293 research outputs found

    NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems

    Get PDF
    Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Furthermore, future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities. Our objective in Phase II was to experimentally and numerically investigate how to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we have examined the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate system architectures for the space-borne cloud as an aperture

    Structural And Thermophysical Property Studies Of Metallic Liquids And Glasses Using The Beamline Electrostatic Levitation Technique

    Get PDF
    An accurate description of atomic structures is at the heart of an improved understanding of the properties of condensed solids. By correlating structural information from high energy synchrotron X-ray diffraction with thermophysical properties important insights have been gained into the role of local structural evolution in undercooling and glass formation. Here, the results of a number of investigations into the structures and properties of some amorphous phases will be presented and analyzed. Phase separation in Al88Y7Fe5 is identified prior to devitrification and is proposed as an explanation for extremely high observed nucleation rates. The development and construction of the Beamline Electrostatic Levitation Technique: BESL), which has shown increased utility over the past several years as an important probe of metallic systems, will be presented. Using BESL, atomic structures in equilibrium and supercooled liquids of Zr80Pt20 are explored using Reverse Monte Carlo methods, which indicate the presence of medium range atomic order that is dominated by Pt-Pt correlations. The thermophysical properties and atomic structures in the bulk metallic glass forming Ni-Nb and Ni-Nb-Ta liquids are examined. The high glass formability and low glass formability compositions are compared and important differences are discussed. Finally, the X-ray structure factors and densities for liquid aluminum from 1123K to 1273K are presented and atomic structures as a function of temperature have been constructed from the diffraction data with Reverse Monte Carlo fits

    Generation and Applications of Extra-Terrestrial Environments on Earth

    Get PDF
    This book has been prepared under the auspice of the European Low Gravity Research Association (ELGRA). The main task of ELGRA is to foster the scientific community in Europe and beyond in conducting gravity and space-related research.This publication is dedicated to the science community, and especially to the next generation of scientists and engineers interested in space research and in the means to use Earth to reproduce the space environment. ELGRA provides a comprehensive description of space conditions and the means that have been developed on Earth to perform space environmental and (micro-) gravity related research. .The book covers ground-based research instruments and environments for both life and physical sciences research. It discusses the opportunities and limitations of protocols and instruments to compensate gravity or simulate microgravity, such as clinostats, random positioning machines, levitating magnets, electric fields, vibrations, tail suspension or head down tilt, as well as centrifuges for hyper-g studies. Other space environmental conditions are addressed too, like cosmic radiation or Mars atmospheric and soil properties to be replicated and simulated on Earth. Future long duration of manned missions, personal well-being and crew interaction are major issues dealt with

    Generation and Applications of Extra-Terrestrial Environments on Earth

    Get PDF
    This book has been prepared under the auspice of the European Low Gravity Research Association (ELGRA). The main task of ELGRA is to foster the scientific community in Europe and beyond in conducting gravity and space-related research.This publication is dedicated to the science community, and especially to the next generation of scientists and engineers interested in space research and in the means to use Earth to reproduce the space environment. ELGRA provides a comprehensive description of space conditions and the means that have been developed on Earth to perform space environmental and (micro-) gravity related research. .The book covers ground-based research instruments and environments for both life and physical sciences research. It discusses the opportunities and limitations of protocols and instruments to compensate gravity or simulate microgravity, such as clinostats, random positioning machines, levitating magnets, electric fields, vibrations, tail suspension or head down tilt, as well as centrifuges for hyper-g studies. Other space environmental conditions are addressed too, like cosmic radiation or Mars atmospheric and soil properties to be replicated and simulated on Earth. Future long duration of manned missions, personal well-being and crew interaction are major issues dealt with

    Materials Research in Microgravity 2012

    Get PDF
    Reducing gravitational effects such as thermal and solutal buoyancy enables investigation of a large range of different phenomena in materials science. The Symposium on Materials Research in Microgravity involved 6 sessions composed of 39 presentations and 14 posters with contributions from more than 14 countries. The sessions concentrated on four different categories of topics related to ongoing reduced-gravity research. Highlights from this symposium will be featured in the September 2012 issue of JOM. The TMS Materials Processing and Manufacturing Division, Process Technology and Modeling Committee and Solidification Committee sponsored the symposium

    NASA Microgravity Materials Science Conference

    Get PDF
    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers

    Design, Implementation and Control of a Magnetic Levitation Device

    Get PDF
    Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 cubic millimeters. The overall positioning accuracy of the system is 60 micro meters. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic levitation system, the feedback linearization controller has the shortest settling time and is capable of reducing the positioning error to RMS value of 11.56μm. The force model was also utilized in the design of a model reference adaptive feedback linearization (MRAFL) controller for the z direction. For this case, the levitated object is a small microrobot equipped with a remote controlled gripper weighting approximately 28(gr). Experimental results showed that the MRAFL controller enables the micro-robot to pick up and transport a payload as heavy as 30% of its own weight without a considerable effect on its positioning accuracy. In the presence of the payload, the MRAFL controller resulted in a RMS positioning error of 8μm compared with 27.9μm of the regular feedback linearization controller. For the horizontal position control of the system, a mathematical formula for distributing the electric currents to the multiple electromagnets of the system was proposed and a PID control approach was implemented to control the position of the levitated object in the xy-plane. The control system was experimentally tested in tracking circular and spiral trajectories with overall positioning accuracy of 60μm. Also, a new mathematical approach is presented for the prediction of magnetic field distribution in the horizontal direction. The proposed approach is named the pivot point method and is capable of predicting the two dimensional position of the levitated object in a given vertical plane for an arbitrary current distribution in the electromagnets of the levitation system. Experimental results showed that the proposed method is capable of predicting the location of the levitated object with less than 10% error

    Droplet and Particle Dynamics in Aerosol Reactors and Environmental System

    Get PDF
    Aerosol science and engineering is an enabler for continual advances in nanomaterial synthesis. The spray-based techniques have been used extensively for the large-scale production of nanoparticles. Synthesis of particles with a desired the size and morphology is of key importance for exploiting their properties for their use in several emerging technologies. In contrast to useful nanomaterials, the aerosols from industrial flue gas, dust, indoor cooking, pathogens, and wildfire etc. are harmful to human health. It is important to understand how these harmful aerosols travel through the environment and potentially impact the health. It is also very critical to improve the accuracy of indoor aerosols sampling instruments for accurate assessment of the health impacts of these aerosols. Many potentially harmful indoor aerosols such as viruses (including the SARS-COV-2 virus) and protein fragments lie in the nanometer size ranges, and it is therefore important to improve existing technologies or develop low-cost alternatives that efficiently capture harmful, nanometer-sized aerosols. In order to control the harmful aerosol emissions, and tailor the properties of synthesized aerosols, a thorough understanding of nanoparticle formation and their dynamics in different reactor systems and environments is needed, which is the main focus of my graduate work. My dissertation is divided into three sections. The first section of my dissertation focuses on understanding the particle formation in the aerosol reactors that employ liquid-to-particle conversion route (spray synthesis). The particles with different morphologies, mainly solid and hollow, are produced using spray drying depending on the process conditions. A model for simultaneous droplet heating, evaporation, and dynamics and transport of solute and particles within the droplet was developed, to investigate the effect of different conditions during spray drying on the dried particle morphology. The drying process was modelled in two separate stages in this work, initial drying stage before shell formation, and the transition stage, in which shell formation was modelled till the solid crust formation takes place. Using this model two cases were analyzed, 1) drying of droplet with dissolved solute, and 2) drying of droplet with suspended solids. Next, the developed droplet drying model was advanced further to understand and predict structure and conductivity of PEDOT (poly(3,4-ethylenedioxythiophene)) nanoparticles synthesized using aerosol vapor polymerization. The model was modified to additionally account for gas phase transport of monomers and polymerization reaction inside the droplet. The effect of different reactor conditions was examined on the average chain length of polymers in synthesized PEDOT nanoparticles as it directly affects their conductivity. The second section of my dissertation focuses on understanding and accurately assessing the impact of harmful aerosols on human health. Semi-Volatile Organic Compounds (SVOCs) are very common indoor pollutant which are present in every household. These compounds can phase-partition and exists in the air in both gas and particle phase. Diffusion denuders are used to separate gas and particulate SVOCs, and measure both phases separately to accurately access their transport in an indoor environment and their subsequent health risks. However, there are artifacts associated with this sampling method. A theoretical model for simultaneous gas diffusion and aerosol evaporation in the parallel plate denuder was developed to investigate the effects of denuder sampling artifacts on gas–particle partitioning measurements of SVOCs. The effect of the denuder design parameters and organic species properties, which may influence the evaporation of the particulate phase, was studied on sampling artifacts. The next part of my thesis focuses on understanding the spread of airborne pathogens like SARS CoV-2. A comprehensive model for respiratory emissions of droplets, droplet evaporation, and transport due to diffusion, gravitational settling, and ambient air flow, was developed. The considerations for viral load in droplets and virus decay were accounted for in the model to determine the spatiotemporal concentration of viable virus exhaled by the infected individual. The exposure to viable virus and risk of infection was determined using respiratory deposition curves and dose-response approach. The effect of the different parameters such as viral load, physical separation, ambient air velocity, mask usage etc. was determined on the risk of infection transmission. The third section of my dissertation focuses on the fundamental understanding of particle charging in a non-thermal plasma reactor, with a vision to incorporate plasma reactors in conjunction with the conventionally used particle capture devices, thereby increasing their efficiency for particle capture. We tested a new design concept for enhancing aerosol nanoparticle charging in plasmas by introducing a DC field downstream of the plasma volume in the spatial afterglow to potentially prevent neutralization of the particles. Premade, charge-neutral nanoparticles were introduced into the plasma reactor with a downstream DC bias and the charge fraction of the particles was examined at the reactor outlet for different particle diameters as the function of reactor operating conditions. The mechanism of particle charging in plasma reactor was proposed based on experimental observation sand characteristic charging time scale calculations
    corecore