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a b s t r a c t

Herb Voelcker and his research team laid the foundations of Solid Modelling, on which Computer-Aided
Design is based. He founded the ambitious Production Automation Project, that included Constructive
Solid Geometry (CSG) as the basic 3D geometric representation. CSG trees were compact and robust,
saving a memory space that was scarce in those times. But the main computational problem was
Boundary Evaluation: the process of converting CSG trees to Boundary Representations (BReps) with
explicit faces, edges and vertices for manufacturing and visualization purposes. This paper presents
some glimpses of the history and evolution of some ideas that started with Herb Voelcker. We briefly
describe the path from ‘‘localization and boundary evaluation’’ to ‘‘localization and printing’’, with
many intermediate steps driven by hardware, software and new mathematical tools: voxel and volume
representations, triangle meshes, and many others, observing also that in some applications, voxel
models no longer require Boundary Evaluation. In this last case, we consider the current research
challenges and discuss several avenues for further research.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Herb Voelcker is the undisputed pioneer of Solid Modelling.
t Rochester, in the 70s, he launched the ambitious Production
utomation Project, surrounded by a group of collaborators that
ncluded Aristides Requicha, Robert Tilove, Jarek Rossignac and
any others. Together, they laid the foundations of the mathe-
atical modelling of physical rigid objects, defining regular-sets
nd regularized set operators. They also noted that models of
eal-world objects should contain sufficient information to com-
ute any relevant geometric property of the modelled physical
ntity.
Voelcker highlighted the crucial role of 3D geometry in de-

ign and manufacturing activities, observing that ‘‘curiously, these
ndustries’ primary means for specifying geometry (2D graphics) has
ot changed significantly for more than a century’’ [1]. However, the
evelopment ‘‘of new, computationally oriented schemes for han-
ling mechanical geometry’’ was a perfect opportunity that Herb
nd his team took advantage of. Representations of 3D mathemat-
cal objects could thus be devised, and for the first time they could
e used to generate computational representations. The basic
eometric representation in the Production Automation Project
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was the Constructive Solid Geometry (CSG), a compact symbolic
structure that encoded a tree of regularized set operators (union,
intersection, difference) defining the final mechanical part from a
predefined set of basic 3D parameterized solid primitives [2].

CAD-related tasks can be broadly classified as design (i.e. spec-
fy and modify the model), queries (e.g. rendering, point clas-
ification), optimization (e.g. simplification), and manufacturing
utomation. As a representation scheme for solids, CSG proved
o provide important advantages for many of these tasks. Some
f these advantages include (a) mathematical accuracy for repre-
enting solids involving spherical, cylindrical and conical surface
atches, (b) immediate guarantee of solid validity (water-tight
bjects) if the primitives are solids (thus avoiding the need of
onsistency checks), (c) fast and robust Point Membership Classi-
ication (PMC), and (d) easy editing by combining Boolean Op-
rations, and through the parameters describing the primitive
bjects. Furthermore, CSG trees were extremely compact, saving
memory space that was scarce in those times. For these reasons,
SG was and still is an excellent choice as design representation
or mechanical solids.

However, since CSG does not represent explicitly the bound-
ry of the solid, it does not directly support some important
asks where such a boundary is needed, such as rasterization-
ased rendering, queries about area and volume properties, and
omputer Numerical Control (CNC) i.e. automated control of ma-
hining tools such as lathes and mills. These tasks usually require
oundary Evaluation i.e. converting a CSG tree into a Boundary
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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epresentation (BRep) with explicit faces, edges and vertices.
oundary Evaluation soon became one of the main challenges
n Solid Modelling. Voelcker and his team showed that Spatial
ocalization (the use of spatial locality as mentioned by Tilove
nd Requicha, [3]) should be at the kernel of the computational
olutions to this problem, to avoid quadratic complexities and to
ave reasonable computational times. This resulted in the PADL-1
nd PADL-2 modelling systems [2].
Hierarchical Space Subdivision representations and octrees

ppeared in parallel [4], as representation schemes that included
ntrinsic localization. Aristides Requicha and Herbert Voelcker
entioned [2] that octrees are one of the computational options

o solve the mathematical problem of evaluating the boundary of
egularized trees of operations on solids, while different types of
ctrees were proposed to efficiently compute regularized Boolean
perations between solids [5]. In an extensive survey, Hanan
amet [6] presented different approaches to use octrees as a
ocalization structure in the Boundary Evaluation problem. One
xample, discussed in [7], used Extended Octrees, a specific class
f octrees that are able to encode polyhedral objects in which
ertices have three incident faces, as a secondary representation
o efficiently localize and compute BReps from a class of CSG
rees.

This paper touches on the history and evolution of some ideas
hat started with Herb Voelcker. Over the last 50 years, we have
itnessed important advances in computer hardware (computing
ower and memory storage) and fabrication technologies (such
s the development of additive manufacturing, also known as 3D
rinting). In parallel, the requirements of CAD-related tasks have
volved in many ways. One of the major factors motivating this
volution is 3D digitization (e.g. photogrammetry, laser scanners),
hich has been rapidly evolving in terms of speed, accuracy and
ffordability. Nowadays multiple CAD applications rely on 3D
canned models. For example, in the dental industry, scanned
ata is used to design surgical guides, aligners, restorations and
rowns, with accurate margins and contacts. Altogether, these
hanges in computing resources, in the nature of the objects
eing designed (e.g. custom objects such as a dental crown for
specific customer), and in manufacturing technologies, have

argely impacted the choice of the most suitable representation
or the different CAD-related tasks mentioned above.

In this work, we briefly describe how some of these changes
ave impacted solid representation schemes and their associated
lgorithms. Since this paper is a tribute to Herb Voelcker, we
hose the Boundary Evaluation problem (one of Voelcker’s major
oncerns, and the field that received many contributions from
is team) as the main common thread of the paper. However,
e consider Boundary Evaluation from a different point-of-view,

n accordance to the contributions of our group, and considering
ew solid representation schemes that have become extremely
opular in the last decades. Instead of dealing with Boundary
valuation from CSG models, we review the surface extraction
roblem from discrete volumetric representations such as voxels
nd octrees.
In particular, we have structured the paper as follows. Sec-

ion 2 briefly discusses exact representation schemes (e.g. CSG,
-Splines) vs. approximate ones (e.g. triangle meshes, voxels, oc-
rees). The discussion is somewhat motivated by Herb Voelcker’s
oncerns about tolerance schemes for controlling the geometric
ariability of mechanical objects. Our point here is that, over the
ast decades, cheaper computer memory (along with computer
ardware advances) has allowed for more accurate approximate
odels (denser triangle meshes, finer voxels, deeper octrees).
s a result, such approximate models are accurate enough for
n increasing number of applications. At the same time, these
epresentation schemes provide some advantages over their ex-
ct counterparts, such as implicit localization (voxels, octrees)
2

and fast rendering (meshes). Section 3 gives a brief historical
overview of surface reconstruction from discrete models (focus-
ing on voxels). This problem is the counterpart of CSG Boundary
Evaluation, in the realm of discrete volume models. Such a prob-
lem is key in a number of applications. In the context of CAD
systems, surface reconstruction is used e.g. to extract the bound-
ary from some design representations (F-Rep, implicit surfaces...),
and as part of geometry processing operations such as repair-
ing, remeshing and simplification. We consider the extraction of
polygonal meshes from voxel data, focusing on topological ambi-
guity problems, as well as which voxels should be reconstructed
to guarantee strict error bounds between the solid’s boundary
and the reconstructed surface. Section 3.7 deals specifically with
the problem of extracting smooth surfaces from voxel represen-
tations, in the context of some specific fabrication applications.
Section 4 presents some applications, such as additive manufac-
turing, where Boundary Evaluation is often no longer needed,
and all tasks related to 3D printing are supported directly and
efficiently by a discrete representation, like an octree. Therefore,
in the context of some fabrication tasks, octrees and voxel repre-
sentations are now seen as the final representation, in the sense
that they are the only representation in this final manufacturing
phase; no explicit boundary evaluation is needed beyond the
design phase.

History is always surprising and unexpected. As we shall see,
for some important CAD-related tasks such as 3D printing, the
critical issues of ‘‘localization and boundary evaluation’’ have
shifted to ‘‘localization and printing’’ with octrees and voxels used
as a final representation. This path has involved many interme-
diate steps driven by new hardware, software and mathemat-
ical tools: volume representations, triangle meshes, out-of-core
algorithms, and many others.

Section 4 also presents a number of relevant issues in appli-
cations that no longer use standard geometric representations
of object boundaries (surfaces, primitives or triangle meshes),
but rely directly on discrete volumetric representations such as
voxelizations and voxel hierarchies. We also present a number
of research challenges and several avenues for future research in
these areas. Although not related to Computer-Aided Design, we
have included volume-based techniques from the medical field,
to show that voxel-based representations are also becoming a
relevant tool for managing complex geometric models in areas
beyond Solid Modelling.

2. Surface representations: Exact vs. approximate paradigms

The main challenge of Solid Modelling in Voelcker’s time and
more precisely in the 70s and 80s, was to encode shapes as
complex as possible with compact, low memory footprint rep-
resentations. Computer memory was limited, and geometric rep-
resentations necessarily had to accommodate these constraints.
This fact led to symbolic representations like Constructive Solid
Geometry and to functional schemes including Bézier and Splines
surfaces, depending on the application field. Both paradigms were
continuous, allowing a theoretical infinite model precision.

The basic problem when dealing with Constructive Solid Ge-
ometry (CSG) was boundary evaluation. This was essential to ob-
tain explicit surface representations for manufacturing and other
applications. Numerical Control programs for automatic manu-
facturing soon demanded simple representations of the object
surface, the triangle-based STL standard being a clear example,
that were also considering tolerances.

Afterwards, geometric representations underwent a rapid evo-
lution during the 90s and 2000s, due to the fast increase in
computer memory sizes. Digital 2D images were followed by
discrete spacial subdivisions like voxelizations and octrees, and
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Fig. 1. Evolution of the number of publications with specific keywords in the
abstract according to the ACM Guide to Computing Literature of the ACM Digital
Library: (a) ‘‘Constructive Solid Geometry’’; (b) ‘‘voxel’’ or ‘‘octree’’; (c) ‘‘triangle
mesh’’ or ‘‘polygonal mesh’’; (d) ‘‘3D print’’ or ‘‘3D printing’’. We show the results
in the 1980–2020 period, grouped every two years. Dark blue bars correspond
to entries with ‘‘Article’’ or ‘‘Research-Article’’ publication type, whereas light
blue bars refer to the rest of publications (theses, books, chapters, reports etc.).
The yellow dotted line shows (in all graphs and in a different scale), the total
number of publications in the ACM Digital Library, as this might partially explain
the decrease in the number of publications in the last years, observed in all four
searches. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

boundary representations got approximate with the advent of Tri-
angle Meshes. In a certain way, Geometry moved from the exact
domain to the approximate, often discrete, domain. With voxels
and triangle meshes, geometric and solid representations moved
from the initial ‘‘infinite model precision’’, entering an approx-
imate domain with bounded precision, in which the tolerance
concept developed by Voelcker and his team was intrinsic.

To show the impact of these changes in Geometric Modelling
and in the initial concepts worked out by Herb Voelcker and his
group, we have performed an informal analysis of the evolution
of the number of research papers in four areas: Constructive
Solid Geometry, Voxels and Octrees, Triangle Meshes and 3D
Printing. Fig. 1 shows that the number of papers including CSG
in the abstract have been decreasing after the 80s, with a peak
in the 2000s that could be in part explained by the use of CSG
techniques in rendering. On the other hand, the terms ‘‘voxel’’,
‘‘octrees’’ and ‘‘triangle meshes’’ were gradually appearing while
becoming standard representations in the research papers. Fi-
nally, the term ‘‘3D print’’ has become increasingly popular during
the last decade. This fact will be discussed in Section 4. We do
not have a complete explanation for the decline of all graphs in
recent years, but it could be partially related to the decrease in
the total of ACM DL publications, as shown by the yellow dotted
line in Fig. 1. Anyway, this Figure shows a move from CSG to
the approximate representations and from CNC manufacturing
to novel 3D printing techniques. This decrease in the number
of CSG-related papers is also visible in Fig. 2, that presents the
evolution of the percentage of papers in the different considered
areas with respect to the total number of publications in the ACM
Digital Library.

Besides discrete models with bounded precision being well-
suited for representing solids with tolerances—as already men-
tioned; they are also extremely useful for localizing the informa-
tion to accelerate geometry processing. In the next section we
3

Fig. 2. Comparative evolution of the number of publications with specific
keywords in the abstract according to the ACM Guide to Computing Literature
of the ACM Digital Library. Unlike Fig. 1, we show both absolute number of
publications (a) and the proportion of publications with respect to the total
number of publications in the ACM Digital Library (b).

will show how they can be used to physically generate the solid
boundaries that Voelcker wished to evaluate. In some way, and
after 40 years, discrete models are now addressing several of the
main historical challenges in Solid Modelling.
3. Boundary evaluation on discrete models

3.1. The rise of triangle meshes and voxelizations

As the availability of computational resources increased, the
compactness of the solid representation was no longer criti-
cal, and alternative representations for solids gained popularity.
Triangle meshes (and in general polygonal meshes) gradually
replaced CSG trees and other general boundary representations as
the primary representation in some solid modelling applications.
Although triangle meshes only provide an approximate represen-
tation of the boundary, being exact only for piece-wise linear
surfaces, triangle meshes could successfully replace CSG trees
whenever the application accuracy requirements did not result
in meshes too dense to fit in memory. In parallel, voxel-based
representations also gained support because of their conceptual
simplicity and their intrinsic spatial localization properties, de-
spite their discrete nature and despite the amount of memory
required to represent arbitrary solids under a prescribed toler-
ance. In what follows, we will use the term discrete model to
efer to models in which the coordinates of vertices and grid
oints have been discretized (i.e. we will not consider triangle
nd tetrahedral meshes as discrete models unless their vertex
oordinates have been discretized). We will also refer to dis-
rete models based on a regular space decomposition – including
oxels and their hierarchical counterpart, octrees – as discrete
olume representations
From a computational point of view, triangle meshes and

oxel-based representations complement each other very well.
riangle meshes allow for a fast visualization of the solid’s bound-
ry in parallel hardware, whereas spatial localization algorithms
nd Boolean operations for voxel-based representations are ro-
ust and straightforward to implement. Due to their mutual
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omplementarity, the conversion from one representation to the
ther was increasingly needed to fully benefit from the oper-
tional advantages of both representation schemes. Moreover,
etrahedral meshes have been recently used in the context of
oundary-to-CSG conversion [8] to accelerate geometric process-
ng for additive manufacturing, as a tool to efficiently convert
eneral meshed objects to non-discrete volumetric aggregate of
etrahedra (e.g. [9,10]), or to support Boolean operations [11]
mong other applications.
In this section we review, from a historical perspective, al-

orithms for extracting a polygonal mesh from a discrete solid
epresentation. Notice that this problem is related with that of
he Boundary Evaluation, but unlike in the work of Herb Voel-
ker on CSG trees, our starting point now is a discrete volume
epresentation. The next subsections will focus on voxelizations,
ut most ideas also apply to hierarchical representations [12].

.2. Types of voxelizations

There are two fundamental ways to conceptualize a voxeliza-
ion. Both use a grid subdivision of the space with identical cubic
ells. In the first conceptualization, a voxel represents a single
ample, or data point, on a 3D grid; cubic cells thus have eight
oxels (one for each vertex). From a solid modelling point of view,
uch voxels can be either inside, outside or on the boundary of the
olume. Notice that this definition of voxel as data point allows
oxelizations to represent also scalar fields, and thus its use
lso gained popularity beyond solid modelling, e.g. to represent
omputed Tomography (CT) and Magnetic Resonance Imaging
MRI) scan data images. In the second conceptualization, a voxel
epresents one of the cubic cells of the 3D grid, and therefore the
oxel label refers to the classification of such cell with respect to
he solid. Such voxels thus can be completely inside, completely
utside, or may contain part of the boundary of the solid.
Historically, one of the first algorithms for the extraction

f polygonal meshes from a voxelization was the well known
arching Cubes algorithm [13], by Lorensen and Cline, who con-
idered as input a discrete scalar field, i.e. a scalar field sampled
n a regular 3D grid. If the scalar value at a voxel was higher than
he user-defined isovalue (i.e. inside the solid) then the voxel was
et to one (black), while if it was lower (outside), it was set to zero
white). Although Lorensen and Cline were mainly concerned
ith the efficient visualization of medical CT and MRI data, their
riginal algorithm and the subsequent variants could be used for
oxels just encoding their binary in/out classification with respect
o a solid, or any other scalar property e.g. Signed Distance Fields
SDFs). Actually SDFs are extensively used today for representing
mplicitly shapes e.g. for additive manufacturing [14] and for
earning generative models of shape families [15,16].

A key issue concerning boundary evaluation algorithms from
iscrete volume models is the kind of voxel conceptualization
hey assume (data point vs cubic cell), and the type of information
tored at the data points (a binary value, a scalar value) or at
he cubic cells. Let us now turn to the different categories of
lgorithms that perform this boundary evaluation.

.3. Characterizing voxelization cells

Let V be an arbitrary solid volume, and let S = ∂V be its
oundary. Notice that, in general, discrete representations of V
re lossy, in the same sense that polygonal meshes can only
pproximate surfaces with non-planar faces. Cubic cells c of a
egular grid R can be classified into three types, depending on
heir intersection with V and S. A cell is white if completely
utside the solid, black if completely inside, and grey otherwise.
4

Fig. 3. Different types of grey cells depending on the solid volume shown in
blue: (a) cell in G0 . . .G3 , (b) cell in G1 . . .G3 , (c) cell in G2 and G3 , (d) cell in G3 .
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Solid components (in blue) that result in different grey cells: (a) cell in
G3 \ G2 , (b) cells in G2 \ G1 , and (c) cells in G1 \ G0 .

Grey cells have a non-empty intersection with S, which can
be used to define multiple subsets of grey cells (Fig. 3). G0 cells
are those cells having at least one vertex inside the solid V , and
at least one outside the solid. G1 cells are those cells having at
least one edge intersected by S. Similarly, G2 cells have at least
one face intersected by S. Finally, G3 cells are those intersecting
S, and therefore all grey cells are G3.

These subsets form a hierarchy, G0 ⊂ G1 ⊂ G2 ⊂ G3, as we
shall consider grid components (edges, faces and cells) as closed
sets, [17]. This hierarchy corresponds in turn to a hierarchy of
surface reconstruction algorithms, to which we now turn our
attention.

3.4. Characterization of surface reconstruction algorithms

Given a discrete representation of an arbitrary volume V , a
fundamental problem is the computation of a surface S̃ that
approximates the (unknown) boundary S of V . From now on
we will refer to this problem as Surface Reconstruction or Surface
Extraction. Although the surface reconstruction problem is quite
similar to the boundary evaluation problem studied by Voelker,
we will use the latter only when dealing with representations
(e.g. CSG) that provide an exact representation of the underlying
volume.

From a surface reconstruction point of view, it is important to
pay attention to those cells containing part of the solid boundary
(thus in G3) but not in the other subsets. In particular, cells in
G3 \ G2 contain isolated portions of S in its interior (Fig. 4(a)).
Similarly, cells in G2 \ G1 contain pipe-like portions of S that
enter and exit through faces of cells without disturbing any
edges (Fig. 4(b)), and cells in G1 \ G0 contain thin portions of S
that intersect edges and faces without enclosing any grid vertex
(Fig. 4(c)).

The subsets above allow us to classify surface reconstruction
algorithms. According to the input, a surface reconstruction algo-
rithm is a Gk algorithm if it only sees (takes as input) the cells in
Gk, but not in Gm, for any m > k. Obviously, Gk algorithms with
k < 3 will miss some small portions of the solid, as those depicted
in Fig. 4, and will not be able to offer a complete reconstruction
unless the cell-size ℓ is chosen so small that the model contains
no G cells.
3



C. Andújar, P. Brunet, A. Chica et al. Computer-Aided Design 152 (2022) 103370

a

c
u
m
a
s
a
w
c

3

d
r
(
t
t
r
s
E
o
g
G

m
a
o
r
g
c
F
c
t

f
t
L
M
c
t
v

f
a
d

l
n

Fig. 5. Unambiguous faces (a, b) generating a single edge of the triangular mesh
nd the two possible choices of edges in an ambiguous face (c, d).

Fig. 6. The two possible topologies arising from an X-cube.

Concerning the output, we say that a surface reconstruction
algorithm provides a k-reconstruction iff the output surface is
ompletely contained in the union of Gk cells and the output vol-
me intersects all cells in Gk. For example, G3 algorithms may still
iss some of the small portions in Fig. 4 if they do not guarantee
3-reconstruction. Actually, only 3-reconstructions guarantee a
trict bound on the Hausdorff distance between the volume V
nd the reconstructed volume Ṽ [17]. In the next subsections
e review surface reconstruction algorithms according to the
lassification above.

.4.1. 0-reconstruction algorithms
Most of the surface reconstruction algorithms from voxel

ata [18–26] are variations of the original Marching Cubes algo-
ithm [13]. When seen from the point of view of solid modelling
most of them assume discrete scalar fields that are binarized
hrough an isovalue) they have a common set of characteristics:
he input information is the classification of the grid vertices with
espect to the volume (they only detect G0 cells), and the output
urface is a triangle mesh reconstructed locally for each G0 cell.
ach triangle of the final mesh belongs to a unique cell, and the
utput surface S̃ intersects only once each black-white edge of the
rid. These properties guarantee that the output surface stabs all
0 cells, so all these algorithms provide 0-reconstructions.
The main difference among these algorithms lies in the

ethod they use to perform the local reconstruction of the tri-
ngle mesh M . There are two decisions to consider: the selection
f the local topology of M in a cell and the triangulation of the
esulting connected components (sheets). The only configurations
iving choices to control the local topology [26] are those that
orrespond to cells having ambiguity faces (also called X-faces, see
ig. 5), or having only two diagonally-opposite black vertices (also
alled X-cubes (Fig. 6). Fig. 7 shows some representative cases for
he different cell types.

We can group the Marching Cubes-based algorithms in three
amilies according to how they resolve the local ambiguities:
hose using a tetrahedral subdivision, those using a Single-entry
ook-Up Table (LUT), and those using (implicitly or explicitly) a
ultiple-entry LUT. Single-entry LUTs only use the black/white
lassification of the grid vertices, while Multiple-entry LUTs use
he scalar values at grid vertices and thus assume non-binary
oxel data.
Tetrahedral subdivision approaches [21–23] perform a con-

ormal subdivision of the G0 cells. These methods yield directly
valid two-manifold surface, but the tetrahedral subdivision
etermines the topology inside each cube.

5

Fig. 7. Representative configurations of cubic cells for 0-reconstruction
algorithms.

In Single-entry LUT approaches, the local topology of a G0 cell
is univocally defined by the classification of its vertices. Some
proposals do not compute the LUT explicitly but they take an
equivalent decision algorithmically [18]. All these methods can
achieve consistent topologies on ambiguous faces. The triangula-
tion of a configuration can be done by always locating the mesh
vertices in the black-white grid edges [27] or by inserting addi-
tional vertices into the cell for recovering sharp features of the
original surfaces [24], using for example Hermite data (position
of intersection points of the original surface with the grid edges,
together with their normals). Single-entry algorithms obtain valid
and locally consistent surfaces but they do not have control on the
global topology of S̃ which is instead determined by the preferred
ocal reconstruction stored in the LUT (i.e. they cannot decide the
umber of holes or shells of S̃).
Multiple-entry LUT approaches try to reproduce in each cell

the topology of a bilinear or trilinear interpolation function [28–
33]. From the vertex values, they compute the value of the func-
tion in its saddle points on the cell and its faces. The classification
of the grid vertices allows to choose a basic MC configuration
and the computed saddle points allow to choose among all the
possible topologies. Ho et al. [25] used Hermite data stored at
the grid vertices to decide the topology in ambiguous cases, and
recover local sharp features by introducing mesh vertices in G0
cells. All the algorithms in this group obtain valid, consistent and
correct surfaces (according to the preferred function or shape)
but do not have a global control on the topology of the final
mesh. The Dual Contouring algorithm [34] creates a vertex of
the final mesh for each G0 cell. Based on the hypothesis that
each black-white edge of the grid stabs once the final mesh, the
algorithm generates a quad by joining the four points located in
the cells sharing the edge. This reconstruction method guarantees
that the output surface stabs all G0 cells, so the algorithm is a 0-
reconstruction. Additionally, to the black/white classification of
the grid vertices, the input data includes Hermite data which
is used to properly place the output vertices. This algorithm
creates surfaces with non-manifold topology in ambiguous cells
(see Fig. 9(d)).
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The selection of a valid two-manifold topology according to
a desired topological complexity (such as number of connected
components, or the total genus) was explored in [26]. The paper
identifies two independent ways to control the topology of the
final mesh, by deciding how to slash the X-faces (see Fig. 5) and
by deciding to have one or two sheets in an X-cube (see Fig. 6).
For non-ambiguous cells the reconstruction follows the classical
MC algorithm. For the ambiguous cells, in order to take locally
and consistent decisions with respect to the user-desired global
topology, the paper uses a graph encoding X-faces and a merge
tree of equivalence classes of vertices. This method optimizes
some properties of the final mesh, for example the number of
triangles and the number of connected components.

3.4.2. 1-reconstruction algorithms
Varadhan [35] uses directed distances at grid vertices to per-

form an exact edge-intersection test. This test is used to detect
complex edges, i.e. edges intersected by the surface but not
exhibiting a sign change (and thus obtaining G1 cells). The re-
construction algorithm is very similar to the Dual Contouring
algorithm [34] but it considers that an edge can have up to
two intersection points and that there can be multiple error-
minimizing vertices per cell. Once the edge intersection points
have been computed, it separates them into components achiev-
ing a two-manifold surface. It also reconstructs some sharp fea-
tures, but does not have a global control on the topology of the
final mesh.

3.4.3. 3-reconstruction algorithms
An extension of the method above [35] is presented in [36].

Instead of considering just complex edges (leading to G1 cells) G2
and G3 cells are also identified and recursively subdivided. A cell
is complex if it has a complex voxel, face, edge, or an ambiguous
sign configuration. A cell (face) is defined to be complex if it
intersects the surface and the grid vertices belonging to the cell
(face) do not exhibit a sign change. Their algorithm subdivides re-
cursively the space using an octree until all cells are not complex
and satisfy a star-shaped criterion. The proposed reconstruction
algorithm is able to preserve the original topology of the surface
but at the expense of an arbitrary number of subdivisions.

Andujar et al. [37] propose another G3 surface extraction algo-
rithm. Given a volume V bounded by a surface S, the intersection
between the cells of the grid and S is detected and for each of
these G3 cells the classification of their vertices with respect to
the volume is computed and stored. The surface reconstruction
algorithm first performs exactly one additional subdivision of
the G3 cells that have at least one white neighbour cell. The
classification of the new grid vertices is computed using the
type of their neighbour cells. If a vertex has a white neighbour
cell, it is classified as white. Otherwise, it is classified as black.
The central vertex of a subdivided cell is always classified as
black. Resulting subcells do not have ambiguous faces and their
topology is decided using the LUT of the basic MC algorithm [13].

3.5. Comparison of methods

Table 1 provides a comparison of the surface reconstruction
methods discussed above. The cells column indicates the type
of Gk cells considered by the algorithm. Notice that methods
designed for scalar fields (e.g. CT and MRI data) only see data
at grid points and thus are G0. The next column refers to the
information the algorithms use for disambiguation of ambiguous
cases, using for example the binary (black/white) classification of
the grid vertices or scalar values at the grid vertices.

The column on topological control summarizes how the dif-
ferent algorithms deal with topology. Only [26] can perform a
6

Fig. 8. Different results of G0 and G3 algorithms.

global optimization of the topology, whereas the other algorithms
take local decisions at cell level. Some methods [22,23] resort
to a tetrahedral subdivision, thus arbitrarily fixing the topology
within each cell. Others use extended lookup tables [24,27], or
attempt to reproduce the topology of a trilinear interpolant for
the scalar values at the vertices [30,32,33]. The approach used
in [25] exploits the Hermite data to decide the topology within
each cell. In the case of [34], ambiguous cells give rise to un-
ambiguous triangulations which are non-manifold. The rest of
algorithms guarantee a two-manifold surface.

The last column indicates the type of output generated by the
algorithms. Only a few methods use all G3 cells, being able to
reconstruct thin parts of the model (Fig. 4) and providing a 3-
reconstruction algorithm [36,37]. The rest of the algorithms use
G0 cells and thus cannot reconstruct thin parts of the volume.

Fig. 8 illustrates the reconstruction differences between G0
and G3 approaches when the volume includes thin parts (e.g. the
spokes). Algorithms based on G0 cells are not able to recon-
struct the complete surface of the model, unless the number of
subdivision levels is high enough.

Fig. 9(a) compares different reconstruction methods on a dis-
crete model with multiple ambiguous cases. The algorithms using
an alternating tetrahedrization (Fig. 9(b)), sometimes join the
ambiguous cubes and sometimes separate them, but the decision
adopted has no relation with the topology of the original surface.
Algorithms based on a trilinear disambiguation (sub Fig. 9(c))
are at an advantage with this test case, as the very smooth
and regular geometry is approximated very well by a trilinear
surface in each cell. Note that algorithms based on dual con-
touring produce non-manifolds on ambiguous configurations (see
Fig. 9(d)). The last two reconstructions correspond to [26] using
two different optimization strategies: minimizing the number of
solid components (Fig. 9(e)) or maximizing them (Fig. 9(f)). This
last strategy is the only one recovering the initial two shells.

3.6. Related methods

Here we review some recent surface reconstruction methods
that, although requiring special input, training, or optimization
steps, can be used to create a polygonal mesh from a discrete
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Table 1
Comparison of surface reconstruction algorithms.
Methods Cells Disambiguation Topol. control Two-manifold Output

Gueziec-95 [22] G0 binary B/W Local Yes 0-rec.
Pascucci-04 [23] (alternancy based)

Montani-94 [27] G0 binary B/W Local Yes 0-rec.
Kobbelt-01 [24] (LUT based)

Cignoni-00 [30]
Lopes-03 [33] G0 vertex values Local Yes 0-rec.
Nielson-03 [32] (trilinear based)

Ho-05 [25] G0 binary B/W + Local Yes 0-rec.
hermite data (hermite based)

Tao-02 [34] G0 binary B/W Local No 0-rec.
(non-manifold)

Varadhan-03 [35] G1 directed Local Yes 1-rec.
distances

Andujar-02 [37] G3 binary B/W Local Yes 3-rec.
extra subdiv. (W-surface)

Varadhan-04 [36] G3 directed Local Yes 3-rec.
distances

Andujar-05 [26] G0 binary B/W Global Yes 0-rec.
(optimization)
Fig. 9. Different results from different G0 algorithms. The model has been
generated with five octree subdivision levels.

volume representation. Lopez et al. [38] extend the idea of March-
ing Cubes [13] to extract isosurfaces from general polyhedral
cells (besides cubic cells). The isosurface is extracted using a
polygon tracing procedure, which is valid for convex or non-
convex cells, and produces consistent results even for ambiguous
7

configurations. Several extensions of Marching Cubes [13] and
Dual Contouring [34] have been proposed to create smoother
meshes. Nielson et al. [39] optimize the position of the final
vertices (constrained to the cell edges) by optimizing a certain
energy functional. Coeurjolly et al. [40] apply a similar idea to
Dual Contouring meshes [34]. The method adjusts the 3D position
of the output vertices by minimizing an energy function that
includes a term to prevent vertices to be too far away from the
surface, an alignment term to make the quads match the normal
vectors, and a fairness term to create a smoother quad mesh.

Since implicit representations are suitable for representing 3D
shapes in deep learning approaches, many recent methods focus
on the surface reconstruction problem so that these architectures
can be trained end-to-end. Deep Marching Tetrahedra [41] uses
a deformable tetrahedral grid to encode a discrete SDF together
with a marching tetrahedra layer that converts the SDF to a
polygonal mesh. The method uses a deep 3D conditional gen-
erative model to synthesize high-resolution 3D shapes from a
coarse voxelization. However, the method requires training on a
dataset with the target shapes. Voxel2Mesh [42] is an end-to-end
trainable architecture for surface reconstruction. It takes as input
a discrete volume and a spherical mesh, which are jointly en-
coded and then decoded into volumes and meshes of increasing
resolution. At each mesh decoding stage, the decoder uses a set of
features sampled from the volume to refine it by adding vertices
where they are needed. The output mesh though is constrained
to have a spherical topology. Liao et al. [43] propose a differen-
tiable version of Marching Cubes so that triangle meshes can be
predicted directly from volumetric data, allowing for end-to-end
training. They identify two major reasons why the original MC
approach is not differentiable. First, because the location of each
vertex along cell edges (computed through linear interpolation) is
singular when the edge endpoints have the same value. Second,
voxel values affect only grid cells in their immediate vicinity and
thus gradients would not propagate to cells further away from the
predicted surface. The authors propose a differentiable approach
which separates the mesh topology from the geometry. Instead
of predicting signed distance values, they predict the probabil-
ity of occupancy for each voxel, as well as the vertex location
within cell edges. The resulting Differentiable Marching Cubes
can be integrated as a final layer in deep learning architectures
that generate an explicit surface representation, although only
non-ambiguous configurations are handled by the method.
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Fig. 10. Slicing a sphere. Left: By classifying planes, each slice results from the intersection of a plane and the model. Middle: By discretizing the planes we can
classify each slice pixel into white (outside), grey (boundary), and black (inside). Right: By classifying cubical voxels with G3-based algorithms, and assigning this
classification to the pixels of the slices, the result is different. Observe that in this last case, slice pixels can inherit the corresponding volumetric cell classification
of their associated voxel. The top slice, for instance, is completely White in the Middle case while it correctly shows two Grey pixels in the Right case. Moreover, in
the Middle case there is an abrupt White-to-Black transition between the two top slices, which is unacceptable in the printing process (in closed objects, White and
Black cells must always be separated by Grey cells containing part of the object boundary).
3.7. Smooth BReps from discrete models

Surface reconstruction algorithms, as discussed above, were
essential for digital modelling and fabrication. In this process, a
model is designed using CAD tools, and is then used to guide
the automatic manufacturing process. The first set of techniques
to be introduced were based on subtractive manufacturing using
CNC machines [44]. Models used as input were commonly mod-
elled using either B-splines or triangular meshes. In this phase,
voxelizations and octrees [45] were reserved for their exclusive
use as acceleration structures for the computations necessary
to guide the machining process. Moreover, specific discrete hi-
erarchical representations like extended octrees were proposed
for the boundary evaluation of certain kinds of CSG trees [7],
also helping in performing the explicit Boolean operations [46]
required in the fabrication pipeline.

Nevertheless, as already discussed, discrete volumetric models
began to gain prominence due to their medical applications [47]
and their ability to represent the internal structure of the models,
prosthesis manufacturing being a clear example of CAD-related
tasks coming exclusively from voxelizations. Anyway, their use
for fabrication continued to be limited by their difficulties to rep-
resent high quality smooth surfaces and small details. However,
converting a volumetric model to a triangular mesh using the
algorithms cited in the previous subsections was a possibility in
manufacturing applications.

Still, the error measured as the distance between the original
object and the surface reconstructed from the corresponding
volumetric data was limited by the quality of this volumetric
data, which in some cases could be binary. Due to this, various
techniques arose, capable of producing smooth meshes from im-
perfect volumetric data. Ohtake and Belyaev [48] introduced a
method to obtain a smooth mesh from an implicit function. Start-
ing with the extraction of a mesh from a binary discretization,
their algorithm smooths the mesh while keeping it very close
to the isosurface of the input implicit function. Gibson [49] also
proposed an algorithm based on applying Laplacian smoothing to
the mesh extracted from the input volume, but restricting the
vertices to the voxels that generated them. Whitaker [50], on
the other hand, proposed to calculate a level set whose zero-
isosurface had minimum area and respected the voxel classifica-
tion of the input volume. Instead, Nielson et al. [39] developed
an algorithm to optimize the meshes extracted using Marching
Cubes by applying a Laplacian smoothing operator with the ver-
tices restricted to the edges of the voxelization from which they
were extracted. Finally, Chica et al. [51] extended the previous
method by applying constrained Laplacian smoothing to various
areas of the model independently. In this way, it is possible to
detect flat and smooth areas separated by sharp edges.
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4. Voxels as a final representation

In the last decades, and in certain applications, discrete vol-
ume representations such as voxels and octrees are used as
the final representation, thus avoiding the need for a boundary
evaluation. This is a direct consequence of new hardware devel-
opments and the increase of storage capacity. To some extent, the
boom of digital 2D images was followed by a boom on discrete
volume representations. And, after pixel-based processing algo-
rithms, we are now observing the blossoming of algorithms that
work directly on voxels.

In additive manufacturing, 3D printing systems work by
adding material in layers [52,53]. Each layer is represented by a
2d image and it is computed by intersecting the layer plane with
the model mesh [54] in a process known as slicing. This operation
is however not as trivial as it might look, and a naive imple-
mentation could produce non watertight results (see Fig. 10).
But capturing all image pixels that intersect the surface is cru-
cial in applications where precision is of paramount importance
(e.g. medicine and engineering). Notice that only G3-based recon-
struction algorithms are guaranteed to fulfil this requirement (see
Table 1 and Fig. 3).

For some technologies, like Fused Deposition Modelling (FDM),
a toolpath needs to be derived from the slices, so that the model
may be fabricated [55]. In this case, using representations as CSG
combinations of unions of cells, each of them being a CSG solid [8]
can be wise. For others, like Multi Jet Fusion (MJF), this step is not
necessary.

Regarding recent 3d printing techniques, objects usually rep-
resented by triangle meshes may be converted into an octree that
has the necessary depth according to the design tolerances and
printing accuracy (i.e. voxels and terminal octree nodes have the
same size as the microdots of deposed material) without any loss.
Then, the octree representation is used to generate the sequential
slices required by the printer. In this context, the authors [56]
present the calculation and coding of a new linearization of an
octree specially conceived so that sequential slicing is efficient.
The result is a G3-based encoding algorithm that is output-data
bounded, such that we can guarantee a maximum extraction time
for each slice. In fact, the resulting octree is also compact, which
increases performance when reading it from disk, and successive
slices can be extracted during printing efficiently. In this case the
smoothing that was needed when dealing with discrete volumet-
ric models is no longer required, partly because the volumetric
elements already represent the smallest amount of material that
can be added, and partly because the smoothing occurs for other
reasons, for example due to thermal diffusion during the print-
ing process, or by some mechanical post-processing of the part.
Fig. 11 shows the result of printing two models using an octree
as representation. Some 2D slices of the octree are also shown.
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Fig. 11. Left: Two 3D models printed using an octree representation. Right: Slices generated from the octrees of both models. Nodes are drawn in a colour scale
with blue for large nodes and red for small ones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
Also, by storing and using an octree representation of the
objects, low-resolution models can be produced on the fly during
interactive inspections, and are therefore also useful to quickly
manufacture low-resolution parts for testing.

However, and in spite of recent progress, present research
challenges are multiple. Additive manufacturing has become
more than a prototyping solution [52]. Even so, research directed
to improve its capabilities and the quality of the results is still
required:

Toolpath optimization and orientation planning Once slices
have been generated, and depending on the technology being
used, a toolpath has to be generated. This toolpath may be opti-
mized to reduce void formation [57] and thus undesired porosity.
It may also be planned so that the orientation of the material
can be aligned with specific directions, or is distributed uni-
formly [58], which may help control the resulting mechanical
properties. Changing the orientation of the nozzle or even its
shape should provide more flexibility. Trying to find orientation
plans that optimize surface and mechanical characteristics of the
final parts is an interesting avenue for future modelling research.

Optimal object partitioning and supports Support structures
increase material costs, printing time, require additional labour to
remove them, and may leave behind visible defects. An alterna-
tive approach is to partition the model to balance the amount of
supports and cuts [59], or even look for a partition that allows
for support-free printing [60]. In the case of hollowed objects,
there is also the possibility of having internal supports, so that
they remain invisible [61]. Introducing metrics that take per-
ceptual, structural, or mechanical properties into account could
provide additional improvements. Also, multi-material printing
could produce supports that can be efficiently dissolved in post-
processing. In this case, the investigation of optimal partitions of
the geometric representations could be a fascinating geometric
topic.

Physical surface bounded fairing When using digital light
stereolithography it is possible to use greyscale pixels in the
images provided to the printer. This allows for sub-voxel growth,
which may be exploited to control the final surface appear-
ance [62]. With other techniques like Multi Jet Fusion, thermal
processes smooth out the staircase effect usually associated to
3D printing. Thus, adapting to the printing technology used of-
fers the potential to help produce sub-voxel precise results and
physical-based surface fairing. The correlation between subtle
modifications in the Grey layer of the voxel models and the final
smoothness of the manufactured object surface opens also the
door to future research.

Design of internal microstructures Lattices have also demon-
strated their usefulness in weight and used material reduction, as
well as in energy absorption applications. In particular, cellular
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materials [63] may be used to modify the elastic response of
printed parts. Other more complex microstructures [64] allow
for orientation control of the deformation of the resulting ma-
terial. Using a voxelized representation provides full control of
the volumetric properties of the model, but the complexity of
optimization algorithms increases with the number of voxels. One
solution is to work in two levels so that cells in the macroscale
level correspond to blocks of voxels on the microscale one [65].
The range of possible lattice and microstructure configurations
is vast, and its combination with multimaterial manufacturing
makes it even larger. Exploring this space could shed light on the
possible spectrum of achievable behaviours.

Surface modelling Materials commonly used in additive man-
ufacturing are translucent. Compensating for the resulting scat-
tering effects produces much better colour reproduction [66]. The
microstructure of the layer-by-layer approach also tends to pro-
duce dull surfaces. Varnishes are one solution, and its controlled
application [67] produces spatially-varying gloss properties. It is
even possible to optimize the printed model, bridging the gap
between it and the intended appearance [68]. On the other hand
displacement maps may be used to add detail at the meso-scale
or print curved triangles [69]. They may also be used to add codes
that identify identical parts [70], or produce tactile textures [71].
All these surface properties are coupled. Thus, future work on
these issues and how they relate will be critical in order to
achieve high-quality reproductions.

Controlled multi-material printing As 3D printer manufac-
turers fit their systems with sensors, in-process monitoring of the
fabrication will be feasible. Moreover, multi-material 3D printing
makes the manufacturing of composite materials possible with
controlled thermal and mechanical responses. It is also beginning
to allow the integration of sensors, circuits and wiring. Designing
and planning models with these characteristics while taking the
limitations of the chosen 3D printing technology into account will
be a challenging task.

On the other hand, in medical visualization, direct volume
rendering can be even more useful than showing organ bound-
aries obtained with Marching Cubes algorithms, for the simple
reason that medical organs are essentially volumetric, so that
their internal structure is relevant for the experts and clinical doc-
tors. Moreover, these voxel models are ‘‘closer’’ to the raw input
data, avoiding reconstruction errors and biases. Therefore, medi-
cal applications are also moving to voxel-based representations.
But, despite this move from continuous surfaces and meshes to
the direct use of discrete voxels, a number of research issues
to enlarge and improve the capabilities of these novel medical
systems are appearing, with clear challenges in the geometric and
modelling domain,such as:

Modelling volume uncertainty Medical image acquisition
systems are based on different physical principles which allow to
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apture information related with internal anatomical structures.
owever, the acquisition process is affected by the uncertainty of
everal factors such as the reconstruction process (which includes
he sample location, the transformation of the measured signal
o data, and the machine resolution) and the patient move-
ent. Usually the captured data is represented as a voxel model.
omputational models are used to estimate the uncertainty of
he acquisition systems. In recent years, different approaches to
uantify and visualize per voxel uncertainty have been proposed
y combining an uncertainty model with captured data [72,73].
owever, it is still a challenge to obtain efficient and optimal
lgorithms to estimate and model the uncertainty not only in
he captured data but in all the transformations of the volume
odel, by encoding neighbourhood information in different input
calar fields. Naturally, accuracy has vital importance in medical
pplications.
Volume transformation Combining data from different ac-

uisition systems provides complementary information which
llows to improve medical diagnosis. For this purpose, volume
odels with different resolutions and heterogeneous data need

o be registered. Geometric transformations, feature extraction
nd data interpolation may include uncertainty and so they
equire special attention [74]. Another volume processing trans-
ormation is segmentation, which allows to identify particu-
ar structures [75]. The obtained voxel models may be directly
sed in 3D printing for prosthesis design or for computer aided
urgery.Current and future trends for both registration and seg-
entation tasks show an increasing and promising avenue for
achine learning approaches.

. Conclusions

In this paper, we have presented some aspects related to
he evolution of the use of Solid Modelling for manufacturing
long the last 40 years, moving from the symbolic representations
nd continuous boundary evaluation algorithms that inspired
erb Voelcker’s work, to approximate paradigms based on tri-
ngle meshes, intermediate voxel and octree representations,
nd to new applications like additive manufacturing techniques
nd medical imaging, where boundary evaluation is no longer
equired. This transition has been motivated by improvements
n computing power and memory storage, as well as the de-
elopment of technologies like additive manufacturing and 3D
igitization.
After characterizing voxel models, the paper also presents a

umber of surface reconstruction algorithms that work from dis-
rete representations, and represent the counterpart of boundary
valuation for discrete models. We observe that discrete repre-
entations have been incorporating Voelcker’s tolerances in an
mplicit way.

Based on a number of properties of the Grey cells and of
he reconstruction algorithms, we have proposed a characteri-
ation of several surface extraction algorithms. The classification
n Table 1 presents the inherent limitations of the different al-
orithms concerning global topology control and reconstruction
f local features like thin portions of the volume and almost
on-manifold regions. These limitations have been discussed with
ome practical examples.
However, recent manufacturing techniques and medical appli-

ations are again replacing in some sense these reconstruction
lgorithms, directly using discrete representations. In fact, we
ote that many novel medical 3D inspection applications and
ovel additive manufacturing techniques based on 3D printing
o not require an explicit boundary evaluation. Medical diagnosis
nd planning systems are offering high-quality interaction expe-
iences by directly using the discrete voxel representations, and
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recent 3D printing systems physically generate the boundaries
of the Solid Models that Herb Voelcker wished to evaluate, also
profiting from thermal smoothing processes that use diffusion
and other techniques to obtain final manufactured objects with
surfaces that meet requirements and tolerances. We have also
presented a number of research challenges and several avenues
for future research in these areas. We conclude that during the
last 40 years, the area has evolved from Voelcker’s localiza-
tion and boundary evaluation algorithms to the direct use of
discrete volume representations in cases like advanced 3D inter-
action and direct and physical additive manufacturing of objects
with smooth surfaces, evolving, in the case of 3d printing, from
boundary evaluation to voxel-based physical boundary printing.
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