M}, (3.26f)

A2
m

T ir
m

≤ log2

(
1+

Ptρ0

σ2(H2 +∥qm −wi∥2)

)
, ∀m ∈ {0,1, ...,M}, (3.26g)

T ir
m ≥ 0, ∀m ∈ {0,1, ...,M}, (3.26h)

zm ≥ 0, ∀m ∈ {0,1, ...,M}. (3.26i)

Note that the section IV-B in [27] also proves that replacing the strict equality in
(3.24) and (3.25) by inequality in the constraints (3.26f) and (3.26g) would not
affect the optimality of the original problem (3.22). However, problem (3.26) is still
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3.4 General Trajectory Optimisation

difficult to solve due to the non-convex constraints (3.26b), (3.26f) and (3.26g). The
SCA method is then utilised to handle these non-convex constraints.

For the constraint (3.26b), it can be observed that each term of the left-hand side
(LHS) of (3.26b) is convex with respect to Am, which is global lower bounded by its
first-order Taylor expansion, that is,

A2
m ≥ A(l)

m
2
+2A(l)

m (Am −A(l)
m ), (3.27)

where A(l)
m is the value of Am at the lth iteration. Similarly, the LHS of (3.26f) is

convex with respect to the variables and the right-hand side (RHS) is also convex,
thus the lower bound of RHS can be obtained by its first-order Taylor expansion,
that is,

z2
m +

∥qm+1 −qm∥2

2v2
0

≥z(l)m
2
+2z(l)m (zm − z(l)m )−

∥q(l)
m+1 −q(l)

m ∥2

v2
0

+
2
v2

0
(q(l)

m+1 −q(l)
m )T (qm+1 −qm),

(3.28)
where the z(l)m and q(l)

m are the value of the corresponding variables in the lth iteration.
Thirdly, because the RHS of (3.26g) is convex with respect to the term H2 +∥qm −
wi∥2, a concave lower bound of it can be written as,

log2

(
1+

Ptρ0

σ2(H2 +∥qm −wi∥2)

)
≥ log2

(
1+

Ptρ0

σ2(H2 +∥q(l)
m −wi∥2)

)
−βm(∥qm −wi∥2 −∥q(l)

m −wi∥2)

≜R(l)
m (qm),

(3.29)

where βm is a constant defined as βm =
(log2 e)(Ptρ0/σ2)

(H2+∥q(l)
m −wi∥2)(H2+∥q(l)

m −wi∥2+Ptρ0/σ2)
.

By replacing the non-convex constraints (3.26b), (3.26f) and (3.26g) by their
corresponding lower bounds at the lth iteration, the following problem can be
obtained,

min
{qm},{T irm },
{zm},{Am}

CE
(

P0

M

∑
m=0

(
T ir

m +
3∆2

m

U2
tipT ir

m

)
+Pi

M

∑
m=0

zm +
1
2

d0ρsA
M

∑
m=0

∆3
m

T ir
m

2

)
+CT

M

∑
m=0

T ir
m ,

(3.30a)

s.t.
M

∑
m=0

(
A(l)

m
2
+2A(l)

m (Am −A(l)
m )

)
≥ Dir

B
, (3.30b)
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Algorithm 3 SCA algorithm for solving (3.22)

1: Initialise the variables as {q(0)
m }, {T ir

m
(0)}, {z(0)m }, {A(0)

m } . Set l = 0.
2: repeat
3: Solve the convex problem (3.30) and denote the solution as

{q(l)
m }, {T ir

m
(l)}, {z(l)m }, {A(l)

m }.
4: Update l = l +1.
5: until The fractional decrease of the objective value of (3.30) is less than a given threshold.

Table 3.1 Parameter Settings

Parameter Value Parameter Value
B 2 MHz σ2 -110 dBm
fc 5.8 GHz c 3×108 m/s
H 100 m ρ0 -47 dB
Pt 0.1 W Di 500 Mbits
K 10 (expect Fig. 3.5) V [10, 18, 30] m/s [27]
Ph 165 W [27] P f [126, 162, 356] W [27]
dth 50 m V max 30 m/s [27]

T ir
m

4

z2
m

≤ z(l)m
2
+2z(l)m (zm − z(l)m )−

∥q(l)
m+1 −q(l)

m ∥2

v2
0

+
2
v2

0
(q(l)

m+1 −q(l)
m )T (qm+1 −qm),

∀m ∈ {0,1, ...,M}, (3.30c)

A2
m

T ir
m

≤ R(l)
m (qm), ∀m ∈ {0,1, ...,M}, (3.30d)

(3.26c)− (3.26e), (3.26h)− (3.26i). (3.30e)

It can be verified that the problem (3.30) is a convex optimisation problem, which
can thus be solved efficiently by using existing software toolbox such as CVX
[105]. According to the basic procedure of the SCA method, a solution of (3.26)
satisfying the KKT conditions can be achieved by successively updating the local
point at each iteration via solving (3.30). The algorithm is summarised as Algo-
rithm 3 and a realisation coded by MATLAB and CVX [105] can be found in
github.com/Yuanliaoo/AoIEnergyUAVTraOpt.

3.5 Numerical Investigations

In this section, numerical investigations are presented to evaluate the proposed multi-
return-allowed framework. The parameter settings are summarised in Table 3.1.
The following three typical choices of speed are selected to simulate in this section,
Maximum-endurance (ME) speed maximises the UAV endurance under any given
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3.5 Numerical Investigations

Fig. 3.3 Pareto front for A and E with different speed.

onboard energy; Maximum-range (MR) speed maximises the total travelling distance
with any given onboard energy; Maximal (MAX) speed is the maximal achievable
speed of the UAV. As illustrated in [27], the ME, MR and MAX speeds are 10 m/s,
18 m/s and 30 m/s, respectively. The corresponding values of the propulsion power
are 126 W, 162 W and 356 W, as shown in Table 3.1.

Fig. 3.3 depicts the Pareto front of A and E. Firstly, solving (3.9) for different
values of λ , the obtained results, represented by red, yellow and blue small circles,
are in accordance with the intuition that A and E are competing with each other. It
is worth pointing out that although the value of λ ∈ [0,1] is sampled every 0.01 to
plot Fig. 3.3, the actual results are distributed sparsely and overlap. The reason is
that both A and E are functions of the UAV path, which are determined by the binary
variables X in (3.7). Furthermore, optimizing the initial path with MR speed by
solving (3.17), the obtained result, represented by green circles in Fig. 3.3, shows
the improvement in both the A and E whatever the value of λ is. Besides, these
Pareto points are distributed more densely because the variables in (3.17) can take
continuous values.

Using the MR speed, the path designs under four different values of λ , 0, 0.5
and 1, as well as their corresponding performances are compared in Fig. 3.4(a), Fig.
3.4(b) and Fig. 3.4(c), respectively. As expected, frequent UAV returns to the depot
result in reduced average AoI at the cost of more energy consumption. Moreover,
Fig. 3.4(d) shows the trajectories optimised by Algorithm 3 when setting λ = 0.5.
Comparing Fig. 3.4(b) and Fig. 3.4(d), it can be observed that when the UAV is
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(a) λ = 0. (b) λ = 0.5.

(c) λ = 1. (d) λ = 0.5, optimised by Algorithm 3.

Fig. 3.4 Comparison of the trajectories as well as A and E with different weights λ .
Small circles denote SNs and the square represents the depot.

allowed to communicate while flying, it does not need to reach the exact SN location.
Instead, it would fly along a trajectory within the coverage area to achieve the better
A and E.

Fig. 3.5 compares the proposed multi-return-allowed mode (setting λ = 0.5)
with the framework studied in [22], in which the UAV returns to the depot only
after all SNs have been visited, as well as the TSP solution. Firstly, comparing
the three serving modes under the fly-hover-communication assumption, denoted
by red, blue and yellow lines, it can be observed that the proposed multi-return-
allowed mode can decrease A significantly at the cost of a larger E. Numerically,
take the K = 10 as an example, the mode in [22] decreases A by 4% at the cost of 4%
more energy consumption when compared with the TSP solution. Furthermore, the
proposed framework shows a 51% gain in A than mode [22] with a 37% higher energy
consumption. Secondly, comparing the path initialised by (3.7) and the trajectory
optimised by (3.17), it can be seen that both the A and E are further improved when
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Fig. 3.5 Comparing A and E for different serving modes.

Fig. 3.6 Comparing A and E for different SN distributions.

the UAV can communicate while flying. For instance, A and E decrease by 8% and
4% respectively in the optimised trajectory when K = 10.

In Figures 3.3 to 3.5, all SNs are assumed to follow the normal distribution.
However, in practice, SNs often aggregate in hotspots to gather more valuable
information, thus showing heterogeneity in the spatial domain. In Fig. 3.6, the
Matérn cluster process is used to capture the spatial heterogeneity of SN distribution
[106]. The Matérn cluster process is a doubly Poisson cluster process, where parent
points are first generated according to a Poisson process with a density of 2 parent
points per km2, and then 10 daughter points (representing the SNs) are generated
uniformly in the circles with the radius r around parent points. Increasing this
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distribution radius r results in a sparser SN distribution and vice versa. The numerical
results in Fig. 3.6 are averaged over 1000 Monte Carlo simulations. Firstly, when
setting λ = 0, problem (3.9) converges to the TSP problem, where the UAV follows
a Hamiltonian path and returns to the depot only once. In such cases, increasing
the sparsity of SN distribution results in a monotonically increasing AoI and energy
consumption, as shown by the blue lines in Fig. 3.6. However, when setting λ = 0.5
and λ = 1, there is no monotonic relationship between system performance and
SN distribution because the UAV needs to return to the depot multiple times to
offload the collected data. In practice, there are often a group of UAVs performing
data collection tasks, and ground SNs often follow such homogeneous distributions
and are associated with a specific UAV for data offloading. Recalling the results in
Fig. 3.6, determining the association strategy based on SN distribution is crucial
because the SN distribution shows a non-monotonic and complex impact on system
performance.

Moreover, compared with previous works [22, 23, 91], a significant contribution
of this work is proposing a MILP formulation for the AoI-aware UAV path planning
problem. Notably, although the path planning problems are always NP-hard, propos-
ing a MILP formulation allows us to solve it efficiently by commercial solvers, such
as Gurobi [67], and handle it decentralised by some decomposition techniques, such
as Bender’s decomposition shown in Section 3.3.2. Section 3.2.2 illustrates that the
proposed flow-based formulation can be extended to characterise the problem studied
in [22] by changing one constraint. Table 3.2 compares the solving time between
Gurobi and dynamic programming (DP) proposed in [22], which both achieve the
optimal solution of the AoI-aware Hamiltonian path planning. The results presented
in Table 3.2 are implemented on MATLAB R2020b and solved by Gurobi 9.1.2[67],
running on a Windows 7 with Intel-i7 2.50 GHz and 8 GB RAM. It can be seen that
solving by Gurobi shows a significant gain in the running time of than DP method
when the number of SNs is greater than 8.

3.6 Conclusion

This chapter studies the path planning problem of a UAV-assisted data collection
task, in which two inherently competing metrics, namely the average AoI and the
aggregate energy consumption, are optimised jointly. To characterise the trade-off
between those two performance metrics and reveal the Pareto frontier, a multi-return-
allowed serving mode is proposed, in which the UAV is allowed to return to the depot
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Table 3.2 Comparing the solving time by Gurobi and dynamic programming (DP) in
seconds.

Number of SN
Example 1 Example 2 Example 3

Gurobi DP Gurobi DP Gurobi DP
2 0.81 0.01 0.95 0.01 0.75 0.01
3 0.96 0.01 0.88 0.01 0.85 0.01
4 0.96 0.01 0.91 0.02 0.93 0.01
5 0.99 0.15 0.94 0.10 0.93 0.10
6 1.03 0.29 0.91 0.27 0.97 0.29
7 1.75 1.10 1.13 0.98 1.65 1.13
8 1.99 8.21 1.53 8.15 1.68 8.73
9 63.92 125.98 53.34 131.00 49.81 124.90
10 174.78 266.52 142.60 282.43 165.62 278.70

at any instance during the service cycle and formulate it as a multi-objective MILP
with a flow-based constraint set. The two objectives are combined into a single one
through the weighted linear combination technique, and Bender’s decomposition
is applied to decentralise the overall computational burden. Subsequently, a more
general trajectory in which the UAV can communicate while flying is studied to
further improve both these metrics. Additionally, previous research works that solely
focus on Hamiltonian paths can be considered as a special case of the proposed
approach since it allows multiple returns to the depot during a serving cycle. A
wide set of numerical investigations reveals that the proposed multi-return-allowed
mode unveils the trade-off between the two competing metrics and hence, provides
non-dominated solutions for advanced decision-making.
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Chapter 4

Preliminaries of Robotic Aerial Base
Stations

4.1 Introduction

As reviewed in Chapter 2, aerial base stations (ABSs) mounted on airborne platforms,
such as unmanned aerial vehicles (UAVs), exhibit increasing potential in 6G cellular
networks thanks to their functionally flexible deployment and three-dimensional
manoeuvrability. ABSs could be utilised to play a vital role in a wide range of wire-
less systems, such as micro base stations (BSs), relays, data collectors and moving
anchors for localisation. Although ABSs have attracted significant attention from
both academia and industry in recent years, the limited endurance restricted by the
capacity of the onboard battery is still a critical issue. This issue becomes particularly
pronounced when ABSs are intended to offer daily mobile data service rather than
just being used for short-term sporadic emergency communications. With this in
mind, the prototype of robotic aerial base station (RABS) with anchoring capabilities
via robotic manipulators [107] is developed to allow for a massive improvement in
providing long-term wireless connectivity compared to hovering/flying ABSs. More
specifically, by taking advantage of grasping capabilities [108], RABSs can attach
autonomously to lampposts or other tall urban landforms via energy-neutral grasping
to serve as small cells for multiple hours or even longer. This is in contrast to the
flying/hovering endurance for the small-size rotary-wing UAVs acting as small BSs
which is less than an hour.

Growing effort has recently been devoted to overcoming the endurance issue of
ABSs by developing novel prototypes. The wireless power transfer (WPT) technique
is a potential technique to power the ABSs without needing to interrupt the service,
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with recharging in the ground stations. In [109], the free space optics (FSO) beam is
proposed to recharge ABSs via the WPT technique. However, the energy transfer
efficiency of FSO is greatly affected by environmental factors, e.g., when an ABS is
located at an altitude of 1 km, the link margin is 38 dB in clear weather in contrast to
-15 dB on a foggy day. In [110, 111], high-energy laser beams transmitted from a
ground station are utilised to power the ABSs. Theoretically, the laser-powered ABS
can provide an unlimited serving time when it is close enough to the charging station
to maintain a safe energy level. The authors of [112] utilise a tethered UAV to carry
an ABS, in which system a tether linking the UAV with a ground BS could transfer
both data and power simultaneously. Although tethered UAVs can communicate
with ground devices without the need to recharge, this seamless connection comes at
the expense of limited flexibility since the flying range of tethered UAVs is restricted
by their BS being located either on the ground or on a rooftop. Moreover, Nokia
Bell Labs developed a landing-based ABS prototype named F-cell [3], to satisfy
emergency communication requirements. The F-cell can be carried and transported
by a UAV and then dropped on rooftops or other easy-to-land platforms to offer
wireless service. Each F-cell is equipped with a solar panel to provide the processing
energy and a 64-antenna massive MIMO array to enhance the wireless backhaul
capacity. However, the F-cell requires a flat area to take off and land (i.e., a rooftop)
thereby significantly restricting its operational capabilities, whilst facing severe safety
challenges since it is not fixed to the surface. Notably, RABS can be deemed as
autonomous robots that can safely grasp in wide set of different tall urban landforms
by utilizing robotic manipulators. Besides, unlike the F-cell that is transported
and relocated by a UAV, RABS can respond to communication requirements more
flexibly and quickly thanks to its inherent flying ability. Fig. 4.1 compares the
proposed RABS prototype with hovering-based, laser-powered and tethered ABSs.
It also depicts the fulfilment of the ’Impossible Triangle’ achieved by RABSs since
they can achieve at the same time flexible deployment, energy efficiency and high
endurance in providing wireless connectivity.

Considering the functional movable ability and energy efficiency, a wide range
of possible use cases for robotic small cells in dense urban areas are envisioned to
assist towards the aim of network densification. Firstly, considering the low data
rate of cell-edge users and the high possibility of BSs being overloaded during
unexpected crowded events, i.e., congestion episodes, RABSs can be deployed on-
demand as micro BSs or relays to significantly enhance the network capacity and/or
extend the cell coverage effectively. Secondly, in next-generation cellular networks,
new radio applications always place more extensive and stringent requirements on
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Fig. 4.1 Comparing the RABS prototype with other types of ABS: The "Impossible
Triangle" achieved by robotic aerial base stations since this concept manages to
simultaneously achieve three fundamental operational capabilities.

communication systems, in which cases RABSs can be utilised to satisfy these
new radio applications, e.g., RABSs attached to lampposts can act as road side
units to offer low-latency and high-reliable service in intelligent transportation
systems. They can also be installed with edge computing or caching modules to
alleviate the overload and congestion in cloud servers in case of congestion episodes.
Thirdly, RABSs can cooperate with other types of non-terrestrial nodes located at
different vertical platforms, such as high-altitude platform stations (HAPSs) as well
as satellites, and provide wireless access from the side closer to ground users.

4.2 System Architecture

4.2.1 A Primer Hardware Design

The recent development in multi-rotor UAVs enables ABSs to perform a wide range
of operations in a controllable manner, i.e., flying along a predefined route, hovering
at a specific location and cooperating with other ABSs. According to their aero-
mechanical design, UAVs can be classified into fixed-wing and rotary-wing UAVs.
Because small-size rotary-wing UAVs are able to take off and land on various types
of urban platforms and yield more flexible operations, they can be chosen to carry and
transport the RABSs. The hardware design of RABS is illustrated by Fig. 4.2, which
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Fig. 4.2 Hardware structure of the designed RABS prototype.

includes four subsystems to perform different operations, i.e., flight, communication,
grasp and perception systems.

Unlike conventional ABSs, a robotic gripper is mounted on the RABS so that
it can grasp different urban landforms, such as lampposts and rooftops in a flexible
and safe manner. In [113], robotic grippers are classified into several categories
via different classification strategies. Specifically, grippers can be divided into
four categories according to the number of fingers, i.e., 2-finger gripper, 3-finger
gripper, 4-finger gripper, and anthropomorphic hand. The finger design is always
determined by the contacting surfaces with the objects when performing the grasping
operation. Inspired by the fact that nearly 60%-70% of human grasping actions of
objects with parallelepiped, pyramidal, and cylindrical shapes can be operated by
two fingers, the 2-finger gripper is the most popular design for practical industrial
applications [113]. According to the type of actuation used, grippers can be classified
as vacuum, magnetic, hydraulic, pneumatic and electric types. Considering the
RABS is battery-powered and the contacting surface of typical landforms (e.g.,
lampposts) is usually metal, electric or magnetic (or electromagnetic) grippers might
be employed by RABS as well. According to the grasping method, grippers can be
divided into four categories, i.e., impactive, ingressive, astrictive and constitutive
grippers, which should be determined by the shape of target objects as well as the
operation requirements. The required force to hang the RABS to a lamppost via a
2-finger gripper is calculated by Eq. (1) in [107]. Taking the DJI Matrice 300 RTK
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UAV with a weight of 6.3 kg as an example, the force requirement from the gripper
should be 1234.8 N in the worst case.

4.2.2 Workflow of Robotic Aerial Base Stations

In order to deploy RABSs at suitable locations to adapt to the traffic dynamic in both
spatial and temporal domains, a central controller needs to monitor the changes in
traffic in real-time, and timely send commands to RABSs that they need to relocate
their positions. Once the RABS receives the control signal from the ground control
stations and decides to grasp at a certain location, it is required to fly to this target
point and grasp reliably. To achieve this task, RABS should be equipped with a
variety of onboard sensors to control its localisation, velocity and attitude via global
navigation satellite system (GNSS) and Radar/Lidar-based localisation techniques.
Furthermore, to complete the grasping function at a chosen location autonomously,
real-time object detection capability is required in the RABS. Fortunately, thanks to
the recent development of deep learning methods, UAVs can perform autonomous
and real-time grasping precisely via vision-based and AI-aided approaches. Take
the UAV prototype with grasping ability designed in [108] as an example. For
the hardware design, a computer deployed in the ground station is used to offer
enough computational capacity for vision measurements and a downward-looking
binocular camera is mounted onboard to recognise the grasping target. For the
software structure, the Yolo3 algorithm is employed to perform the object detection,
which includes three steps, i.e., collect and label samples, train the neural network
and test the trained model. The developed UAV prototype is then able to perform
the grasping task accurately. Note that since RABS will be part of the 5G and
beyond network infrastructure, those computationally heavy tasks could potentially
be offloaded to suitable edge clouds instead of an extra computer.

4.2.3 Wireless Access, Backhaul and Non-payload Links

In this section, the spectrum design for both access, backhaul and non-payload links
of RABSs are discussed. For the access link, RABSs can communicate on high-
frequency bands, such as mmWave or sub-THz, to support extremely high-capacity
networks via network densification and ultimately enable novel applications with
multimodalities. Operating the RABSs on the high-frequency bands has the following
two benefits. Firstly, it could avoid the interference with the existing communication
systems operating on the low frequencies. Secondly, because carriers on these high
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frequencies are always characterised by very high path loss in non-line-of-sight
(NLoS) conditions, RABSs can be carefully deployed to improve the line-of-sight
(LoS) probability thanks to their high flexibility. To characterise the urban micro
BS propagation working on these high-frequency carriers, the large-scale path loss
of 28, 38, 73 and 143 GHz is measured in [114]. Notably, all of the results in
[114] are measured on the urban micro BSs placed at an altitude from 4 m to 36 m
above the ground, thus, the proposed path loss model can be employed for RABSs
straightforwardly. For instance, the micro cell TX working at 143 GHz is located at a
height of 4 m above the ground (similar heights as lampposts) and the measurements
show that it can provide up to 117.4 m coverage in the outdoor urban area for both
LoS and NLoS scenarios [114].

As shown in Fig. 4.2, in addition to providing wireless access to users, RABSs
also establish wireless connections with ground base stations for the following two
purposes. On the one hand, to safely execute operations such as flight, landing, and
grasping, RABSs should receive essential safety–critical information and operational
commands from ground stations, such as air traffic information, control commands
from remote pilots, and positional data of the target grasping points. This link is
commonly known as the control and non-payload link. Due to the catastrophic
consequences of this link interruption, potentially resulting in the loss of control of
UAVs, the International Civil Aviation Organisation has mandated that the control
and non-payload link must operate over protected aviation spectrum [115]. For
example, the C-band spectrum at 5030–5091 MHz has been allocated for UAV
non-payload links during the World Radiocommunication Conference (WRC)-12
[81]. These frequency bands can also be utilised for transmitting control commands
to RABSs.

On the other hand, RABSs could also communicate with ground base stations
via the wireless backhaul link. It is worth noting that while non-payload links only
require a relatively small data rate to transmit limited information, the backhaul links
require a large capacity to enable RABSs to provide wireless coverage to as many
users as possible. Numerically, as investigated in [81], non-payload links require a
throughput of kilobits per second while the backhaul links should serve dozens of
gigabits per second to process high-quality applications. With this in consideration,
two potential approaches could be used to enhance the capacity of backhaul links.
Firstly, RABSs can connect with the macro BSs on the high-frequency bands to
guarantee the backhaul requirements. Besides the aforementioned mmWave and
sub-THz, free space optics (FSO) can also be employed for the backhaul links
because the RABSs can adjust the position flexibly so that their backhaul links to the
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macro BSs (always placed at heights of 15-50 m) will not be blocked by obstacles.
Having a future vision, HAPSs, deployed at altitudes in the range of 20 to 50 km,
could be utilised as the macro BSs while connecting with the small cells (i.e., ABSs,
RABSs, urban micro BSs, etc.) on the FSO beams [109]. Secondly, by mounting a
multi-antenna array on the RABS, the capacity of backhaul links can be improved
via MIMO techniques, which have been applied in the Nokia F-cell.

4.3 Ideal Attributes of Robotic Aerial Base Stations

In this section, four key attributes of RABS-assisted wireless systems are illustrated
that can be deemed as advantages compared with other aerial platforms used for
communications.

1) Network densification without densifying the infrastructure: To deal with
the rapidly growing volume of traffic demand, one promising technique is network
densification, i.e., deploying a large number of small cells densely. However, as mea-
sured by [116], the traffic distribution in urban regions shows high inhomogeneity in
both spatial and temporal domains. Due to this inhomogeneous traffic distribution,
network densification via densifying the wireless nodes may cause significant waste
in both capital expenditure and operating expenditure. In contrast, RABS provides
an alternative approach for low-cost and flexible network densification. More specif-
ically, RABSs could be deployed in hot spot regions and transported to other peak
traffic areas by following the temporal traffic dynamic as it unfolds. In that sense,
network densification via RABS could ensure capacity is always targeted at the
specific locations and times when it is most needed. In other words, compared with
terrestrial micro BSs, RABS show a higher flexibility thanks to their mobility which
allows them to follow the spatio-temporal traffic variations as they unfold.

2) Overcoming the ABS endurance issue: As one of the initial motivations, the
serving endurance of RABSs can be multiple hours or even longer, compared to the
hovering/flying time of conventional ABSs which is always less than one hour. Fig.
4.3 compares the power of different modules in ABS and RABS. The first three bars
represent the propulsion power of different UAVs. As summarised in Appendix A,
the propulsion power of UAVs is a function of their flying speed and is also affected
by hardware design and environmental factors. To provide an intuitive comparison,
the propulsion power values in Fig. 4.3 are calculated based on typical flight speeds
and common environmental factors for UAVs. Specifically, the first bar shows the
flying power of rotary-wing UAVs in hovering mode [27], the second bar represents
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the propulsion power of rotary-wing UAVs at the optimal speed that maximises total
flying distance [27], and the third bar indicates the minimum propulsion power of
fixed-wing UAVs [26]. Further discussions on the propulsion power can be found
in Appendix A. Additionally, the fourth and fifth bars represent the grasping and
communication power of RABSs, as measured in [117] and [118], respectively. It is
worth noting that Fig. 4.3 takes typical values for comparing the power consumption
across various ABS operations, while these values may vary depending on actual
hardware configurations and environmental conditions. Comparing the hovering,
flying and communication power, it can be observed that the propulsion power
is much more significant than the communication-related counterpart during the
ABS serving endurance. Moreover, noticing that the grasping power is almost 16
times less than hovering and flying power, RABSs, which provide service when
grasping at urban landforms, certainly have a longer lifetime than conventional ABSs.
Most importantly, it should be noted that the specialised dexterous grippers can be
designed that operate in an energy-neutral manner, in which case the perching energy
consumption can be completely eliminated.

3) Adapting to harsh weather conditions: One of the most critical issues when
operating UAVs is harsh weather conditions, such as rainstorms, strong winds, and
extreme temperatures. These weather conditions can impact flight safety in various
scenarios. Heavy rain, snow and other water might cause the onboard motors to stop
and pose a threat to UAV flight safety. Flying or hovering in windy environments
consumes more energy to control the UAV and sometimes is even impossible to
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Table 4.1 Noise Emission of DJI Matrice 600 Pro

UAV status Altitude (m) Lateral distance (m) Noise (dB)

Hovering 9.18

0 89.6
2.45 88.7
5.28 87.3
9.14 83.7
15.84 79.2

Flying (3.23 m/s) 7.5

0 85.3
2.45 84.0
5.28 82.7
9.14 79.6
15.84 75.9

take off. Furthermore, vision-based operations, such as monitoring and sensing, can
be affected in foggy weather. In most of these cases, grasping-based RABSs can
provide services in a significantly safer manner due to their anchoring capability,
which can be summarised as rainproof and windproof.

4) Low-noise operation: The number of UAV-assisted applications has grown
significantly in recent years, such as cargo delivery, environmental monitoring, smart
agriculture and wireless communication. Within that context, UAVs are regarded as
a new source of environmental noise pollution and are starting to attract increasing
attention from researchers. As shown in Table 4.1, the authors of [119] measure the
noise emission of DJI Matrice 600 Pro when flying and hovering. It can be seen
that the noise generated by UAVs operating at a low altitude is very close to the
so-called Acceptable-Noise-Level (ANL) which is at 85 dB. Furthermore, recalling
that the free-field sound decay rate is at approximately 6 dB with a doubling of the
distance, the UAV operating at the highest permitted altitude of 120 m would still
produce nearly 50 dB of noise pollution. Note that the limits for urban ambient
noise are at 45 dB during the night and at 55 dB during the day. Therefore, noise
pollution is a critical and real issue when applying ABSs in urban areas, especially
when considering public acceptance. However, when RABSs anchor at lampposts
and switch off their rotors, they can provide zero levels of noise emission and are
thus more suited for urban applications.
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4.4 Case Study I: Comparing with Terrestrial Net-
works

As mentioned in Section 4.3, one of the main advantages of RABSs lies in their
controllable mobility, which brings increased flexibility and agility to cellular net-
works. However, the design of RABSs, as illustrated in Section 4.2, limits their
connectivity with the macro base station (MBS) to a wireless backhaul link with
limited capacity, unlike the high-capacity fibre link used by ground BSs. This section
studies a heterogeneous network (HetNet) configuration comprising an MBS and an
RABS connected by a wireless backhaul link with limited capacity. The objective
is to highlight the extent to which RABSs can enhance the performance of cellular
networks.

Consider the downlink case in a HetNet consisting of an MBS and an RABS
deployed as a small cell. The geographical area under consideration is 1×1km2,
with 121 candidate locations evenly distributed throughout the area. Thanks to the
flying and grasping capabilities, the RABS can autonomously select and establish
wireless connections with ground users by dynamically selecting one of the candidate
locations. Moreover, the out-of-band relaying protocol is utilised in this HetNet,
i.e., the accessing link connecting the users with BSs and the backhauling link
between the RABS and MBS are conducted in orthogonal channels. Assume that
there are 20 orthogonal subcarriers with a bandwidth of 180 kHz for accessing
connection, and the backhauling link has a bandwidth of 700 kHz. The transmission
power for MBS and RABS is set to 3 W and 1 W, respectively. Besides, one
user can be provisioned by one or multiple subcarriers while one subcarrier can
only be assigned to at most one user to avoid intra-cell interference. The path loss
model follows the results shown in 3GPP [120], that is, 128.1+37.6log10(d) and
140.7+36.7log10(d) for the path loss in macro and small cells, respectively, where
d is the distance between BSs and users in kilometres. For the wireless backhaul
channel, the path losses are 100.7+23.5log10(d) and 125.2+36.3log10(d) for line-
of-sight (LoS) and non-line-of-sight (NLoS) links, respectively. The LoS probability
is calculated by min(0.018/d,1)(1− exp(−d/0.072))+ exp(−d/0.072).

Taking fairness into consideration, the minimum rate among all users is max-
imised by optimizing the following three decisions: Firstly, the RABS selects one
of the candidate locations to grasp when providing wireless connections. Secondly,
whether each user should be associated with the MBS or RABS is determined.
Thirdly, available subcarriers are allocated for accessing links. The problem is formu-
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Fig. 4.4 Minimum data rate versus RABS locations.

lated as a binary polynomial optimisation problem and solved using a semidefinite
relaxation-based heuristic method as proposed in previous work [121].

Assuming there are 10 users distributed randomly and the MBS is located at
the origin point, Fig. 4.4 presents the minimum data rate versus different candidate
locations via 100 Monte Carlo simulations. The best RABS deploying area denoted
as area A, is located at the centre of the macro cell edge to cover most of the cell-
edge users. In contrast, when the RABS is placed in the corner areas C, D and E,
the system performance is the worst because the RABS cannot cover most of the
cell-edge users. For example, if the RABS is deployed in area C, it cannot connect
with the users in areas D and E, which typically have low data rates because they
are far from the MBS. When the RABS is placed near the MBS, denoted as area B,
although it is far from the cell-edge users, the backhaul capacity increases, resulting
in another peak. Hence, region A can be considered the operational area for the
RABS, allowing it to change its perching point on lampposts located within that
area.

To demonstrate the impact of RABS on the cellular network, Fig. 4.5 compares
the minimum data rate for different network configurations, i.e., a two-tier network
with an RABS deployed following the strategy proposed in [121], a two-tier network
with a randomly-deployed small base station (SBS) and a single-tier network with
only MBS. It can be observed that the two-tier HetNet could enhance the system
performance when I ≥ 3. However, all types of networks show the same performance
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Fig. 4.5 Minimum rate versus number of users.

when I ≤ 2, as in such cases, the minimum rate is primarily constrained by the limited
capacity of the backhaul link, resulting in all users being associated with the MBS.
Comparing the two-tier network with a randomly deployed SBS and the single-tier
network, it can be observed that deploying an extra SBS significantly enhances
the minimum data rate, as the SBS can alleviate the coverage burden of the MBS.
However, conventional SBSs are often installed on rooftops and other low-altitude
urban platforms, making their positions inflexible, while the controllable movement
of RABS compensates for this deficiency. Numerically, comparing two-tier networks
with a strategically-deployed RABS and a randomly-deployed SBS, it can be seen
that the minimum data rate can be improved by up to 36%, as the RABS can be
deployed near cell-edge users and improve system performance. In conclusion,
this case study provides compelling evidence that the implementation of RABS
significantly enhances the minimum data rate of cellular networks, thanks to its
inherent flexibility and agility.
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4.5 Case Study II: Comparing with Other Types of
ABS

As reviewed in Section 4.1, several novel prototypes of ABS have been recently
developed to overcome the endurance issue. To better clarify the benefits of the
RABS pointed out above, it is compared with the following three types of ABS:

• Hovering-based ABS is the conventional ABS that can provide wireless service
when hovering and change its location freely. However, one of the main
challenges is that due to the limited battery capacity, hovering-based ABSs
need to fly back to charging stations periodically and recharge via drone
swapping or battery swapping strategies [122].

• Tethered ABS is an ABS that is connected with a ground anchor by a physical
cable or tether [112]. The physical link brings ABS an unlimited serving
endurance. However, this comes at the cost of reduced mobility so tethered
ABS can only serve users distributed near the ground anchor.

• Laser-powered ABS is another type of ABS having unlimited endurance in
theory [110]. High-power laser beams transmitted from ground laser directors
are used to power ABSs when hovering and flying. Although these wireless
laser beams can power ABSs from a longer distance than physical tethers, the
cruise range of laser-based ABSs is still limited within a ball centred around
the ground laser transmitter to guarantee a safe energy level. The maximum
radius of this cruise range is named as critical charging distance [111].

Initially, the coverage performance of these four types of ABSs is compared.
Assuming 100 users are distributed randomly over an area of 2 km by 2 km, the
problem investigated in [96] is employed as the simulation scenario, where ABSs are
positioned to cover as many ground users as possible. Successful covering is defined
as users experiencing path loss values lower than a predetermined threshold of 118
dB. The air-to-ground channel model proposed in [96] is employed to calculate the
path loss value for hovering-based, tethered, and laser-powered ABSs. However,
because RABSs tend to be deployed at lower altitudes (such as lampposts) having a
higher probability of being blocked, the 3GPP path loss model for urban small cells is
applied for RABSs’ coverage area [120]. Assume that hovering-based, tethered, and
laser-powered ABSs are hovering at the altitude of 100 m when providing wireless
service, and the detailed constraints for different types of ABS are clarified as follows.
Hovering-based ABS can be deployed freely to cover as many users as possible; this
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Fig. 4.6 Comparing the coverage performance for different types of ABS

problem has been studied in [96]. Moreover, the flying range of tethered ABS is
limited by a 150 m cable linked with a ground anchor located at the origin point.
Setting the laser transmission power to 800 W, the critical charging distance of laser-
powered ABS can be calculated by Eq. (10) in [111]. To simulate the grasping-based
deployment for RABSs, it is assumed that a lamppost is distributed every 100 m
which is suitable for RABS grasping. RABSs can select a subset of these lampposts
to grasp when providing wireless service to nearby ground users.

Averaged over 100 Monte Carlo simulations, Fig. 4.6 compares the coverage
performance of RABSs with other baseline schemes, i.e., hovering-based, tethered
and laser-powered ABSs. As expected, with an increase in the number of RABSs,
the coverage improves. It can be also observed that a single laser-powered ABS
and hovering-based ABS perform nearly as well as 8 and 10 RABSs, respectively.
Besides, Fig. 4.6 also shows that the deployment of 20 RABSs can cover all ground
users. Although RABSs require a denser deployment to achieve a high coverage
probability, this should be considered in the context of the following result: even a
swarm of 10 RABSs still offers significant energy savings compared to other types
of ABS.

Fig. 4.7 compares the energy consumed by a swarm of RABSs with hovering-
based, tethered and laser-powered ABSs when operating for 24 hours. The energy
consumption for RABSs includes three parts, propulsion, anchoring and communica-
tion. RABSs are equipped with two types of grippers, a nominal energy-consuming
gripper consuming 5 W and an energy-neutral gripper. The hovering and flying
power is set to 170 W and 162 W, respectively [27], and the communication power
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Fig. 4.7 Comparing the energy consumption for different types of ABS

is assumed to be 2 W [110]. To simulate the RABSs periodical relocating, it is
reasonable to assume that half of the RABSs need to fly 500 m every hour to update
the network topology. It should be pointed out that the reason for setting the moving
distance as 500 m is that when an RABS needs to relocate to a farther lamppost, an-
other RABS that is closer to moving to this position can always be found. The results
depicted in Fig. 4.7 show that when equipping with the energy-neutral grippers, a
swarm of 8 RABSs is more than 30 times more energy efficient than a laser-powered
ABS for the same network coverage. Compared to tethered ABS and hovering ABS,
a group of 10 RABSs are more than 6.6 and 5.3 times energy efficient respectively
when providing the same level of wireless coverage. Besides, since the energy
consumption for ABSs during hovering and flying is affected by environmental
factors, e.g., more energy is needed to maintain stability in high winds and rainfall,
in practice RABSs should show more energy gain because of their environmental
independence, as illustrated in Section 4.3. Moreover, it is worth pointing out that
although hovering-based ABS and RABSs cannot operate for such a long period
due to the battery capacity limitation, in order to ensure a fair comparison, they are
assumed to be able to be swapped and recharged to prolong the serving endurance
[122]. Assuming that the capacity of the onboard battery is 6700 mAh and the
nominal voltage is 14.8 V [110], it can be calculated that the hovering-based ABS
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has to be recharged 41 times, while each RABS only needs to be recharged once
when equipped with the energy-neutral grippers.

4.6 Conclusion

Robotic aerial base stations (RABSs) equipped with dexterous end effectors able to
grasp onto tall urban landforms can introduce significant degrees of flexibility for
network densification in future 6G networks. In this chapter, the system architecture
of RABSs including both hardware design and communication considerations is
discussed by gearing two previously disconnected areas, namely non-terrestrial
communications and robotic dexterous end effectors with grasping capabilities.
Afterwards, the RABS is demonstrated to provide long-term and flexible wireless
service in an energy-efficient, weather-independent and environmentally friendly
manner, following which two case studies are proposed to compare RABSs with
terrestrial base stations and other types of ABSs in terms of coverage and energy
performances.
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Chapter 5

Optimal Deployment and Operation
of Robotic Aerial Base Stations

5.1 Introduction

As illustrated in Section 4, robotic aerial base stations (RABSs) with grasping ca-
pabilities are developed to overcome the endurance issue of conventional aerial
base stations (ABSs) and can provide relative long-term wireless connectivity in an
energy-efficient way. More specifically, taking advantage of the grasping capabil-
ities [117, 123], RABSs can attach autonomously in lampposts via energy-neutral
grasping or land on other tall urban landforms to serve as small cells in urban envi-
ronments for multiple hours or even longer. Also, compared to conventional ground
base stations (BSs), RABSs show increased degrees of freedom which means they
can change their grasping locations to better explore the spatial-temporal dynamic
of the traffic load in real-time scenarios and hence increase the overall network
performance [116]. In this chapter, the optimal deployment and operation strategy is
investigated to explore the use of RABS from a network perspective.

Moreover, because of the increasing emphasis on green communication in recent
years, the sleep mode technique is a potential way to decrease the system energy
consumption by switching a subgroup of BSs off during the off-peak time [124].
In [125], the optimal sleeping decision is made on three different sides, that is,
micro BS, core network and user sides. The work in [126] studies the energy
efficiency performance under two types of sleeping policies, i.e., random and strategic
sleeping policies. In [127], by controlling the sleep mode adaptively, the energy
consumed by a heterogeneous network (HetNet) is minimised under the guarantee
of quality of service (QoS). Similarly, the HetNet sleep strategy is further exploited
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through a mathematical optimisation approach and a deep reinforcement learning
method in [128] and [129], respectively. In [130], the BS activation decision is
made to minimise the system energy with the consideration of the cell association
and resource allocation jointly, which problem is solved through the reweighted l1
minimisation technique. The work[124] reviews the application of sleep mode on
the topic of green cellular networks.

As mentioned above, compared to the nominal ground BSs, RABSs show in-
creased degrees of freedom that allow them not only to operate a sleep mode function
but also to relocate the grasping points to respond to the spatial-temporal dynamic of
traffic load. The main contributions of this chapter are summarised as follows.

• The prototype of RABS is developed to overcome the endurance issue of the
conventional ABS, which can be employed to configure a flexible and green
cellular network thanks to its mobility and energy efficiency. For an initial
exposition from a network perspective, this chapter studies how RABSs operate
the two critical binary decisions, i.e., the active/sleep mode of operation and
relocating the grasping locations or not.

• An essential insight is explored that the deployment and operation decisions of
RABSs are coupled with each other, that is, the RABS only needs to visit the
locations where it is active. Based on this analysis, the optimal deployment and
operation problem is formulated as an integer linear program (ILP) that aims
to maximise the volume of served traffic under the onboard energy constraints.
The modelled ILP problem is NP-hard and the scale grows sharply because of
complicated and tightly coupled variables.

• To solve the above problem efficiently, a special case with only one RABS is
investigated, the formulation of which can be greatly simplified and includes
a knapsack type of constraint and a set of totally unimodular constraints.
Based on the structure of this formulation, a Lagrangian heuristic algorithm is
developed to capture a near-optimal solution in polynomial time. Afterwards,
to handle the large-scale multi-RABS problem, a decomposition strategy
is proposed based on the minimum-weight perfect matching problem and
Hungarian algorithm, which decomposes the multi-RABS case into several
single-RABS problems in polynomial time.

The remainder of this chapter is organised as follows. Section 5.2 details the
application scenario, based on which the system model and mathematical formulation
are proposed. In Section 5.3, a special case with only one RABS in the system is
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Fig. 5.1 Application scenario: Small dots denote the best two locations at each epoch.
Light yellow ellipses represent the traffic demand and its volume is denoted by the
area of ellipses. The dotted lines are the RABS flying routes without the onboard
energy limitation, while the solid lines denote the flying route of the battery-limited
RABSs.

illustrated and solved by a Lagrangian heuristic method, which is developed based
on the analysis of the formulation structure. In 5.4, inspired by the graph theory and
the Hungarian algorithm, a polynomial-time decomposition strategy is proposed to
decompose the multi-RABS problem into several single-RABS problems. A wide
set of numerical investigations is illustrated in Section 5.5.

5.2 System Model and Problem Formulation

Hereafter, a certain geographical area with M candidate locations and a wireless
system including N RABSs are considered. Denote the Cartesian coordinates of
candidate locations by wm ∈ R2, m = 1,2, ...,M and discretise the time horizon into
T epochs with equal length δ . Within each epoch, the active/sleep status for the
RABSs remains unchanged.

In this work, a similar assumption as in [127–129, 131] is made that the traffic
patterns can be predicted from the typical experienced/historical data, which would
be detailed later in Section 5.2.1. Fig. 5.1 illustrates an example application case
with N = 2 and T = 3. Firstly, choose the best two locations from all candidate
locations and depict them by small dots as shown in Fig. 5.1. The ith best location at
epoch t is denoted by ŵti, e.g., ŵ11 and ŵ12 represent the best and the second best
locations at epoch 1, respectively. It should be noted that the best and the second
best locations are the candidate locations with the largest and the second largest
traffic demands, respectively. Further discussion can be found later in Section 5.2.1.
When the energy constraint is ignored, N RABSs would always be able to visit all
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chosen locations {ŵti} to serve the most volume of traffic load. In that case, the
flying route is denoted by the dotted lines in Fig. 5.1, where RABS 1 follows the
route ŵ11 → ŵ22 → ŵ31 and RABS 2 passes ŵ12 → ŵ21 → ŵ32 successively. In
contrast, when the battery limitation is taken into account, this ideal policy might
be infeasible. In that case, RABSs might need to switch off at some epochs to save
energy and wake up at others. For example, in Fig. 5.1, the relatively lower volume
of traffic at location ŵ22 and long flying distance make visiting this point inefficient
in terms of energy consumption. Thus, RABS 1 would wake up at epochs 1 and 3,
and switch off at epoch 2. Most importantly, it is worth pointing out that these two
operation decisions, i.e., active/sleep mode and relocate the grasping locations or not,
are tightly coupled with each other. In other words, the RABS only needs to grasp at
the chosen location ŵti when it is active at epoch t. As presented by the solid lines in
Fig. 5.1, since RABS 1 would be switched off during epoch 2 to satisfy the battery
constraints, it does not need to relocate to ŵ22 at all. It would remain grasping at ŵ11

during epoch 2 and transport to ŵ31 directly at the start of epoch 3. These coupled
decisions will become more evident in the mathematical programming formulation
which is detailed in Section 5.2.3.

5.2.1 Spatial-temporal Traffic modelling

As investigated in [116], the traffic patterns in urban regions show high inhomo-
geneity in both spatial and temporal domains. Even so, they can still be predicted
accurately from the typical experienced data via several existing methods, such as
machine learning techniques [132]. Without loss of generality, the spatial-temporal
traffic model proposed by [133] is used to characterise the traffic variation pattern in
this chapter.

Particularly, the authors of [133] collect real traffic data of 185 base stations
over three weeks in a 6 km × 2.5 km area in one big city in China. The recorded
information is the total traffic volume in Byte of each base station and the research
area can be divided into three typical regions: park, university campus and central
business district (CBD). In the temporal domain, the authors first select traffic data
from base stations located in three typical regions, which contain information on
time, coordinates, and traffic volume. Then, the variation regularity of average traffic
volume in a selected region is analysed to identify the main frequency components via
the fast Fourier transform. The temporal traffic model incorporating more frequency
components could fit the real data more accurately, albeit at the cost of increased
complexity. Therefore, through further analyzing the data in the frequency domain
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Table 5.1 Summary of Notations

Symbol Description
Efly

ti→t ′i′ Propulsion energy consumed by the RABS flying from ŵti to ŵt ′i′

Egrasp Grasping energy consumed by the RABS grasping for an epoch
Eactive Communication energy consumed by the RABS being active for an epoch
Esleep Communication energy consumed by the RABS being sleep for an epoch
En Total energy consumed by the RABS n
Emax onboard battery capacity
M Number of all candidate locations
N Number of RABSs
Pfly Propulsion power of the RABS
Pgrasp Grasping power of the RABS
Ptra Transmission power of the RABS
Pactive Active mode power of the RABS
Psleep Sleep mode power of the RABS
T Number of epochs
V (t) Mean traffic volume at epoch t
Vm(t) The traffic volume if an RABS is placed at the candidate location m at epoch t
V̂ti The ith largest traffic volume at epoch t
wm The Cartesian coordinates of the candidate location m
ŵti The location with the ith largest traffic volume at epoch t
xn

t Binary variables indicating whether the RABS n be active or not at epoch t
yn

ti→t ′i′ Binary variables indicating whether the RABS n fly from ŵti to ŵt ′i′ or not
zn

ti Binary variables indicating whether the RABS n visit ŵti or not
δ Length of an epoch
σ Standard deviation of the lognormal distribution

via fast Fourier transform, the authors find that using three frequency components,
π

12 , π

6 and π

4 , could effectively achieve the trade-off between accuracy and complexity
in modelling the temporal variation of traffic. It should be noted that these three
frequencies correspond to the period of 24 hours, 12 hours and 8 hours, respectively,
which align with user social behaviour that they exhibit repetitive behaviours within
daily, semi-daily, and working hour intervals. Accordingly, the mean traffic volume
among all base stations can be characterised by the following sinusoid superposition
model containing these three frequency components,

V (t) = a0 +a1 sin(
π

12
t +ϕ1)+a2 sin(

π

6
t +ϕ2)+a3 sin(

π

4
t +ϕ3), (5.1)

where a0 is the average value of V (t) during a period of time, [a1,a2,a3] and
[ϕ1,ϕ2,ϕ3] are the amplitudes and phases that take different values in different
scenarios. Fig. 5.2(a) depicts the temporal trend during a 24-hour period in four
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typical regions, i.e., park, campus, CBD and the whole area, as well as the amplitudes
and phases measured by [133].

Afterwards, the traffic distribution is explored and modelled in the spatial domain.
The authors of [133] first illustrated that, compared to commonly-used spatial Poisson
point process and Gaussian distribution models, the lognormal distribution can better
fit the traffic volume distribution in real cellular networks. Specifically, the authors
initially select the traffic volume of all base stations for each hour in the whole
area of interest, forming 24 datasets corresponding to 24 hours. Subsequently,
they computed the probability density function of the traffic volume and used the
lognormal distribution to fit the real data. Finally, by comparing the real traffic
volume and simulated data, the authors demonstrate that the lognormal distribution
can effectively model the spatial distribution of traffic, and by changing the values
of standard deviation, the lognormal distribution can fit the traffic distribution for
different regions. For instance, the standard deviations corresponding to parks,
campuses, and CBDs are 1.3, 3.6, and 2.8, respectively [133]. Fig. 5.2(b) and Fig.
5.2(c) present the spatial distribution in parks and campuses, respectively. It can be
also noticed that the traffic shows more inhomogeneity when the value of standard
deviation σ is larger.

After modelling the spatial-temporal distribution of traffic based on real data,
Section IV of [133] proposes a method for modelling traffic volume at small base
stations, which is employed to model the traffic demands generated from all candidate
locations in this section. Particularly, in the first step, the serving period is divided
into T epochs with equal duration δ = 1 hour, the mean traffic volume among all
candidate locations, denoted by V (t), can be calculated by (5.1), in which the values
of amplitudes and phases can be found in the legend of Fig. 5.2(a). Secondly, the
estimated volume of traffic when placing the RABS in the candidate location m at
epoch t is generated by lognormal distribution samples,

Vm(t) = lognrnd
(

log(V (t))− 1
2

σ
2,σ

)
, ∀m, (5.2)

Eq. (5.2) denotes that the traffic volume at the candidate location m at epoch t can
be characterised by the random value following the lognormal distribution with
mean log(V (t))− 1

2σ2 and standard deviation σ , where V (t) is calculated via (5.1).1

1The mean m and variance v of a lognormal random variable are the functions of the lognormal
distribution parameters µ and σ , i.e., m= exp(µ+σ2/2) and v= exp(2µ+σ2)(exp(σ2)−1), where
µ and σ are mean and standard deviation of logarithmic values, respectively. In Eq. (5.2), the mean
of traffic volume is denoted by V (t), i.e., m is set to V (t), thus the mean of the lognormal distribution
can be calculated as µ = log(V (t))− 1

2 σ2 [134].
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(a) Temporal distribution in 24 hour.

(b) Spatial distribution at 12 o’clock in
campus region where σ = 3.6.

(c) Spatial distribution at 12 o’clock in
park region where σ = 1.3.

Fig. 5.2 Visualisation of spatial-temporal traffic distribution.

According to the predicted traffic demand, the ith largest traffic volume at epoch t

is denoted by V̂ti and the corresponding candidate location is indicated by ŵti. The
locations with the largest N volume from all candidate locations are selected to
deploy N RABSs at each epoch, as shown by the small dots in Fig. 5.1. According
to the predicted traffic demand, the ith largest traffic volume at epoch t is denoted by
V̂ti and the corresponding candidate location is indicated by ŵti. The locations with
the largest N volume from all candidate locations are selected to deploy N RABSs at
each epoch. For example, in Fig. 5.1, considering there are two RABSs available to
be deployed, the locations with the largest and the second largest traffic volume are
selected and shown by the small dots in Fig. 5.1.

5.2.2 RABS Energy Model

As shown in [107], the energy consumption of RABSs is generally composed of
three main components, namely the propulsion energy, the grasping energy and the
communication-related energy.
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1) Propulsion Energy: Assuming the propulsion power for an RABS is denoted
by Pfly, the flying energy of RABS when transporting from ŵti to ŵt ′i′ is calculated
as,

Efly
ti→t ′i′ =

Pfly∥ŵt ′i′ − ŵti∥2

v
, t ′ > t, (5.3)

where ∥·∥ calculates the Euclidean norm. Notably, t ′ > t limits that the RABS can
only fly from a selected location at epoch t to a location at epoch t ′ but cannot move
in the opposite direction since the time passed.

2) Grasping Energy: The grasping power of an RABS depends on its size, weight
and the hardware design of the mounted gripper [107]. Considering the ferromagnetic
surfaces in tall urban landforms, such as the lampposts, electromagnetic solenoid-
based grippers can be used for grasping due to their versatility [117]. Energy
consumption for different kinds of grippers is further detailed in [107]. Typically,
because the flying time is very short compared to the grasping and communication
time (tens of seconds versus almost one hour), it is reasonable to approximate the
grasping and communication time as the whole epoch duration δ so that the grasping
energy consumed during an epoch can be calculated as Egrasp = Pgraspδ , where Pgrasp

denotes the grasping power.
3) Communication Energy: The characteristic of communication power con-

sumption depends on the hardware design of micro BS carried by RABS. In this
work, a widely used unified BS power model proposed by [118] is employed since
it is applicable to different types of communication configurations. Particularly,
the communication energy for active and sleep modes can be approximated as
Eactive = (ηPtra +Pactive)δ and Esleep = Psleepδ , respectively, where Ptra is the trans-
mit power, Pactive and Psleep are the active and sleep mode power, respectively. η > 0
is a slope factor of the transmit power related to the hardware design of RABSs. In
most cases, the inequality Psleep < Pactive always holds so it is beneficial to turn off
the RABS to save energy during the off-peak hours.

5.2.3 Problem Formulation

In this subsection, the aforementioned scenario is formulated as an optimisation
problem aiming to maximise the offered traffic load with the guarantee of the
onboard energy constraint by operating the RABSs mode. Unlike the terrestrial
small cells operating only in the active/sleep mode, the operation decisions of RABSs
incorporate the following three decisions/actions,

• D1: Would RABS be sleep or active at epoch t?
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• D2: Would RABS fly from one location to another when time goes from epoch
t to t +1?

• D3: At epoch t, how to deploy RABSs in N selected locations ŵt1, ŵt2, ..., ŵtN?

Accordingly, there are three sets of binary variables employed to formulate the
aforementioned decisions. The variable xn

t ∈ {0,1} denotes that the RABS n would
be in active (xn

t = 1) or in sleep (xn
t = 0) mode at epoch t. The yn

ti→t ′i′ ∈ {0,1}
indicates whether (yn

ti→t ′i′ = 1) or not (yn
ti→t ′i′ = 0) the RABS n moves from ŵti to

ŵt ′i′ location. Similarly as in (5.3), the inequality t ′ > t in yn
ti→t ′i′ denotes the order

of precedence. Finally, zn
ti ∈ {0,1} denotes the RABS n would visit location ŵti

(zn
ti = 1) or not (zn

ti = 0).
1) Constraints for coupling between decisions D1 and D3: As illustrated in Fig.

5.1, the RABS only needs to visit the locations where it is in active mode. To exploit
this coupling, the following constraints should be satisfied,

N

∑
i=1

zn
ti = xn

t , ∀n ∈ {1, ...,N}, ∀t ∈ {1, ...,T}, (5.4)

Equation (5.4) denotes that the RABS would be active at epoch t (xn
t = 1) only when

it visits one selected location at epoch t (∑N
i=1 zn

ti = 1).
2) Degree constraints for decisions D2 and D3: To satisfy the degree requirement

for decisions D2 and D3, two pseudo-epochs are introduced and indexed by 0 and
T +1. The following equations are employed to formulate the degree constriants,

T+1

∑
t ′=t+1

N

∑
i′=1

yn
ti→t ′i′ = zn

ti,∀i ∈ {1, ...,N},∀n ∈ {1, ...,N},∀t ∈ {0,1, ...,T},

t−1

∑
t ′=0

N

∑
i′=1

yn
t ′i′→ti = zn

ti,∀i ∈ {1, ...,N},∀n ∈ {1, ...,N},∀t ∈ {1, ...,T +1},

(5.5a)

(5.5b)

where (5.5a) depicts whether the RABS would depart from ŵti or not, while (5.5b)
indicates the landing process. For notational convenience, the energy consumption
related to these two introduced pseudo-epochs is assumed to satisfy the following
equation, Efly

ti→T+1i′ = 0, ∀i, i′, t ∈ {0,1, ...,T},

Efly
0i→ti′ = Efly

1i→ti′, ∀i, i′, t ∈ {1,2, ...,T +1}.

(5.6a)

(5.6b)

Equation (5.6a) represents that the flying energy consumed by moving from any
ŵti to the selected locations at epoch T +1, i.e., ŵT+1i′ , is equal to 0, while (5.6b)
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illustrates that the flying energy consumed by any path departing from ŵ0i is equal
to the value of which taking off from ŵ1i.

3) Energy constraints: By recalling the energy model mentioned in Section
5.2.2, the energy consumed by RABS n can be calculated by the sum of propulsion,
grasping and communication energy,

En =
T

∑
t=0

N

∑
i=1

T+1

∑
t ′=t+1

N

∑
i′=1

Efly
ti→t ′i′y

n
ti→t ′i′ +

T

∑
t=1

(Eactive +Egrasp)xn
t +

T

∑
t=1

(Esleep +Egrasp)(1− xn
t ),

(5.7)
Subsequently, the energy constraints ensuring that the onboard battery cannot run
out are as follows,

En ≤ Emax, ∀n ∈ {1, ...,N}, (5.8)

where Emax indicates the capacity of the onboard battery.
4) Constraints for avoiding collision: For each selected location ŵti, there is at

most one RABS that can visit at each epoch, that is,

N

∑
n

zn
ti ≤ 1, ∀t ∈ {1, ...,T},∀i ∈ {1, ...,N}, (5.9)

Hereafter, the operation problem of RABSs aiming to maximise the total served
traffic is formulated as,

max
{xn

t }{yn
ti→t′i′}{zn

ti}

N

∑
n=1

T

∑
t=1

N

∑
i=1

V̂tizn
ti, (5.10a)

s.t. (5.4), (5.5a)− (5.5b), (5.8), (5.9), (5.10b)

xn
t ∈ {0,1}, ∀n ∈ {1, ...,N},∀t ∈ {1, ...,T}, (5.10c)

yn
ti→t ′i′ ∈ {0,1}, ∀n ∈ {1, ...,N},∀ti → t ′i′2, (5.10d)

zn
ti ∈ {0,1}, ∀n ∈ {1, ...,N},∀t ∈ {1, ...,T},∀i ∈ {1, ...,N}. (5.10e)

It can be seen that (5.10) is an integer linear programming (ILP) and its scale grows
sharply as T and N increase because of the indexes combined in the variables.
In other words, solving (5.10) by ILP solvers, such as Gurobi [67], can be very
time-consuming and only applicable for small or medium problem instances. The
following Section 5.3 investigates a special case with only one RABS, in which
case, as will be shown, the problem (5.10) can be greatly simplified. By exploiting
the formulation structure of this special problem, a Lagrangian heuristic method
is developed to obtain a high-quality solution in polynomial time. Afterwards, a
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polynomial-time decomposition strategy is then proposed based on the minimum-
weight perfect matching problem in Section 5.4 to decompose the multi-RABS
problem (5.10) into several single-RABS cases.

5.3 Special Case: Single-RABS Problem

In this section, a special case of (5.10) with only one RABS is studied, which
formulation can be greatly simplified from (5.10) and includes a knapsack constraint
and a set of totally unimodular constraints. Then the Lagrangian dual of the problem
with this structure is proven to be equal to the optimal value of its linear relaxation.
Based on this analysis, a Lagrangian heuristic algorithm is developed to achieve a
near-optimal solution in polynomial time, which can provide insightful information
on the potential gains of deploying a robotic small cell.

5.3.1 Problem Formulation and Analysis

To simplify the formulation (5.10) to the single-RABS case, some indexes and
variables can be eliminated since the decision D3 does not need to be considered
anymore. As illustrated in Section 5.2.1, the location with the best traffic volume,
denoted by V̂t , is selected for each epoch when there is one RABS. This selected
location is denoted by ŵt . According to equation (5.3), the propulsion energy when
flying from ŵt to ŵt ′ can be calculated by,

Efly
t→t ′ =

Pfly∥ŵt ′ − ŵt∥2

v
, t ′ > t, (5.11)

Similarly, the binary variables can also be simplified. In that case, xt ∈ {0,1}
indicates whether the RABS would be active or sleep at epoch t. Also, yt→t ′ ∈ {0,1}
denotes whether the RABS would be relocated from ŵt to ŵt ′ or not. Notably, (5.4)
shows that being active at epoch t implies that the RABS visits location ŵt . Thus,
the variables {zn

ti} do not need to be considered since it is duplicates of {xt} in the
single-RABS case.

2 For simplicity of notation, ∀ti → t ′i′ is used to represent ∀ti → t ′i′ ∈{ti → t ′i′
∣∣t∈{0, ..,T}, i ∈

{1, ...,N}, t ′∈{1, ..,T+1}, i′ ∈ {1, ...,N}, t ′> t}.
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Similar to (5.7), the energy consumption of RABS can be calculated by,

E =
T

∑
t=0

T+1

∑
t ′=t+1

Efly
t→t ′yt→t ′ +

T

∑
t=1

(Eactive +Egrasp)xt +
T

∑
t=1

(Esleep +Egrasp)(1− xt).

(5.12)
Hereafter, the operation problem for a single-RABS case can be formulated as,

max
{xt}{yt→t′}

T

∑
t=1

V̂txt , (5.13a)

s.t.
T+1

∑
t ′=t+1

yt→t ′ = xt , ∀t ∈ {0,1, ...,T}, (5.13b)

t−1

∑
t ′=0

yt ′→t = xt , ∀t ∈ {1, ...,T,T +1}, (5.13c)

E ≤ Emax, (5.13d)

xt ∈ {0,1}, ∀t ∈ {0,1, ...,T,T +1}, (5.13e)

yt→t ′ ∈ {0,1}, ∀t → t ′3. (5.13f)

The constraints in (5.13b) and (5.13c) represent that the RABS would depart from ŵt

( ∑
T+1
t ′=t+1 yt→t ′ = 1 ) and land at ŵt (∑t−1

t ′=0 yt ′→t = 1) only when it is active at epoch t

( xt = 1 ), respectively. Finally, (5.13d) is the energy budget constraint to guarantee
that the RABS would not run out of onboard battery during the defined time horizon
T .

Clearly, it can be seen that (5.13) is also an ILP and its scale is much smaller
than (5.10). However, constraint (5.13d) poses a challenge since it resembles a
binary knapsack constraint. Thus, (5.13) is not easier than the NP-hard knapsack
problem and its scale increases sharply with a growing T , verified by footnote 3.
In other words, solving the globally optimal solution may take an extremely long
computational time when the problem size is large. To balance the computational
complexity and the optimality of the solution, an algorithm is proposed to efficiently
achieve a near-optimal solution based on the structure of (5.13).

Lemma 1: The set of constraints (5.13b)-(5.13c) is totally unimodular.

Proof: Hereafter, the Lemma 2 is proven under the assumption T = 3, and the
proof can be extended to any value of T . Setting T = 3, the constraints (5.13b)-

3 For simplicity of illustration, ∀t → t ′ is used to represent ∀t → t ′ ∈{t → t ′
∣∣t ∈{0, ..,T}, t ′∈

{1, ..,T+1}, t ′> t}.
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(5.13c) is as follows,



y0→1 + y0→2 + y0→3 + y0→4 = x0,

y1→2 + y1→3 + y1→4 = x1,

y2→3 + y2→4 = x2,

y3→4 = x3,

y0→1 = x1,

y0→2 + y1→2 = x2,

y0→3 + y1→3 + y2→3 = x3,

y0→4 + y1→4 + y2→4 + y3→4 = x4.

(5.14a)

(5.14b)

(5.14c)

(5.14d)

(5.14e)

(5.14f)

(5.14g)

(5.14h)

Accordingly, the parameter matrix of (5.14a)-(5.14h) is given by (5.15), where each
row denotes the parameters of all variables shown in the corresponding constraint,
e.g. the first row denotes the parameters in (5.14a). The corollary 2.1 in Section 2.3
proves the fact "If the (0,1,−1) matrix A has no more than two nonzero entries in

each column, and if ∑ j ai j = 0 if column j contains two nonzero coefficients, then B

is totally unimodular." Thus, the matrix in (5.15) is totally unimodular. □



y0→1 y0→2 y0→3 y0→4 y1→2 y1→3 y1→4 y2→3 y2→4 y3→4 x0 x1 x2 x3 x4

1 1 1 1 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0

−1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 −1 0 0 −1 0 0 0 0 0 0 0 1 0 0

0 0 −1 0 0 −1 0 −1 0 0 0 0 0 1 0

0 0 0 −1 0 0 −1 0 −1 −1 0 0 0 0 1



(5.15)

Relaxing the energy constraint (5.13d) by a nonnegative Lagrange multiplier λ ,
the Lagrangian relaxation of (5.13) can be written as follows,

zLR(λ ) = max
{xt}{yt→t′}

T

∑
t=1

V̂txt −λ

(
E −Emax

)
, (5.16a)

s.t. (5.13b), (5.13c), (5.13e), (5.13f), (5.16b)

where zLR(λ ) denotes the Lagrangian relaxation and certainly is an upper-bound
for (5.13). The Lagrangian dual problem calculating the least upper-bound can be
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5.3 Special Case: Single-RABS Problem

expressed as,
zLD = min

λ≥0
zLR(λ ). (5.17)

Another widely used relaxation technique of ILP is to relax the integer variables
to continuous variables, namely linear relaxation of the ILP. To this end, the linear
relaxation of (5.13) is as follows,

zLP = max
{xt}{yt→t′}

T

∑
t=1

V̂txt , (5.18a)

s.t. (5.13b)− (5.13d), (5.18b)

xt ∈ [0,1], ∀t ∈ {0,1, ...,T}, (5.18c)

yt→t ′ ∈ [0,1], ∀t → t ′. (5.18d)

The following proposition proves that the value of dual zLD can be achieved by
solving the linear relaxation (5.18). This fact could be utilised to choose a step size
to guarantee the convergence of the subgradient method in the following Section
5.3.2.

Proposition 1: zLD = zLP

Proof: Define a polyhedral Q generated by constraints in (5.10b) and (5.10c).
Since Lemma 1 shows that the parameter matrix of (5.10b)-(5.10c) is totally uni-
modular, the extreme points of polyhedral Q are integral. Corollary 6.6 in section
II.3.6 of [84] proves the fact zLD = zLP. □

5.3.2 Lagrangian Heuristic Algorithm

Although proposition 1 illustrates that the value of Lagrangian dual zLD can be
achieved by solving the linear programming (5.18), the obtained results may not
be integer so that it is still tricky to generate a feasible solution for (5.13). In this
subsection, a Lagrangian heuristic algorithm is proposed which includes two steps,
namely solving the dual problem (5.17) through the subgradient method and refining
a feasible solution for (5.13). It can be shown that compared with solving (5.18)
directly, the captured value of variables by the subgradient method is integer thus
easing the refinement of feasible solutions for (5.13).

1) Subgradient Method for solving Lagrangian dual (5.17): In the first step, the
Lagrangian dual problem (5.17) is solved by the subgradient method in view of its
convex and non-smooth construction. For any given λ , the subgradient direction
can be obtained through the Lagrangian relaxation (5.16), which is still an ILP and
thus difficult to solve. Fortunately, recalling that Lemma 1 points out the totally
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5.3 Special Case: Single-RABS Problem

unimodular structure of the constraints in (5.16), the optimal integer solution of
(5.16) can be solved through its linear relaxation as follows [84] ,

max
{xt}{yt→t′}

T

∑
t=1

V̂txt −λ

(
E −Emax

)
, (5.19a)

s.t. (5.13b), (5.13c), (5.19b)

xt ∈ [0,1], ∀t ∈ {0,1, ...,T,T +1}, (5.19c)

yt→t ′ ∈ [0,1], ∀t → t ′. (5.19d)

Subsequently, a subgradient direction for a certain λ can be selected as [86],

g = E −Emax. (5.20)

To decrease the dual value zLR(λ ) along the subgradient direction, λ can be updated
by,

λk+1 = [λk −αkgk ]
+, (5.21)

where notation [·]+ is defined as [·]+ ≜ max(·,0), λk, αk and gk are the Lagrangian
multiplier, step size and subgradient at kth iteration, respectively. Furthermore, to
ensure that {λk} can converge to the optimal multiplier, the step size αk can be
chosen as [135], 

α0 =
zLP − zLR(λ0)

∥g0∥2 ,

αk =
(
1− 1

βk1−k−r

)αk−1∥gk−1∥
∥gk∥

,

(5.22a)

(5.22b)

where β ≥ 1 and 0 < r < 1 are predefined parameters. The procedure of the subgra-
dient method is summarised as the step 1-6 in Algorithm 4.

2) Construct a feasible solution: Although the solution obtained by subgradient
method is integer, it generally does not satisfy the energy constraint (5.13d) because
of the relaxation operation in (5.16). To this end, a greedy method is then proposed to
refine a feasible solution. Starting from the results obtained by subgradient method,
the idea is to choose the active epoch with the least traffic load, then switch this
epoch into the sleep status and delete the associated flying paths. Repeat this process
until the energy constraint (5.13b) is satisfied. The greedy method is shown as the
step 7-9 in Algorithm 4.

Remark 1: (Stopping criteria) In Algorithm 4, it can be verified that the proposed
refinement procedure in step 7-9 can always return a feasible solution for problem
(5.13) whenever the subgradient method in step 1-6 stops. Thus, to control the
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Algorithm 4 Lagrangian Heuristic Algorithm
1: Solve (5.18) and denote the solution as zLP.
2: Initialise λ0. Obtain zLR(λ0) and g0 by solving (5.19). Initialise the step size

through (5.22a). Set k = 1.
3: repeat
4: Update the λk through (5.21). Obtain zLR(λk) and gk by solving linear pro-

gramming (5.19). Update the step size through (5.22b).
5: k = k+1.
6: until The number of iterations k achieves a threshold kmax.
7: repeat
8: Choose the active epoch with the least traffic load. Switch the RABS into

sleep mode at this epoch and delete the related route.
9: until Energy constraint (5.13d) is satisfied.

running time conveniently, the stopping criteria is set as the maximum number
of iterations instead of the gap between zLR(λk) and zLD, which is a widely used
stopping criteria to guarantee the result accuracy. Besides, the algorithm performance
with different kmax would be evaluated in the following Section 5.5.

Remark 2: (Computation complexity) In the section 6.6.1 of [136], the worst
case of solving a linear programming is approximately O

(
(nv +nc)1.5nv2), where

nv and nc are the number of variables and constraints respectively. Moreover, the
refinement procedure 7-9 would check at most T epochs, thus the complexity of
Algorithm 4 is approximately,

O
(
kmax · (nv +nc)1.5nv2 +T

)
, (5.23)

where nv = (T + 2)+ (T + 2)!/2T ! and nc = (3T + 4)+ (T + 2)!/2T ! for linear
programming (5.19).

5.4 Decomposition Strategy for multi-RABS Problem

In Section 5.3, it is shown that the single-RABS problem (5.13) has a much smaller
scale than multi-RABS case (5.10) and can be solved by Lagrangian heuristic
algorithm efficiently. In view of this, a polynomial-time decomposition strategy is
proposed based on the minimum-weight perfect matching problem to decompose
the multi-RABS problem (5.10) into several single-RABS cases.

Instead of considering the energy consumption as a constraint in (5.10), the basic
idea of the decomposition strategy is to minimise the total energy consumption
with the guarantee of achieving the highest traffic load. In other words, the energy
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5.4 Decomposition Strategy for multi-RABS Problem

when RABSs visit all the selected locations {ŵti
∣∣ ∀t ∈ {1, ...,T},∀i ∈ {1, ...,N}}

is minimised. By taking the energy constraint (5.8) as the objective function, the
problem formulation can be extended from (5.10) straightforwardly,

min
{xn

t }{yn
ti→t′i′}{zn

ti}

N

∑
n=1

En, (5.24a)

s.t. (5.4), (5.5a)− (5.5b), (5.24b)
N

∑
n

zn
ti = 1, ∀t ∈ {1, ...,T},∀i ∈ {1, ...,N}, (5.24c)

(5.10c)− (5.10e). (5.24d)

The objective function (5.24a) minimises the total energy consumption. The con-
straints in (5.24c) guarantee that all selected locations can be visited by RABSs,
which is obtained by changing the inequality in (5.9) to strict equality. Although the
problem (5.24) seems to be the dual problem of (5.10), it is actually not the dual,
but obtained by swapping the objective function (5.10a) and the constraint (5.8),
thereby minimising the total energy consumption with the guarantee of achieving
the highest traffic load. It is worth noting that the solution of (5.24) is not feasible in
practice because it does not take the capacity of the RABS onboard batteries into
consideration. However, it can decompose the multi-RABS problem (5.10) into a
group of single-RABS cases, as discussed in the following.

To solve (5.24), the first observation is that both (5.10) and (5.24) can be modelled
on a multi-layer directed graph. A multi-layer graph is constructed as follows:
Generate T layers, each of which represents an epoch. In each layer, there are N

vertices and each of them corresponds to a selected location at this epoch. Two
vertices ŵti and ŵt ′i′ are connected by a directed edge if t ′ > t, as required by footnote
2 to satisfy the order of precedence. Each edge is assigned an energy consumption
value of the RABS flying along this route. Each vertex is associated with an energy
consumption level Eactive −Esleep as well as the corresponding traffic load V̂ti. Fig.
5.3 shows an example graph when setting T = 3 and N = 2. Recalling that problem
(5.10) aims to maximise the volume of served traffic under the limitation of the RABS
onboard battery. Mapping (5.10) to the generated graph in Fig. 5.3, it can be observed
that solving (5.10) is equivalent to obtaining N paths from the first layer to T th layer
covering a subset of vertices with the largest traffic volume and guaranteeing that the
energy consumption of each path is less or equal to Emax −T (Esleep +Egrasp). The
red and blue lines in Fig. 5.3(a) present two routes for RABSs, i.e., ŵ11 → ŵ31 and
ŵ12 → ŵ21 → ŵ32, which are corresponding to the toy example illustrated in Fig. 5.1.

89



5.4 Decomposition Strategy for multi-RABS Problem

Epoch 2Epoch 1 Epoch 3

Best

Second

Best

(a) A possible solution for (5.10) corresponding to Fig. 5.1.

Epoch 2Epoch 1 Epoch 3

Best

Second

Best

(b) A possible solution for (5.24).

Fig. 5.3 Model the problems (5.10) and (5.24) on a multi-layer directed graph.

On the other hand, considering the problem (5.24) minimises the energy consumption
when all the selected candidate locations are being visited, the corresponding map
in the graph is to obtain N paths with the minimal total energy consumption and all
vertices are required to be covered. Fig. 5.3(b) shows an example solution for (5.24)
including two routes, i.e., ŵ11 → ŵ22 → ŵ31 and ŵ12 → ŵ21 → ŵ32. Hereafter, the
graph version of problem (5.24) is named as multi-source Shortest Paths problem
with Edge Covering (MSPEC) for notational convenience, in which ’shortest paths’
means the minimal energy consumption and ’edge covering’ means that a subset of
edges should be chosen to cover all vertices.

To solve the MSPEC problem, some definitions from graph theory are first
revised. A perfect matching on a graph is a subset of edges such that each node
in this graph is met by exactly one edge in the subset. Assigning each edge with a
weight, the minimum-weight perfect matching problem is to find a perfect matching
with the minimum total weight. Besides, a graph is called bipartite if there is a
partition of vertices into two disjoint subsets, such that every edge in the graph joins
the vertices in one subset to another. The following lemma and proposition prove
that the MSPEC problem can be solved in a timely manner.

Lemma 2: In the multi-layer graph, select the vertices in two adjacent layers,

i.e., t and t +1, as well as all joint edges, and construct a subgraph denoted by Gt ,

as shown in Fig. 5.4. There exists a perfect matching on Gt .

90



5.4 Decomposition Strategy for multi-RABS Problem

Epoch t+1Epoch t

. . . . . 

. . . . . 

Fig. 5.4 Generate a subgraph Gt by selecting two adjacent layers.

Algorithm 5 Decomposition strategy by solving (5.24)
1: Generate a multi-layer graph as Fig. 5.3 shows.
2: for t ∈ {1,2, ...,T −1} do
3: Select two adjacent layers t and t +1, and construct a subgraph Gt .
4: Solve the minimum-weight perfect matching problem on Gt by Hungarian

Algorithm.
5: end for
6: Link the solutions and obtain N paths from layer 1 to layer T .

Proof: Partition the vertices into two disjoint sets, i.e., Vt = {ŵti
∣∣ ∀i ∈ {1, ...,N}}

and Vt+1 = {ŵt+1i
∣∣ ∀i ∈ {1, ...,N}}. It can be easily observed that Gt is bipartite.

For each subset of Vt , denoted by Vsub
t ⊆ Vt , the equation |Γ(Vsub

t )| = N always
holds, where Γ(Vsub

t ) denotes the neighborhood of Vsub
t , i.e., the set of all vertices in

Gt adjacent to the elements of Vsub
t . It is clear that the inequality |Γ(Vsub

t )| ≥ |Vsub
t |

is always satisfied for every Vsub
t , which is required by the Hall’s Marriage Theorem

[137]. Thus, there exists a matching covering all elements in Vt . Moreover, the
matching is perfect since |Vt |= |Vt+1|= N. This completes the proof of Lemma 2.
□

Proposition 2: The MSPEC problem can be solved by solving the minimum-

weight perfect matching problems on all subgraphs Gt , where t ∈ {1,2, ...,T −1}.

Proof: Lemma 2 shows that there exists a perfect matching on the subgraph.
Solving the minimum-weight perfect matching problems for all subgraphs and
linking the optimal solutions ensures obtaining N paths from layer 1 to layer T which
cover all vertices exactly once and have the minimum weight. This completes the
proof of Proposition 2. □

Hereafter, the minimum-weight perfect matching problem in the subgraph Gt

remains to be the last challenge. Fortunately, Gt is a bipartite graph and |Vt | =
|Vt+1| = N. Thus, the minimum-weight perfect matching problem can be seen as
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Table 5.2 Parameter Settings

Parameter Value Parameter Value
Emax 333792 J v 30 m/s
Pfly 100 W [26] η 2.6 [118]
Pgrasp 0.5 W Ptra 0.1 W
Pactive 1 W Psleep 0.6 W

the assignment problem and solved by the Hungarian Algorithm in polynomial
time [138]. The decomposition method illustrated in Position 2 is summarised in
Algorithm 5. Afterwards, the N paths returned from Algorithm 5 can be then solved
by the single-RABS problem (5.13) and a near-optimal solution of multi-RABS
problem (5.10) is captured.

Remark 3: (Computation complexity) The complexity of solving the minimum-
weight perfect matching problem by Hungarian Algorithm is O(N3). Besides, there
are T − 1 subgraphs that would be processed, as shown in step 2 of Algorithm 5.
Therefore, the computational complexity of Algorithm 5 is O

(
(T −1) ·N3).

5.5 Numerical Investigations

In this section, simulation results are presented to evaluate the proposed deployment
and operation strategies for RABS, as well as the convergence of the proposed
algorithms. The parameter settings are summarised in Table 5.2. In a similar
manner with Fig. 5.2(c) and Fig. 5.2(b), there are 121 candidate locations evenly
distributing in a 5× 5km2 area. To generalise the following simulation results to
a wide range of possible traffic manifestations, the amplitudes [a0,a1,a2,a3] and
phases [ϕ1,ϕ2,ϕ3] in (5.1) are assumed to take random values following the Gaussian
distribution, which mean takes the value of the whole area as shown in Fig. 5.2
and the deviation is set to 1. The value of σ in (5.2) is set to 1.3 unless otherwise
specified [133]. It should be noted that all the following numerical results are
averaged by 1000 Monte Carlo simulations except Fig 5.9. Besides, assume that
the RABSs is powered by a Zappers SG4 battery and its capacity can be calculated
as 15.2V× 6100mAh× 3.6 = 333792J [107]. This onboard battery capacity can
be deemed as of a nominal value, however, other types of batteries with different
capacities can be utilised with the proposed set of optimisation algorithms without
loss of generality.
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Fig. 5.5 Comparing RABS with fixed micro cells.

5.5.1 Single-RABS Case

Fig. 5.5 compares the system performance of the RABS and different numbers of
fixed micro BSs when the serving period ranges from 1 hour to 24 hours. Assume
that the fixed micro BSs are deployed greedily according to the predicted traffic
distribution, i.e., when there is one fixed micro BS in the system, It would be
deployed in the candidate location with the largest volume of traffic over the whole
serving period, select the two best locations when there are two micro BSs in the
system and so on. Note that fixed micro BSs are normally powered by cable, and thus
can provide connectivity at all times. When relaxing the energy constraint (5.13d),
the dotted line in Fig. 5.5 presents the traffic load served by an ideal RABS; this
can be assumed as the upper bound on the performance. However, even when the
limited capacity of the battery prevents the realisation of this optimal case, a single
RABS still serves a larger volume of traffic load than four fixed small cells when
T ≥ 10. Overall, Fig. 5.5 illustrates the fact that compared with fixed micro BSs,
the flexibility of RABSs offers a significant benefit even though its onboard battery
can be deemed as limited. However, it should be noted that, in this chapter, to study
the deployment of RABSs from a network perspective, RABSs are assumed to be
able to satisfy all traffic demands generated from their deployed locations. However,
in practice, the performance of RABSs would be limited by various constraints,
such as transmission power, subcarrier allocation, and the capacity of backhaul links.
Therefore, the simulation results in Fig. 5.5 can be regarded as an upper bound under

93



5.5 Numerical Investigations

Fig. 5.6 Comparison on energy consumption for propulsion, communication and
grasping.

the assumption that RABSs can satisfy all traffic demands. The following Section
6.3 further discusses the performance of RABSs under the constraint of backhaul
link capacity.

Fig. 5.6 investigates the three main components of energy consumption as
detailed in Section 5.2.2, i.e., the propulsion energy, the grasping energy and the
communication energy. Observe that the flying (or hovering) consumes significantly
more energy than grasping. This also provides a numerical explanation about why
RABS operates a significantly longer endurance than nominal ABS serving in the
air. Furthermore, note that for an energy-neutral grasping end effector, the perching
energy consumption can be completely eliminated. Comparing the propulsion
and communication power in Fig. 5.6, it can be observed that the proportion of
communication energy increases when the value of T grows, whereas the percentage
of the propulsion power shows a decreasing trend. Numerically, when T = 6,
the propulsion and communication consume 13% and 86% of the total energy,
respectively, while the proportions change to 33% and 60% when T grows to 36.

Fig.5.7 compares system performance served by the RABS and the micro BS
under different traffic distribution deviations. Fig.5.7 shows that RABS always serves
increased levels of volume of traffic load than fixed BS even though its endurance
is limited by an onboard battery. Comparing the volume of served traffic under
different traffic distributions, it can also be observed that the gain of RABS grows
in the case when the traffic distribution shows a higher heterogeneity in the spatial
domain. Taking the T = 24 as an example, the RABS can serve 3.0 times more
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Fig. 5.7 Performances of the RABS and the micro BS under different σ .

Fig. 5.8 Comparing different numbers of RABSs.

volume of traffic than fixed BS when σ = 1.5, while this gain rate decreases to 2.7
when σ = 1.0.

5.5.2 Multi-RABS Case

Fig. 5.8 illustrates the served traffic load versus different sizes of RABS swarm. It
can be observed that the volume of served traffic grows as N increases since more
candidate locations can be selected to deploy RABSs. However, the growth rate
decreases as N increases. For instance, when there are 24 epochs, two RABSs show
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(a) Convergence of subgradient method.

(b) Optimality of Algorithm 4.

Fig. 5.9 Convergence and optimalitiy of Algorithm 4.

a 74% larger traffic than one RABS, while the growth rate decreases to 35% when
N increases from 2 to 3. In other words, and as expected, the economic benefit of
employing more RABSs decreases as the RABS swarm grows.

5.5.3 Algorithm Convergence and Performance

The convergence and optimality of the proposed Algorithm 4 is investigated in Fig.
5.9. Fig. 5.9(a) shows the convergence behaviour of the subgradient method when
iterating 100 times. It can be seen that the value of the Lagrangian problem zLR(λk)

in (5.16) convergences to zLP as the number of iterations k increases. Reviewing
that proposition 1 shows the fact zLD = zLP, dual problem (5.17) can be solved
approximately by subgradient method in a finite number of iterations. Moreover,
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Fig. 5.10 Performance of the proposed decomposition strategy.

Fig. 5.9(b) evaluate the quality of solution captured by Algorithm 4, in which the
red dotted line represents the optimal value of problem (5.13) solved by Gurobi [67]
and the blue solid line indicates the solution of Algorithm 4 when setting different
values of stopping criteria kmax. It is shown that Algorithm 4 can achieve the globally
optimal solution of (5.13) when kmax ≥ 10. Considering the Fig. 5.9(a) and Fig.
5.9(b) together, it is shown that a high-quality solution of (5.13) can be refined even
when the dual problem (5.17) is not solved to a high degree of accuracy. For instance,
when setting kmax = 10, an optimal solution of (5.13) can be captured while the gap
between zLR(λk) and zLP is still nearly 102.

Fig. 5.10 compares the proposed decomposition algorithm with the global
optimal solution solved by Gurobi [67] solver and the random decomposition method.
In the random decomposition strategy, the selected locations ŵti are assigned to
RABSs at each epoch randomly, i.e., generate a solution which is feasible for the
constraints (5.24b)-(5.24d) without minimizing the energy consumption (5.24a), and
then solve a group of single-RABS problems. Comparing Algorithm 2 with the
random decomposition strategy, the proposed method shows a better performance
especially when T is large, e.g., when setting T = 24, Algorithm 2 shows 13%
and 7% gain than the random decomposition when N = 3 and N = 2, respectively.
Afterwards, comparing Algorithm 2 with the global optimal solution, it is shown that
the optimum gap increases as the number of epochs T grows. However, the running
time decreases significantly when applying the proposed decomposition method,
e.g., when setting T = 24 and N = 3, the average solving time of the decomposition
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method is about 7s while the Gurobi running time is nearly 40s. This comes as a
result of remark 2 and remark 3 which show that the computational complexity of
all of the proposed algorithms is in polynomial time. In contrast, the worst-case
complexity of utilizing standard ILP solvers like Gurobi [67] to solve problem (5.10)
is exponential, which makes it unsuitable for medium to large network instances.

5.6 Conclusion

In Chapter 4, RABS is proposed as a novel ABS prototype to overcome the en-
durance limitation of conventional ABSs due to significant energy consumption for
flying/hovering. To further explore the advantages of RABS in energy efficiency, an
efficient optimisation model is formulated to optimally orchestrate the deployment
and operation strategy for RABSs based on the underlying traffic demand in this
chapter. To solve the aforementioned problem, a special case with a single RABS
is first investigated and solved by a Lagrangian heuristic algorithm by exploiting
the totally unimodularity structure. A polynomial-time method is then proposed to
decompose the multi-RABS problem into several single-RABS cases based on the
Hungarian algorithm. A wide set of numerical investigations reveals that RABSs can
significantly outperform the nominal fixed small cells thanks to the inherent mobility,
and their gain rate increases in the case where the traffic spatial distribution is highly
heterogeneous.
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Chapter 6

Incorporating Robotic Aerial Base
Stations in Next-Generation
Applications

6.1 Introduction

The study in Chapter 5 demonstrates that robotic aerial base stations (RABSs) can
satisfy wireless demands that show high inhomogeneity in both spatial and temporal
domains, primarily attributed to their inherent flexibility. Afterwards, the advent
of B5G/6G technologies introduces new requirements for RABSs, urging them to
play different roles in future networks. This chapter explores two novel application
scenarios for RABSs in the upcoming 6G era. In Section 6.2, RABS is used as a
flexible radio device performing both sensing and communication tasks. In Section
6.3, a swarm of RABSs are utilised to construct a flexible multi-hop backhauling
network to satisfy the heterogeneous traffic demands.

6.2 RABS-assisted Integrated Sensing and Communi-
cations

In the upcoming 6G era, reliable wireless coverage and accurate remote sensing
capabilities are crucial for emerging applications such as intelligent transport systems
and smart manufacturing. This has led to the recent surge in the development of
integrated sensing and communication (ISAC) techniques [139]. In this section, to
further explore potential application scenarios of RABS, it is used to perform sensing

99



6.2 RABS-assisted Integrated Sensing and Communications

and communication tasks to bring further flexibility and agility to conventional ISAC
systems.

A number of works are devoted to performing ISAC tasks to improve spectrum
efficiency and reduce the expenditure cost. In [140], the sensing and communication
performances, evaluated by mutual information (MI) and data rate respectively,
are maximised jointly under the limitation of transmission power. The work [141]
extends this approach by incorporating channel uncertainty, while in [142], the
transmission power is minimised while ensuring predefined thresholds for both MI
and data rate. The subcarrier assignment problem is considered in [143, 144] to
optimise the transmission power and satisfaction utility, respectively. Besides the
conventional terrestrial cells, unmanned aerial vehicle (UAV) is expected to improve
the flexibility of next-generation cellular networks. The work [145] employs UAVs
to perform ISAC tasks to improve the security and reliability of networks. The
communication throughput and energy efficiency are optimised in the UAV-assisted
ISAC systems in [146, 147], respectively. However, to overcome the issue that the
serving endurance of UAVs is severely confined by the on-board battery capacity,
this work employs the prototype of RABS carried by a UAV and mounted with
a mechanical grasper so that it can attach on lampposts when providing wireless
coverage and agilely relocate to another hot-spot to adapt to the traffic dynamic. The
service time is significantly increased due to the lower grasping power (tens of Watts)
compared to the hovering/flying power of UAV base stations (hundreds of Watts), as
illustrated in Fig. 4.3 of Chapter 4.

In this section, an RABS is utilised to perform ISAC tasks in a flexible and
energy-efficient manner. Moreover, instead of assuming that the users’ locations are
fixed and known as [140–147], this work is based on the spatial traffic distribution
in which the traffic demand in a certain area can be predicted and seen as fixed
during a certain period, even though the users keep moving and have dynamic
demand. The performance metric of satisfaction rate (SR), introduced by [148],
is employed to evaluate the degree of satisfaction for sensing and communication
demand. However, rather than treating the user/terminal as a point with specific
coordinates, this grid-based model considers the traffic demand generated from
a defined area encompassing a range of coordinates. To address the limitations
of the point-to-point communication model within this innovative context, robust
optimisation tools are introduced to maximise the minimum SR and employ the
cardinality constrained uncertainty set to control the robustness. The problem is
then reformulated as a mixed integer linear programming (MILP) via duality theory
and solved by the proposed iterative linear programming (LP) rounding algorithm
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in polynomial time. Numerical results show that RABS can improve the system
performance by 28.61% on average compared to fixed small cells.

6.2.1 Application Scenario and System Model

By integrating enhanced connectivity and accurate sensing, ISAC technology is
regarded as a key enabler for several emerging applications in the 6G era, such
as connected vehicles, smart city, and environmental monitoring. In this section,
an RABS is employed as a flexible road side unit to perform both sensing and
communication tasks in intelligent vehicular networks. Particularly, the RABS
could transmit radio frequency signals to its surroundings and detect the range of
targets by analysing the reflected signals. Based on the detected environmental
information, RABS rapidly generates a real-time map including information on
traffic congestion, vehicle accidents and obstacle density, and transmits this updated
map to wireless users such as connected and autonomous vehicles, traffic light
controllers, and accident rescue systems. As will be explained later, to improve
spectrum efficiency, orthogonal frequency division multiplexing (OFDM) waveforms
are used to simultaneously perform communication and sensing tasks. In other words,
the ISAC waveform periodically senses the current environmental information and
transmits the map information updated in the last time slot to wireless users. As
indicated by Table 1 in [149], different types of application scenarios require various
update latency ranging from milliseconds to seconds.

However, when determining the deployment and resource allocation strategy for
RABS, prior knowledge of the sensing targets’ locations is required, which cannot be
obtained in advance before detecting the targets. To overcome this issue, a method
is proposed in this section based on the grid-based model, which is a widely used
model to characterise the spatial traffic distribution [150], and first introduced to
aerial networks in [52]. To employ the grid-based model, an urban geographical area
is divided into several grids, in each grid the sensing and communication demand
generated within a certain time interval (e.g., half an hour or an hour) could be
predicted from experience data [132]. Subsequently, the robust optimisation tool
is employed to determine the RABS deployment and resource allocation, ensuring
that the solution obtained is resilient and robust to accommodate variations in the
real-time locations of sensing targets and wireless users. Additionally, this section
focuses on a specific time period, aiming to determine RABS deployment and
resource allocation for this period. The inherent flying function of RABS allows
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Fig. 6.1 Comparison of the OFDM-based ISAC and communication systems. (In-
spired by the Fig. 6 in [139])

them to relocate to different lampposts as traffic patterns change in subsequent time
periods.

The concept of employing OFDM waveform for ISAC tasks is originally pro-
posed by [151], which system model is used in this chapter for RABS. As depicted
in Fig. 6.1(b), data bits are firstly mapped to symbols and then modulated via a
series of OFDM modulation processes, such as pilot insertion, inverse fast Fourier
transform (IFFT), and cyclic prefix insertion. The generated OFDM signals are then
transmitted to wireless users. It is worth pointing out that at the same time, the
transmitter also replicates OFDM signals to the sensing module for processing the
reflected signals later. When the broadcast signals are received by communication
users, OFDM demodulation is used to demodulate signals to data symbols. Mean-
while, the transmitted OFDM signals are also reflected by sensing targets, following
which the reflected signals are received by the onboard radar receiver. The sensing
module mounted on RABS can calculate the range of the target by simply correlating
the transmitted signals (shared with the sensing module before transmission) with
the reflected signals. The system proposed in reference [151] achieves an accuracy
of 1.9 m, and the subsequent work [152] improves the sensing accuracy to 0.3 m
and the communication rate to 8.96 Mbps. Moreover, Fig. 6.1(a) also illustrates
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Longest Distance 𝐷𝐷𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙

Shortest Distance 𝐷𝐷𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢

Fig. 6.2 The longest and shortest distance between a grid and RABS.

the system design of OFDM communication that cannot detect information from
reflected signals.

Suppose there are K available OFDM subcarriers, denoted by K = {1,2, ...,K},
are utilised to perform ISAC. Therefore, the sensing signal performed on the subcar-
rier k with M consecutive integrated OFDM symbols can be described as [140, 141],

sk(t) = e j2π f c
k t

Ns−1

∑
n=0

akckne j2πk∆ f (t−nTs) · rect[
t −nTs

Ts
], (6.1)

where t is the continuous-time independent variable, f c
k and ∆ f are the frequency

and bandwidth of subcarrier k, ak and ckn denotes the amplitude and phase code,
respectively, Ts is the duration of each completed OFDM symbol including both
the guard intervals and elementary symbol, and rect[x] is the rectangle function that
is equal to one when x∈ [0,1], and zero, otherwise. Accordingly, supposing the
impulse response of a sensing target on subcarrier k is characterised by gk(t), and the
impulse response of the propagation channel between the transmitter and target is
hk(t), the received signals can be written as uk(t) = sk(t)∗hk(t)∗gk(t)+n(t), where
∗ is the convolution operator. An RABS is considered to be deployed in a certain
area, which is divided into I grids denoted by the set I = {1,2, ..., I}. There are
a group of candidate locations distributed in that geographical area which can be
chosen by RABSs for grasping; this set is denoted by J = {1,2, ...,J}. Besides,
it should be noted that one grid can be provisioned by one or multiple subcarriers
while one subcarrier can only be assigned to at most one grid to avoid intra-cell
interference.

Different performance metrics are employed to evaluate the sensing performance
in aerial networks, such as Cramér–Rao lower bound and range resolution. In order
to investigate the impact of RABS deployment and bandwidth allocation on the
performance of ISAC systems, the conditional MI metric is utilised to assess the
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radar performance, similar to [140–144]. Particularly, as mentioned above, the
sensing task involves the transmitter broadcasting OFDM signals to the area of
interest and recovering environmental information from the reflected signals. To
quantify the amount of environmental information that can be extracted, the sensing
MI is defined as the conditional MI between the target response and the reflected
signal conditioned on the pre-designed sensing signal and propagation channel.
Further discussions and derivation of MI can be found in Appendix B. As proposed
in [140], when the sensing demand generated from grid i is served by an RABS
deployed at candidate location j and operating on the subcarrier k, the lower bound
value of MI will be achieved if there is a user, distributed in grid i, having the worst
channel gain,

Mlb
i jk =

1
2

∆ f TsNs log2

(
1+

|ak|2T 2
s NsH

sen,lb
i jk

σ2

)
, (6.2)

where |ak|2 calculates the transmission power of the subcarrier k, and Hsen,lb
i jk repre-

sents the lower bound of the path loss value of the surveillance channel calculated by
[142],

Hsen,lb
i jk =

Gs
t G

s
rηλ 2

k

(4π)3Dlb
i j

4 , (6.3)

where Gs
t and Gs

r are the transmitting and receiving antenna gain, respectively, η

denotes the mean of radar cross-section of the targets distributed in the grid, λk

is the wavelength in the subcarrier k that could be calculated by λk = c/ f c
k where

c is the speed of light, Dlb
i j denotes the longest distance between the grid i and

candidate location j. Similarly, introducing the shortest distance Dub
i j into (6.2) and

(6.3), the upper bound value of channel gain and MI can be calculated in the best
case, denoted by Hsen,ub

i jk and Mub
i jk. An illustration of the lower and upper bounds

of the distance is shown in Fig. 6.2. For notational convenience, the average MI
can be calculated as Mi jk = (Mub

i jk +Mlb
i jk)/2 and bias as M̂i jk = (Mub

i jk −Mlb
i jk)/2.

Consequently, for any user distributed in the grid i, the MI should take value from
the range [Mi jk − M̂i jk,Mi jk + M̂i jk].

Moreover, the data rate is applied as the metric to evaluate the communication
performance. The lower bound of the achievable rate can be calculated by,

Rlb
i jk = ∆ f log2

(
1+

|ak|2Hcom,lb
i jk

σ2

)
, (6.4)
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

M̃i ≜
1

Mi

(
∑
j∈J

∑
k∈K

Mi jkxi jk−︸ ︷︷ ︸
The total satisfied MI when

all grids have the average MI.

max
{Ji×Ki∪( ji,ki) |Ji⊆J ,Ki⊆K,

|Ji×Ki|≤⌊Γi⌋,( ji,ki)∈J×K−Ji×Ki}

{
∑
j∈Ji

∑
k∈Ki

M̂i jkxi jk +(Γi −⌊Γi⌋)M̂i jikixi jiki

})
︸ ︷︷ ︸

Robust bias of the total satisfied MI which means up to ⌊Γi⌋ of these coefficients
are allowed to change to the worst MI, and one coefficient changes by
at most (Γi −⌊Γi⌋)M̂i jiki . Defined as the protection function in (6.8).

,

R̃i ≜
1
Ri

(
∑
j∈J

∑
k∈K

Ri jkyi jk−

max
{Ji×Ki∪( ji,ki) |Ji⊆J ,Ki⊆K,

|Ji×Ki|≤⌊Λi⌋,( ji,ki)∈J×K−Ji×Ki}

{
∑
j∈Ji

∑
k∈Ki

R̂i jkyi jk +(Λi −⌊Λi⌋)R̂i jikiyi jiki

})
,

(6.6a)

(6.6b)

where Hcom,lb
i jk indicates the lower bound of the communication channel gain calcu-

lated as follows[142, 143],

Hcom,lb
i jk =

Gc
t Gc

rλ 2
k

(4π)2Dlb
i j

2 , (6.5)

where Gc
t and Gc

r is the transmitting and receiving antenna gain.1 It is worth pointing
out that the concept of the worst channel gain is investigated in [153] for reliable
communications. The upper bound of communication channel gain and data rate,
denoted by Hcom,ub

i jk and Rub
i jk, can be then obtained by introducing the shortest distance

Dub
i j into (6.4) and (6.5). The average rate and bias can be calculated as Ri jk =

(Rub
i jk +Rlb

i jk)/2 and R̂i jk = (Rub
i jk −Rlb

i jk)/2, respectively. Accordingly, the data rate
for any user distributed in the grid i would be within the range [Ri jk− R̂i jk,Ri jk+ R̂i jk].

Three sets of binary variables are utilised to formulate the subcarrier allocation,
grid association and RABS deployment. Specifically, xi jk ∈ {0,1} indicates whether
an RABS located at location j performs sensing operations to the user i by the
subcarrier k or not; yi jk ∈ {0,1} denotes whether an RABS located at location j

communicate with the user i on the subcarrier k or not; z j ∈ {0,1} indicates whether
the RABS would be deployed at location j. Because the objective is to satisfy these
demands as much as possible under resource constraints, the satisfaction rate (SR) is
used to evaluate the degree of satisfaction for sensing and communication demand

1Similar as [142, 143], the free-space channel model is used for simplicity. Other models can be
employed in the proposed formulation straightforwardly.
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[148]. Accordingly, the SR for sensing demand in grid i is defined by (6.6a) shown
on the top of this page. A parameter Γi, normally called the protection level for the ith

constraint, is introduced to control the conservatism of the robust optimisation model.
Specifically, in the numerator of (6.6a), the first part calculates the total served sense
MI when all grids perform the average channel gain, i.e., have the average MI. The
second part is the robust bias, which indicates that there are up to ⌊Γi⌋ coefficients
allowed to change within the range [Mi jk − M̂i jk,Mi jk + M̂i jk], and one coefficient
can at most change by (Γi −⌊Γi⌋)M̂i jk. This kind of uncertainty set is referred to
as the cardinality constrained uncertainty set in [154], which reflects the inherent
nature that only a subset of grids perform the worst channel gain in order to adversely
affect the MI performance. Considering two extreme cases, setting Γi = 0 is the
most ideal scenario when all grids have the average sensing performance. In contrast,
setting Γi = |Ji ×Ki| is the most conservative case in which all grids perform the
worst channel gain and therefore have the lowest MI. Overall, the numerator in (6.6a)
calculates the satisfied sensing demand under the cardinality constrained uncertainty
set and the denominator Mi denotes the sensing demand of the grid i. Therefore,
(6.6a) defines the sensing SR M̃i. Similarly, the communication SR R̃i is defined
by (6.6b) where Λi and Ri are the protection level and communication demand,
respectively.

Hereafter, the proposed bi-objective optimisation problem is formulated to max-
imise the weighted sum of minimum sensing and communication SR,

max
X,Y,Z,M̃,R̃

µM̃+(1−µ)R̃ (6.7a)

s.t. M̃i ≥ M̃, R̃i ≥ R̃, ∀i, (6.7b)

∑
i∈I

∑
j∈J

xi jk ≤ 1, ∑
i∈I

∑
j∈J

yi jk ≤ 1, ∀k, (6.7c)

∑
i∈I

∑
k∈K

xi jk ≤ IKz j, ∑
i∈I

∑
k∈K

yi jk ≤ IKz j, ∀ j, (6.7d)

∑
j∈J

z j ≤ 1, (6.7e)

xi jk,yi jk,z j ∈ {0,1}, ∀i, j,k, (6.7f)

M̃, R̃ ∈ [0,1], (6.7g)

where X ≜ {xi jk}, Y ≜ {yi jk} and Z ≜ {z j} are the set of variables, µ ∈ [0,1] is
a predefined weight parameter. Eq. (6.7b) denotes the minimum sensing and
communication SR by M̃ and R̃. The constraints in (6.7c) denote that each orthogonal
subcarrier can at most allocated to one grid for sensing or communication to avoid
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intra-cell interference, respectively. Eq. (6.7d) ensures that only when an RABS
has been deployed at the location j then the grids can be associated with it for joint
sensing and communication. Eq. (6.7e) indicates that there is only one RABS that
can be deployed.

6.2.2 MILP Reformulation and Algorithm Design

In this section, the robust optimisation problem (6.7) is reformulated to a MILP
problem via dual theory, following which an iterative LP rounding algorithm is
developed to obtain a near-optimal solution in polynomial time.

To convert the constraints in (6.6a) into linear constraints, firstly define the
protection function with a given X∗ as,

γi(X∗) = max
{Ji×Ki∪( ji,ki) |Ji⊆J ,Ki⊆K,

|Ji×Ki|≤⌊Γi⌋,( ji,ki)∈J×K−Ji×Ki}

{
∑
j∈Ji

∑
k∈Ki

M̂i jkx∗i jk +(Γi −⌊Γi⌋)M̂i jikix
∗
i jiki

}
,

(6.8)
which can be written as the following problem:

γi(X∗) = max
wi

∑
j∈J

∑
k∈K

M̂i jkx∗i jkwi jk (6.9a)

s.t. ∑
j∈J

∑
k∈K

wi jk ≤ Γi, (6.9b)

0 ≤ wi jk ≤ 1, ∀ j,k, (6.9c)

where wi ≜ {wi jk|∀ j∈J ,∀k∈K} is the introduced variable. The equality between
(6.8) and (6.9) can be proved by the observation that the optimal solution of (6.9)
must include ⌊Γi⌋ variables taking the value of one and one variable at Γi −⌊Γi⌋.
The detailed proof can be found in the Proposition 1 of [154]. Write the dual of (6.9)
as follows,

γi(X∗) = min
αi,{βi jk |∀ j,k} ∑

j∈J
∑

k∈K
βi jk +Γiαi (6.10a)

s.t. αi +βi jk ≥ M̂i jkx∗i jk, ∀ j,k, (6.10b)

αi ≥ 0, (6.10c)

βi jk ≥ 0, ∀ j,k, (6.10d)

where {αi} and {βi jk} are dual variables. It can be observed that problem (6.9) is
linear programming thus the strong duality is held between (6.9) and (6.10), i.e.,
they have equal optimal solutions if feasible. Introducing (6.10) into (6.6a), the
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constraints M̃i ≥ M̃ in (6.7b) can be rewritten as the following constraint set,

1
Mi

(
∑
j∈J

∑
k∈K

(Mi jkxi jk −βi jk)−Γiαi

)
≥ M̃, ∀i,

αi +βi jk ≥ M̂i jkxi jk, ∀i, j,k,

αi ≥ 0, ∀i,

βi jk ≥ 0, ∀i, j,k.

(6.11a)

(6.11b)

(6.11c)

(6.11d)

Applying the same procedure to the constraints R̃i ≥ R̃ in (6.7b), the problem (6.7)
can be then reformulated as a MILP without loss of optimality.

To overcome the curse of dimensionality, an iterative LP rounding algorithm pro-
posed in [155] is employed to solve the reformulated MILP problem approximately.
Firstly, focus on a selected location and use the same method to traverse all candidate
locations at subsequent stages to obtain the best one. It can be observed that the
sensing and communication decisions in (6.7) can be decoupled once the variable Z
is determined. Setting z j′ = 1 and all other elements in Z are zero, a MILP problem
including only the variables related to the sensing task can be written from (6.7) and
(6.11) as,

max
Xj′ ,M̃,A,Bj′

µM̃ (6.12a)

s.t.
1

Mi

(
∑

k∈K
(Mi j′kxi j′k −βi j′k)−Γiαi

)
≥ M̃, ∀i, (6.12b)

αi +βi j′k ≥ M̂i j′kxi j′k, ∀i,k, (6.12c)

∑
i∈I

xi j′k ≤ 1, ∀k, (6.12d)

M̃ ∈ [0,1], αi ≥ 0, βi j′k ≥ 0, ∀i,k, (6.12e)

xi j′k ∈ {0,1}, ∀i,k, (6.12f)

where Xj′ ≜ {xi j′k
∣∣∀i ∈ I,∀k ∈ K}, A ≜ {αi} and B ≜ {βi j′k

∣∣∀i ∈ I,∀k ∈ K} are
the sets of variables.

To apply the iterative LP rounding algorithm [155], the linear relaxation of
the problem (6.12) is first proposed, that is, replacing the constraints in (6.12f) by
xi j′k ∈ [0,1], and denote the solution as (X∗

j′,M̃
∗,A∗,B∗). If X∗

j′ is binary, the optimal
solution for (6.12) is obtained. Otherwise, introduce xi j′k = 1 to (6.12) if x∗i j′k = 1 as

2Because the objective is to maximise the minimum SR, it is suggested that in step 5, prioritise
selecting the elements in X∗

j′ corresponding to the grids that have not allocated any subcarriers to
guarantee the fairness.
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Algorithm 6 Iterative LP Rounding Algorithm for (6.12)
1: Initialise the set C =∅.
2: Solve the linear relaxation of (6.12). Denote the solution as (X∗

j′,M̃
∗,A∗,B∗).

3: while There is fractional value in X∗
j′ . do

4: For all x∗i j′k = 1, add the constraint xi j′k = 1 into C.
5: Choose the element with the largest fractional value in X∗

j′ and denote it as
xi0 j′k0 .2Add the constraint xi0 j′k0 = 1 into C.

6: Add all the constraints in C to the linear relaxation of (6.12). Solve this
modified LP.

7: If the modified LP is feasible, denote the solution as (X∗
j′,M̃

∗,A∗,B∗) and go
to step 3. If it is infeasible, replace the constraint xi0 j′k0 = 1 by xi0 j′k0 = 0 in
C and go to step 6.

8: end while

Table 6.1 Parameter Settings

Parameter Value Parameter Value
K 64 Ts 5 µs
Gs

t , Gs
r 30 dB [142] Ns 16 [141]

Gc
r 30 dB [142] σ2 -174 dBm/Hz

Gc
s 0 dB |ak|2 1 W

η 1 m2 [147] µ 0.5

new constraints. Afterwards, it should decide to round the variables with fractional
values in X∗

j′ to binary values via a procedure of verifying feasibility. Firstly, select
one variable with the largest fractional value in X∗

j′ and denote it as xi0 j′k0 . Add the
constraint xi0 j′k0 = 1 to (6.12) and try to solve this modified LP. If it is infeasible, set
xi0 j′k0 = 0 and round other variables according to X∗

j′ . If the modified LP is feasible,
add the constraint xi0 j′k0 = 1 to (6.12) and repeat the above procedure until a binary
Xj′ is achieved or there is no more subcarrier can be allocated. The iterative LP
rounding algorithm is summarised in Algorithm 6 and more details can be found in
[155].

In the section 6.6.1 of [136], the worst case of solving a linear programming
is O

(
(nv +nc)1.5nv2), where nv and nc are the number of variables and constraints,

respectively. In the iterative LP rounding algorithm, the number of iterations is upper
bounded by I ×K, thus the complexity of the proposed algorithm is approximate
O
(
IK · (nv + nc)1.5nv2), where nc = 2IK + I +K + 1 and nv is upper bounded by

2IK + I +1 for the linear relaxation of (6.12).
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Fig. 6.3 Achievable minimum SR (objective function) versus robustness.

6.2.3 Numerical Investigations

A geographical area of 100×100 m2 is divided into 25 small square grids with the
size of 20×20 m2, where 10 candidate locations are distributed randomly for RABS
grasping. The sensing and communication demand of grids follows the log-normal
distribution [133], where the mean value and standard deviation are denoted by
[msen,mcom] and [σ sen,σ com] [133]. Hereafter, set msen = 15 bit, mcom = 20 Mbps
and σ sen = σ com = 1 for simulation unless otherwise stated. Moreover, the carrier
frequency of the ISAC signals is f c

0 = 3 GHz and each subcarrier has the spacing
∆ f = 0.25 MHz. Accordingly, the frequency of the kth subcarrier is calculated
by f c

k = f c
0 + k∆ f [140]. For notational convenience, a robustness parameter δ is

introduced to control the protection level {Γi} and {Λi}, that is, Γi = Λi = δ ×J×K.
Taking δ = 10−1 as an example, it means that 10% of the coefficients in (6.6a)-(6.6b)
are allowed to take values from [Mi jk−M̂i jk,Mi jk+M̂i jk] and [Ri jk− R̂i jk,Ri jk+ R̂i jk].
Other simulation parameters are reported in Table 6.1.

By adjusting the robustness parameter δ , the protection level {Γi} and {Λi}, as
well as the robustness of the problem (6.7), can be controlled. It can be observed
from Fig. 6.3 that the minimum SR decreases as the robustness increases. This
is in accordance with the intuition that the growth of system robustness comes at
the expense of system performance. Taking a fixed small cell distributed randomly
as a benchmark, it is shown from Fig. 6.3 that the RABS can improve the system
performance by 28.61% and 21.46% on average when setting the standard deviation
to 1 and 2, respectively. Moreover, comparing the results for different standard
deviation values of traffic distribution, it can be seen that the robustness has less
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Fig. 6.4 Subcarrier allocation versus sensing rate demand.

impact on the system performance when the traffic spatial distribution is highly
heterogeneous, represented as smoother curves in Fig. 6.3.

Fig. 6.4 investigates the number of subcarriers allocation versus the sensing
traffic distribution. Note that more subcarriers are biased to grids with higher traffic
demand. The reason is that the objective is to maximise the minimum SR to guarantee
fairness. Moreover, Fig. 6.4 shows that the robustness parameter δ also affects the
subcarrier allocation decisions. Comparing the results when setting δ = 10−4 and
δ = 100, the number of allocated subcarriers differs in grids 2, 14, 21, and 24.

The performance of the proposed iterative LP rounding algorithm is analysed in
Fig. 6.5. Although the maximum number of iterations is upper-bounded by I×K, as
alluded in Section 6.2.2, in practice, the stopping criteria is satisfied after solving
a limited number of LP problems as shown in Fig. 6.5(a). Moreover, Fig. 6.5(b)
presents the optimal gap of the iterative LP rounding algorithm by comparing it with
the globally optimal solution solved by Gurobi [67]. Numerically, the optimality
gap of the proposed method is at least 2% when the robustness parameter is 10−4,
and 22% at most when the robustness parameter is 10−2.5. However, as shown in
Section (6.2.2), the complexity of the proposed algorithm is in polynomial time, in
contrast to the exponential worst-case complexity of Gurobi [67]. Besides, it can
be observed that the optimality gap tends to be larger when the solution of (6.7) is
more sensitive to the robustness parameter δ . Considering the iterative LP rounding
algorithm is employed to generate a feasible integer solution based on the solution
of the linear relaxation, when the problem (6.7) is more sensitive to the robustness
parameter δ , even a minor deviation during this rounding process can result in a
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(a) Convergence behaviour of the proposed algorithm.

(b) Optimality gap of the proposed algorithm.

Fig. 6.5 Performance analysis of the iterative LP rounding algorithm.

significant gap from the optimal results. This explains why the largest optimality gap
shows at δ = 10−2.5.

In conclusion, a flexible ISAC system assisted by RABS is proposed in this
section. To represent the users’ mobility and changing channel conditions, the grid-
based model is employed to characterise the spatial traffic distribution. A robust
optimisation problem is formulated on the cardinality constrained uncertainty set to
determine the RABS deployment and resource allocation. which is reformulated as
a MILP via duality theory and solved by a proposed iterative LP rounding algorithm
in polynomial time. Numerical results indicate that the conservatism of the solution
can be controlled by changing the value of the robustness parameter, i.e., a more
conservative solution under the condition that most users experience poor channel
conditions can be obtained by setting a greater robustness parameter. Also, compared
to the randomly deployed ground base station, RABS can improve the minimum SR
by 28.61% on average thanks to the flexible mobility.
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6.3 Swarm of RABSs for mmWave Multi-Hop Back-
hauling

Network densification is inevitably required to satisfy the rapidly growing traffic
demands in future 6G networks. However, a well-recognised predicament that this
process entails is the high capital and operational expenditure cost. With this in mind,
RABSs are introduced as a flexible and cost-effective solution to densify the network.
However, unlike terrestrial base stations connecting with the core network through
a high-capacity fibre link, RABSs require wireless backhaul due to their frequent
movement. Therefore, this section builds upon this concept and proposes a novel
multi-hop backhaul network operated by a swarm of RABSs for efficient network
densification.

To satisfy the rapidly growing traffic demand in mobile networks, the use of a
millimetre wave (mmWave) spectrum is expected to offer high-throughput wireless
access. The authors in [156] verify the feasibility of deploying fixed mmWave
ultra-dense outdoor small cells installed on street-level fixtures, e.g., streetlights,
lampposts and/or rooftops. The works [157] utilise the wall-mounted mmWave base
station to provide line-of-sight (LoS) coverage in urban environments. The benefits
of mmWave backhauling come with the cost of considerably higher propagation
losses, resulting in a reduced transmission range compared to sub-6 GHz networks.
This limitation can be addressed by establishing a multi-hop topology using relay
nodes. In a closely related work, the resource allocation for multi-hop backhaul
networks is optimised according to the traffic demands in [158, 159]. In [160], by
deploying small cells densely on a Manhattan-type geometry, the network flow of
the backhaul network is maximised by route formation. An optimal route scheduling
strategy is proposed in [161] to maximise the number of flows satisfying the LoS and
transmission rate requirements. Furthermore, to address the fluctuations in dynamic
traffic, several studies employ UAVs as movable base stations to perform wireless
backhaul tasks. For instance, the authors of [162] measure the system performance
when considering both the heterogeneous mobility of blockers and UAVs. The utility
function of a UAV-assisted multi-hop backhaul network is maximised in [163] and
the authors of [164] study the deployment strategy for UAVs.

In this section, a flexible mmWave multi-hop backhaul network operated by a
swarm of RABSs is proposed. The approach is inspired by and developed from the
work in [160]. This section mainly demonstrates how movable RABSs can enhance
the system performance, especially in a heterogeneous and dynamic environment.
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90 m
15 m

Epoch t

Epoch 𝑡𝑡 + 1
Fig. 6.6 A mmWave backhaul network constructed by a swarm of RABSs: blue
squares represent obstacles, the small blue circles are the candidate locations, the
red and black lines represent the backhaul channels and the flying trajectory when
relocating.

Specifically, the contribution of this section is summarised as follows. Firstly, to
overcome the endurance issue of the conventional UAV base stations studied in [162–
164], a flexible backhaul network configuration operated by a swarm of RABSs is
studied in this section. It could prolong the service time because the grasping power
is much lower than the hovering/flying power of conventional hovering-based UAV
base stations [27]. Secondly, instead of the uniform traffic distribution assumed
in [160, 159], this section focuses on the heterogeneous distribution and dynamic
changes of traffic demand in spatial and temporal domains [133]. Furthermore,
thanks to their inherent grasping and flying capabilities, RABSs can establish a
backhaul network while anchoring on lampposts and relocate their grasping positions
to adapt to traffic dynamics. Simulation results demonstrate that only half the number
of RABSs is required to meet the same volume of traffic demands compared to
densely deployed small base stations. Thirdly, a mixed-integer linear fractional
programming (MILFP) is formulated to maximise energy efficiency, defined as
the ratio of achievable network flow to energy consumption, by determining the
optimal deployment, movement, and multi-hop routing of RABSs. A two-stage
method, which includes the column generation technique, the truncated Bellman-
Ford algorithm, and the total unimodularity analysis, is proposed to efficiently solve
the problem. Simulation results demonstrate that the proposed method achieves a
favourable trade-off between high solution quality and low computational complexity.
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6.3.1 System Model and problem formulation

The set of all candidate locations for RABSs grasping is denoted as V . A Manhattan-
type map is characterised by a graph G = (Va,E), where Va = {0}∪V and 0 is the
index of the macro base station (MBS), E is the set of edges, where the two endpoints
can be connected through an unobstructed link. Because the mmWave transmission is
dominated by LoS links, the backhaul connections cannot be successfully established
when obstructed by buildings. Therefore, as shown in Fig. 6.6, RABSs deployed
in the middle of a street have links along and across the street, and RABSs on the
corners have diagonal links.

Even if the link between two RABSs is not obstructed by buildings, communi-
cation between them is inevitably occasionally blocked by vehicles or other human
activities, as RABSs are fixed on lampposts and work at relatively low altitudes.
Therefore, the authors of [165, 166] suggest that the probabilistic LoS channel model
should be employed for UAVs operating at low altitudes, because this channel model
accounts for the fact that the probability of LoS is location-dependent in urban areas,
i.e., LoS links are more likely to be obstructed by human activities as the distance
between RABSs increases. Hereafter, the achievable data rate is calculated based
on the probabilistic LoS channel model. Suppose that whether the backhaul link
(i, j) is LoS or NLoS follows a Bernoulli distribution and the LoS probability is
given by pLoS

(i, j) = min(18/d(i, j),1)(1− exp(−d(i, j)/36))+ exp(−d(i, j)/36) in 3GPP
TR 38.901 [167]. Accordingly, the expected data rate can be averaged as follows
[159, 165, 166],

R(i, j) = pLoS
(i, j)R

LoS
(i, j)+(1− pLoS

(i, j))R
NLoS
(i, j) , (6.13)

where RLoS
(i, j) and RNLoS

(i, j) are the data rate for LoS and NLoS links, respectively, and
can be calculated by the following (6.14)[160],

Rζ

(i, j) = Bmin[log2(1+100.1×(SNRζ

(i, j)−3)
),SEmax], ζ ∈ {LoS, NLoS}, (6.14)

where B is the available bandwidth, SEmax is the maximum spectral efficiency in
bps/Hz, ζ indicates whether the link is LoS or NLoS, and SNRζ

(i, j) is the signal-
to-noise ratio in dB. Besides, dividing the entire serving time of RABSs into T

epochs with an equal duration denoted by η , the required traffic demand at candidate
location i∈V at epoch t is denoted by Dt

i in bps. During each epoch, there are N

RABSs available to construct a multi-hop backhaul network to relay traffic to the
MBS based on the spatial traffic distribution. When the traffic pattern changes in the
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subsequent time epoch, RABSs could relocate to establish a new network topology.
The application scenario is depicted in Fig. 6.6.

As noted in [160], whilst extending the coverage radius, multi-hop backhauling
brings an additional challenge due to the increased latency for every hop. To satisfy
the latency requirements, the maximum allowed hop needs to be limited and is
denoted by H. All feasible routes are traversed satisfying the hop constraints H,
flowing from a candidate location and terminating at the MBS, and denote the set
of them as P . To formulate the problem, three sets of variables are introduced
as follows. The binary variable xt

i ∈ {0,1} indicates if the candidate location i is
selected to deploy an RABS at epoch t. The variables y(t−1,t)

(i, j) represents whether an
RABS will fly from the lamppost i to j between two adjacent epochs, t −1 and t.
The continuous variable f t

p denotes the volume of traffic flow in the route p ∈ P at
epoch t. Accordingly, the energy efficiency metric is defined as follows,

EE =
∑

T
t=1 ∑p∈P η f t

p

∑
T
t=0 ∑(i, j)∈E Efly

(i, j)y
(t−1,t)
(i, j) +NT (Et +Eg)

, (6.15)

where Efly
(i, j) denotes the propulsion energy consumed by an RABS flying from the

candidate location i to j, while Et and Eg denote the transmission and grasping
energy, respectively. It can be observed that the numerator and denominator of (6.15)
calculate the achievable network flow in bits and the total energy consumption in
Joule, respectively. Furthermore, there are three sets of constraints used to formulate
the problem.

1) Capacity constraints for mmWave channels: Initially, define a subset P(i, j)⊆P
denoting all feasible routes including the edge (i, j). The following constraints should
be satisfied,


∑

p∈P(i, j)

f t
p ≤ xt

iR(i, j), ∀(i, j) ∈ E , ∀t ∈ {1, ...,T},

∑
p∈P(i, j)

f t
p ≤ xt

jR(i, j), ∀(i, j) ∈ E , ∀t ∈ {1, ...,T}.

(6.16a)

(6.16b)

The right-hand side (RHS) of (6.16) indicates that only when both candidate locations
i and j are deployed with RABSs, the traffic can traverse the edge (i, j), and the
accumulated flows, calculated by the left-hand side (LHS) of (6.16), would not
exceed the maximum value R(i, j).
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2) Traffic demand constraints: The following constraints guarantee that all flow
sourcing from the candidate location i would not exceed its traffic demand,

∑
p∈Pi

f t
p ≤ xt

iD
t
i, ∀i ∈ V, ∀t ∈ {1, ...,T}, (6.17)

where Pi is a subset of P indicating all feasible routes sourcing from the candidate
location i.

3) Degree constraints for RABSs relocating and deployment: Similar to the
constraints (5.5), the following degree constraints to link the RABSs relocating
process and deployment should be satisfied,


∑
i∈V

y(t,t+1)
(i, j) = xt

i, ∀i ∈ V, ∀t ∈ {0,1, ...,T −1},

∑
i∈V

y(t−1,t)
(i, j) = xt

j, ∀ j ∈ V, ∀t ∈ {1,2, ...,T},

(6.18a)

(6.18b)

where (6.18a) depicts whether the RABS departs from the candidate location i or
not, while (6.18b) indicates the landing process.

Based on the above preliminaries, the energy efficiency maximisation problem
can be formulated as follows,

max
{xt

i},{y(t−1,t)
(i, j) },{ f t

p}
EE (6.19a)

s.t. (6.16), (6.17), (6.18), (6.19b)

∑
i∈V

xt
i ≤ N, ∀t ∈ {1,2, ...,T}, (6.19c)

xt
i ∈ {0,1}, ∀i ∈ V, ∀t ∈ {1,2, ...,T}, (6.19d)

y(t−1,t)
(i, j) ∈ {0,1}, ∀(i, j) ∈ E , ∀t ∈ {1,2, ...,T}, (6.19e)

f t
p ≥ 0, ∀p ∈ P, ∀t ∈ {1,2, ...,T}, (6.19f)

where the constraints (6.19c) indicate that there are at most N RABSs that can
be deployed. It can be observed that the problem (6.19) is a MILFP. Although the
Lemma 4 in [168] proves that the MILFP can be solved to optimality via Dinkelbach’s
algorithm, solving (6.19) is still challenging for the following two main reasons.
First, a mixed integer linear programming needs to be solved at each iteration of
Dinkelbach’s algorithm, which is still NP-hard. Second, the scale of the problem
(6.19) grows sharply because the cardinality of the set P , denoted by |P|, increases
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exponentially as H and |V| increase. To this end, a two-stage method is developed in
the following Section 6.3.2 to overcome the curse of dimensionality.

6.3.2 The Proposed Two-stage Method

The problem (6.19) is decoupled into two sub-problems and solved separately. Firstly,
the traffic flow on the backhaul network is maximised via column generation and the
truncated Bellman-Ford algorithm, and then the energy consumption is minimised
through linear programming by exploring the total unimodularity structure of the
problem.

Hereafter the numerator of (6.15), i.e., the accumulated traffic flow of the back-
haul network, is maximised. Observe that when only the traffic flow is considered,
the problem can be decoupled into T sub-problems for each epoch and solved sep-
arately. Numerically, the network flow maximisation problem for epoch t can be
simplified from (6.19) as,

max
{xt

i |∀i∈V},{ f t
p|∀p∈P}

∑
p∈P

η f t
p (6.20a)

s.t. ∑
p∈P(i, j)

f t
p ≤ xt

iR(i, j), ∀(i, j) ∈ E , (6.20b)

∑
p∈P(i, j)

f t
p ≤ xt

jR(i, j), ∀(i, j) ∈ E , (6.20c)

∑
p∈Pi

f t
p ≤ xt

iD
t
i, ∀i ∈ V, (6.20d)

∑
i∈V

xt
i ≤ N, (6.20e)

xt
i ∈ {0,1}, ∀i ∈ V, (6.20f)

f t
p ≥ 0, ∀p ∈ P. (6.20g)

The main challenge for solving (6.20) is the extremely large sise of the set P .
Fortunately, there is a key observation that only a limited number of routes in P
will be activated when solving (6.20). Therefore, the column generation approach is
employed to activate a subset of routes in P iteratively [169].

The column generation is employed to solve the linear relaxation of (6.20), which
is denoted as (6.20-LR) for ease of notation. Select and activate a subset P ′ ⊆ P ,
and relax the binary variables in (6.20f) into continuous variables. This problem is
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referred to as the restricted master problem for (6.20-LR) and can be written as,

max
{xt

i |∀i∈V},{ f t
p|∀p∈P ′}

∑
p∈P ′

η f t
p (6.21a)

s.t. ∑
p∈P ′

(i, j)

f t
p ≤ xt

iR(i, j), ∀(i, j) ∈ E , (6.21b)

∑
p∈P ′

(i, j)

f t
p ≤ xt

jR(i, j), ∀(i, j) ∈ E , (6.21c)

∑
p∈P ′

i

f t
p ≤ xt

iD
t
i, ∀i ∈ V, (6.21d)

∑
i∈V

xt
i ≤ N, (6.21e)

0 ≤ xt
i ≤ 1, ∀i ∈ V, (6.21f)

f t
p ≥ 0, ∀p ∈ P ′, (6.21g)

where P ′
(i, j) and P ′

i is the activated subset corresponding to P(i, j) and Pi, respectively.
Problem (6.21) is a linear programming and its dual can be written as,

min
{αi j},{βi j},
{γi},{δ},{ζi}

Nδ + ∑
i∈V

ζi (6.22a)

s.t. ∑
(i, j)∈p

(αi j +βi j)+ γsp ≥ η , ∀p ∈ P ′, (6.22b)

∑
j∈V

(R(i, j)αi j+R( j,i)β ji)+Dt
iγi ≤ δ+ζi,∀i∈V, (6.22c)

αi j ≥ 0, βi j ≥ 0, γi ≥ 0, δ ≥ 0, ζi ≥ 0, ∀i, j, (6.22d)

where {αi j},{βi j},{γi}, {δ} and {ζi} are dual variables corresponding to the con-
straints in (6.21), (i, j) ∈ p indicates that the route p passes through the edge (i, j),
and sp ∈ V denotes the source node of the route p. Problem (6.22) is normally
referred to as the pricing problem. According to the nominal principle of column
generation, the following Lemma 1 always holds.

Lemma 1: If the constraints (6.22b) are even satisfied for all p∈P (i.e., not only
for p∈P ′), the result solved from the problem (6.21) with the restricted subset P ′ is
optimal for (6.20-LR).

Proof: Denote the optimal solution for the problem (6.20-LR), (6.21) and (6.22)
as OPT(6.20-LR), OPT(6.21) and OPT(6.22), respectively.

OPT(6.22)
(a)
= OPT(6.21)

(b)
≤ OPT(6.20-LR), (6.23)
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Algorithm 7 Maximise Traffic Flow via Column Generation

1: Initialise a restricted subset P ′ ⊆P .
2: repeat
3: Solve the pricing problem (6.22).
4: Initialise the value of u(0)i , ∀i ∈ Va by (6.24).
5: repeat
6: Update the value of u(m+1)

i via (6.25).
7: until m = H −1.
8: for all i ∈ V do
9: if u(H)

i < η − γi then
10: Add this shortest path to P ′.
11: end if
12: end for
13: until No path is added to P ′ in this iteration.
14: Solve (6.21) with the restricted subset P ′ and denote the result as { f t

p
∗}. This

solution is also optimal for (6.20-LR).
15: repeat
16: repeat
17: Select the route p with the probability f t

p
∗/Dt

i.
18: until The number of candidate locations that passed by the chosen routes is

equal to N.
19: until The maximum number of iterations kmax.

where (a) holds because of the strong duality of the LP problem (6.21), and (b) holds
because P ′ is a restricted subset of P . If the constraints (6.22b) are satisfied for
all p∈P , it means these dual values are feasible for the set P . Because these dual
values have been maximised when solving the problem (6.22), the equivalence in (b)
will be guaranteed. This completes the proof of Lemma 1 and [169] proves Lemma
1 via the concept of reduced cost. □

Lemma 1 illustrates that if there exists a route p∈P violating the constraints
(6.22b), the objective value (6.21a) can be further improved by adding this route to
P ′ and re-solve the problem (6.21). Otherwise the optimal solution of (6.20-LR) can
be achieved with the restricted route set P ′.

However, an unresolved challenge remains after Lemma 1 in determining whether
all p∈P satisfy the constraints (6.22b), or if there is a feasible route p that violates
(6.22b). Fortunately, this problem can be efficiently solved by regarding it as a
hop-constrained shortest path problem. By analysing the constraints (6.22b), it can
be observed that after assigning the weight (αi j+βi j) to the corresponding edge
(i, j)∈E , this problem can be converted to find the shortest path from the MBS to the
candidate location s∈V with maximum H hops. If the shortest path is greater than
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or equal to (η−γs), then there is no feasible route sourcing from s and hence violates
the constraints (6.22b). Normally, the shortest path problem with hop constraints
is also NP-hard. Fortunately, because the weights (αi j+βi j) assigned to edges are
non-negative, forced by (6.22d), the hop-constrained shortest path problem can be
solved by modifying the Bellman-Ford algorithm [170]. Denote the shortest path
from the MBS to the candidate location s, subject to the condition that the path
contains no more than m edges, by u(m)

i . Initialise the values of u(m)
i via the following

Eq. (6.24), 
u(1)0 = 0,

u(1)i = α0i +β0i, if (0, i) ∈ E ,

u(1)i = ∞, if (0, i) /∈ E .

(6.24a)

(6.24b)

(6.24c)

It should be noted that the MBS is indexed by 0. The value of u(m)
i can be updated as

follows,

u(m+1)
i = min

{
u(m)

i , min
( j,i)∈E

{u(m)
j +α ji +β ji}

}
. (6.25)

Because of the hop constraints, the updating of (6.25) should be stopped when m+1
is equal to the hop limit H. The length of the shortest path from the candidate
location i to the MBS, satisfying the maximum hop constraints, is then obtained by
the value of u(H)

i . The obtained feasible shortest path would be added to the set P ′ if
u(H)

i < η−γi. Otherwise, there is no feasible route sourcing from i that should be
added to P ′. According to Lemma 1, the process of column generation would be
terminated until the shortest path from all the locations i∈V is no less than (η−γi).

Although the aforementioned column generation method can reduce the problem
scale, the achieved result is optimal for the problem (6.20-LR). A random rounding
method is then proposed to generate an integer solution for (6.20). Denote the
optimal solution for (6.20-LR) by { f t

p
∗}, set the probability of route p being selected

as f t
p
∗/Dt

i, and pick these routes one by one with this probability distribution until
the number of candidate locations they passed is equal to N, forced by the constraint
(6.20e). Afterwards, repeat this random rounding process kmax times and choose the
best result.

After maximizing the served traffic via the column generation approach, the
energy consumption is subsequently minimised, shown as the denominator of (6.15).
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The problem can be written from (6.19) as,

max
{y(t−1,t)

(i, j) }
∑

(i, j)∈E
Efly
(i, j)y

(t−1,t)
(i, j) +NT (Et +Eg) (6.26a)

s.t. (6.18), (6.19e). (6.26b)

It should be noted that the RHS of (6.18a)-(6.18b) has been solved in Section 6.3.2.
Also, it can be observed that (6.26) is still an integer linear programming. Fortunately,
the following Lemma 2 proves that the optimal solution for (6.26) can be achieved
by solving its linear relaxation.

Lemma 2: The set of constraints (6.18) is totally unimodular.
Proof: The constraints (6.18) can be written as follows,


∑
i∈V

y(t,t+1)
(i, j) = xt

i, ∀i ∈ V, ∀t ∈ {0,1, ...,T −1},

∑
i∈V

−y(t−1,t)
(i, j) =−xt

j, ∀ j ∈ V, ∀t ∈ {1,2, ...,T}.

(6.27a)

(6.27b)

The variables {y(t−1,t)
(i, j) } can be divided into three groups according to their coef-

ficients: (i) Each variable in the set {y(0,1)
(i, j) } only appears in (6.18a) once and the

coefficient is 1. (ii) Each variable in the set {y(t−1,t)
(i, j) |∀t ∈ {2, ...,T−1}} appears

once in both (6.18a) and (6.18b), and the coefficients are 1 and -1, respectively. (iii)
Each variable in the set {y(T−1,T )

(i, j) } only appears in (6.18b) once and the coefficient is
-1. Proposition 2.6 in Section III.1.2 of [84] proves the fact "If the (0,1,−1) matrix

A has no more than two nonzero entries in each column, and if ∑ j ai j = 0 if column j

contains two nonzero coefficients, then it is totally unimodular." Thus, the coefficient
matrix for (6.27) is totally unimodular. And proposition 2.1 in [84] shows that "A

matrix obtained by multiplying a row (column) of a totally unimodular matrix by -1

is also totally unimodular." This completes the proof of Lemma 2. □
Because the Lemma 2 shows that the problem (6.26) includes a set of totally

unimodular constraints and binary constraints, the optimal solution can be obtained
by solving its linear relaxation, i.e., relax the constraints (6.19e) to 0 ≤ y(t−1,t)

(i, j) ≤ 1.

6.3.3 Numerical Investigations

The results presented in this section are simulated on a 300×300 m2 Manhattan-type
map as depicted in Fig. 6.6, where there are 9 square buildings with the size 90×90
m2 and the road width is 15 m. Lampposts are distributed on the roadside that is
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Table 6.2 Summary of Notations

Parameters Value
Carrier frequency and available bandwidth B 73 GHz, 200 MHz
Signal-to-noise ratio SNRLoS

(i, j), SNRNLoS
(i, j) Refer to [159]

Maximum spectral efficiency SEmax 4.8 bps/Hz [160]
Flying velocity and propulsion power 18 m/s, 162 W [27]
Transmission and grasping power 10 W, 10 W
Epoch duration η 1 hour

Fig. 6.7 Total traffic demands versus the served traffic volume when H = 3.

used for RABSs grasping, as shown in Fig. 6.6. Accordingly, there are 39 candidate
locations and 1 MBS. The parameters related to communication and power are
summarised in Table 6.2. Similarly to Section 5.2.1, the traffic spatial-temporal
distribution model proposed in [133] is used to simulate the traffic demands generated
from different candidate locations, where the coefficients of (5.1) are specified by
the row of the ’whole area’ in the legend of Fig. 5.2(a), and the variance of traffic
spatial distribution is denoted by σ in the following simulations. Moreover, it should
be noted that all of the following numerical results are averaged by 100 Monte Carlo
simulations.

Fig. 6.7 shows the satisfied traffic demand versus the number of RABSs ranging
from 2 to 20 at a certain epoch with different deviations of the traffic distribution.
Firstly, comparing the served traffic volume versus the total traffic demands, it is
shown that deploying only a small group of RABSs can satisfy a large portion
of traffic demands. For instance, as marked in Fig. 6.7, selecting 51% candidate
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Fig. 6.8 Energy efficiency versus the maximum allowed hops when N = 10.

locations, i.e., 20 out of the total 39 locations, to deploy RABSs can meet nearly
82% of the total traffic demand. Secondly, the dotted lines represent the densely
deployed small cells studied in [160], that is, deploy small base stations at each
candidate location and only determine the route formation. It can be seen that even
this dense network cannot satisfy all the traffic demands because of the channel
capacity and hop constraints. Also, deploying 20 RABSs can achieve almost the
same performance with the dense topology, i.e., using 39 fixed small cells, thanks to
their mobility. Thirdly, comparing the results with different σ , it can be observed
that for N≤18 RABS-assisted backhaul network has a better performance when the
variance of the traffic demand distribution is increasing.

Fig. 6.8 presents the energy efficiency versus the maximum allowed number of
hops solved by different methods. Observe that the energy efficiency grows with the
increase of H when H≤3. The reason is that a larger H brings a wider coverage to
the multi-hop networks so that the candidate locations having high traffic demands
but far from MBS have the opportunity to offload data to MBS via multi-hop routes.
This growth trend reaches a plateau when N≥3 because RABSs can freely choose
the candidate locations with high traffic demand and always backhaul to MBS when
H is large enough. Moreover, the proposed two-step method is compared with
Dinkelbach’s algorithm [168] and the greedy method in Fig. 6.8. It should be noted
that although Dinkelbach’s algorithm can solve (6.19) optimally, it requires solving
a group of NP-hard integer linear programming problems in each iteration, leading
to lengthy computational times when dealing with large-scale problems. In contrast,
the proposed two-step method only needs to solve linear programming problems
in which scale is reduced by the column generation technique in each step, thus
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Table 6.3 Problem scale reduced by column generation

H |P| |P ′| Scale reduction
1 12 12 0%
2 108 66 39%
3 816 177 78%
4 5802 232 96%
5 40128 273 99%

it could improve the computational efficiency at the cost of a 6% optimality gap.
Additionally, the greedy method is employed as a benchmark, i.e., at each epoch, it
greedily searches the candidate location with the highest traffic volume, calculates
the shortest path from the MBS, and adds this shortest path to the solution if it
satisfies the hop constraints H, otherwise continues to search for the second-best
candidate location. Repeat this process until the requirements for RABS quantities
are met. It can be observed in Fig. 6.8 that the two-step method can achieve a
higher-quality solution than the greedy method, e.g., exceeding it by 36% when
H = 4. Therefore, the proposed two-step method achieves a favourable trade-off
between high solution quality and low computational complexity.

As mentioned in Section 6.3.2, the main motivation for employing the column
generation is to overcome the exponential growth of the number of feasible routes
|P|, shown as the second column in Table 6.3. The results in Table 6.3 show the
fact that column generation can reduce the problem scale significantly. Numerically,
when H = 5, there are only 273 routes activated in the restricted master problem
(6.21), compared to the number of total feasible routes which is 40128. In other
words, the problem scale is reduced by 99%. This is consistent with intuition because
even though the number of feasible routes grows exponentially with an increase in
H, the number of RABSs restricts that only a limited set of feasible routes need to be
activated. Therefore, the column generation approach can solve the problem (6.20-
LR) to optimality with a restricted subset P ′ so that it can improve the efficiency for
solving large-scale problems.

In conclusion, a novel optimisation framework is proposed in this section for
network densification via a swarm of RABSs that construct an efficient mmWave
network topology for backhauling. To this end, a mixed-integer linear fractional
programming problem is formulated and solved by a two-stage method that involves
column generation, the Bellman-Ford algorithm and linear programming. Numerical
investigations reveal that compared to fixed small cells, only half of RABSs are
required to cover the same volume of traffic demand by being able to follow the
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spatio-temporal traffic dynamics. Hence, RABSs could propel efficient network
densification by offering a dramatic reduction in the number of network elements
(i.e., small cells) that are required to serve a given traffic demand.

6.4 Conclusion

In this chapter, RABS is integrated into the novel applications in next-generation
networks, aiming to answer the question that which benefits this novel concept can
bring to cellular networks. Specifically, in Section 6.2, RABS is utilised to perform
both sensing and communication functions simultaneously, while in Section 6.3, a
swarm of RABSs construct an efficient mmWave network topology for backhauling.
Through these two studies, RABS demonstrates the advantage of its flexibility. In
other words, RABS can dynamically track hotspot areas on a finer time scale, such
as half an hour or an hour, compared to conventional ground base stations that are
difficult to relocate flexibly and can only consider traffic distribution on coarser
time scales during planning. Overall, RABS is expected to bring more flexibility
and agility to next-generation applications in both spatial and temporal domains.
However, compared with ground base stations, RABS also shows the following
shortcomings that require further research.

• Firstly, the payload of the UAV limits RABS to carry large-size antenna
arrays. Although operating in higher frequencies helps reduce the antenna size,
complex hardware equipment is still required to perform advanced wireless
technologies.

• Secondly, the serving performance of RABS is constrained by the capacity
of wireless backhaul links, which is not a main consideration for conven-
tional fiber-backhauled ground base stations. Therefore, this imposes extra
computational complexity on resource allocation and system design for RABS.

• Lastly, although RABS has advantages in energy efficiency compared to other
types of ABS, as demonstrated in Chapter 4, the capacity of onboard batteries
is still one of the main limitations and bottlenecks. For example, in Section
6.3, the flight path of RABS needs to be specially designed to reduce energy
consumption when relocating, which undoubtedly brings extra complexity
when designing the RABS serving strategies.
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In summary, although research and applications of RABS still face several chal-
lenges, there is no doubt that it indeed brings next-generation applications with more
flexibility, thereby enhancing system performance effectively.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In the context of future 6G cellular networks, aerial base stations (ABSs) are expected
to play a crucial role due to their inherent advantages, such as high mobility, flexible
3D deployment, and dominant line-of-sight (LoS) channel conditions. However,
deploying such new wireless devices also brings several unprecedented challenges. In
this thesis, the conflicting evaluation metrics are first investigated in aerial networks,
i.e., age of information (AoI) and energy consumption. Subsequently, a novel ABS
model, that is, robotic aerial base stations (RABSs), is proposed to overcome the
endurance issues of conventional ABSs and densify the network in an efficient
manner. The contributions of this thesis are summarised as follows.

Chapter 3 investigates UAV-assisted trajectory planning for data collection tasks,
optimizing both average Age of Information (AoI) and aggregate energy consump-
tion. To capture the trade-off between these metrics and identify the Pareto frontier,
a multi-return-allowed serving mode is proposed. This mode enables the UAV to
return to the depot at any point during the service cycle and is formulated as a
multi-objective mixed-integer linear programming (MILP) problem with flow-based
constraints, and solved via Bender’s decomposition to distribute the computational
burden. Additionally, a more general trajectory planning is studied where the UAV
can communicate while flying to further enhance performance. Numerical results
demonstrate that the proposed multi-return-allowed mode reveals the trade-off be-
tween the competing metrics.

To densify the network in an energy-efficient manner, a novel ABS prototype
named robotic aerial base stations (RABSs) is proposed, which are equipped with
dexterous end effectors able to grasp onto tall urban landforms. In Chapter 4, the
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system architecture of RABSs is discussed in both hardware and communication
aspects by gearing two previously disconnected areas, namely non-terrestrial commu-
nications and robotic dexterous end effectors with grasping capabilities. Compared
with existing ABS solutions such as hovering-based, tethered and laser-powered
ABSs, RABSs are shown to be able to provide long-term and flexible wireless service
in an energy-efficient, weather-independent and environmentally friendly manner.

Chapter 5 studies the optimal deployment and operation for a group of RABSs.
More specifically, when integrated into cellular networks, RABSs can enter sleep
mode to conserve energy and dynamically adjust their perching points based on
real-time traffic load information. With this consideration, an efficient optimisation
model has been formulated to optimally orchestrate the deployment and operation
strategy for RABSs based on the underlying traffic demand in the network. To solve
the aforementioned problem, a special case with a single RABS and developed a
Lagrangian heuristic algorithm to solve it by exploiting the totally unimodularity
structure. A polynomial-time method is then proposed to decompose the multi-
RABS problem into several single-RABS cases based on the Hungarian algorithm.
Numerical investigations demonstrate that RABSs outperform fixed small cells due
to their mobility, especially in networks with heterogeneous traffic distributions.

To better explore the application of RABSs, Chapter 6 proposes two novel
application scenarios in which RABSs are involved in different types of 6G cellular
networks. Firstly, a flexible integrated sensing and communication (ISAC) system
assisted by the RABS is studied in Section 6.2. A grid-based model captures users’
mobility and changing demand, with a robust programming approach formulated
on a cardinality-constrained uncertainty set to determine RABS deployment and
resource allocation. After reformulated as a mixed integer linear programming via
duality theory, the problem is solved by a proposed iterative linear programming
rounding algorithm in polynomial time. Numerical investigations show that the
minimum satisfaction rate can be improved by 28.61% on average thanks to the
flexible mobility of RABS deployment. Secondly, a novel network densification
framework is proposed in Section 6.3, in which a swarm of RABSs construct an
efficient mmWave backhauling network topology. To this end, a mixed-integer
linear fractional programming (MILFP) is formulated and solved by a two-stage
method that involves column generation, the Bellman-Ford algorithm and linear
programming. Numerical investigations reveal that compared to fixed small cells,
only half of RABSs are required to cover the same volume of traffic demand by
adapting to spatio-temporal traffic dynamics. Hence, RABSs could propel efficient

129



7.2 Researcher Opportunities and Regulation Issues

network densification by offering a dramatic reduction in the number of network
elements (i.e., small cells) that are required to serve a given traffic demand.

7.2 Researcher Opportunities and Regulation Issues

As studied in the above chapters, RABSs can provide wireless service in a more
energy-saving and cost-efficient manner. To explore the full potential that RABS-
assisted networks can offer, various potential techniques are illustrated to improve
the performance of RABS-assisted networks, provide future research opportunities
and point out regulation issues as follows.

7.2.1 Future Researcher Opportunities

1) Reconfigurable intelligent surfaces carried by RABS: Reconfigurable intelligent
surfaces (RIS) is an enabling technique to improve the system performance in 6G
cellular by reflecting the radio signals intelligently via a large number of controllable
reflecting units. Specifically, by adjusting the amplitude and phase shift of the
reflected signal by controlling the RIS units, the received signal on the user side,
combining the direct and reflection signals, can be then formed passively to achieve
a higher signal-to-interference-plus-noise ratio (SINR). Different from the nominal
relay system, RIS is a passive beamforming technique and thus does not introduce
extra spectrum resource blocks. Moreover, the lightweight and low-cost reflecting
units make the RIS a flexible, low-power and cost-efficient paradigm in future cellular
networks. The mobility of RABS could introduce increased degrees of freedom,
which have not been explored yet, to the RIS system, e.g., RIS can be transported
and deployed in the cell edge to cover the users suffering low data rates.

2) Developing experimental simulators and prototypes: Although Chapter 2
reviews that several simulators and prototypes for ABS have been developed to
validate system design and algorithms in practical settings, testbeds for RABS still
face numerous challenges because of its novel system design. From the perspective
of robotics research, RABS is required to detect suitable tall urban landforms for
perching in real-time. Therefore, it should be equipped with tactile and/or vision
sensors and employ advanced algorithms to detect environmental information. Based
on developed prototypes, the feasibility and advantages of RABS in urban envi-
ronments can be further validated. Similarly, simulators for RABS can also be
developed based on the measurement of urban environments, including information
on network traffic, suitable grasping locations, and existing ground base stations.
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The designed algorithms can be validated on the developed simulator accurately and
cost-effectively.

3) Integrated with other non-terrestrial network devices: In the 6G era, non-
terrestrial networks (NTNs) are expected to provide seamless coverage to both rural
and city areas. RABSs can cooperate with other types of non-terrestrial nodes located
at different vertical platforms, such as high-altitude platform stations (HAPSs) at
nearly 20-50 km as well as satellites on more than 800 km above the ground, and
make it possible to create a dynamic network that covers a wide area and provides
enhanced coverage, reliability, and scalability. Such integration also enables RABS
to provide a direct connection to remote areas, including areas with difficult terrain or
those that are geographically isolated. For example, the devices located in the higher
platforms, such as HAPSs and satellites, can be employed as macro BSs. However,
due to the long distance and frequent handover of satellites, they are difficult to
connect with ground devices with low transmission power, such as mobile users and
IoT devices. In this case, RABSs can be deployed much closer to mobile terminals
to act as relays and connect with HAPSs or satellites through backhaul links.

4) Integrated access and backhaul (IAB): One of the most critical issues when
deploying RABSs as relays is the limited capacity of wireless backhaul links. Due
to their inherent mobility, RABSs cannot backhaul through the high-capacity fibre
link like most of terrestrial BSs. IAB is a promising technique to enhance the
network capacity via allocating limited resources on both access and backhaul links.
Normally, there are two types of IAB protocols, namely in-band full-duplex (IBFD)
and out-band full-duplex (OBFD). In IBFD mode, both access and backhaul links
are connecting on the same frequency carriers simultaneously. Although IBFD
mode could improve the spectrum efficiency and does not need to determine the
bandwidth allocation strategy, it would introduce extra self-interference when access
and backhaul links transmit signals on the same frequencies. In OBFD mode,
the access and backhaul links are conducted in orthogonal channels, thus there is
no self-interference on the relay side. However, because of the limited spectrum
resource, the bandwidth allocation strategies affect the network capacity of the OBFD
system significantly. Due to the fact that RABSs could change their perching point,
new strategies for joint resource allocation and RABS deployment will need to be
introduced to enhance the capacity for both access and backhaul links.

5) Cross-layer optimisation and system design: To demonstrate the flexibility
that RABSs bring to cellular networks, most existing research mainly focuses on
the network layer, e.g., the optimal operation strategy in Chapter 5 and the routing
problem in Section 6.3. By integrating knowledge from multiple layers of the com-

131



7.2 Researcher Opportunities and Regulation Issues

munication protocol stack, including physical, link, and network layers, researchers
can explore innovative approaches to optimise the performance of RABS. For ex-
ample, interference management for RABS is extensive and crucial for ensuring the
reliability and efficiency of wireless communication in dynamic networks. By explor-
ing promising techniques such as adaptive beamforming and spectrum management,
the network performance of aerial networks can be further enhanced. Furthermore,
considering that future networks impose higher requirements on latency, addressing
cross-layer optimisation problems poses a new challenge, as existing methods can
not solve complex and dynamic problems within an acceptable computation time. In
such cases, advanced machine learning and artificial intelligence techniques can be
utilised to make agile decisions in dynamic environments.

7.2.2 Regulation Issues

Although the regulation regarding UAV flight and communications have been re-
cently published by several regulators around the world [81], such as the U.S. Federal
Aviation Administration (FAA), the UK communications regulator Office of Com-
munications (Ofcom) and the International Civil Aviation Organisation (ICAO), the
regulations for RABS need further discussed and published to make sure it can be
involved in civil wireless networks.

First, the use of aerial platforms for any application faces increasingly strict -
but also increasingly clear - regulation. This regulation is motivated primarily by
safety issues, to avoid impacting piloted aviation and to reduce risks to people or
property from falling debris. Piloted aviation is avoided by regulations that limit
the altitude of platforms, and restrict their use entirely in the vicinity of airports.
Increasingly these regulations are automated rather than based on human intervention,
specifying locations that must be avoided by platforms with GPS or other GNSS
location tracking. This approach suits RABS well, which would anyway support
a high degree of automation and be aware of their location for capacity-targeting
reasons. For example in the UK, UAVs must fly below 120 m in height above local
ground level and away from Flight Restrictions Zones in the vicinity of airports
and spaceports [171]. These restrictions should be straightforward to meet without
significantly affecting the utility of RABS. More problematic is the requirement
to always fly more than 50 m horizontal distance from people, including those in
buildings, in the case of UAVs above 250 g in weight. It is acceptable for lighter
UAVs to fly above people, but this will be hard to attain for practical RABS. Clearly,
this area of regulation will need to evolve for RABS to achieve their potential
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in offering capacity enhancements in populated areas. Within that context, the
successful deployment of robotic small cells heavily depends on the establishment
of low-risk aerial urban corridors to enable ubiquitous roaming of aerial small
cells within an urban environment so that they can efficiently change their point of
attachment based on the spatio-temporal traffic variations.

Secondly, the RABS application of spectrum will need to be supported by local
spectrum management regulations. Spectrum regulations are motivated primarily by
the need to avoid harmful interference between users, and RABS operation could
present a new interference use case. When the RABS are docked this should be
unproblematic, as the spectrum would be used in the same way as for a conventional
outdoor small cell, and operation would remain under the control of the relevant mo-
bile network operator who would incorporate the RABS into their network planning
procedures. When the RABS is in flight between docking locations, the use of access
spectrum in mobile bands may be restricted and only allowed when docked, though
other locations may permit in-flight operation for even greater RABS applicability.
Spectrum for control of the RABS in flight is more likely to be dedicated to this
application; the UK communications regulator Ofcom has consulted on introducing
a new spectrum license to allow control and transmission of data and video from
UAVs [172].

Finally, the creation of formal policies around aerial urban airspace and their
corresponding capacity limitations are still at an embryonic stage. Within that
context, the successful deployment of RABSs heavily depends on the establishment
of low-risk aerial urban corridors to enable the ubiquitous roaming of aerial small
cells within an urban environment so that they can efficiently change their point of
attachment based on the spatial-temporal traffic variations.
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Appendix A

Propulsion Power Model for
Unmanned Aerial Vehicles

In this appendix, the derivation of the propulsion power model for unmanned aerial
vehicles (UAVs) is reviewed to support the research in Chapters 3 to 6. Generally
speaking, UAVs can be divided into two categories in terms of their wing config-
uration, i.e., fixed-wing and rotary-wing UAVs. Fixed-wing UAVs always have a
higher maximum flying speed and greater payloads. However, they require a runway
or launcher for takeoff and landing, and cannot keep hovering at a fixed position.
Conversely, rotary-wing UAVs possess the capability for vertical takeoff and landing,
as well as the ability to maintain a stationary position while hovering. Hereafter, the
closed-form expressions of the propulsion power for fixed-wing and rotary-wing
UAVs are reviewed, which are proposed in [26, 27, 173, 174].

A.1 Propulsion Power Model for Fixed-wing UAV

The propulsion power model for fixed-wing UAV proposed in [26] is reviewed in
this section. The aircraft is assumed to fly along a constant direction and remain at
a certain altitude, while the propulsion power model for complex flight trajectories
can be found in the textbook [173].

On the horizontal plane, drag is defined as the aerodynamic force component in
the direction of the velocity vector. The magnitude of drag is defined in the equation
(4.1) in [173],

D =
1
2

CDρSV 2, (A.1)

where CD is the drag force coefficient, S is the area of the wing projected on the
ground, and V denotes the aircraft speed. Moreover, the force component perpendic-
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ular to drag, directed upwards, is defined as the lift force,

L =
1
2

CLρSV 2, (A.2)

where CL is the lift force coefficient. The common drag equation for the aircraft with
subsonic speeds is given by (4.13) in [173],

CD =CD0 +
C2

L
e0πAr

, (A.3)

where e0 is the Oswald efficiency depending on the spanwise load distribution, and
Ar is defined as the ratio of the wing span to its aerodynamic breadth. Introducing
(A.2) and (A.3) into (A.1), the drag can be calculated as,

D =
1
2

CD0ρSV 2 +
2L2

e0πArρSV 2 . (A.4)

Consider a fixed-wing aircraft flying with an acceleration of a at a constant
altitude. The following two equations analyse the forces in the horizontal and
vertical directions, {

L =W,

F −D = ma,

(A.5a)

(A.5b)

where (A.5a) states that the lift force is equal to the gravitational force in the vertical
direction, while (A.5b) represents the force analysis in the horizontal direction, where
F is the thrust force produced by the aircraft engine, and m denotes the weight of the
UAV in kilograms. Introducing (A.4) and (A.5a) into (A.5b), the following equation
could be achieved,

F =
1
2

CD0ρSV 2 +
2W 2

e0πArρSV 2 +ma. (A.6)

Accordingly, the propulsion for the fixed-wing UAV can be calculated as follows,

P = FV =
1
2

CD0ρSV 3 +
2W 2

e0πArρSV
+maV. (A.7)

For notational convenience, two parameters are always defined as c1 ≜
1
2CD0ρ and

c2 ≜ 2W 2

e0πArρS . This completes the derivation of the propulsion power model for
fixed-wing UAVs.
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Fig. A.1 Propulsion power versus fixed-wing UAV speed.

The following Fig. A.1 demonstrates the propulsion power versus fixed-wing
UAV speed, in which the parameters are from [26], i.e., c1 and c2 are set to 9.26×
10−4 and 2250, respectively.

A.2 Propulsion Power Model for Rotary-wing UAV

The propulsion power model for rotary-wing UAV proposed in [27] is reviewed in
this section. The derivation of the flight power of a rotary-wing UAV includes two
steps. Considering one of the most significant advantages of rotary-wing UAVs over
fixed-wing UAVs is their ability to hover in the air, the hovering power is derived
first. Subsequently, the power required for forward flight can be determined under
some reasonable approximations. It should be noted that the power required for both
hovering and flight is calculated based on the following equation,

P = qcρsAΩ
3R3, (A.8)

where P is the propulsion power, qc indicates the torque coefficient that would be
further discussed later for different UAV status, ρ , s, A and Ω denote the air density,
rotor solidity, rotor disc area and blade angular velocity, respectively.
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When rotary-wing UAVs are hovering in the air, the thrust primarily balances the
aircraft weight and the torque coefficient qc is given by the equation (63) in [27],

qc =
δ

8
+(1+ k)

W 3/2
√

2ρ3/2sA3/2Ω3R3
, (A.9)

where W is the gravitational force of aircraft in Newton, δ and k are the profile drag
coefficient and incremental correction factor, respectively. Introducing (A.9) into
(A.8), the hovering power for rotary-wing UAVs can be calculated by,

Ph =
δ

8
ρsAΩ

3R3 +(1+ k)
W 3/2
√

2ρA
, (A.10)

For notational convenience, the first and second components in (A.10) are indicated
by P0 and Pi, respectively, i.e., P0 ≜

δ

8 ρsAΩ3R3 and Pi ≜ (1+ k) W 3/2
√

2ρA .
Similarly, the torque coefficient qc for forward flight is given by the equation

(66) in [27],

qc =
δ

8

(
1+

3V 2

Ω2R2

)
+

(1+ k)Fλi

ρsAΩ2R2 +
1
2

d0
V 2

Ω3R3 , (A.11)

where V , R, and F are the forward speed, rotor radius and rotor thrust, respectively,
and λi is the mean induced velocity. It is worth noting that the torque coefficient qc

is a function of the forward speed V and the rotor thrust F . Introducing (A.11) to
(A.8), the propulsion power for the forward flight can be calculated as,

Pf = P0

(
1+

3V 2

Ω2R2

)
+(1+ k)Fvi0 +

1
2

d0ρsAV 3, (A.12)

where vi0 ≜ λiΩR is the mean induced velocity. The textbook [174] indicates that
vi0 is a function of V and F , and provides a calculation as,

vi0 = v0

(√
κ̃2 +

V 4

4v4
0
− V 2

4v2
0

)1/2
, (A.13)

where κ̃ ≜ F/W is defined as the thrust-to-weight ratio and v0 ≜
√

W/(2ρA) is the
mean induced velocity for hovering. Accordingly, the flight power given by (A.12)
can be rewritten as,

Pf = P0

(
1+

3V 2

Ω2R2

)
+Piκ̃

(√
κ̃2 +

V 4

4v4
0
− V 2

4v2
0

)1/2
+

1
2

d0ρsAV 3. (A.14)
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Fig. A.2 Propulsion power versus rotary-wing UAV speed.

As suggested by the textbook [174], the thrust generated by the UAV is always very
close to its weight because the aircraft needs to keep balance in the vertical direction,
i.e., F ≈W and κ̃ ≈ 1, the propulsion power can be approximated as,

P = P0

(
1+

3V 2

Ω2R2

)
+Pi

(√
1+

V 4

4v4
0
− V 2

2v2
0

)1/2
+

1
2

d0ρsAV 3. (A.15)

It should be noted that the flying power (A.15) could converge to the hovering power
(A.10) when setting V = 0. Therefore, the notation P is used here to indicate both
hovering and forward flight power. This completes the derivation of the propulsion
power for rotary-wing UAVs.

The following Fig. A.2 presents the propulsion power versus rotary-wing UAV
speed, in which the simulation parameters are from [27], i.e., P0 and Pi are set to
79.86 and 88.63, respectively, the rotor radius R is 0.4 m, the rotor disc area A is
0.503 m2, mean rotor induced velocity when hovering v0 is set to 4.03, rotor solidity
s is 0.05, fuselage drag ratio d0 is 0.6, the blade angular velocity Ω is 300 s−1, and
the air density is set to 1.225 kg/m3.
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Appendix B

Derivation of the Conditional Mutual
Information

In this appendix, the derivation of conditional mutual information (MI) proposed in
[140, 141] is reviewed, which is utilised as the performance metric for orthogonal
frequency division multiplexing (OFDM) sensing in Chapter 6.

The sensing signal performed on a set of K subcarriers with M consecutive
integrated OFDM symbols can be written as,

s(t) = e j2π f c
k t

Ns−1

∑
n=0

K−1

∑
k=0

akckne j2πk∆ f (t−nTs) · rect[
t −nTs

Ts
], (B.1)

where t is the continuous-time independent variable, f c and ∆ f are the frequency
and bandwidth of subcarrier k, ak and ckn denotes the amplitude and phase code,
respectively, Ts is the duration of each completed OFDM symbol including both the
guard intervals and elementary symbol, and rect[x] is the rectangle function that is
equal to one when x∈ [0,1], and zero, otherwise.

Accordingly, supposing the impulse response of a sensing target is characterised
by g(t) and the impulse response of the propagation channel between the transmitter
and target is h(t), the received signal can be written as,

y(t) = s(t)∗h(t)∗g(t)+n(t), (B.2)

where ∗ represents the convolution operation and n(t) is additive white Gaussian
noise (AWGN) with zero mean and power spectral density N( f ). The conditional
MI between the target response and the reflected signal conditioned on the sensing
probing signal and propagation channel is denoted by M(y(t); g(t)|s(t), h(t)) and
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given by the following (B.3) in [175],

M(y(t); g(t)|s(t), h(t)) =
∆ f NsTs

2

K−1

∑
k=0

log2

(
1+

|S( fk)|2|H( fk)|2|G( fk)|2

N( fk)NsTs

)
(B.3)

where [ fk, fk+1] indicates the frequency interval for the subcarrier k. For the specific
subcarrier k, S( fk), H( fk) and N( fk) are approximated by their respective values of
the whole signal, i.e., S( f ), H( f ) and N( f ), where S( f ) and G( f ) are the Fourier
transform of s(t) and h(t), respectively. Afterwards, define Q( f ) = |S( f )|2 and it
can be written as,

Q( f ) =T 2
s ·

Ns−1

∑
n=0

K−1

∑
k=0

Ns−1

∑
n′=0

K−1

∑
k′=0

aka∗k′cknc∗k′n′

· e− j2π( f− fc)(n−n′)Ts · e− jπ(k−k′)∆ f Ts

· sinc(π( f − fk)Ts) · sinc(π( f − fk′)Ts)

(B.4)

where (·)∗ indicates the complex conjugation, and sinc(t) is the sinc function calcu-
lated as sinc(t) = sin t

t . Generally speaking, the communication code ckn depends on
the carried information. By applying the precoding to the transmitted signal [176],
the following equation is obtained,

E(cknck′n′) =

1, k = k′,n = n′,

0, otherwise.
(B.5)

where E(·) calculates the expectation of a random variable. Introducing (B.5) into
(B.3), the expectation of Q( f ) could be written as,

E(Q( f )) = T 2
s Ns

K−1

∑
k=0

|ak|2sinc(π( f − fk)Ts), (B.6)

In practice, the value of Q( f ) is reasonable to be approximated via its expec-
tation because the values of Ns and K are generally sufficiently large. Moreover,
remember the duration of the OFDM symbol Ts includes the elementary length of
the symbol and the guard interval. When k ̸= k′, the value of sinc(π( fk − fk′)Ts)

is equal to zero when there is no guard interval and much less than one when the
guard interval is much less than the elementary length. Afterwards, the value of
T 2

s Ns ∑
K−1
k′=0 |ak′|2sinc(π( fk − fk′)Ts) can be approximated to zero in most practical

cases. Therefore, at the frequency f = fk, the value of Q( fk) can be approximated
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as follows,

Q( fk)≈ T 2
s Ns|ak|2, (B.7)

Substituting (B.7) into (B.3), the conditional MI could be calculated by,

M(y(t); g(t)|s(t), h(t)) =
∆ f NsTs

2

K−1

∑
k=0

log2

(
1+

T 2
s Ns|ak|2|H( fk)|2|G( fk)|2

N( fk)NsTs

)
.

(B.8)
In practice, the impulse response g(t) is unknown before detecting the targets.

Therefore, the authors of [140] suggest initially estimating g(t) through a preliminary
sensing attempt and then designing a more specific resource allocation strategy in
subsequent sensing tasks. Also, it should be noted that because the subcarrier
allocation is taken into consideration in Section 6.2, the conditional MI for specific
subcarrier is calculated separately. This completes the derivation of the conditional
MI.
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