383 research outputs found

    An Effective Multi-Population Based Hybrid Genetic Algorithm for Job Shop Scheduling Problem

    Full text link
    The job shop scheduling problem is a well known practical planning problem in the manufacturing sector. We have considered the JSSP with an objective of minimizing makespan. In this paper, a multi-population based hybrid genetic algorithm is developed for solving the JSSP. The population is divided in several groups at first and the hybrid algorithm is applied to the disjoint groups. Then the migration operator is used. The proposed approach, MP-HGA, have been compared with other algorithms for job-shop scheduling and evaluated with satisfactory results on a set of JSSPs derived from classical job-shop scheduling benchmarks. We have solved 15 benchmark problems and compared results obtained with a number of algorithms established in the literature. The experimental results show that MP-HGA could gain the best known makespan in 13 out of 15 problems

    An Effective Multi-Population Based Hybrid Genetic Algorithm for Job Shop Scheduling Problem

    Get PDF
    The job shop scheduling problem is a well known practical planning problem in the manufacturing sector. We have considered the JSSP with an objective of minimizing makespan. In this paper, a multi-population based hybrid genetic algorithm is developed for solving the JSSP. The population is divided in several groups at first and the hybrid algorithm is applied to the disjoint groups. Then the migration operator is used. The proposed approach, MP-HGA, have been compared with other algorithms for job-shop scheduling and evaluated with satisfactory results on a set of JSSPs derived from classical job-shop scheduling benchmarks. We have solved 15 benchmark problems and compared results obtained with a number of algorithms established in the literature. The experimental results show that MP-HGA could gain the best known makespan in 13 out of 15 problems

    Multi-objective enhanced memetic algorithm for green job shop scheduling with uncertain times

    Get PDF
    The quest for sustainability has arrived to the manufacturing world, with the emergence of a research field known as green scheduling. Traditional performance objectives now co-exist with energy-saving ones. In this work, we tackle a job shop scheduling problem with the double goal of minimising energy consumption during machine idle time and minimising the project’s makespan. We also consider uncertainty in processing times, modelled with fuzzy numbers. We present a multi-objective optimisation model of the problem and we propose a new enhanced memetic algorithm that combines a multiobjective evolutionary algorithm with three procedures that exploit the problem-specific available knowledge. Experimental results validate the proposed method with respect to hypervolume, -indicator and empirical attaintment functions

    GASA-JOSH: a Hybrid Evolutionary-Annealing Approach for Job-Shop Scheduling Problem

    Full text link
    The job-shop scheduling problem is well known for its complexity as an NP-hard problem. We have considered JSSPs with an objective of minimizing makespan. In this paper, we develope a hybrid approach for solving JSSPs called GASA-JOSH. In GASA-JOSH, the population is divided in non-cooperative groups. Each group must refer to a method pool and choose genetic algorithm or simulated annealing to solve the problem. The best result of each group is maintained in a solution set, and then the best solution to the whole population is chosen among the elements of the solution set and reported as outcome. The proposed approach have been compared with other algorithms for job-shop scheduling and evaluated with satisfactory results on a large set of JSSPs derived from classical job-shop scheduling benchmarks. We have solved 23 benchmark problems and compared results obtained with a number of algorithms established in the literature

    GASA-JOSH: A Hybrid Evolutionary-Annealing Approach for Job-Shop Scheduling Problem

    Get PDF
    The job-shop scheduling problem is well known for its complexity as an NP-hard problem. We have considered JSSPs with an objective of minimizing makespan. In this paper, we develope a hybrid approach for solving JSSPs called GASA-JOSH. In GASA-JOSH, the population is divided in non-cooperative groups. Each group must refer to a method pool and choose genetic algorithm or simulated annealing to solve the problem. The best result of each group is maintained in a solution set, and then the best solution to the whole population is chosen among the elements of the solution set and reported as outcome. The proposed approach have been compared with other algorithms for job-shop scheduling and evaluated with satisfactory results on a large set of JSSPs derived from classical job-shop scheduling benchmarks. We have solved 23 benchmark problems and compared results obtained with a number of algorithms established in the literature

    Adaptive Heterogeneous Multi-Population Cultural Algorithm

    Get PDF
    Optimization problems is a class of problems where the goal is to make a system as effective as possible. The goal of this research area is to design an algorithm to solve optimization problems effectively and efficiently. Being effective means that the algorithm should be able to find the optimal solution (or near optimal solutions), while efficiency refers to the computational effort required by the algorithm to find an optimal solution. In other words, an optimization algorithm should be able to find the optimal solution in an acceptable time. Therefore, the aim of this dissertation is to come up with a new algorithm which presents an effective as well as efficient performance. There are various kinds of algorithms proposed to deal with optimization problems. Evolutionary Algorithms (EAs) is a subset of population-based methods which are successfully applied to solve optimization problems. In this dissertation the area of evolutionary methods and specially Cultural Algorithms (CAs) are investigated. The results of this investigation reveal that there are some room for improving the existing EAs. Consequently, a number of EAs are proposed to deal with different optimization problems. The proposed EAs offer better performance compared to the state-of-the-art methods. The main contribution of this dissertation is to introduce a new architecture for optimization algorithms which is called Heterogeneous Multi-Population Cultural Algorithm (HMP-CA). The new architecture first incorporates a decomposition technique to divide the given problem into a number of sub-problems, and then it assigns the sub-problems to different local CAs to be optimized separately in parallel. In order to evaluate the proposed architecture, it is applied on numerical optimization problems. The evaluation results reveal that HMP-CA is fully effective such that it can find the optimal solution for every single run. Furthermore, HMP-CA outperforms the state-of-the-art methods by offering a more efficient performance. The proposed HMP-CA is further improved by incorporating an adaptive decomposition technique. The improved version which is called Adaptive HMP-CA (A-HMP-CA) is evaluated over large scale global optimization problems. The results of this evaluation show that HMP-CA significantly outperforms the state-of-the-art methods in terms of both effectiveness and efficiency
    • …
    corecore