1,753 research outputs found

    Towards Patient-Specific Brain Networks Using Functional Magnetic Resonance Imaging

    Get PDF
    fMRI applications are rare in translational medicine and clinical practice. What can be inferred from a single fMRI scan is often unreliable due to the relative low signal-to-noise ratio compared to other neuroimaging modalities. However, the potential of fMRI is promising. It is one of the few neuroimaging modalities to obtain functional brain organisation of an individual during task engagement and rest. This work extends on current fMRI image processing approaches to obtain robust estimates of functional brain organisation in two resting-state fMRI cohorts. The first cohort comprises of young adults who were born at extremely low gestations and age-matched healthy controls. Group analysis between term- and preterm-born adults revealed differences in functional organisation, which were discovered to be predominantly caused by underlying structural and physiological differences. The second cohort comprises of elderly adults with young onset Alzheimer’s disease and age-matched controls. Their corresponding resting-state fMRI scans are short in scanning time resulting in unreliable spatial estimates with conventional dual regression analysis. This problem was addressed by the development of an ensemble averaging of matrix factorisations approach to compute single subject spatial maps characterised by improved spatial reproducibility compared to maps obtained by dual regression. The approach was extended with a haemodynamic forward model to obtain surrogate neural activations to examine the subject’s task behaviour. This approach applied to two task-fMRI cohorts showed that these surrogate neural activations matched with original task timings in most of the examined fMRI scans but also revealed subjects with task behaviour different than intended by the researcher. It is hoped that both the findings in this work and the novel matrix factorisation approach itself will benefit the fMRI community. To this end, the derived tools are made available online to aid development and validation of methods for resting-state and task fMRI experiments

    A group model for stable multi-subject ICA on fMRI datasets

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract sets of mutually correlated brain regions without prior information on the time course of these regions. Some of these sets of regions, interpreted as functional networks, have recently been used to provide markers of brain diseases and open the road to paradigm-free population comparisons. Such group studies raise the question of modeling subject variability within ICA: how can the patterns representative of a group be modeled and estimated via ICA for reliable inter-group comparisons? In this paper, we propose a hierarchical model for patterns in multi-subject fMRI datasets, akin to mixed-effect group models used in linear-model-based analysis. We introduce an estimation procedure, CanICA (Canonical ICA), based on i) probabilistic dimension reduction of the individual data, ii) canonical correlation analysis to identify a data subspace common to the group iii) ICA-based pattern extraction. In addition, we introduce a procedure based on cross-validation to quantify the stability of ICA patterns at the level of the group. We compare our method with state-of-the-art multi-subject fMRI ICA methods and show that the features extracted using our procedure are more reproducible at the group level on two datasets of 12 healthy controls: a resting-state and a functional localizer study

    Machine Learning for Neuroimaging with Scikit-Learn

    Get PDF
    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.Comment: Frontiers in neuroscience, Frontiers Research Foundation, 2013, pp.1

    A Robust Classifier to Distinguish Noise from fMRI Independent Components

    Get PDF
    Analyzing Functional Magnetic Resonance Imaging (fMRI) of resting brains to determine the spatial location and activity of intrinsic brain networks–a novel and burgeoning research field–is limited by the lack of ground truth and the tendency of analyses to overfit the data. Independent Component Analysis (ICA) is commonly used to separate the data into signal and Gaussian noise components, and then map these components on to spatial networks. Identifying noise from this data, however, is a tedious process that has proven hard to automate, particularly when data from different institutions, subjects, and scanners is used. Here we present an automated method to delineate noisy independent components in ICA using a data-driven infrastructure that queries a database of 246 spatial and temporal features to discover a computational signature of different types of noise. We evaluated the performance of our method to detect noisy components from healthy control fMRI (sensitivity = 0.91, specificity = 0.82, cross validation accuracy (CVA) = 0.87, area under the curve (AUC) = 0.93), and demonstrate its generalizability by showing equivalent performance on (1) an age- and scanner-matched cohort of schizophrenia patients from the same institution (sensitivity = 0.89, specificity = 0.83, CVA = 0.86), (2) an agematched cohort on an equivalent scanner from a different institution (sensitivity = 0.88, specificity = 0.88, CVA = 0.88), and (3) an age-matched cohort on a different scanner from a different institution (sensitivity = 0.72, specificity = 0.92, CVA = 0.79). We additionally compare our approach with a recently published method [1]. Our results suggest that our method is robust to noise variations due to population as well as scanner differences, thereby making it well suited to the goal of automatically distinguishing noise from functional networks to enable investigation of human brain function

    A Robust Classifier to Distinguish Noise from fMRI Independent Components

    Get PDF
    Analyzing Functional Magnetic Resonance Imaging (fMRI) of resting brains to determine the spatial location and activity of intrinsic brain networks–a novel and burgeoning research field–is limited by the lack of ground truth and the tendency of analyses to overfit the data. Independent Component Analysis (ICA) is commonly used to separate the data into signal and Gaussian noise components, and then map these components on to spatial networks. Identifying noise from this data, however, is a tedious process that has proven hard to automate, particularly when data from different institutions, subjects, and scanners is used. Here we present an automated method to delineate noisy independent components in ICA using a data-driven infrastructure that queries a database of 246 spatial and temporal features to discover a computational signature of different types of noise. We evaluated the performance of our method to detect noisy components from healthy control fMRI (sensitivity = 0.91, specificity = 0.82, cross validation accuracy (CVA) = 0.87, area under the curve (AUC) = 0.93), and demonstrate its generalizability by showing equivalent performance on (1) an age- and scanner-matched cohort of schizophrenia patients from the same institution (sensitivity = 0.89, specificity = 0.83, CVA = 0.86), (2) an agematched cohort on an equivalent scanner from a different institution (sensitivity = 0.88, specificity = 0.88, CVA = 0.88), and (3) an age-matched cohort on a different scanner from a different institution (sensitivity = 0.72, specificity = 0.92, CVA = 0.79). We additionally compare our approach with a recently published method [1]. Our results suggest that our method is robust to noise variations due to population as well as scanner differences, thereby making it well suited to the goal of automatically distinguishing noise from functional networks to enable investigation of human brain function

    Sparse Predictive Structure of Deconvolved Functional Brain Networks

    Full text link
    The functional and structural representation of the brain as a complex network is marked by the fact that the comparison of noisy and intrinsically correlated high-dimensional structures between experimental conditions or groups shuns typical mass univariate methods. Furthermore most network estimation methods cannot distinguish between real and spurious correlation arising from the convolution due to nodes' interaction, which thus introduces additional noise in the data. We propose a machine learning pipeline aimed at identifying multivariate differences between brain networks associated to different experimental conditions. The pipeline (1) leverages the deconvolved individual contribution of each edge and (2) maps the task into a sparse classification problem in order to construct the associated "sparse deconvolved predictive network", i.e., a graph with the same nodes of those compared but whose edge weights are defined by their relevance for out of sample predictions in classification. We present an application of the proposed method by decoding the covert attention direction (left or right) based on the single-trial functional connectivity matrix extracted from high-frequency magnetoencephalography (MEG) data. Our results demonstrate how network deconvolution matched with sparse classification methods outperforms typical approaches for MEG decoding

    SEARCHING NEUROIMAGING BIOMARKERS IN MENTAL DISORDERS WITH GRAPH AND MULTIMODAL FUSION ANALYSIS OF FUNCTIONAL CONNECTIVITY

    Get PDF
    Mental disorders such as schizophrenia (SZ), bipolar (BD), and major depression disorders (MDD) can cause severe symptoms and life disruption. They share some symptoms, which can pose a major clinical challenge to their differentiation. Objective biomarkers based on neuroimaging may help to improve diagnostic accuracy and facilitate optimal treatment for patients. Over the last decades, non-invasive in-vivo neuroimaging techniques such as magnetic resonance imaging (MRI) have been increasingly applied to measure structure and function in human brains. With functional MRI (fMRI) or structural MRI (sMRI), studies have identified neurophysiological deficits in patients’ brain from different perspective. Functional connectivity (FC) analysis is an approach that measures functional integration in brains. By assessing the temporal coherence of the hemodynamic activity among brain regions, FC is considered capable of characterizing the large-scale integrity of neural activity. In this work, we present two data analysis frameworks for biomarker detection on brain imaging with FC, 1) graph analysis of FC and 2) multimodal fusion analysis, to better understand the human brain. Graph analysis reveals the interaction among brain regions based on graph theory, while the multimodal fusion framework enables us to utilize the strength of different imaging modalities through joint analysis. Four applications related to FC using these frameworks were developed. First, FC was estimated using a model-based approach, and revealed altered the small-world network structure in SZ. Secondly, we applied graph analysis on functional network connectivity (FNC) to differentiate BD and MDD during resting-state. Thirdly, two functional measures, FNC and fractional amplitude of low frequency fluctuations (fALFF), were spatially overlaid to compare the FC and spatial alterations in SZ. And finally, we utilized a multimodal fusion analysis framework, multi-set canonical correlation analysis + joint independent component analysis (mCCA+jICA) to link functional and structural abnormalities in BD and MDD. We also evaluated the accuracy of predictive diagnosis through classifiers generated on the selected features. In summary, via the two frameworks, our work has made several contributions to advance FC analysis, which improves our understanding of underlying brain function and structure, and our findings may be ultimately useful for the development of biomarkers of mental disease
    • …
    corecore