764 research outputs found

    Algebraic level sets for CAD/CAE integration and moving boundary problems

    Get PDF
    Boundary representation (B-rep) of CAD models obtained from solid modeling kernels are commonly used in design, and analysis applications outside the CAD systems. Boolean operations between interacting B-rep CAD models as well as analysis of such multi-body systems are fundamental operations on B-rep geometries in CAD/CAE applications. However, the boundary representation of B-rep solids is, in general, not a suitable representation for analysis operations which lead to CAD/CAE integration challenges due to the need for conversion from B-rep to volumetric approximations. The major challenges include intermediate mesh generation step, capturing CAD features and associated behavior exactly and recurring point containment queries for point classification as inside/outside the solid. Thus, an ideal analysis technique for CAD/CAE integration that can enable direct analysis operations on B-rep CAD models while overcoming the associated challenges is desirable. ^ Further, numerical surface intersection operations are typically necessary for boolean operations on B-rep geometries during the CAD and CAE phases. However, for non-linear geometries, surface intersection operations are non-trivial and face the challenge of simultaneously satisfying the three goals of accuracy, efficiency and robustness. In the class of problems involving multi-body interactions, often an implicit knowledge of the boolean operation is sufficient and explicit intersection computation may not be needed. Such implicit boolean operations can be performed by point containment queries on B-rep CAD models. However, for complex non-linear B-rep geometries, the point containment queries may involve numerical iterative point projection operations which are expensive. Thus, there is a need for inexpensive, non-iterative techniques to enable such implicit boolean operations on B-rep geometries. ^ Moreover, in analysis problems with evolving boundaries (ormoving boundary problems), interfaces or cracks, blending functions are used to enrich the underlying domain with the known behavior on the enriching entity. The blending functions are typically dependent on the distance from the evolving boundaries. For boundaries defined by free form curves or surfaces, the distance fields have to be constructed numerically. This may require either a polytope approximation to the boundary and/or an iterative solution to determine the exact distance to the boundary. ^ In this work a purely algebraic, and computationally efficient technique is described for constructing signed distance measures from Non-Uniform Rational B-Splines (NURBS) boundaries that retain the geometric exactness of the boundaries while eliminating the need for iterative and non-robust distance calculation. The proposed technique exploits the NURBS geometry and algebraic tools of implicitization. Such a signed distance measure, also referred to as the Algebraic Level Sets, gives a volumetric representation of the B-rep geometry constructed by purely non-iterative algebraic operations on the geometry. This in turn enables both the implicit boolean operations and analysis operations on B-rep geometries in CAD/CAE applications. Algebraic level sets ensure exactness of geometry while eliminating iterative numerical computations. Further, a geometry-based analysis technique that relies on hierarchical partition of unity field compositions (HPFC) theory and its extension to enriched field modeling is presented. The proposed technique enables direct analysis of complex physical problems without meshing, thus, integrating CAD and CAE. The developed techniques are demonstrated by constructing algebraic level sets for complex geometries, geometry-based analysis of B-rep CAD models and a variety of fracture examples culminating in the analysis of steady state heat conduction in a solid with arbitrary shaped three-dimensional cracks. ^ The proposed techniques are lastly applied to investigate the risk of fracture in the ultra low-k (ULK) dies due to copper (Cu) wirebonding process. Maximum damage induced in the interlayer dielectric (ILD) stack during the process steps is proposed as an indicator of the reliability risk. Numerical techniques based on enriched isogeometric approximations are adopted to model damage in the ULK stacks using a cohesive damage description. A damage analysis procedure is proposed to conduct damage accumulation studies during Cu wirebonding process. Analysis is carried out to identify weak interfaces and potential sites for crack nucleation as well as damage nucleation patterns. Further, the critical process condition is identified by analyzing the damage induced during the impact and ultrasonic excitation stages. Also, representative ILD stack designs with varying Cu percentage are compared for risk of fracture

    High-performance geometric vascular modelling

    Get PDF
    Image-based high-performance geometric vascular modelling and reconstruction is an essential component of computer-assisted surgery on the diagnosis, analysis and treatment of cardiovascular diseases. However, it is an extremely challenging task to efficiently reconstruct the accurate geometric structures of blood vessels out of medical images. For one thing, the shape of an individual section of a blood vessel is highly irregular because of the squeeze of other tissues and the deformation caused by vascular diseases. For another, a vascular system is a very complicated network of blood vessels with different types of branching structures. Although some existing vascular modelling techniques can reconstruct the geometric structure of a vascular system, they are either time-consuming or lacking sufficient accuracy. What is more, these techniques rarely consider the interior tissue of the vascular wall, which consists of complicated layered structures. As a result, it is necessary to develop a better vascular geometric modelling technique, which is not only of high performance and high accuracy in the reconstruction of vascular surfaces, but can also be used to model the interior tissue structures of the vascular walls.This research aims to develop a state-of-the-art patient-specific medical image-based geometric vascular modelling technique to solve the above problems. The main contributions of this research are:- Developed and proposed the Skeleton Marching technique to reconstruct the geometric structures of blood vessels with high performance and high accuracy. With the proposed technique, the highly complicated vascular reconstruction task is reduced to a set of simple localised geometric reconstruction tasks, which can be carried out in a parallel manner. These locally reconstructed vascular geometric segments are then combined together using shape-preserving blending operations to faithfully represent the geometric shape of the whole vascular system.- Developed and proposed the Thin Implicit Patch method to realistically model the interior geometric structures of the vascular tissues. This method allows the multi-layer interior tissue structures to be embedded inside the vascular wall to illustrate the geometric details of the blood vessel in real world

    Solid modelling for manufacturing: from Voelcker's boundary evaluation to discrete paradigms

    Get PDF
    Herb Voelcker and his research team laid the foundations of Solid Modelling, on which Computer-Aided Design is based. He founded the ambitious Production Automation Project, that included Constructive Solid Geometry (CSG) as the basic 3D geometric representation. CSG trees were compact and robust, saving a memory space that was scarce in those times. But the main computational problem was Boundary Evaluation: the process of converting CSG trees to Boundary Representations (BReps) with explicit faces, edges and vertices for manufacturing and visualization purposes. This paper presents some glimpses of the history and evolution of some ideas that started with Herb Voelcker. We briefly describe the path from “localization and boundary evaluation” to “localization and printing”, with many intermediate steps driven by hardware, software and new mathematical tools: voxel and volume representations, triangle meshes, and many others, observing also that in some applications, voxel models no longer require Boundary Evaluation. In this last case, we consider the current research challenges and discuss several avenues for further research.Project TIN2017-88515-C2-1-R funded by MCIN/AEI/10.13039/501100011033/FEDER‘‘A way to make Europe’’Peer ReviewedPostprint (published version

    Theory and algorithms for swept manifold intersections

    Get PDF
    Recent developments in such fields as computer aided geometric design, geometric modeling, and computational topology have generated a spate of interest towards geometric objects called swept volumes. Besides their great applicability in various practical areas, the mere geometry and topology of these entities make them a perfect testbed for novel approaches aimed at analyzing and representing geometric objects. The structure of swept volumes reveals that it is also important to focus on a little simpler, although a very similar type of objects - swept manifolds. In particular, effective computability of swept manifold intersections is of major concern. The main goal of this dissertation is to conduct a study of swept manifolds and, based on the findings, develop methods for computing swept surface intersections. The twofold nature of this goal prompted a division of the work into two distinct parts. At first, a theoretical analysis of swept manifolds is performed, providing a better insight into the topological structure of swept manifolds and unveiling several important properties. In the course of the investigation, several subclasses of swept manifolds are introduced; in particular, attention is focused on regular and critical swept manifolds. Because of the high applicability, additional effort is put into analysis of two-dimensional swept manifolds - swept surfaces. Some of the valuable properties exhibited by such surfaces are generalized to higher dimensions by introducing yet another class of swept manifolds - recursive swept manifolds. In the second part of this work, algorithms for finding swept surface intersections are developed. The need for such algorithms is necessitated by a specific structure of swept surfaces that precludes direct employment of existing intersection methods. The new algorithms are designed by utilizing the underlying ideas of existing intersection techniques and making necessary technical modifications. Such modifications are achieved by employing properties of swept surfaces obtained in the course of the theoretical study. The intersection problems is also considered from a little different prospective. A novel, homology based approach to local characterization of intersections of submanifolds and s-subvarieties of a Euclidean space is presented. It provides a method for distinguishing between transverse and tangential intersection points and determining, in some cases, whether the intersection point belongs to a boundary. At the end, several possible applications of the obtained results are described, including virtual sculpting and modeling of heterogeneous materials

    Implicit Blending Revisited

    Get PDF
    International audienceBlending is both the strength and the weakness of functionally based implicit surfaces (such as F-reps or softobjects). While it gives them the unique ability to smoothly merge into a single, arbitrary shape, it makes implicit modelling hard to control since implicit surfaces blend at a distance, in a way that heavily depends on the slope of the field functions that define them. This paper presents a novel, generic solution to blending of functionally-based implicit surfaces: the insight is that to be intuitive and easy to control, blends should be located where two objects overlap, while enabling other parts of the objects to come as close to each other as desired without being deformed. Our solution relies on automatically defined blending regions around the intersection curves between two objects. Outside of these volumes, a clean union of the objects is computed thanks to a new operator that guarantees the smoothness of the resulting field function; meanwhile, a smooth blend is generated inside the blending regions. Parameters can automatically be tuned in order to prevent small objects from blurring out when blended into larger ones, and to generate a progressive blend when two animated objects come in contact

    The Euclidean Distance Transform (Thesis)

    Get PDF
    • 

    corecore