101 research outputs found

    Space-Variant Post-Filtering for Wavefront Curvature Correction in Polar-Formatted Spotlight-Mode SAR Imagery

    Full text link

    Electromagnetic ray-tracing for the investigation of multipath and vibration signatures in radar imagery

    Get PDF
    Synthetic Aperture Radar (SAR) imagery has been used extensively within UK Defence and Intelligence for many years. Despite this, the exploitation of SAR imagery is still challenging to the inexperienced imagery analyst as the non-literal image provided for exploitation requires careful consideration of the imaging geometry, the target being imaged and the physics of radar interactions with objects. It is therefore not surprising to note that in 2017 the most useful tool available to a radar imagery analyst is a contextual optical image of the same area. This body of work presents a way to address this by adopting recent advances in radar signal processing and computational geometry to develop a SAR simulator called SARCASTIC (SAR Ray-Caster for the Intelligence Community) that can rapidly render a scene with the precise collection geometry of an image being exploited. The work provides a detailed derivation of the simulator from first principals. It is then validated against a range of real-world SAR collection systems. The work shows that such a simulator can provide an analyst with the necessary tools to extract intelligence from a collection that is unavailable to a conventional imaging system. The thesis then describes a new technique that allows a vibrating target to be detected within a SAR collection. The simulator is used to predict a unique scattering signature - described as a one-sided paired echo. Finally an experiment is described that was performed by Cranfield University to specifications determined by SARCASTIC which show that the unique radar signature can actually occur within a SAR collection

    Efficient algorithms for three-dimensional near-field synthetic aperture radar imaging [online]

    Get PDF

    Time domain based image generation for synthetic aperture radar on field programmable gate arrays

    Get PDF
    Aerial images are important in different scenarios including surface cartography, surveillance, disaster control, height map generation, etc. Synthetic Aperture Radar (SAR) is one way to generate these images even through clouds and in the absence of daylight. For a wide and easy usage of this technology, SAR systems should be small, mounted to Unmanned Aerial Vehicles (UAVs) and process images in real-time. Since UAVs are small and lightweight, more robust (but also more complex) time-domain algorithms are required for good image quality in case of heavy turbulence. Typically the SAR data set size does not allow for ground transmission and processing, while the UAV size does not allow for huge systems and high power consumption to process the data. A small and energy-efficient signal processing system is therefore required. To fill the gap between existing systems that are capable of either high-speed processing or low power consumption, the focus of this thesis is the analysis, design, and implementation of such a system. A survey shows that most architectures either have to high power budgets or too few processing capabilities to match real-time requirements for time-domain-based processing. Therefore, a Field Programmable Gate Array (FPGA) based system is designed, as it allows for high performance and low-power consumption. The Global Backprojection (GBP) is implemented, as it is the standard time-domain-based algorithm which allows for highest image quality at arbitrary trajectories at the complexity of O(N3). To satisfy real-time requirements under all circumstances, the accelerated Fast Factorized Backprojection (FFBP) algorithm with a complexity of O(N2logN) is implemented as well, to allow for a trade-off between image quality and processing time. Additionally, algorithm and design are enhanced to correct the failing assumptions for Frequency Modulated Continuous Wave (FMCW) Radio Detection And Ranging (Radar) data at high velocities. Such sensors offer high-resolution data at considerably low transmit power which is especially interesting for UAVs. A full analysis of all algorithms is carried out, to design a highly utilized architecture for maximum throughput. The process covers the analysis of mathematical steps and approximations for hardware speedup, the analysis of code dependencies for instruction parallelism and the analysis of streaming capabilities, including memory access and caching strategies, as well as parallelization considerations and pipeline analysis. Each architecture is described in all details with its surrounding control structure. As proof of concepts, the architectures are mapped on a Virtex 6 FPGA and results on resource utilization, runtime and image quality are presented and discussed. A special framework allows to scale and port the design to other FPGAs easily and to enable for maximum resource utilization and speedup. The result is streaming architectures that are capable of massive parallelization with a minimum in system stalls. It is shown that real-time processing on FPGAs with strict power budgets in time-domain is possible with the GBP (mid-sized images) and the FFBP (any image size with a trade-off in quality), allowing for a UAV scenario

    Performance Aspects of Synthesizable Computing Systems

    Get PDF

    A Priori Knowledge-Based Post-Doppler STAP for Traffic Monitoring with Airborne Radar

    Get PDF
    Die Verkehrsüberwachung gewinnt aufgrund des weltweiten Anstiegs der Verkehrsteilnehmer immer mehr an Bedeutung. Sicherer und effizierter Straßenverkehr erfordert detaillierte Verkehrsinformationen. Häufig sind diese lediglich stationär, räumlich stark begrenzt und meist nur auf Hauptverkehrsstraßen verfügbar. In dieser Hinsicht ist ein Ausfall des Telekommunikationsnetzes, beispielsweise im Falle einer Katastrophe, und der damit einhergehende Informationsverlust als kritisch einzustufen. Flugzeuggetragene Radarsysteme mit synthetischer Apertur (eng. Synthetic Aperture Radar - SAR) können für dieses Szenario eine Lösung darstellen, da sie großflächig hochauflösende Bilder generieren können, unabhängig von Tageslicht und Witterungsbedingungen. Sie ermöglichen aufgrund dieser Charakteristik die Detektion von Bewegtzielen am Boden (eng. ground moving target indication – GMTI). Moderne GMTI-Algorithmen und -Systeme, die prinzipiell für die Verkehrsüberwachung verwendbar sind, wurden in der Literatur bereits diskutiert. Allerdings ist die Robustheit dieser Systeme oft mit hohen Kosten, hoher Hardwarekomplexität und hohem Rechenaufwand verbunden. Diese Dissertation stellt einen neuartigen GMTI-Prozessor vor, der auf dem Radar-Mehrkanalverfahren post-Doppler space-time adaptive processing (PD STAP) basiert. Durch die Überlagerung einer Straßenkarte mit einem digitalen Höhenmodell ist es mithilfe des PD STAP möglich, Falschdetektionen zu erkennen und auszuschließen sowie die detektierten Fahrzeuge ihren korrekten Straßenpositionen zu zuordnen. Die präzisen Schätzungen von Position, Geschwindigkeit und Bewegungsrichtung der Fahrzeuge können mit vergleichsweise geringerer Hardware-Komplexität zu niedrigeren Kosten durchgeführt werden. Ferner wird im Rahmen dieser Arbeit ein effizienter Datenkalibrierungsalgorithmus erläutert, der das Ungleichgewicht zwischen den Empfangskanälen sowie die Variation des Dopplerschwerpunkts über Entfernung und Azimut korrigiert und so das Messergebnis verbessert. Darüber hinaus werden neue und automatisierte Strategien zur Erhebung von Trainingsdaten vorgestellt, die für die Schätzung der Clutter-Kovarianzmatrix wegen ihres direkten Einflusses auf die Clutter-Unterdrückung und Zieldetektion essentiell für PD STAP sind. Der neuartige PD STAP Prozessor verfügt über drei verschiedene Betriebsarten, die für militärische und zivile Anwendungen geeignet sind, darunter ein schneller Verarbeitungsalgorithmus der das Potential für eine zukünftige Echtzeit-Verkehrsüberwachung hat. Alle Betriebsarten wurden erfolgreich mit Radar-Mehrkanaldaten des flugzeuggetragenen F-SAR-Radarsensors des DLR getestet

    A study of application-level recovery methods for transient network faults

    Full text link
    Abstract not provide

    Subsurface radar imaging from space

    Get PDF
    © Cranfield University, 2018Ground Penetrating Radar (GPR) and Synthetic Aperture Radar (SAR) are two widely used techniques for acquiring radar images. GPR, as its name suggests, produces radar images of the below ground environment. SAR is a remote sensing technique which allows moving radar systems to produce radar images with dramatically improved resolutions over conventional radar systems. Despite their benefits, both GPR and SAR suffer from certain limitations. In the case of GPR, the radar system has to be in close proximity with the subsurface volume being surveyed, which limits the process to relatively small areas that are easily accessible. SAR allows large areas to be surveyed rapidly from large distances, but cannot distinguish buried objects from surface objects. This thesis focuses on a radar technique that offers the opportunity to overcome these limitations and allow subsurface radar imaging of large areas using radar data gathered by remote sensing systems. This novel technique is known as Virtual Bandwidth SAR (VB-SAR). VB-SAR utilises changes in soil moisture over a series of SAR images to differentiate buried objects from objects on the surface. In addition to this differentiation, VB-SAR also allows extremely high (centimetre scale) subsurface range resolutions to be obtained from SAR images with range resolutions measured in metres. This research has experimentally demonstrated the basic feasibility of performing remote subsurface radar imaging with the VB-SAR scheme. Within the laboratory environment a buried target has been successfully imaged using VB-SAR and the fundamentals of VB-SAR have been verified. Dramatic increases in subsurface range resolutions have been demonstrated, as has the ability of the VB-SAR scheme to work correctly over a range of radar frequencies, observation angles and polarisations. This laboratory work has been enabled by use of the Tomographic Profiling (TP) imaging scheme. TP is a synthetic aperture based imaging algorithm, but unlike conventional SAR TP produces images with a constant look angle over the entire imaging scene. This enabled the performance of the VB-SAR imaging scheme to be easily evaluated over a range of look angles using a single radar dataset and simplified the experimental setup. In addition to the experimental work, simulation exercises have been conducted and image processors have been implemented. Simulation, using a simulator created as part of this work, has allowed testing of the VB-SAR scheme in a range of scenarios (sidelooking SAR, different soils, multiple buried targets). The image processor work has implemented a high performance TP processor and a practical VB-SAR imager

    NASA Tech Briefs, February 1993

    Get PDF
    Topics include: Communication Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences
    corecore