
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2014

Adaptive Heterogeneous Multi-Population
Cultural Algorithm
Mohammadrasool R. RAEESI NAFCHI
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
RAEESI NAFCHI, Mohammadrasool R., "Adaptive Heterogeneous Multi-Population Cultural Algorithm" (2014). Electronic Theses
and Dissertations. Paper 5091.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5091?utm_source=scholar.uwindsor.ca%2Fetd%2F5091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Adaptive Heterogeneous

Multi-Population Cultural Algorithm

Mohammadrasool Raeesi Nafchi

A Dissertation

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

at the University of Windsor

Windsor, Ontario, Canada

May 14, 2014

c© 2014 Mohammadrasool Raeesi Nafchi



Adaptive Heterogeneous Multi-Population Cultural Algorithm

by

Mohammadrasool Raeesi Nafchi

APPROVED BY

M. V. dos Santos, External Examiner

Ryerson University

K. Tepe

Electrical and Computer Engineering

S. Goodwin

School of Computer Science

D. Wu

School of Computer Science

Z. Kobti, Advisor

School of Computer Science

May 14, 2014



Declaration of Co-Authorship / Previous

Publication

I. Co-Authorship Declaration

I hereby declare that this dissertation incorporates material that is result of joint

research. In all cases, the key ideas, primary contributions, experimental designs,

data analysis and interpretation, were performed by the author, and the contribution

of co-authors was primarily through the proof reading of the published manuscripts.

I am aware of the University of Windsor Senate Policy on Authorship and I cer-

tify that I have properly acknowledged the contribution of other researchers to my

dissertation, and have obtained written permission from each of the co-author(s) to

include the above material(s) in my dissertation.

I certify that, with the above qualification, this dissertation, and the research to

which it refers, is the product of my own work.

II. Declaration of Previous Publication

This dissertation includes 10 original papers that have been previously pub-

lished/submitted for publication in peer reviewed journals and conferences, as

follows:

Section Full Citation
Publication

Status

3.2

M. R. Raeesi N. and Z. Kobti, “A machine operation lists

based memetic algorithm for job shop scheduling,” in IEEE

Congress on Evolutionary Computation (CEC), New

Orleans, LA, USA, June 5-8 2011, pp. 2436-2443. [166]

Published

Table 1 – Continued on next page

iii



Table 1: (continued from previous page)

Section Full Citation
Publication

Status

3.3

M. R. Raeesi N. and Z. Kobti, “A memetic algorithm for

job shop scheduling using a critical-path-based local search

heuristic,” Memetic Computing, vol. 4 (3), pp. 231-245,

2012. [169]

Published

3.4

M. R. Raeesi N. and Z. Kobti, “Incorporating a genetic

algorithm to improve the performance of variable

neighborhood search,” in The Fourth World Congress on

Nature and Biologically Inspired Computing (NaBIC),

Mexico City, Mexico, November 5-9 2012, pp. 144-149.

[167]

Published

3.5

M. R. Raeesi N. and Z. Kobti, “Incorporating highly

explorative methods to improve the performance of variable

neighborhood search,” Transactions on Computational

Science XXI, vol. 8160, pp. 315-338, 2013. [172]

Published

5.2

M. R. Raeesi N. and Z. Kobti, “A

knowledge-migration-based multi-population cultural

algorithm to solve job shop scheduling,” in The 25th

Florida Artificial Intelligence Research Society Conference

(FLAIRS-25), Marco Island, FL, USA, May 23-25 2012,

pp. 68-73. [168]

Published

Table 1 – Continued on next page

iv



Table 1: (continued from previous page)

Section Full Citation
Publication

Status

5.3

M. R. Raeesi N. and Z. Kobti, “A multiagent system to

solve jssp using a multi-population cultural algorithm,” in

The 25th Canadian Conference on Artificial Intelligence

(Canadian AI), vol. 7310, Toronto, ON, Canada, May

28-30 2012, pp. 362-367. [170]

Published

6.2

M. R. Raeesi N. and Z. Kobti, “Heterogeneous

multi-population cultural algorithm,” in IEEE Congress on

Evolutionary Computation (CEC), Cancun, Mexico, June

20-23 2013, pp. 292-299. [171]

Published

6.3

M. R. Raeesi N., J. Chittle, and Z. Kobti, “A new

dimension division scheme for heterogenous

multi-population cultural algorithm,” in The 27th Florida

Artificial Intelligence Research Society Conference

(FLAIRS-27), Pensacola Beach, FL, USA, May 21-23 2014,

pp. 75-80. [165]

Published

6.4

M. R. Raeesi N. and Z. Kobti, “Heterogeneous

multi-population cultural algorithm with a dynamic

dimension decomposition strategy,” in The 27th Canadian

Conference on Artificial Intelligence (Canadian AI), vol.

8436, Montreal, QC, Canada, May 6-9 2014, pp. 345-350.

[174]

Published

6.5

M. R. Raeesi N. and Z. Kobti, “Adaptive heterogenous

multi-population cultural algorithm for large scale global

optimization,” 2014. [173]

Under Review

v



I certify that I have obtained a written permission from the copyright owner(s) to

include the above published material(s) in my dissertation. I certify that the above

material describes work completed during my registration as graduate student at the

University of Windsor.

I declare that, to the best of my knowledge, my dissertation does not infringe

upon anyone’s copyright nor violate any proprietary rights and that any ideas, tech-

niques, quotations, or any other material from the work of other people included in

my dissertation, published or otherwise, are fully acknowledged in accordance with

the standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of

the Canada Copyright Act, I certify that I have obtained a written permission from

the copyright owner(s) to include such material(s) in my dissertation.

I declare that this is a true copy of my dissertation, including any final revisions,

as approved by my dissertation committee and the Graduate Studies office, and that

this dissertation has not been submitted for a higher degree to any other University

or Institution.

vi



Abstract

Optimization problems is a class of problems where the goal is to make a system

as effective as possible. The goal of this research area is to design an algorithm to

solve optimization problems effectively and efficiently. Being effective means that the

algorithm should be able to find the optimal solution (or near optimal solutions),

while efficiency refers to the computational effort required by the algorithm to find

an optimal solution. In other words, an optimization algorithm should be able to find

the optimal solution in an acceptable time. Therefore, the aim of this dissertation

is to come up with a new algorithm which presents an effective as well as efficient

performance.

There are various kinds of algorithms proposed to deal with optimization prob-

lems. Evolutionary Algorithms (EAs) is a subset of population-based methods which

are successfully applied to solve optimization problems. In this dissertation the area

of evolutionary methods and specially Cultural Algorithms (CAs) are investigated.

The results of this investigation reveal that there are some room for improving the

existing EAs. Consequently, a number of EAs are proposed to deal with different

optimization problems. The proposed EAs offer better performance compared to the

state-of-the-art methods.

The main contribution of this dissertation is to introduce a new architecture for

optimization algorithms which is called Heterogeneous Multi-Population Cultural Al-

gorithm (HMP-CA). The new architecture first incorporates a decomposition tech-

nique to divide the given problem into a number of sub-problems, and then it assigns

the sub-problems to different local CAs to be optimized separately in parallel. In

order to evaluate the proposed architecture, it is applied on numerical optimization

problems. The evaluation results reveal that HMP-CA is fully effective such that it

can find the optimal solution for every single run. Furthermore, HMP-CA outper-

forms the state-of-the-art methods by offering a more efficient performance.

vii



The proposed HMP-CA is further improved by incorporating an adaptive de-

composition technique. The improved version which is called Adaptive HMP-CA

(A-HMP-CA) is evaluated over large scale global optimization problems. The results

of this evaluation show that HMP-CA significantly outperforms the state-of-the-art

methods in terms of both effectiveness and efficiency.
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Preface

This dissertation presents research outcomes from my PhD studies at the School of

Computer Science, University of Windsor, between September 2010 and May 2014.

I started my PhD program by reviewing Evolutionary Algorithms (EAs) and their

problem domains specially focusing on optimization problems.

I found out that EAs work better if they are combined with local search heuristics.

This combination which is called Memetic Algorithm (MA) was introduced before by

other researchers. Afterwards, I came up with the idea of incorporating knowledge

to improve the search mechanism in EAs. Knowledge extraction within EAs was

also previously introduced in the literature as Cultural Algorithm (CA). In order to

overcome the premature convergence issue of the CAs, I decided to use the concept

of multiple populations which was also presented as Multi-Population Cultural Al-

gorithm (MP-CA) in the literature by that time. Although MAs and MP-CAs were

introduced in the literature by other researchers, I proposed a number of ideas to

improve the traditional versions. These improvement are described in details in the

following chapters.

After reaching the research area of MP-CAs, I provided a detailed survey on the

existing MP-CAs in order to define the open problems and the rooms for improve-

ment. Based on the results of this survey I came up with the idea of incorporating

problem decomposition within MP-CAs and I called the new algorithm as Hetero-

geneous Multi-Population Cultural Algorithm (HMP-CA). By conducting extensive
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experiments, I presented that my new algorithm offers the competitive performance

compared to the state-of-the-art methods.

I improved my proposed HMP-CA by incorporating dynamic decomposition tech-

niques. The new version which is called Dynamic Heterogeneous Multi-Population

Cultural Algorithm (D-HMP-CA) presents a better performance compared to HMP-

CA such that it offers a fully effective performance to deal with numerical optimiza-

tion.

In order to improve D-HMP-CA, I proposed a new module to detect the additively

interdependency of the problem dimensions. Then I merged D-HMP-CA with the

new module which is called Variable Additively Interdependence Learning (VAIL) to

a new algorithm and I renamed it Adaptive Heterogeneous Multi-Population Cultural

Algorithm (A-HMP-CA). Since it has been shown that D-HMP-CA is fully effective

to deal with optimization problems, I moved forward and evaluated A-HMP-CA on

large scale global optimization problems. The experimental results represent that my

proposed A-HMP-CA significantly outperforms the state-of-the-art methods.

Therefore, I can say that the main contribution of my PhD studies is the new op-

timization algorithm which is called Adaptive Heterogeneous Multi-Population Cul-

tural Algorithm.
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Chapter 1

Introduction

1.1 Problem Statement

Optimization problem is a class of problems where the goal is to make a system as

effective as possible. Optimization problems are very well-known due to their applica-

bility in a wide range of research areas. Energy utilization in manufacturing system,

minimizing the whole cost in a supply chain management, and finding the minimum

value of a mathematical function are three samples of optimization problems.

Each optimization problem has its own input parameters. The input parameters

for a job scheduling system, for instance, is the order of jobs to be processed. An

optimization algorithm optimizes a problem by adjusting its input parameters. A

set of values with respect to all input parameters is called a solution and the set of

all feasible solutions is called solution space. For the job scheduling example, any

feasible order of jobs is a solution and the order of jobs which results in the minimum

cost is the optimal solution.

The optimization problems can be differentiated based on their goals which could

be either minimization or maximization. In the former one, the evaluation function is

a cost function and the goal is to find out the solution with the minimum cost value,
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while the latter one looks for the solution with the maximum fitness value using its

evaluation function which is called fitness function. Since the strategies applied to

solve both kinds of optimization problems are the same, in the rest of this article only

minimization optimization problems are considered.

Definition 1.1.1. An optimization problem is mathematically defined as follows:

Minimize f(X)

X = {x1, x2, ..., xD}

f : RD → R

Subject to gi(X) = 0, i = 1, ...,m

hj(X) ≤ 0, j = 1, ..., n

(1.1)

where f(X) denotes to the optimization function where its input is a D-dimensional

vector of continuous parameters denoted by X including D parameters denoted by

xi where i is the dimension index. Each optimization function is accompanied with a

number of equality and inequality constraints denoted by gi(X) and hj(X), respec-

tively.

Based on this definition, a feasible solution would be

s = {v1, v2, ..., vD} s ∈ S

where vi is a value with respect to dimension i and should satisfy vi ∈ Di and all

other constraints. S denotes the solution space.

The solution for an optimization problem is to find out a candidate solution with

minimum objective value.

s∗ ∈ S and f(s∗) ≤ f(s),∀s ∈ S
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By this definition, s∗ is call the global optimal solution.

Generally optimization problems are categorized into two class based on the type

of their input parameters, which are as follows:

• Global Optimization Problems: Problems with continuous input parameters

such as real numbers. In these problems, there is no limit on the number

of solutions. Consequently, the solution space is an infinite set. The global

optimization problems with a large number of dimensions are called large scale

global optimizations.

• Combinatorial Optimization Problems: Problems with discrete input parame-

ters such as integers, permutations and graphs. In these problems, although

the solution space is a finite set, it is a very large set of solutions.

1.2 Main Objectives

In the research area of optimization problems, the main goal is to design an algorithm

to be able to find an optimal solution or near optimal solution within an acceptable

time. In other words, an optimization algorithm should be:

• Effective in terms of finding an optimal or near optimal solution.

• Efficient in terms of the computational complexity it requires to do so.

Therefore, the main goal of my research was to come with a new algorithm to

provide a better performance in terms of both effectiveness and efficiency compared

to the state-of-the-art methods.
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1.3 Approaches

Various kinds of algorithms are proposed to solve optimization problems. For some

specific optimization problems, a number of heuristics are designed to work on the

corresponding problem domain. Although these heuristics perform very well in these

domains, they cannot offer the same performance for other problem domains even

similar ones. Local search, for instance, is a heuristic which shows good performance

in simple optimization problems specially the ones which have only one local and

global optimal solution. Local search starts at an initial random solution and looks

for a better solution in the neighborhood of the initial solution. It selects the best

solution in that neighborhood and continues the same routine from there until it

converges to a solution which is the best one in its neighborhood.

Due to the fact that heuristics are not successful in general, metaheuristics are

introduced in the literature. A metaheuristic is formally defined as an iterative master

process to guide the operations of subordinate heuristics to efficiently produce high-

quality solutions. Metaheuristics which are so-called complex heuristics are more

general method with a wider area of applicability. Metaheuristics are approximate

algorithms and mostly they are non-deterministic.

Repeated Local Search (RLS), for instance, is an extended version of the simple

local search. Since a local search might be trapped into local optimal regions, its

execution for a number of times increases the chance of finding an acceptable solu-

tion. Iterated Local Search (ILS) is also an extended version of RLS such that it

incorporates the information of the best solutions found in the previous executions.

In fact, instead of starting from another random solution, ILS slightly perturbs the

best solution recently found and continues form there.

Generally, the search mechanism in metaheuristics consists of two phases as fol-

lows:
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• Exploration: In this phase the metaheuristics look for promising regions by

searching unexplored regions. The goal of this phase is to decrease the chance

of being trapped into local optimal solutions.

• Exploitation: In this phase the method highly investigates the promising regions

to find the local optimal solutions there. The goal of this phase is to speed up

the convergence.

It should be noted here that although exploration decreases the chance of imma-

ture convergence, too much exploration results in random search which is not going

to be converged. Similarly, although exploitation improves the convergence rate, too

much exploitation is equivalent to local search only which results in immature conver-

gence. Therefore, the main goal of a metaheuristic is to find a good balance between

exploration and exploitation which are also known as diversification and intensifica-

tion, respectively.

Metaheuristics can be divided into two groups including single point and

population-based search methods. The former approaches incorporates only one

solution to find a better solution in each iteration, while the latter ones incorporate

a population of solutions.

One of the most popular single point search methods is Variable Neighborhood

Search (VNS). VNS which is proposed by Mladenovic and Hansen [136] is one of the

most recently introduced metaheuristics. VNS can also be considered as an extended

version of ILS. The idea of VNS is to incorporate a number of neighborhood structures

and switch among them within the local search execution. VNS starts searching with

respect to the first neighborhood structure until it converges. At this point, it switch

to the next neighborhood structure and looks for a better solution. It continues this

routine until it finds a solution which is the best one in its neighborhood with respect

to all neighborhood structures.
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This strategy helps VNS to decrease the chance of immature convergence dramati-

cally such that it has been successfully applied in various areas including the Traveling

Salesman Problem [55], the Open Vehicle Routing problem [57], the p-Median prob-

lem [56], and the Graph problem [24].

Evolutionary Algorithms (EAs) is a subset of population-based methods which are

successfully applied to deal with optimization problems. Although there are different

types of EAs introduced in the literature, they incorporate the same strategy which is

called evolution. The key mechanism of evolution is inspired by the natural selection

stating that the individuals which are fitter to the environment are more likely the

ones surviving for the next generations.

The framework of EAs starts with an initial population of solutions which are

usually randomly generated solutions. The solutions are getting evolved for a number

of generations by incorporating evolutionary operators including:

• Recombination or crossover.

• Modification or mutation.

• Natural Selection.

The most popular EA is Genetic Algorithm (GA) which is proposed by Holland

[93] and improved by various researchers consequently. The successful applications of

GAs are also reported in the literature such as the GAs proposed by Lawrence [112],

Chen et al. [30], Mattfeld et al. [130], Pezzella et al. [158] and Zhang et al. [221] to

solve the job shop scheduling problem.

The most recently introduced evolutionary approach in the literature is Differential

Evolution (DE). Storn and Price [191] designed DE to deal with global optimization

problems. DE has an efficient search space exploration which makes it so popular

in this area. Although DE is designed to work in continuous domains, researchers

introduced a number of approaches to benefit DE in discrete domains.
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Since the population-based search methods are more explorative and the single

point search methods are more exploitative, their combination is expected to be a

powerful method. Incorporating a local search heuristic within a population-based

approach not only improves the quality of the final results, but also helps it to conver-

gence faster. Moscato [139] defined Memetic Algorithm (MA) as a combination of a

population-based global search and a local search heuristic to deal with an optimiza-

tion problem. Although it is not possible to exactly distinguish the exploration and

exploitation with in a MA, the population-based global search is highly responsible

for search space exploration, while the local search is more likely a exploitative tool.

In other words, the global search finds the promising regions and the local search

finds the local optimal solutions in those regions.

MAs are described in Chapter 3 with more details. Additionally, this chapter

represents my proposed MAs which are published as research papers including:

• A combination of a GA with a local search heuristic to solve a class of combi-

natorial optimization problem (represented in Section 3.2).

• A GA joint with a local search heuristic to deal with a class of combinatorial

optimization problem (described in Section 3.3).

• A GA incorporating VNS to deal with a class of combinatorial optimization

problem (illustrated in Section 3.4).

• A combination of a DE and VNS to solve a class of combinatorial optimization

problem (characterized in Section 3.5).

Another subclass of EAs is Cultural Algorithms (CAs) which incorporates knowl-

edge to guide its search mechanism. CA which is developed by Reynolds [175] is

designed to extract knowledge during the evolutionary process and to incorporate

the extracted knowledge to guide the search direction. The architecture of CA is

7



Figure 1.1: CA Architecture

presented in Figure 1.1. As illustrated in this figure, CA uses two different spaces,

namely population space and belief space. The population space includes the solu-

tions getting evolved over generations, while the belief space is designed to extract,

update and record knowledge. In other words, in addition to the population of so-

lutions which is common in evolutionary methods, CA has another space which is

designed to manage the extracted knowledge over generations.

In addition to the spaces, CA incorporates two communication links between them

which include:

• Acceptance Function: This link is incorporated to send the best found solutions

in the population space to the belief space. The belief space extracts knowledge

from the transferred solutions.

• Influence Function: This link transfers the updated knowledge of belief space

to the population space which will be used to influence the search direction.

The circulation of information within a CA starts from the population space where

the initial solutions are getting evolved for the first time. The best found solutions

within the first generation will be transferred to the belief space. The belief space

8



Figure 1.2: MP-CA Architecture [171]

extracts knowledge from the new solutions and updates its own knowledge. The

updated knowledge will be transferred back to the population space. From now on,

the population space incorporates knowledge-based evolutionary operators instead of

the random ones. This routine continues until it converges or the termination criteria

have been met.

Although a wide range of successful applications of CAs has been reported in the

literature, they are still suffering from their immature convergence. This is mainly

due to the fact that they are not capable to preserve the population diversity over

generations. Various strategies have been proposed in order to help CAs to overcome

this limitation such as rejecting duplicate solutions, incorporating a high mutation

rate, and removing solutions with the same objective value. One of the most common

strategy is to incorporate multiple populations with lower size instead of a big single

population. In Multi-Population Cultural Algorithm (MP-CA), the single population

is divided into a number of sub-populations and each sub-population is directed by

a local CA. Digalakis and Margaritis [51] introduced the first MP-CA which was

designed to schedule electrical generators.

The main architecture of MP-CAs is illustrated in Figure 1.2. In this architecture,

there are a number of local CAs each of which has its own belief space. The local

CAs communicate with each other by exchanging their extracted knowledge.
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There are different architectures to implement MP-CAs such as the MP-CAs with

solution migrations between local CAs, the MP-CAs incorporating knowledge mi-

gration, and the MP-CAs with a shared belief space among local CAs. Chapter 4

represents a detailed literature survey on the existing architectures to implement

MP-CAs. These architectures are categorized based on their problem domains.

One of the best ways to benefit from the multi population concept in MP-CAs in

order to preserve the population diversity is to use knowledge migration between local

CAs. Chapter 5 represents two proposed MP-CAs incorporating knowledge migration

to solve a combinatorial optimization problem. These proposed methods which are

published as conference papers include:

• A MP-CA incorporating normative and topographic knowledge (described in

Section 5.2).

• A MP-CA with a new proposed knowledge called structured belief (character-

ized in Section 5.3).

Generally, the existing architectures to implement MP-CAs can be categorized

into two classes as follows:

• Homogeneous Local CAs: In these architectures, the local CAs work exactly

the same. Although these local CAs may use different algorithm parameters or

even different evolutionary approaches, all the local CAs contribute to the same

goal which is to solve the whole problem.

• Heterogeneous Local CAs: In these architectures, the local CAs cooperate with

each other by working on different parts of the given problem. In other words,

the goal of each local CA is to solve a sub-problem instead of dealing with the

whole problem.

The architectures in the category of heterogeneous local CAs need the problems

to be decomposed into a number of sub-problems. There are a number of approaches
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Figure 1.3: HMP-CA Architecture [171]

for problem decomposition which is further described in Chapter 6. This chapter

also describes the main contribution of this dissertation which is the proposed Het-

erogeneous Multi-Population Cultural Algorithm (HMP-CA) which is published as

a research paper. The proposed HMP-CA is capable to deal with both static and

dynamic dimension decomposition techniques. Figure1.3 illustrates the architecture

of the proposed HMP-CA. As presented in the figure, instead of one local belief space

for each local CA, there is only belief space which is shared among the local CAs.

The proposed HMP-CA is further improved by incorporating an adaptive dimen-

sion decomposition technique. Chapter 6 characterizes the proposed HMP-CA with

more details in four sections including:

• Proposed HMP-CA to solve a class of global optimization problems (represented

in Section 6.2).

• Investigating the performance of different static decomposition techniques to

the performance of HMP-CA (characterized in Section 6.3).

• A HMP-CA incorporating a dynamic decomposition technique to deal with a

class of global optimization problems (illustrated in Section 6.4).
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• Incorporating an adaptive decomposition technique in HMP-CA to solve a class

of large scale global optimization problems (described in Section 6.5).

1.4 Dissertation Organization

As described before, the remainder of this dissertation is structured as follows. The

problem domains are presented precisely in Chapter 2. Chapter 3 describes the pro-

posed MAs with more details. A literature survey on the existing architectures to im-

plement MP-CAs is represented in Chapter 4 followed by characterizing the proposed

MP-CAs in Chapter 5. The proposed HMP-CA with different dimension decomposi-

tion techniques, the key contribution of this dissertation, is described in Chapter 6.

Finally, Chapter 7 represents the concluding remarks and future directions for this

research.
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Chapter 2

Problem Domains

2.1 Introduction

In order to evaluate the proposed methods, both combinatorial and global optimiza-

tion problems are taken into account. Job Shop Scheduling Problem (JSSP) is consid-

ered as a class of combinatorial optimization problems to evaluate the performance of

the proposed methods. JSSP is defined as the task of scheduling a number of jobs to

be processed on a number of machines. JSSP is a well-known class of combinatorial

problems in various areas specially in manufacturing systems.

Within the global optimization problems, numerical optimization is selected for

the evaluation. In numerical optimization, the goal is to find the minimum value

of a mathematical function with respect to an upper and a lower bounds for input

parameters. The optimization function is considered as a black box such that there

is no prior knowledge available about it.

The rest of this chapter is organized as follows. JSSP is precisely described in

Section 2.2 followed by characterizing numerical optimization in Section 2.3.
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2.2 Job Shop Scheduling Problem

Job Shop Scheduling Problem (JSSP) is an instance of combinatorial optimization

problems. JSSP is the task of scheduling various jobs to be processed on different

machines in a manufacturing system. A lot of work has been done in the last decades

to improve the output of a job shop system. In each sample JSSP problem, there are

a number of jobs and a number of machines, and each job has a fixed sequence of

operations.

In the literature, there are different types of JSSP with different specifications.

Classical Job Shop Scheduling Problem is a type of JSSP in which each operation

has to be processed only on one machine. This limitation removes machine selection

flexibility for operations in classical JSSP. In other words, classical JSSP is the process

of sequencing operations of different jobs which are to be processed on the same

machine. Flexible Job Shop Scheduling (FJSS), another instance of JSSP, provides

the flexibility for each operation to be processed on different machines. Bruker and

Schlie [25] published one of the first research considering flexibility in JSSP.

Since there is a flexibility in FJSS to select applicable machine for each operation,

FJSS includes two different tasks, machine selection and operation sequencing, while

classical JSSP has only operation sequencing task. Therefore, it is obvious that FJSS

is more complex than the classical JSSP. To solve FJSS, there are two approaches.

The first one is to consider both machine selection and operation sequencing tasks

as one problem, while in the second approach each task is solved separately. Hurink

et al. [97] published a method solving both tasks at the same time and Brandimarte

[22] proposed a method to solve them separately.

FJSS could be divided into two subcategories including Total Flexible Job Shop

Scheduling (T-FJSS) and Partial Flexible Job Shop Scheduling (P-FJSS). T-FJSS is

called to the problems where all the operations have the flexibility to be processed on

every available machines. Otherwise, it is called P-FJSS. Zhang et al. [221] mentioned
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that P-FJSS is more complex than T-FJSS with respect to the computational cost

and search space.

Uncertainty is also considered for FJSS problems such as incorporating stochastic

processing time. Such problems are called Stochastic Flexible Job Shop (SFJS). A

simulation-based decision support system is proposed by Mahdavi et al. [126] to deal

with a stochastic job shop problem.

Open shop scheduling is also a scheduling problem, but it is very different from

JSSP such that the operations of a job in open shop scheduling are sequence inde-

pendent. A Memetic Algorithm (MA) is proposed by Naderi et al. to solve an open

shop scheduling problem.

The most important goal of optimizing a scheduling problem is to utilize the

manufacturing system. Since the objectives of different manufacturing system could

be different, they have their own optimization function. However in most cases, the

main objective of a scheduling problem is to minimize the total completion time of

processing all the jobs. The total completion time in the area of scheduling is so-called

makespan. An objective function could be also defined based on different parameters.

The problems with such a objective function are called Multi-Objective Job Shop

Scheduling Problem (MO-JSSP). For an instance, the objective of a system is to

minimize the maximum machine workload, to minimize the total machine workload,

as well as to maximize the machine utilization. One approach to optimize such

problems is to determine an objective function of parameters with different weights

corresponding to their importance. Another approach is to define one as the main

objective and set others as constraints. Mahdavi et al. [126] used generalized response

surface methodology to do so.
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2.2.1 Problem Definition

In all types of JSSP, there are a number of jobs to be processed on a set of machines.

Machines are denoted by mk, where k refers to the machine’s index ranging from 1

to M , the number of machines, and jobs are denoted by Ji, where i refers to the job’s

index which is between 1 and N , the number of jobs. Each job consists of a number

of operations to be processed on a predefined sequence. The number of operations

for each job is denoted by NOi, and Oij refers to the jth operation of the ith job. In

deterministic JSSP, the processing time of each operation on each applicable machine

is known at the beginning, which is denoted by PT (Oij,mk), meaning the processing

time of jth operation of the ith job on kth machine.

A sample T-FJSS problem is represented in Table 2.1 which is the 4th benchmark

incorporated by Xing et al. [208]. In this test problem, there are 10 jobs including 3

operations to be processed on 10 different machines.

2.2.2 Rules

In JSSP problems, there are a number of rules to be considered which are as follows:

• All the jobs and machines are available at the beginning.

• There is no due date for the jobs.

• The part movement time between machines and the machine set up time are

assumed to be negligible.

• The sequence of operation for a job is fixed. The third operation of a job, for

instance, cannot be processed until the second operation of the same job has

been done.

• The operations of different jobs are independent to each other.
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Table 2.1: 4th FJSS benchmark incorporated by Xing et al. [208].

Job Operation
Processing Time on Different Machines

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

J1

O11 1 4 6 9 3 5 2 8 9 5
O12 4 1 1 3 4 8 10 4 11 4
O13 3 2 5 1 5 6 9 5 10 3

J2

O21 2 10 4 5 9 8 4 15 8 4
O22 4 8 7 1 9 6 1 10 7 1
O23 6 11 2 7 5 3 5 14 9 2

J3

O31 8 5 8 9 4 3 5 3 8 1
O32 9 3 6 1 2 6 4 1 7 2
O33 7 1 8 5 4 9 1 2 3 4

J4

O41 5 10 6 4 9 5 1 7 1 6
O42 4 2 3 8 7 4 6 9 8 4
O43 7 3 12 1 6 5 8 3 5 2

J5

O51 7 10 4 5 6 3 5 15 2 6
O52 5 6 3 9 8 2 8 6 1 7
O53 6 1 4 1 10 4 3 11 13 9

J6

O61 8 9 10 8 4 2 7 8 3 10
O62 7 3 12 5 4 3 6 9 2 15
O63 4 7 3 6 3 4 1 5 1 11

J7

O71 1 7 8 3 4 9 4 13 10 7
O72 3 8 1 2 3 6 11 2 13 3
O73 5 4 2 1 2 1 8 14 5 7

J8

O81 5 7 11 3 2 9 8 5 12 8
O82 8 3 10 7 5 13 4 6 8 4
O83 6 2 13 5 4 3 5 7 9 5

J9

O91 3 9 1 3 8 1 6 7 5 4
O92 4 6 2 5 7 3 1 9 6 7
O93 8 5 4 8 6 1 2 3 10 12

J10

O10,1 4 3 1 6 7 1 2 6 20 6
O10,2 3 1 8 1 9 4 1 4 17 15
O10,3 9 2 4 2 3 5 2 4 10 23
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• Each machine can process only one operation at a time which cannot be inter-

rupted.

• At any given time, only one operation of a job can be processed.

There are a number of concepts in JSSP which will be used later in this article.

These concepts are clarified as follows:

• Critical Path: A sequence of immediately consecutive operations starting from

time zero to the completion time is called a critical path. A critical path can be

found by tracing the schedule from its completion time back to the beginning.

• Critical Operation: An operation belongs to one or more critical path is called

a critical operation. In other words, critical operations are the ones for which

any delay in their processing increases the makespan.

• Critical Block: A set of immediately consecutive critical operations on the same

machine is called a critical block.

• Active Schedule: As defined by Croce et al. [43], if there is no operation in

a schedule that can be started earlier without delaying another operation, the

schedule is called active.

• Job’s Operation Sequence: Each job has its own fixed sequence of operations.

• Job-Predecessor Operation: This operation is the preceding operation of an

operation in a job’s operation sequence.

• Job-Successor Operation: This operation is the succeeding operation of an op-

eration in a job’s operation sequence.

• Machine’s Operation Sequence: The sequence of operations to be processed on

the same machine.
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Table 2.2: A sample classical job shop scheduling problem

Operation Index 1 2 3
J1 m2, 1 m1, 2 m3, 3
J2 m1, 2 m2, 1 m3, 2
J3 m1, 2 m3, 4 m2, 1

• Machine-Predecessor Operation: This operation is the operation to be processed

exactly before an operation on the same machine.

• Machine-Successor Operation: This operation is the operation to be processed

exactly after an operation on the same machine.

The concept of an active schedule is very important in JSSP, since it can limit the

search space in order to find the optimal solution faster. Based on the definition of an

active schedule, an optimal solution is more likely to be an active schedule, and if it is

inactive, it has an equivalent active solution which is optimal too. Therefore, instead

of searching the whole solution space, just the active solutions are investigated.

If each operation is assigned to its earlier appropriate interval on its corresponding

machine, the final schedule will be active. This rule is used by Hasan et al. [87] as

Gap Reduction rule, and Becerra and Coello Coello [14] called this rule as permissible

left shift and used it as a priory knowledge in their CA.

2.2.3 A Simple Problem

In order to illustrate the concept of an active schedule, a simple classical JSSP is

considered which is represented in Table 2.2. The sample problem contains 3 jobs

including 3 operations to be processed on 3 machines. The table shows the applicable

machine with its corresponding processing time for each operation. For an instance,

the third operation of the second job O23, should be processed for 2 time units on the

third machine. Figure 2.1 depicts a sample schedule for this sample problem.
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Figure 2.1: Sample Schedule

Figure 2.2: Active Schedule

Clearly, the sample schedule represented in Figure 2.1 is not an active schedule,

since the 3rd operation of the 1st job can be processed before other operations without

delaying them. By reassigning the operation to the earliest appropriate interval, the

new schedule will be an active one which is shown in Figure 2.2. This example also

shows that how much this rule can improve a schedule.

2.2.4 JSSP Representation

JSSP representation is more critical than the representation of other optimization

problems since JSSP cannot be normally represented as a permutation. Various

JSSP representations have been introduced in the literature. Nine different represen-

tations are introduced by Cheng et al. [32] including operation-based representation,

job-based representation, preference list-based representation, job pair relation-based

representation, priority rule-based representation, disjunctive graph-based represen-

tation, completion time-based representation, machine-based representation, and ran-

dom keys representation.

Overall, chromosome representations are categorized into two sections: the direct

representations and indirect ones. The representations encoding schedules are called

direct, which include operation-based representation, job-based representation, job

pair relation-based representation, completion time-based representation, and random
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keys representation, while others that encode the schedule construction rules are

considered as indirect representation [32].

Ponnambalam et al. [159] conducted a comparison among four different represen-

tations including operation-based representation, job-based representation, preference

list-based representation, and priority rule-based representation. The authors claimed

that as the results of the comparison preference list-based representation offers better

results, while the operation-based representation is the fastest one.

One of the popular representation is MSOS representation which is proposed by

Zhang et al. [221]. This representation is one of the operation-based representa-

tions and it is also called modified operation-based representation. Its encoding and

decoding procedures are easy and efficient. All the possible schedules encoded by

this representation are feasible. So there is no need to any repair mechanisms. This

representation consist of two parts, namely Machine Selection (MS) and Operation

Sequence (OS).

The MS part determines a machine for each operation to be processed on. The

MS part is not applicable in classical JSSP since there is only one applicable machine

for each operation. In other words, the MS part remains the same for all possible

schedules. The MS part is a string of machines indices with the length of the total

number of operations. Each entry of MS string represents the index of one of the

applicable machines for the corresponding operation.

The OS part which is also known as permutation with repetition represents the

sequence of operations to be processed in order. The OS part is a string of job indices

with the same length as MS. Each index denotes one operation such that the job

index determines the job that operation belongs to, and the occurrence of that job

index from the beginning of the string shows the index of the operation in its job’s
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operation sequence. Consider

OS = [1, 1, 2, 3, 2, 1, 2, 3, 3]

as a sample OS for the sample problem which represents the following sequence of

operations.

O11 ≺ O12 ≺ O21 ≺ O31 ≺ O22 ≺ O13 ≺ O23 ≺ O32 ≺ O33

This sequence for the sample problem produces the following schedule.

m1 : O12 ≺ O21 ≺ O31

m2 : O11 ≺ O22 ≺ O33

m3 : O13 ≺ O23 ≺ O32

This schedule is illustrated in Figure 2.2.

However, there are different presentations introduced for JSSP. Each one has its

own strengths and weaknesses. Some of them are designed for specific purpose.
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2.3 Numerical Optimization

Numerical optimization is a class of global optimization problems where the goal is

to find the optimal objective value of a mathematical optimization function with a

set of continuous input parameters. Equations 2.1 and 2.2 are two sample numerical

optimization functions which are called sphere model and generalized Rosenbrock’s

function, respectively. The goal of these problems is to find the minimum value while

satisfying both upper and lower bounds for each dimension.

f1(X) =
D∑
i=1

xi
2 (2.1)

−100 ≤ xi ≤ 100

min(f1) = f1(0, ..., 0) = 0

f2(X) =
D−1∑
i=1

∣∣∣100
(
xi+1 − xi2

)2
+ (xi − 1)2

∣∣∣ (2.2)

−30 ≤ xi ≤ 30

min(f2) = f2(1, ..., 1) = 0

The optimization problems with a large number of dimensions are called large

scale global optimizations. The common number of dimensions in this area is 1000.

In numerical optimization, the optimization function is considered as a black box

which gets a D-dimensional vector as its input parameters and returns a real value

as the objective value corresponding to the given input vector.

The numerical optimization functions are usually categorized into three classes

based on the interdependency of their input variables. These classes include fully

23



separable functions, partially separable functions and non-separable functions. A

fully separable function is defined in Definition 2.3.1 [193].

Definition 2.3.1. A function f(X) is fully separable if and only if

arg min
(x1,...,xn)

f (x1, ..., xn) =

(
arg min

x1

f (x1, ...) , ..., arg min
xn

f (..., xn)

)
(2.3)

The fully separable functions are the functions that can be optimized by opti-

mizing their dimensions separately since there is no interdependencies between their

dimensions. These interdependencies are also known as variable interactions. The

partially separable functions and the non-separable functions are also defined in Def-

inition 2.3.2.

Definition 2.3.2. The optimization functions where the interacting variables can be

grouped into a number of independent subsets are called partially separable func-

tions, and the functions where there is only one independent group including all the

dimensions are called non-separable functions.

Based on Definitions 2.3.1 and 2.3.2, the sphere model represented in Equation 2.1

is a fully separable function while the generalized Rosenbrock’s function illustrated in

Equation 2.2 is a non-separable function. Function fPS represented in Equation 2.4

which is a composite function of two generalized Rosenbrock’s functions is a sample

of partially separable functions.

fPS(x1, ..., x5, x6, ..., xD) = f2(x1, ..., x5) + f2(x6, ..., xD) (2.4)

2.3.1 Well-Known Numerical Optimization Functions

There are a number of numerical optimization functions which are very well-known

such that researchers in this area mostly use them to evaluated their proposed meth-

ods. These functions include (but not limited to):

24



f1 - Sphere Model:

f1(X) =
D∑
i=1

xi
2 (2.5)

−100 ≤ xi ≤ 100

min(f1) = f1(0, ..., 0) = 0

f2 - Generalized Rosenbrock’s Function:

f2(X) =
D−1∑
i=1

∣∣∣100
(
xi+1 − xi2

)2
+ (xi − 1)2

∣∣∣ (2.6)

−30 ≤ xi ≤ 30

min(f2) = f2(1, ..., 1) = 0

f3 - Generalized Schwefel’s Problem 2.26:

f3(X) =
D∑
i=1

(
−xisin

(√
|xi|
))

(2.7)

−500 ≤ xi ≤ 500

min(f3) = f3(420.9687, ..., 420.9687) ' −12569.5

f4 - Generalized Rastrigin’s Function:

f4(X) =
D∑
i=1

[
xi

2 − 10cos (2πxi) + 10
]

(2.8)
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−5.12 ≤ xi ≤ 5.12

min(f4) = f4(0, ..., 0) = 0

f5 - Ackley’s Function:

f5(X) = −20 exp

−0.2

√√√√ 1

D

D∑
i=1

xi2

 − exp

(
1

D

D∑
i=1

cos (2πxi)

)
+ 20 + e (2.9)

−32 ≤ xi ≤ 32

min(f5) = f5(0, ..., 0) = 0

f6 - Generalized Griewank’s Function:

f6(X) =
1

4000

D∑
i=1

xi
2 −

D∏
i=1

cos

(
xi√
i

)
+ 1 (2.10)

−600 ≤ xi ≤ 600

min(f6) = f6(0, ..., 0) = 0

f7 and f8 - Generalized Penalized Functions:

f7(X) =
π

D

{
10 sin2 (πy1) +

D−1∑
i=1

(yi − 1)2
[
1 + 10 sin2 (πyi+1)

]
+ (yD − 1)2

}

+
D∑
i=1

u (xi, 10, 100, 4) (2.11)

−50 ≤ xi ≤ 50

min(f7) = f7(−1, ...,−1) = 0
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f8(X) = 0.1

{
sin2 (3πx1) +

D−1∑
i=1

(xi − 1)2
[
1 + sin2 (3πxi+1)

]
+ (xD − 1)2

[
1 + sin2 (2πxD)

]}
+

D∑
i=1

u (xi, 10, 100, 4) (2.12)

−50 ≤ xi ≤ 50

min(f8) = f8(1, ..., 1) = 0

where

u (xi, a, k,m) =


k (xi − a)m if xi > a

0 if − a ≤ xi ≤ a

k (−xi − a)m if xi < −a

yi = 1 +
1

4
(xi + 1)

f9 - Schwefel’s Problem 1.2:

f9(X) =
D∑
i=1

(
i∑

j=1

xj

)2

(2.13)

−500 ≤ xi ≤ 500

min(f9) = f9(0, ..., 0) = 0

f10 - Schwefel’s Problem 2.21:

f10(X) = maxi (|xi|, 1 ≤ i ≤ D) (2.14)
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−500 ≤ xi ≤ 500

min(f10) = f10(0, ..., 0) = 0

f11 - Schwefel’s Problem 2.22:

f11(X) =
D∑
i=1

|xi|+
D∏
i=1

|xi| (2.15)

−500 ≤ xi ≤ 500

min(f11) = f11(0, ..., 0) = 0

f12 - Step Function:

f12(X) =
D∑
i=1

bxi + 0.5c2 (2.16)

−100 ≤ xi ≤ 100

min(f12) = f12(0, ..., 0) = 0

In addition to these functions, there are a number of benchmarks available in

the literature to provide a better platform to compare different optimization meth-

ods. The benchmark functions for the CEC’2010 competition on large scale global

optimization [193] is one of the well-known benchmarks in the literature. This bench-

mark includes twenty 1000-dimensional numerical optimization functions which can

be categorized into the three following classes based on Definitions 2.3.1 and 2.3.2:

1. Shifted Fully Separable Functions (f1 − f3).

2. Shifted Partially Separable Functions (f4 − f18).

3. Shifted Nonseparable Functions (f19 − f20).
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Chapter 3

Memetic Algorithm

3.1 Introduction

Most of the recent work in job shop scheduling hybridized GAs with local search

algorithms to improve the final results as well as to help the convergence rate.

As defined by Moscato [139], Memetic Algorithm (MA) is a hybrid method in-

cluding a population-based global search combined with a local search heuristic to be

used to solve an optimization problem. Ong et al. [149] considered population-based

search as exploration to find the promising regions in the search space, and local

search as exploitation to find the best individual in those neighborhoods. Based on

this definition, all the hybridizations of GAs or other EAs with local search heuristics

can be considered as MAs.

For instance, the MA proposed by Yang et al. [213] is a combination of Clonal

Selection and Simulated Annealing. A combination of GA and Tabu Search was also

proposed by Ombuki [147]. Kacem et al. [103] combined an EA with a localization

approach. They also proposed a combination of EA with fuzzy logic [104]. Hassan

et al. [84, 85, 86] proposed different GAs combined with different priority rules.
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Recently, Hasan et al. [87] proposed three different MAs which are combinations of

GAs with three different priority rules to solve JSSP.

Incorporating a local search heuristic within a population-based global search has

two major effects on the search performance including:

• Improves the quality of the final results.

• Speeds up the convergence process.

This chapter represents my proposed MAs to deal with optimization problems

which are published as research papers including:

• M. R. Raeesi N. and Z. Kobti, “A machine operation lists based memetic algo-

rithm for job shop scheduling,” in IEEE Congress on Evolutionary Computation

(CEC), New Orleans, LA, USA, June 5-8 2011, pp. 2436-2443 [166]:

In this research paper, a MA is proposed to solve classical JSSPs. The proposed

MA is a combination of a GA with a local search heuristic. Furthermore, a new

representation for JSSP is introduced in this paper which is called Machine

Operation Lists (MOL) representation. The proposed MA is designed to deal

with the MOL representation. This research paper is represented in Section 3.2.

• M. R. Raeesi N. and Z. Kobti, “A memetic algorithm for job shop scheduling

using a critical-path-based local search heuristic,” Memetic Computing, vol. 4

(3), pp. 231-245, 2012 [169]:

This research paper also proposed a MA to deal with JSSPs. Unlike the pre-

vious paper, it is a more general method applicable on various types of JSSPs.

The results of its successful applications on three different types of JSSP have

been reported in the published paper which include classical, flexible and multi-

objective flexible JSSPs. In addition to the proposed MA, a new fitness function
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is introduced which is called Priority-Based Fitness Function. This function in-

corporates the main fitness evaluation as the highest priority level and various

useful parameters as the next priority levels. Therefore, if a tie happens in

selection method based on the main fitness value, instead of selecting a solution

randomly, the better solution will be selected based on its other parameters

considered as the next priority levels. The details of the proposed MA and its

new fitness function is further described in Section 3.3.

• M. R. Raeesi N. and Z. Kobti, “Incorporating a genetic algorithm to improve the

performance of variable neighborhood search,” in The Fourth World Congress

on Nature and Biologically Inspired Computing (NaBIC), Mexico City, Mexico,

November 5-9 2012, pp. 144-149 [167]:

The main contribution of this research paper is to show that VNS is more

likely a local search approach and it can be highly improved if joined with a

population-based global search. Therefore, the proposed MA in this research

paper is a combination of a GA and a VNS to deal with JSSPs. Section 3.4

further describes the proposed MA.

• M. R. Raeesi N. and Z. Kobti, “Incorporating highly explorative methods to

improve the performance of variable neighborhood search,” Transactions on

Computational Science XXI, vol. 8160, pp. 315-338, 2013 [172]:

This research paper is an extension of the previous one, which incorporates more

explorative global search to improve the performance of VNS. The proposed MA

in this published paper is a combination of a DE and a VNS. Since DE has a

very effective search space exploration mechanism, it is a good candidate to

be hybridized with local search heuristics. Furthermore, it has been shown

that incorporating multiple populations within the DE makes it even more

explorative. The proposed MA is more characterized in Section 3.5.

31



3.2 A Machine Operation Lists Based Memetic Al-

gorithm for Job Shop Scheduling

Abstract. In this article, a new Memetic Algorithm (MA) has been

proposed to solve Job Shop Scheduling Problems. The proposed MA is

based on Machine Operation Lists (MOL), which is the exact sequence

of operations for each machine. Machine Operation Lists representation

is a modification of Preference List-Based representation. Linear Order

Crossover (LOX) and Random operations are first considered as crossover

and mutation operators for the proposed MA. Local Search heuristic (LS)

of the proposed MA reconsiders all the operations of a job. It chooses a job

and removes all of its operations and finally reassigns them again one by

one in their sequencing order to improve the fitness value of the schedule.

The proposed algorithm has been applied on the well-known benchmark

of classical Job Shop Scheduling Problems (JSSP). Comparing it with the

existing methods shows that the proposed MA and the proposed Genetic

Algorithm (GA) without LS are effective in JSSP. Moreover, comparing

the results of MA and GA shows that using LS not only improves the final

results but also helps GA to converge to the final solution.

3.2.1 Introduction

Job shop scheduling, which is the scheduling of various operations on different ma-

chines, is an open problem in manufacturing systems. Because of its applicability in

different fields, job shop scheduling is a well-known optimization problem. Since job

shop scheduling is an NP-Complete problem, there is no exact solution for it. It has

been prooved by Garey et al. [65]that job shop scheduling systems with more than

two machines are NP-Complete problems.
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Makespan is the main goal for almost all the manufacturing systems, while some

of them combine it with different parameters such as machine utilization and total job

completion time to define the their own main goal. Makespan is the maximum jobs

completion time, which is the end time of the whole schedule. There are two important

definitions in scheduling including active schedule and non-delay schedule. Croce et

al. [43] defined the active schedule as an schedule in which there is no operation

that can be started earlier without delaying another operation while obeying the

sequencing constraints. Non-delay schedules defined by French [59] are schedules in

which there is no waiting operation while the applicable machine is idle. Based on

these definitions, the non-delay schedules are a subset of active schedules. Moreover,

the optimal solution is always an active schedule, not necessarily a non-delay one.

There are a lot of research that has been done in job shop scheduling. Different

types of algorithms have been proposed to solve the scheduling problem. The pro-

posed algorithms contain a wide range of algorithm types such as heuristics, meta-

heuristics and evolutionary algorithms. Since each type of algorithm has its own

strengths and weaknesses, it is not possible to select an algorithm as the best one.

Huang et al. [96] and Asano et al. [9] proposed two heuristics for job shop scheduling,

bottleneck shifting procedure and tree search method, respectively. Simulated An-

nealing (SA) and Tabu Search (TS) are instances of meta-heuristic approaches used

by Kolonko [108] and Pezzella et al. [157], respectively.

Ant Colony Optimization (ACO), Genetic Algorithms (GA), hybrid GAs, and

Memetic Algorithms (MA) are the proposed methods in Evolutionary Algorithm (EA)

category. Due to the characteristics of job shop scheduling problem, the most impor-

tant issue of population-based algorithms in this field is chromosome representation,

based on which the population operators such as crossover are determined. Various

chromosome representations have been presented in the literature which are described

in the next subsection.
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In this article, a new chromosome representation is proposed which is a modi-

fication of the preference list-based representation. The proposed representation is

called Machine Operation Lists (MOL). Based on MOL representation, a Memetic

Algorithm is proposed to solve scheduling problems. The existing chromosome rep-

resentations for job shop scheduling are presented in Subsection 3.2.2. Subsection

3.2.3 describes the definition of the classical job shop scheduling problem. The pro-

posed MA is described in details in Subsection 3.2.4. The results of applying the

proposed algorithm on a well-known job shop scheduling benchmark are presented in

Subsection 3.2.5, followed by presenting conclusions in Subsection 3.2.6.

3.2.2 Related Works

There are different evolutionary algorithms proposed for job shop scheduling. The

proposed EAs in this field can be divided into two categories, the plain EAs and the

ones combined with a Local Search (LS). The combination of any kind of Evolutionary

Algorithm (EA) with a Local Search heuristic is called Memetic Algorithm (MA) by

Moscato [139]. He defined MA as a joint of a population-based global search and

neighborhood local search. The population-based global searches explore the search

space to find the best region and then local search looks for the best individual in

that neighborhood region [149].

As the first EA used in scheduling problems, Lawrence [112] proposed a GA to

solve the job shop scheduling. The Ant Colony Optimization (ACO) method proposed

by Wang et al. [202], and the GA proposed by Mattfeld et al. [130] are the samples

of plain Evolutionay Algorithms proposed for job shop scheduling.

Different MAs are proposed by Park et al. [154] and Caumond et al. [28] which are

the combination of a GA with local search heuristics. Huang et al. [95] combined ACO

with TS to find the optimal solution, and Ombuki [147] presented the combination of
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GA with TS. Yang et al. [213] proposed a Memetic Algorithm which is a combination

of Clonal Selection and Simulated Annealing (SA).

The combination of GAs with different priority rules are presented by Hassan

et al. [84, 85, 86]. The most recent such combination proposed by Hassan et al.

[87] considered different priority rules including Partial Reordering, Gap Reduction,

and Restricted Swapping. Patial Reordering reorders the operations by assigning the

first operation of the bottleneck job to the first position on the applicable machine.

The process of assigning the first appropriate interval to the operation is called Gap

Reduction which reduces the gaps. Gap Reduction rule makes all the schedules to be

active. The rule which tries to find the smaller makespan using swapping the adjacent

operation on the same machine is called Restricted Swapping.

As mentioned before, the main characteristic of an Evolutionary Algorithm in

job shop scheduling problems is its chromosome representation.Various chromosome

representations have been introduced in literature. Cheng et al. [32] described nine

different representations including operation-based representation, job-based repre-

sentation, preference list-based representation, job pair relation-based representation,

priority rule-based representation, disjunctive graph-based representation, completion

time-based representation, machine-based representation, and random keys represen-

tation.

Representation can be divided into two classes: direct and indirect ones. Di-

rect representations are those ones which encode their corresponding schedule, while

indirect ones encode some rules instead of the schedule and use them to construct

their corresponding schedule. In other words, in direct representation for instance,

a Genetic Algorithm is used to evolve the schedules while, in indirect approach, GA

evolves the encoding rules. Based on this classification, operation-based represen-

tation, job-based representation, job pair relation-based representation, completion
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time-based representation, and random keys representation are considered as direct

representations, while others are indirect [32].

Ponnambalam et al. [159] compared four different representations; two directs and

two indirects. The compared representations contain operation-based representation,

job-based representation, preference list-based representation, and priority rule-based

representation. The result of comparison shows that the best schedule which has the

smallest makespan belongs to preference list-based representation. As it is expected,

they presented that the operation-based representation is the best one with regards

to the CPU time. The main reason is that this representation is direct, so there is no

need to construct a schedule using some priority rules.

Operation-based representation ,one of the most well-known representation, is a

string of operation IDs which denotes the sequence of operations. The length of the

string is equal to the total number of all operations of all jobs. This representation

is proposed by Fang et al. [54]. Since all the possible sequence of operations are

not feasible schedules, it needs a procedure to check the feasibility and may be to

correct it. Gen et al. [66] modified the operation-based representation such that each

operation is denoted by its job ID. In this representation, the operation ID for each

gene is determined by the occurence of the corresponding job ID. So all the possible

chromosome instances are feasible schedules.

The proposed representation in this article is a modification of preferece list-based

representation. In preference list-based representation, there is a list of operations

for each machine which determines the priority of each operation for its applicable

machine. Like operation-based representation, the length of preference list-based rep-

resentation is equal to the total operation number. Prefence list-based representation

is first proposed by Davis [47]. Croce et al. [43] used this representation for their

genetic algorithm. They used a procedure called lookahead evaluation to schedule
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Table 3.1: A sample classical job shop scheduling problem

Operation Index 1 2 3
J1 m2, 1 m1, 2 m3, 3
J2 m1, 2 m2, 1 m3, 2
J3 m1, 2 m3, 4 m2, 1

the higher priority operations first. The proposed method is described in details in

the Sub-subsection 3.2.4.1.

3.2.3 Problem Definitions

Classical job shop scheduling, as Baker [11] defined it, is a process of scheduling a set

of jobs on a set of machines. The number of machines and jobs are denoted by M and

N , respectively. Machines and jobs are denoted by mk and Ji, respectively, where k is

the machine index, between 1 to M , and i is the job index which is from 1 to N . Each

job includes a sequence of operations by Oij which means the jth operation of the

ith job. Each operation is applicable on only one machine for which the processing

time is known. Machine set up time and part movement time between machines

are considered negligible. Table 3.1 presents a sample classical job shop scheduling

problem which contains 3 jobs to be processed on 3 machines. This table shows the

applicable machine with the corresponding processing time for each operation. The

third operation of the second job O23, for example, is applicable on the third machine,

and it needs 2 time units to be processed.

There are some rules for classical job shop scheduling which are as follows: only

one operation of each job is applicable on a specific machine. Only one operation at

a time can be processed on a machine, which can not be interrupted. The operations

of a job are independent to the other jobs operations. All jobs and machines are

available at the beginning, and there is no due date.
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3.2.4 Proposed Memetic Algorithm

In this article, a new Memetic Algorithm has been proposed which is based on a new

chromosome representation called Machine Operation Lists (MOL). The proposed

MA method is an appropriate Genetic Algorithm considering the new representation,

combined with a Local Search which is also based on the proposed representation.

The Local Search heuristic reassigns all the operations of a job to find the best

schedule with the smallest makespan. The reassigning procedure for each operation

is independent of the others, which makes the whole reassigning step faster.

3.2.4.1 Chromosome Representation

The proposed MOL representation is a modification of the preference list-based rep-

resentation. It consists of the operation lists for each machine. The operation list

determines the sequence of operations for the corresponding machine. Since all the

jobs have only one operation for each machine, the operations are denoted by their

job ID in each list. A possible chromosome for the sample problem presented in Table

3.1 could be

{(2, 3, 1) , (1, 2, 3) , (2, 3, 1)}

which determines the following operation lists for each machine.

m1 : O21 ≺ O31 ≺ O12

m2 : O11 ≺ O22 ≺ O33

m3 : O23 ≺ O32 ≺ O13

The decoding procedure for this representation starts with the first operations in

each list. The first operations which are ready to be scheduled are removed from the
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Figure 3.1: A sample constructed schedule

lists and assigned to the first appropriate interval on the applicable machine. This

routine continues until all operations are scheduled. Figure 3.1 shows the constructed

schedule for the sample chromosome.

As it can be seen in this representation, there are some chromosomes whose cor-

responding schedules are not feasible. In those cases, a deadlock will occur in the

decoding procedure. To remove the infeasible chromosomes, another concept is de-

fined. The concept is that the operation lists can be considered as the exact operation

sequence or a preference list. The exact operation sequence is a fixed sequence of op-

eration for which the priority of operations should be saved, while for preference list,

the sequence of operations are flexible due to the deadlocks. For example, to generate

a random chromosome, first, for each machine, a random operation list is generated.

Each list includes all the operations which should be processed on the corresponding

machine in random order. Then, to decode the representation, all the operation lists

are considered as preference list, such that in deadlock situations the next operation

in the list will be selected to be scheduled. Since, in the decoding step, the operation

lists are modified to construct a feasible schedule, afterwards they will be considered

as exact operation sequence.

After applying the genetic operators, both crossover and mutation, the opera-

tion lists which are remained the same as before are considered as exact operation

sequence, while the changed lists will be set as preference lists. In this way, if any

deadlock occurs, only the preference lists will be modified. Since the unchanged lists

construct a feasible schedule, they are consistent and do not need to be modified. In

other words, there is at least one feasible schedule which has the same operation lists
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as the unchanged lists. For instance, consider the mutation operator changes from:

{(2, 3, 1) , (1, 2, 3) , (2, 3, 1)}

to:

{(2, 3, 1) , (1, 3, 2) , (2, 3, 1)}

where the positions of jobs on the second machine have been swaped. The operation

lists would be

m1 : O21 ≺ O31 ≺ O12

m2 : O11 ≺ O33 ≺ O22

m3 : O23 ≺ O32 ≺ O13

where operations O33 and O23 should be scheduled before operations O32 and O22,

which is a deadlock. To remove the deadlock, the changed list for the second machine

is considered as a preference list, so it has the flexibility to schedule the operations

with lower priority first. So the modified list is modified again and returns to its

previous state, which results to the same feasible schedule. Using this methodology,

all the possible chromosomes construct feasible solutions.

It should be mentioned here that to make all the schedules active each operation

will be assigned to the first appropriate interval on the corresponding machine for

both exact operation sequences and preference lists. This methodology ia able to

modify the exact operation sequence. Consider another mutation operation on the

first sample:

{(2, 3, 1) , (1, 2, 3) , (2, 3, 1)}
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to produce chromosome:

{(1, 2, 3) , (1, 2, 3) , (2, 3, 1)}

where the first job gains the first position of the first machine operation list. The

operation lists for this chromosome would be:

m1 : O12 ≺ O21 ≺ O31

m2 : O11 ≺ O22 ≺ O33

m3 : O23 ≺ O32 ≺ O13

which is a feasible schedule. After assigning all the operations except the last one

of the third machine, O13, the partial schedule would be as what is represented in

Figure 3.2a. Considering the exactness of operation sequence, operation O13 should

be scheduled after operation O32, which is no longer an active schedule. Figure 3.2b

shows the complete schedule constructed using this way which is not active. If the

decoding procedure considers the first appropriate interval for operation scheduling

for both exact operation sequence and preference lists, operation O13 also can be

scheduled before operation O23. The result of this procedure is presented in Figure

3.2c. Therefore, since in the proposed representation the first appropriate interval is

considered for operation scheduling for exact and preference lists, the final schedule

is active.

3.2.4.2 Genetic Operators

Based on the proposed representation, appropriate genetic operators are used. The

crossover operator is applied on different operation lists independently. For each

machine operation list, the lists of the children could be the same as their parents’
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(a) Partial schedule of all operations except O13

(b) Complete non-active schedule

(c) Complete active schedule

Figure 3.2: Constructing active schedules for chromosome {(1, 2, 3) , (1, 2, 3) , (2, 3, 1)}

list, or a crossover of them by the equal chance of 50%. In other words, for each

machine, a random number between 0 and 1 is generated. If a generated random

number is less than 0.5, the parents’ operation lists will be assigned to the children

as exact operation sequence. Otherwise, the crossover of the parents lists will be

assigned to the children as a preference list.

For the crossover operator on a machine operation list, Linear Order Crossover

(LOX) is used. LOX is based on Order Crossover (OX) proposed by Goldberg et al.

[68]. The main characteristic of OX is that it tries to reserve the relative sequence.

Since OX is proposed for the Travelling Salesman Problem (TSP), it is considered

for circular chromosomes. LOX proposed by Falkenauer and Bouffoix [53] is a linear

version of OX.

The mutation operator selects a machine operation list randomly, then in that

list, it selects an operation randomly again. The selected operation is removed and

reassigned to the first position of that list. The rates of crossover and mutation
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are managed using two parameters; CrossoverProbability and MutationProbability,

respectively.

3.2.4.3 Local Search

The proposed Local Search is also based on Machine Operation Lists. It selects the

bottleneck job or a random one, and removes all the operations from all operation

lists. Then, it reassigns removed operations one by one based on their operation ID

starting from the first operation of the selected job. To reassign each operation, all

possible positions for that operation are considered in order to select the best one.

However, after assigning the first operations, they will not be rescheduled again.

Figure 3.3 shows all the steps of the proposed Local Search method. A sample

schedule is shown in Figure 3.3a. As it can be seen, the bottleneck operation is O83

which belongs to job J8. All the operations of the bottleneck job are removed from

the schedule which is presented in Figure 3.3b. Then, the removed operations will

be reassigned one by one to complete the schedule. As shown in Figure 3.3e, the

modified schedule has less makespan than the initial one.

The proposed LS is very fast, since all the operations are assigning independently.

However, the LS is applied only on the best portion of chromosomes for each gener-

ation, which is denoted by the TopBest parameter.

3.2.4.4 MA Framework

Figure 3.4 shows the framework of the proposed MA which is as follows. First, it

generates the initial population P0 of random individuals. The size of the population

is denoted by PopSize parameter. IterationNo parameter determines the number of

iterations for the proposed MA. Since the fitness function for job shop scheduling is

their makespan, all the chromosomes are sorted based on their makespan; the smaller,

the better. To construct a new generation Pt+1, crossover and mutation operators are

43



(a) A sample schedule

(b) Schedule after removing all the operations of bottleneck job

(c) First operation is reassigned

(d) Second Operation is reassigned

(e) New schedule after local search

Figure 3.3: Steps of proposed Local Search heuristic
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PROCEDURE: MA Framework
INPUT: Test Problems and Algorithm Parameters
OUTPUT: Optimal or Near-Optimal Schedules

BEGIN
Generate the initial population P0

FOR (IterationNo)
Evaluate current population Pt and sort it
Apply crossover and mutation to generate Pt+1

Apply local search method on the BestTop
END
Output the best individual

END

Figure 3.4: MA Framework

Table 3.2: Parameters of proposed algorithm

Proposed Method Parameters Value

PopSize 1000
IterationNo 200
TopBest 30%
CrossoverProbability 90%
MutationProbability 5%

applied on the current population Pt. Finally, the proposed Local Search method will

be applied on the best portion of the new generation to find better chromosomes.

To show the efficiency of the proposed chromosome representation, the proposed

Genetic Algorithm itself is applied on some benchmark problems without using the

LS heuristic.

3.2.5 Results

The proposed algorithm is implemented and tested using the JAV A programming

language version 1.6.0.18 on a system with Intel(R) Core(TM)2Quad 2.50GHz CPU

and 8.00GB RAM . Table 3.2 presents all the parameters of the proposed algorithm

and their corresponding values.
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Table 3.3: Comparing best makespan found by different chromosome representations
[159] and proposed MOL

Problem Size
Operation Job Preference list Priority rule Proposed

based based based based MOL
la16 10× 10 1523 997 1001 1225 973
la36 15× 15 2168 1562 1486 2023 1315
la37 15× 15 2431 1632 1581 2086 1467
la38 15× 15 2153 1494 1374 1953 1258
la39 15× 15 2310 1631 1353 1879 1262
la40 15× 15 2146 1614 1374 1844 1248

The best benchmark for classical job shop scheduling is presented by Lawrence

[113]. His benchmark consists of 40 different test problems of different size ranging

from 10 jobs and 5 machines to 30 jobs and 10 machines. The expriments show the

results of 10 independent runs on each test problem.

Table 3.4 shows the results of both proposed GA without local search and proposed

MA on Lawrence [113] benchmark. The results show that the final result of the

proposed MA is better than the proposed GA results for all the 40 test problems.

Moreover, comparing the standard deviation of the different runs shows that the Local

Search heuristic not only improves the results but also helps the GA to converge

faster. The proposed GA finds the best solution for 25 test problems out of 40, and

the proposed MA which outperforms the proposed GA without LS finds the best

schedule for 27 test problems.

To show the efficiency of the proposed chromosome representation, the results

of the proposed GA without using Local Search method are compared with the re-

sults of four different representations presented by Ponnambalam et al. [159]. The

best makespan which are bolded in Table 3.3 all belongs to the proposed Machine

Operation List representation.

To show the efficiency of the proposed MA, the results are compared with those of

another memetic algorithm recently proposed by Hasan et al. [87]. The best known

solution and Hasan et al. [87] results are presented in Table 3.4 as well. As these
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tables show, the proposed GA outperforms the GA proposed by Hasan et al. [87] for

all 40 test problems. Hasan et al. [87] GA find the best schedule for only 15 test

problems, while the proposed GA find the best schedule for 25 problems out of 40.

While both proposed MA and Hasan et al. [87] MA found best solution for 27

problems, the proposed method outperforms another one, regarding the standard de-

viation and near optimal solutions for other test problems. Moreover, they used bigger

values for their PopSize and IterationNo parameters, 2500 and 1000, respectively,

instead of 1000 and 200 which is used in the proposed Memetic Algorithm.

Table 3.4: Results on Lawrence [113] test problems (la01-la40)

Problem Algorithm Best Average SD Median Worst

la01
Hasan et al. [87] GA 667 676.07 6.31 678 688

Hasan et al. [87] MA 666 667.60 2.90 667 678

10× 5 Proposed GA 666 666.00 0.00 666 666

666 Proposed MA 666 666.00 0.00 666 666

la02
Hasan et al. [87] GA 655 658.43 5.06 655 666

Hasan et al. [87] MA 655 656.27 3.39 655 666

10× 5 Proposed GA 655 660.00 5.62 656 667

655 Proposed MA 655 655.00 0.00 655 655

la03
Hasan et al. [87] GA 617 624.70 9.41 619.5 642

Hasan et al. [87] MA 597 613.93 7.63 617 619

10× 5 Proposed GA 599 608.00 5.60 607 614

597 Proposed MA 597 597.00 0.00 597 597

la04
Hasan et al. [87] GA 606 607.27 2.30 606 613

Hasan et al. [87] MA 590 593.33 2.44 595 595

10× 5 Proposed GA 590 594.60 2.72 595 598

590 Proposed MA 590 590.60 1.26 590 593

Table 3.4 – Continued on next page
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Table 3.4: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la05
Hasan et al. [87] GA 593 593.00 0.00 593 593

Hasan et al. [87] MA 593 593.00 0.00 593 593

10× 5 Proposed GA 593 593.00 0.00 593 593

593 Proposed MA 593 593.00 0.00 593 593

la06
Hasan et al. [87] GA 926 926.00 0.00 926 926

Hasan et al. [87] MA 926 926.00 0.00 926 926

15× 5 Proposed GA 926 926.00 0.00 926 926

926 Proposed MA 926 926.00 0.00 926 926

la07
Hasan et al. [87] GA 890 896.50 4.27 897 906

Hasan et al. [87] MA 890 890.00 0.00 890 890

15× 5 Proposed GA 890 890.00 0.00 890 890

890 Proposed MA 890 890.00 0.00 890 890

la08
Hasan et al. [87] GA 863 863.00 0.00 863 863

Hasan et al. [87] MA 863 863.00 0.00 863 863

15× 5 Proposed GA 863 863.00 0.00 863 863

863 Proposed MA 863 863.00 0.00 863 863

la09
Hasan et al. [87] GA 951 951.00 0.00 951 951

Hasan et al. [87] MA 951 951.00 0.00 951 951

15× 5 Proposed GA 951 951.00 0.00 951 951

951 Proposed MA 951 951.00 0.00 951 951

la10
Hasan et al. [87] GA 958 958.00 0.00 958 958

Hasan et al. [87] MA 958 958.00 0.00 958 958

15× 5 Proposed GA 958 958.00 0.00 958 958

958 Proposed MA 958 958.00 0.00 958 958

Table 3.4 – Continued on next page
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Table 3.4: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la11
Hasan et al. [87] GA 1222 1222.00 0.00 1222 1222

Hasan et al. [87] MA 1222 1222.00 0.00 1222 1222

20× 5 Proposed GA 1222 1222.00 0.00 1222 1222

1222 Proposed MA 1222 1222.00 0.00 1222 1222

la12
Hasan et al. [87] GA 1039 1039.00 0.00 1039 1039

Hasan et al. [87] MA 1039 1039.00 0.00 1039 1039

20× 5 Proposed GA 1039 1039.00 0.00 1039 1039

1039 Proposed MA 1039 1039.00 0.00 1039 1039

la13
Hasan et al. [87] GA 1150 1150.00 0.00 1150 1150

Hasan et al. [87] MA 1150 1150.00 0.00 1150 1150

20× 5 Proposed GA 1150 1150.00 0.00 1150 1150

1150 Proposed MA 1150 1150.00 0.00 1150 1150

la14
Hasan et al. [87] GA 1292 1292.00 0.00 1292 1292

Hasan et al. [87] MA 1292 1292.00 0.00 1292 1292

20× 5 Proposed GA 1292 1292.00 0.00 1292 1292

1292 Proposed MA 1292 1292.00 0.00 1292 1292

la15
Hasan et al. [87] GA 1207 1241.40 17.64 1243 1265

Hasan et al. [87] MA 1207 1207.13 0.52 1207 1209

20× 5 Proposed GA 1207 1207.00 0.00 1207 1207

1207 Proposed MA 1207 1207.00 0.00 1207 1207

la16
Hasan et al. [87] GA 994 1002.83 10.05 994 1028

Hasan et al. [87] MA 945 968.27 15.46 979 982

10× 10 Proposed GA 973 980.50 2.92 982 982

945 Proposed MA 945 947.40 4.58 945 956

Table 3.4 – Continued on next page
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Table 3.4: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la17
Hasan et al. [87] GA 794 822.50 10.18 820 839

Hasan et al. [87] MA 784 788.93 4.18 792 793

10× 10 Proposed GA 784 789.70 5.64 789.5 797

784 Proposed MA 784 784.00 0.00 784 784

la18
Hasan et al. [87] GA 861 895.33 14.56 901 912

Hasan et al. [87] MA 848 859.27 4.57 861 861

10× 10 Proposed GA 848 858.60 8.30 861 875

848 Proposed MA 848 848.00 0.00 848 848

la19
Hasan et al. [87] GA 890 915.73 9.04 914 929

Hasan et al. [87] MA 842 855.47 7.76 855 869

10× 10 Proposed GA 842 852.80 9.30 860 860

842 Proposed MA 842 844.20 2.90 842 848

la20
Hasan et al. [87] GA 967 979.67 12.62 977 1016

Hasan et al. [87] MA 907 910.00 2.54 912 912

10× 10 Proposed GA 914 918.80 2.53 920 920

902 Proposed MA 907 909.90 2.02 911 912

la21
Hasan et al. [87] GA 1098 1145.07 20.07 1145 1185

Hasan et al. [87] MA 1079 1097.60 12.48 1096 1124

15× 10 Proposed GA 1087 1111.90 15.10 1112.5 1137

1046 Proposed MA 1057 1062.20 4.83 1061.5 1074

la22
Hasan et al. [87] GA 986 1027.50 17.59 1031 1055

Hasan et al. [87] MA 960 981.00 13.58 979 1000

15× 10 Proposed GA 946 957.30 8.94 958 968

927 Proposed MA 935 937.80 3.39 936 943

Table 3.4 – Continued on next page
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Table 3.4: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la23
Hasan et al. [87] GA 1043 1077.13 17.60 1080 1108

Hasan et al. [87] MA 1032 1032.00 0.00 1032 1032

15× 10 Proposed GA 1032 1032.40 1.26 1032 1036

1032 Proposed MA 1032 1032.00 0.00 1032 1032

la24
Hasan et al. [87] GA 984 1023.70 24.94 1020.5 1080

Hasan et al. [87] MA 959 996.40 16.21 1003 1011

15× 10 Proposed GA 971 979.30 6.70 982.5 986

935 Proposed MA 944 954.90 7.26 955 967

la25
Hasan et al. [87] GA 1077 1116.97 19.06 1114 1154

Hasan et al. [87] MA 991 1016.67 19.64 1013 1076

15× 10 Proposed GA 1020 1029.00 9.39 1024.5 1049

977 Proposed MA 983 987.30 3.33 986 991

la26
Hasan et al. [87] GA 1295 1324.13 18.52 1322.5 1369

Hasan et al. [87] MA 1218 1234.27 16.12 1228 1266

20× 10 Proposed GA 1218 1238.50 14.91 1240 1267

1218 Proposed MA 1218 1218.60 1.58 1218 1223

la27
Hasan et al. [87] GA 1328 1356.87 17.70 1355 1389

Hasan et al. [87] MA 1286 1306.33 13.17 1301 1333

20× 10 Proposed GA 1299 1302.00 4.50 1299.5 1312

1235 Proposed MA 1269 1278.30 12.14 1272.5 1299

la28
Hasan et al. [87] GA 1328 1356.87 17.70 1355 1389

Hasan et al. [87] MA 1286 1306.33 13.17 1301 1333

20× 10 Proposed GA 1251 1290.10 18.66 1300 1306

1216 Proposed MA 1223 1235.20 8.93 1240 1244

Table 3.4 – Continued on next page
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Table 3.4: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la29
Hasan et al. [87] GA 1265 1294.07 20.01 1291 1334

Hasan et al. [87] MA 1221 1240.47 6.98 1240.5 1249

20× 10 Proposed GA 1259 1270.20 9.47 1274 1289

1157 Proposed MA 1191 1214.80 12.54 1216.5 1233

la30
Hasan et al. [87] GA 1377 1465.43 35.82 1476 1555

Hasan et al. [87] MA 1355 1362.33 8.23 1359.5 1380

20× 10 Proposed GA 1355 1358.00 5.10 1355 1369

1355 Proposed MA 1355 1355.00 0.00 1355 1355

la31
Hasan et al. [87] GA 1784 1784.00 0.00 1784 1784

Hasan et al. [87] MA 1784 1784.00 0.00 1784 1784

30× 10 Proposed GA 1784 1784.00 0.00 1784 1784

1784 Proposed MA 1784 1784.00 0.00 1784 1784

la32
Hasan et al. [87] GA 1850 1869.60 19.79 1872 1916

Hasan et al. [87] MA 1850 1850.00 0.00 1850 1850

30× 10 Proposed GA 1850 1850.00 0.00 1850 1850

1850 Proposed MA 1850 1850.00 0.00 1850 1850

la33
Hasan et al. [87] GA 1719 1729.00 11.22 1725 1765

Hasan et al. [87] MA 1719 1719.00 0.00 1719 1719

30× 10 Proposed GA 1719 1719.00 0.00 1719 1719

1719 Proposed MA 1719 1719.00 0.00 1719 1719

la34
Hasan et al. [87] GA 1748 1770.90 13.31 1770.5 1814

Hasan et al. [87] MA 1721 1721.00 0.00 1721 1721

30× 10 Proposed GA 1721 1721.20 0.63 1721 1723

1721 Proposed MA 1721 1721.00 0.00 1721 1721

Table 3.4 – Continued on next page
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Table 3.4: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la35
Hasan et al. [87] GA 1898 1947.20 30.94 1942.5 2018

Hasan et al. [87] MA 1888 1888.00 0.00 1888 1888

30× 10 Proposed GA 1888 1888.00 0.00 1888 1888

1888 Proposed MA 1888 1888.00 0.00 1888 1888

la36
Hasan et al. [87] GA 1388 1432.60 29.14 1432 1497

Hasan et al. [87] MA 1307 1328.67 11.59 1327 1346

15× 15 Proposed GA 1315 1337.50 15.86 1334.5 1357

1268 Proposed MA 1281 1293.20 7.38 1297 1301

la37
Hasan et al. [87] GA 1561 1606.23 25.27 1605.5 1656

Hasan et al. [87] MA 1442 1473.60 11.51 1479 1487

15× 15 Proposed GA 1467 1480.10 10.32 1474.5 1496

1397 Proposed MA 1429 1444.60 8.49 1447.5 1452

la38
Hasan et al. [87] GA 1367 1412.53 17.07 1415 1439

Hasan et al. [87] MA 1266 1309.13 14.52 1314 1329

15× 15 Proposed GA 1258 1271.80 8.56 1271.5 1288

1196 Proposed MA 1208 1222.90 9.96 1222.5 1242

la39
Hasan et al. [87] GA 1338 1368.47 18.29 1367 1413

Hasan et al. [87] MA 1252 1282.60 16.62 1277 1301

15× 15 Proposed GA 1262 1281.90 19.33 1278.5 1315

1233 Proposed MA 1248 1250.40 0.97 1251 1251

la40
Hasan et al. [87] GA 1357 1366.30 13.57 1360 1407

Hasan et al. [87] MA 1252 1279.60 17.84 1289 1303

15× 15 Proposed GA 1248 1265.40 10.09 1267.5 1278

1222 Proposed MA 1234 1246.90 6.84 1246 1256
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3.2.6 Conclusions

Job shop scheduling is an open problem which is well-known in the area of optimiza-

tion problems, especially in manufacturing systems. The proposed Memetic Algo-

rithm to solve classical job shop scheduling is based on a new chromosome represen-

tation. The proposed chromosome representation which is called Machine Operation

Lists outperforms the most well-known existing representations.

Moreover, the results of proposed MA show that the Local Search method is also

efficient when compared with another memetic algorithm recently presented by Hasan

et al. [87]. The proposed GA without LS and the proposed MA outperform their GA

and MA, respectively.

In this article, the proposed method is designed for only classical job shop schedul-

ing, while the idea is applicable for various types of job scheduling problems such as

flexible job shop scheduling and multi-objective one. However, the proposed MA al-

gorithm and especially the proposed chromosome representation can be generalized

to consider almost all job scheduling problems.
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3.3 A Memetic Algorithm for Job Shop Schedul-

ing Using A Critical-Path-Based Local Search

Heuristic

Abstract. In this article, a new memetic algorithm has been proposed to

solve Job Shop Scheduling Problems. The proposed method is a genetic-

algorithm-based approach combined with a local search heuristic. The

proposed local search heuristic is based on critical operations. It removes

the critical operations and reassigns them to a new position to improve

the fitness value of the schedule. Moreover, in this article, a new fitness

function is introduced for job shop scheduling problems. The new fitness

function called priority-based fitness function is defined in three priority

levels to improve the selection procedure. To show the generality of our

proposed method, we apply it to three different types of job scheduling

problems including classical, flexible and multi-objective flexible job shop

scheduling problems. The experiment results show the efficiency of the

proposed fitness function. In addition, the results shows that incorporat-

ing local search not only offers better solutions but also improves the con-

vergence rate. Compared to the state-of-the-art algorithms, the proposed

method outperforms the existing methods in classical job shop schedul-

ing problems and offers competitive solutions in other types of scheduling

problems.

3.3.1 Introduction

Job shop scheduling is the process of scheduling various jobs between different ma-

chines in a manufacturing system. In the last decades, a lot of work has been done to
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control a job shop system. There are different types of job shop scheduling such as

classical and flexible. Each job shop includes different jobs such that each job has a

fixed sequence of operations to be processed in order. The number of operations for

different jobs could also be different. Each operation has to be processed only on one

machine, while different operations of a job could be processed on different machines.

In the classical Job Shop Scheduling Problem (JSSP), each operation can be pro-

cessed only on a specific machine. It means that there is no machine selection flexi-

bility for operations in JSSP. So, JSSP is the process of determining the sequence of

operations of different jobs which have to be processed on the same machine. In other

words, JSSP determines an ordered list of operations for each machine. Unlike JSSP,

in Flexible Job Shop Scheduling (FJSS), there is the flexibility for each operation to

be processed on different machines. One of the first research work which considered

flexibility in job shop scheduling was published by Bruker and Schlie [25]. If all the

operations have the flexibility of being processed on all available machines, then the

problem is called Total Flexible Job Shop Scheduling (T-FJSS). Otherwise, it is called

Partial Flexible Job Shop Scheduling (P-FJSS). Considering the computational cost

and search space, Zhang et al. [221] mentioned that the P-FJSS is more complex than

T-FJSS. Few researchers also considered the uncertainty for FJSS such as stochastic

processing time, and called problem as Stochastic Flexible Job Shop (SFJS). Mah-

davi et al. [126] proposed a simulation-based decision support system to control the

stochastic job shop system.

However, it is clear that FJSS is more complex than JSSP; in JSSP there is only the

operation sequencing problem for each machine, while in FJSS, it is combined with

the machine selection problem as well. Some researchers considered both machine

selection and operation sequencing as one problem, such as Hurink et al. [97], while

others solved them as separate problems such as Brandimarte [22].
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Open shop scheduling is something different than job shop scheduling. The main

difference is that in open shop scheduling operations of a job are sequence indepen-

dent, while in job shop scheduling the sequence of operations for each job is fixed.

Naderi et al. [141] proposed a memetic algorithm for open shop scheduling.

The main goal of job shop scheduling problems is to utilize the manufacturing sys-

tem. Each manufacturing system has its own objective. In most cases, the objective

of the scheduling is to minimize the maximum completion time, also called makespan.

Moreover, there are some systems looking for various parameters as their objectives,

which are called Multi-Objective Flexible Job Shop Scheduling (MO-FJSS). For in-

stance, the objective of a system can be both minimizing maximum machine workload

and maximizing machine utilization. To deal with such systems, some researchers

such as Mahdavi et al. [126] used generalized response surface methodology, in which

one response is the goal and others are considered as constraint variables.

In this article, a memetic algorithm is proposed to solve scheduling problems. The

proposed algorithm is applied to different types of job shop scheduling problems in-

cluding JSSP, FJSS and MO-FJSS problems. It should be mentioned that stochastic

parameters are beyond the scope of this work and not considered to evaluating our

method in this article, but these can be considered in future work. The outline of this

paper starts with the related work in Subsection 2, followed by a more detailed treat-

ment of the problem definition in Subsection 3. Subsection 4 describes the proposed

memetic algorithm in details. The evaluation results of our proposed algorithm are

discussed in Subsection 5. Finally, conclusions are presented in Subsection 6.

3.3.2 Related Works

Job shop scheduling is well known in different fields, and gained popularity mainly

because of its application in various manufacturing systems. It is proved by Garey

et al. [65] that job shop scheduling for systems with more than two machines are
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NP-complete problems which means there is no exact algorithm able to find the best

schedule for all types of problems.

There are various types of algorithms proposed to solve job shop scheduling prob-

lems, including heuristics, and meta-heuristics. Bottleneck shifting procedure used by

Huang et al. [96] and tree search method presented by Asano et al. [9] are instances of

heuristic approaches. Meta-heuristic approaches include Simulated Annealing (SA),

Tabu Search (TS), Ant Colony Optimization (ACO), Genetic Algorithm (GA), hy-

brid GA, and so on. Kolonko [108] was one of the first researchers to apply Simulated

Annealing (SA) on job shop scheduling. A combination of Tabu Search and Bottle-

neck shifting is used by Pezzella et al. [157]. Wang et al. [202] proposed an ACO

approach for JSSP. A combination of ACO and TS is also proposed by Huang et al.

[95].

One of the most widely used algorithms in job shop scheduling is GA either as

a single procedure or combined with a Local Search (LS) heuristic. The application

of GA to job shop scheduling was first introduced by Lawrence [112]. Four more

different GAs were also presented by Chen et al. [30], Mattfeld et al. [130], Pezzella

et al. [158] and Zhang et al. [221] as a single efficient procedure to solve the job shop

scheduling problem.

Most of the recent work in job shop scheduling hybridized GAs with LS algo-

rithms to improve the final results as well as to help the convergence rate. Moscato

[139] defined Memetic Algorithm (MA) as a population-based global search method

combined with a local search heuristic to be used to solve an optimization problem.

Ong et al. [149] considered population-based search as exploration to find the best

region in the search space, and local search as exploitation to find the best individual

in a neighborhood. Based on this definition, all the hybridizations of GAs or other

Evolutionary Algorithms (EAs) with LS heuristics can be considered as MAs. Park
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et al. [154], Chiang et al. [33], Gao et al. [62, 63], and Caumond et al. [28] proposed

different MAs with different heuristics.

The MA proposed by Yang et al. [213] is a combination of Clonal Selection and SA.

A combination of GA and Tabu Search was also proposed by Ombuki [147]. Kacem

et al. [103] combined an EA with a localization approach. They also proposed

a combination of EA with fuzzy logic [104]. Hassan et al. [84, 85, 86] proposed

different GAs combined with different priority rules. Recently, Hasan et al. [87]

proposed three different MAs which are combinations of GAs with three different

priority rules. Among these three, they claimed that the most effective priority rule

is joint of gap reduction and restricted swapping. Gap reduction is the rule of moving

operations to the appropriate existing gaps in which the corresponding machine is

idle. Restricted swapping rule tries to swap the adjacent operations on a machine to

decrease the makespan.

Moreover, there are more different algorithms applied in job shop scheduling such

as Neural Network algorithm used by Fonseca et al. [58], and Artificial Immune

Algorithm (AIA) proposed by Bagheri et al. [10] and Mobini et al. [137]. A simulation

modeling algorithm is proposed by Xing et al. [208]. Mahdavi et al. [126] combined

the simulation modeling with a Decision Support System (DSS) to improve the final

results.

Recently, we proposed a MA to deal with classical JSSPs, in which we introduced

a new chromosome representation called Machine Operation List (MOL) [164]. Since

MOL is based on the operations on their applicable machine, it is appropriate only

for classical JSSP. Therefore, it has not been used in this article. The local search

of our previous work deals with critical jobs and their operations, while here a new

concept is introduced which is selected critical operations.
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3.3.3 Problem Definitions

In all types of job shop scheduling problems, there are a set of machines and a set

of jobs to be processed on those machines. Machines are denoted by mk, where k

refers to the index of each machine which is between 1 to M , the number of machines.

Jobs are denoted by Ji , where i refers to the job index ranging from 1 to N , the

total jobs number. Each job consists of a number of operations, denoted by NOi.

The operations are denoted by Oij, meaning the jth operation of the ith job. The

processing time of each operation is known and denoted by PT (Oij,mk), meaning

the processing time of operation Oij on kth machine. It should be mentioned that

the moving time for jobs between machines and the set up time for each machine are

assumed to be negligible. Table 3.5 shows the 4th benchmark of Xing et al. paper

[208] which is a sample data for the T-FJSS. In this case, there are 10 jobs with the

same number of operations as 3 operations per job to be processed on 10 different

machines. The reason for representing this sample is that our proposed method

outperforms Xing et al. [208] approach on this test problem. The improved result

are shown in Figure 3.12.

The rules of the job shop scheduling are as follows: The sequence of operation

for each job is fixed. For example, the third operation of a job cannot be processed

until the second operation has been done. However, the operations of different jobs

are independent. At any given time, only one operation of a job can be processed on

one and only one machine. It is considered that all the jobs and all the machines are

available at the starting time.

It should be mentioned here that there are two types of operation sequences:

job-operation sequence and machine-operation sequence. Job-operation sequence is

the fixed sequence of operations for each job. So the job-preceding operation of an

operation is its preceding operation in job-operation sequence. Machine-operation

sequence is the sequence of operations which are processed on the same machine.

60



Table 3.5: 4th FJSS benchmark used by Xing et al. [208].

Jobs Operations
Machines

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

J1

O11 1 4 6 9 3 5 2 8 9 5
O12 4 1 1 3 4 8 10 4 11 4
O13 3 2 5 1 5 6 9 5 10 3

J2

O21 2 10 4 5 9 8 4 15 8 4
O22 4 8 7 1 9 6 1 10 7 1
O23 6 11 2 7 5 3 5 14 9 2

J3

O31 8 5 8 9 4 3 5 3 8 1
O32 9 3 6 1 2 6 4 1 7 2
O33 7 1 8 5 4 9 1 2 3 4

J4

O41 5 10 6 4 9 5 1 7 1 6
O42 4 2 3 8 7 4 6 9 8 4
O43 7 3 12 1 6 5 8 3 5 2

J5

O51 7 10 4 5 6 3 5 15 2 6
O52 5 6 3 9 8 2 8 6 1 7
O53 6 1 4 1 10 4 3 11 13 9

J6

O61 8 9 10 8 4 2 7 8 3 10
O62 7 3 12 5 4 3 6 9 2 15
O63 4 7 3 6 3 4 1 5 1 11

J7

O71 1 7 8 3 4 9 4 13 10 7
O72 3 8 1 2 3 6 11 2 13 3
O73 5 4 2 1 2 1 8 14 5 7

J8

O81 5 7 11 3 2 9 8 5 12 8
O82 8 3 10 7 5 13 4 6 8 4
O83 6 2 13 5 4 3 5 7 9 5

J9

O91 3 9 1 3 8 1 6 7 5 4
O92 4 6 2 5 7 3 1 9 6 7
O93 8 5 4 8 6 1 2 3 10 12

J10

O101 4 3 1 6 7 1 2 6 20 6
O102 3 1 8 1 9 4 1 4 17 15
O103 9 2 4 2 3 5 2 4 10 23

61



The machine-preceding operation of an operation is its preceding operation which is

processed on the same machine exactly before it.

3.3.4 Proposed Memetic Algorithm

The proposed MA is a combination of a GA and a LS heuristic, which is the main

contribution of this article. The proposed GA is a simple GA with a sophisticated

fitness function. In each generation after fitness evaluation the LS is applied to some

selected individuals. The heuristic used in LS is moving critical operations to improve

the fitness value. Moving critical operations introduced in the literature is restricted

such that it only tries to find an idle time interval, while in our proposed method,

rescheduling is used to find the best positions. Furthermore, the proposed method is

a generic method applicable for various types of job shop scheduling such as JSSP,

FJSS and MO-FJSS.

3.3.4.1 Chromosome Representation

In the literature, there are various chromosome representations proposed by different

researchers. In this article, MSOS representation proposed by Zhang et al. [221] has

been used, because it is efficient for coding and decoding procedures. This represen-

tation always generates feasible schedules so the repair mechanisms are not required.

MSOS representation includes two parts: Machine Selection (MS) and Operation

Sequence (OS).

Machine Selection determines the selected machine for each operation among its

applicable machines. Hence it is a string of machines indices with the length of total

number of operations. For example, if an operation has the flexibility to be processed

on machine 2 and machine 4, the 1 for its corresponding MS entry means the 2nd

machine, and 2 means the 4th one. Therefore, in JSSP where there is no flexibility

for machine selection, the MS is always a string of 1s.
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Operation Sequence is also a string of numbers determining the sequence of opera-

tions. In this string the operations are denoted by their job indices and the occurrence

of job indices determines the index of each operation for each job. Consider the Op-

eration Sequence

OS = [3, 2, 3, 1, 2, 2, 1]

which represents the following sequence of operations.

O31 ≺ O21 ≺ O32 ≺ O11 ≺ O22 ≺ O23 ≺ O12

Since the operations are denoted by their job indices and the operation indices

are determined automatically, all the variations of OS is thus feasible and there is no

need for any repair mechanism.

In chromosome decoding, we aim to generate only active schedules to limit the

search space. Active schedules are ones where there is no operation to be processed

earlier without delaying another operation. By assigning the operations to the first

appropriate intervals, the resulting schedule would be active. By this definition, an

optimal schedule is either an active schedule or has an equivalent active schedule, so

it can be reached by exploring only the active schedules. Active schedule concept is

introduced by Croce et al. [43] and used by Becerra and Coello Coello [14] and Hasan

et al. [87] as permissible left shift and gap reduction rule, respectively.

3.3.4.2 Genetic Operators

The characteristics of each GA are the initial generation, the crossover operation

and the mutation method. The initial generation for MS is exactly the same as what

Zhang et al. [221] used. It includes all the global selection, local selection and random

selection with the same percentage as their suggestion. The OS part of the initial

chromosomes are produced by Long Job First Selection and Random Selection by

63



the same percentage of 50%. In Long Job First Selection, for each OS entry, the job

which has more remaining time to be done will be selected. The remaining time for

each job is the sum of its not processed operations’ working time. In JSSP where

there is no MS, the OS of the first generation is initialized randomly.

In MSOS representation each part has its own genetic operators. For the MS part

we use Two-Point Crossover used by Watanabe et al. [206] and Uniform Crossover

presented by Gao et al. [63] by the same chance of 50%. Precedence preserving Order-

based Crossover (POX) proposed by Lee et al. [114] is also used for OS part. The

parents selection is as follows: one parent is randomly selected among the top best

individuals, a proportion of the whole population denoted by parameter TopBest.

The second parent is selected among the whole population randomly.

Mutation operation for MS entries is done by selecting another applicable machine

which has the minimum processing time among others. Swapping of two OS entries

is the mutation for the OS part. The rates of crossover and mutation are managed

using two parameters CrossoverProbability and MutationProbability, respectively.

3.3.4.3 Local Search

Our proposed Local Search heuristic is based on critical operations. Critical opera-

tions are ones for which any delay in their processing increases the makespan. The

main idea behind the heuristic is to rearrange the critical operations on their corre-

sponding machines. This heuristic first identifies critical operations, then it removes

one of the critical operations and reassigns it again to find a better position on its

corresponding machine. To save the time complexity of the proposed search method

it is applied to a portion of the population, denoted by TopBest parameter.

In order to identify the critical operations critical paths are defined. A sequence

of critical operations starting from time zero to the completion time is called a critical

path. A critical path can be found by tracing the schedule from its completion time
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Table 3.6: A sample classical JSSP

O1 O2 O3 O4

J1 m3, 2 m2, 3 m4, 5 m1, 3
J2 m4, 3 m1, 4 m2,4 m3, 4
J3 m2, 3 m4, 4 m3, 6 m1, 6
J4 m3, 6 m1, 2 m2, 5 m4, 3

to the beginning. To do so, the machines which are working until the last time of

the schedule are considered as critical machines. Since the makespan is equal to their

completion time any delay in processing their last operation will postpone the whole

schedule’s completion time. Thus the last operations of the critical machines are

critical operations. The next critical operation can be one of the following:

1. The machine-preceding operation: if there is no idle time between the comple-

tion of machine-preceding operation and the start of the critical operation.

2. The job-preceding operation: if the finish time of the job-preceding operation

equals to the start time of the critical operation.

3. Both case 1 and case 2.

This routine continues until time zero is reached.

To show critical operations finding procedure, a sample classical JSSP with four

jobs and four machines is considered. The applicable machine for each operation with

its corresponding processing time are presented in Table 3.6. For instance, the third

operation of the first job, namely O13, can be processed only on machine m4 in 5 time

units. Consider the following operation sequence

OS = [2, 3, 2, 1, 1, 4, 4, 3, 4, 2, 3, 1, 3, 1, 2, 4]

as a sample OS for the problem given above. Since the problem is a classical JSSP,

there is no MS part for chromosome representation. The sequence of operations for
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Figure 3.5: A sample schedule for sample JSSP to show critical paths

this sample OS is

O21 ≺ O31 ≺ O22 ≺ O11 ≺ O12 ≺ O41 ≺ O42 ≺ O32 ≺

O43 ≺ O23 ≺ O33 ≺ O13 ≺ O34 ≺ O14 ≺ O24 ≺ O44

which is depicted in Figure 3.5. Both the first and the third machines are working

until the schedule completion time. This means that their last operations, namely O14

and O24, are critical operations. Consequently, there are at least two critical paths.

The preceding critical operations for O14 and O24 are a machine-preceding operation

and a job-preceding operation, namely O34 and O23, respectively. The routine for

finding the critical operations continues until time zero is reached. Thus the critical

paths are as follows. Based on critical paths there are 9 critical operations in this

schedule.

1. O11 → O41 → O33 → O34 → O14

2. O11 → O41 → O42 → O43 → O23 → O24

In order to improve the search heuristic performance, only the critical operations

which satisfy the two following criteria will be selected for reassigning:

1. The critical operation is assigned in the middle of the critical path, not at the

first or last.

2. Its preceding and proceeding critical operations on the critical path are either

its job-preceding and machine-proceeding or its machine-preceding and job-

proceeding, respectively.
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Figure 3.6: The sample schedule after repositioning O34

Among those 9 critical operations only 5 operations satisfy these criteria which are

O41, O33, O34, O43 , and O23. We call these operations Selected Critical Opera-

tions (SCOs). The SCOs will be repositioned in the corresponding OS between their

job-preceding operation positions and their job-proceeding operation positions. For

instance, the SCO O33 can be repositioned between the positions of O32 and O34,

while SCO O34 can be reassigned to the positions from O33’s position to the end of

OS. Therefore, the possible OSs for the new position of O34 are as follows:

{O21, O31, ..., O33,O34, O13, O14, O24, O44}

{O21, O31, ..., O33, O13,O34, O14, O24, O44}

{O21, O31, ..., O33, O13, O14,O34, O24, O44}

{O21, O31, ..., O33, O13, O14, O24,O34, O44}

{O21, O31, ..., O33, O13, O14, O24, O44,O34}

Since operation O34 and O13 are from different jobs and have to be processed

on different machines, their orders on the OS does not make any difference on the

schedule. In this case, the first two OSs are equivalent, and their schedule is repre-

sented in Figure 3.5. Again since there is a similar situation for operations O24, O34,

andO44, their orders are not important. The last three OSs are equivalent too and

their schedule is depicted in Figure 3.6.

Among the operations from O33 to end of OS, there is no operation of the third

job and operation O14 is the only operation which has to be processed on the same
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machine as operation O34. Thus there is only two different schedules: one which

considers O34 before O14, and another which assigns O34 after O14. Since the former

is the current schedule, there is only one new OS which assigns O34 exactly after O14.

{O21, O31, ..., O33, O13,O14,O34, O24, O44}

Since schedules are independent of the order of operations which are not from

the same job and not to be processed on the same machine, the number of new OSs

for reassigning a SCO is limited. This number for a SCO equals to the number of

operations which have to be processed on the same machine as the SCO between

the positions of its job-preceding operation and its job-proceeding operation on the

corresponding OS. So using this routine, we have the following situations:

1. No new OS; that is there is no new position. So the LS cannot alter the schedule

for this SCO. Consider operation O33 which is a SCO that have to be processed

on machine m3. In the range between operations O32 and O34, there are the

following operations:

{O43, O23, O33, O13, O14}

None of these operations have to be processed on machine m3. Thus, there is

no new position for operation O33.

2. One new OS; it means there is only one new position. So the LS generates

a new individual by repositioning the SCO. This is the same routine that has

been illustrated for operation O34.

3. Two or more OSs; Since there is more than one OS, an OS is selected randomly

and a new individual is generated.

It should be mentioned here that in FJSSs, since the SCOs can be processed on

different machines, in order to find the new OSs all the positions for all the applicable
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machine should be evaluated. Consider the case where operation O33 can be processed

on machine m2. In that range, there are two operations O43 and O23 that have to be

processed on machine m2. It means there are two new OSs when operation O33 is

processed on machine m2. In this case, not only the OS is changed, but also the MS

is changed too.

Overall, our proposed LS works as follows for each individual: It starts with

finding SCOs. Then for each SCO, it generates a new individual using the new OS

if applicable. So there would be a number of new individuals which is equal to the

number of SCOs for each individual. Between these new individuals, the best one

which has the best fitness value will be added to the population. Since the LS is

only applied to the best individuals of each generation its time complexity depends

on both parameters PopSize and TopBest. Therefore, the time complexity of the

proposed LS is

TimeComplexity = IterationNo× (TopBest× PopSize)× Average (SCO#)

where SCO# denotes the number of SCOs for each individual.

In order to estimate the time complexity a population of 10,000 random individuals

is selected and the average number of SCOs over that population is calculated, which

is represented in Table 3.7. The maximum number of these average values is 12.38

which is the average value for problem la23. Therefore, the proposed local search

time complexity for Lawrence [113] test problems would be:

TimeComplexity = 12.38× IterationNo× (TopBest× PopSize) (3.1)
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Table 3.7: The average numbers of SCOs for Lawrence [113] test problems

Problem la1 la2 la3 la4 la5 la6 la7 la8 la9 la10
Average 0.26 3.55 3.27 3.28 0.64 0.74 2.84 3.46 2.08 1.42
Problem la11 la12 la13 la14 la15 la16 la17 la18 la19 la20
Average 1.86 2.71 3.15 0.32 3.31 4.99 6.13 4.87 8.47 7.64
Problem la21 la22 la23 la24 la25 la26 la27 la28 la29 la30
Average 7.59 4.68 12.38 8.24 8.63 8.20 9.01 9.42 7.08 5.98
Problem la31 la32 la33 la34 la35 la36 la37 la38 la39 la40
Average 7.26 7.21 9.38 9.10 6.17 9.47 10.03 9.81 7.66 9.68

Figure 3.7: The sample schedule after repositioning O34, followed by repositioning
O23

3.3.4.4 Priority-Based Fitness Function

In the case where two different individuals have the same fitness value, we do not resort

to random selection. Instead, we evaluate different parameters of those individuals

and select the one which is more likely to be able to direct the search process toward

a better solution. In other words, it would be better to select the individual which

is closer to a better solution. For example, consider the two sample schedules before

and after repositioning of operation O34. The makespans of both schedules are the

same, but the numbers of critical machines are different. The former schedule has

two critical machines and the latter has only one. So it is more likely for the latter

to become a better solution just by one more repositioning. Therefore, it is better to

select the latter schedule than the former if we have to select only one of them. By

applying the LS to this schedule, we will have a schedule with a better makespan,

represented in Figure 3.7.

Based on this procedure a new fitness function is introduced. Since the pro-

posed fitness function calculates different parameters with different priority, it is

called Priority-Based Fitness Function (PBFF). The first priority of the PBFF is
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the main objective of the system. For example, if the optimization goal is to mini-

mizing makespan, the first priority is thus the makespan; the lower, the better. In

multi-objective job shop scheduling problems, the first priority of the fitness function

is the same as the function of those objectives which is defined by the problem domain.

Xing et al. [208], for instance, considered the following function as the multi-objective

function with different weights:

F (s) = 0.5× F1 (s) + 0.2× F2 (s) + 0.3× F3 (s) (3.2)

where F (s) is the fitness value for schedule s; F1 (s), F2 (s), and F3 (s) are makespan,

total workload and maximum workload of schedule s, respectively.

If we do not consider the next priorities, the PBFF works as the traditional fitness

function. The next priorities are therefore considered to direct the search process

when a tie occurs. We consider the number of critical machines as the second priority

which is very important to the effectiveness of the algorithm. The lower the number

of critical machines, the greater probability to reach a new schedule with a better

makespan. The third priority which is applicable only for flexible job shop scheduling

is the maximum workload. If there are two schedules with the same makespan, the

one which has lower maximum workload is more likely to be the direction to the

optimal solution.

Therefore, each schedule has three fitness values with different priorities. The

comparison between two different schedules is done based on the priorities of each

value. First, the values of the highest priority are compared. If they are not equal,

the schedule with the lower value is selected as the better schedule. Otherwise, the

values for the next priority will be examined and it continues to the last priority. If

the values of all priorities are equal, the better schedule is selected randomly.
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PROCEDURE: MA Framework
INPUT: Test Problems and Algorithm Parameters
OUTPUT: Optimal or Near-Optimal Schedules

BEGIN
Generate the initial population P0

FOR (IterationNo)
Evaluate current population Pt and sort it
Apply crossover and mutation to generate Pt+1

Apply local search method on the BestTop
individuls of both Pt+1 to generate St+1

Finalized Pt+1 with the best individuals
END
Output the best individual

END

Figure 3.8: MA Framework

3.3.4.5 MA Framework

The framework of our proposed MA presented in Figure 3.8 is as follows. The pro-

posed algorithm starts by the initial generation P0 with a fixed number of individuals.

Then, for a fixed number of iterations denoted by IterationNo, the genetic operators

and local search method are applied to generate new generations.

In each iteration, all the individuals are sorted based on their fitness value cal-

culated by PBFF. Then, genetic operators are applied to generate offsprings. The

current population and the new one are denoted by Pt and Pt+1, respectively. At the

next step, the LS is applied to the best individuals of the new population Pt+1 to

generate a small search population St+1. The best individuals are a top proportion of

a sorted population. Finally, the new population Pt+1 is finalized with its own best

individuals and those resulting from the search heuristic.

It should be mentioned here that in order to show the efficiency of the GA itself

the proposed method has been applied to some test problems without using the LS.

In those cases, there is no search population.
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3.3.5 Results

The proposed algorithm is implemented using Java version 1.6.0.18 on a system with

Intel(R) Core(TM)2 Quad 2.50GHz CPU and 8.00GB RAM . Since the proposed

method was applied to various test problems with different sizes, we set the population

size up to 1000 and run the experiments for up to 200 iterations. The bests individuals

are defined as the top 10% of a sorted population. The crossover and mutation

probabilities are set to 90% and 5%, respectively.

In order to show the efficiency of the proposed algorithm it has been applied to

different types of job shop scheduling including JSSP, FJSS and MO-FJSS. Lawrence’s

benchmark [113] is considered as a dataset for JSSP, which includes 40 case problems

ranging from 10 jobs on 5 machines to 30 jobs on 10 machines. The Brandimarte’s

dataset [22], denoted by BRData, has been used as a benchmark for FJSS, which

consists of 10 different case problems ranging from 10 jobs on 6 machines to 20 jobs

on 15 machines.

To show the effectiveness of the proposed Priority-Based Fitness Function two

versions of the proposed method are applied to the test problems, one with the tradi-

tional fitness function and another with the PBFF. The results of these applications

on some JSSPs from Lawrence’s dataset [113] have been depicted in Figure 3.9. This

figure shows the best and average result of 10 different runs using population size of

500 for 100 iterations. The bars show the best solution and the extensions illustrate

the averages. As can be seen clearly in Figure 3.9, the PBFF offers better solutions

in almost all the sample problems. Moreover, in the cases that both methods find

the optimal solutions, the PBFF offers the lower average hence a better convergence

rate.

This experiment is also done on the FJSS problems from BRData [22]. Since the

results for these test problems are very close to the best solutions, the experiment

includes 100 different runs using population size of 1000 in 200 iterations. Figure
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Figure 3.9: The best (main bar) and the average (extended portion) values of 10 runs
using the traditional fitness function versus PBFF on Lawrence’s dataset [113]

Figure 3.10: The best (main bar) and the average (extended portion) values of 100
runs using the traditional fitness function versus PBFF on BRData [22]

3.10 depicts the best and average results of the experiment. As the figure illustrates,

incorporating PBFF offers better solution for problem mk06 and makes better average

for others. For problem mk03, since both methods find the optimal solution in all runs,

the average is the same as the best result. Considering all the results into account,

we can say that the PBFF compared to the traditional fitness function offers better

solutions as well as a better convergence rate.

After evaluating the effectiveness of the proposed fitness function, the performance

of the proposed LS is examined. So the proposed MA as well as the proposed GA
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itself without LS are applied to Lawrence’s benchmark [113]. The results have been

presented in Table 3.8 which show that LS heuristic improves the overall results. In

all the 40 test problems, the proposed MA has the same or better results than the GA

itself. So, it is possible to say that the proposed MA outperforms the proposed GA in

all the test problems. The proposed GA can find the optimal solution for 27 problems

out of 40, and the proposed MA found the best solution for two more problems.

Moreover, the average, standard deviation, and median show that incorporating LS

makes the proposed method more stable to find optimal or near-optimal solutions.

In other words, it improves the convergence rate of the GA.

Table 3.8: Results on Lawrence’s benchmark [113] (la01-la40)

Problem Algorithm Best Average SD Median Worst

la01 MA [87] 666 667.60 2.90 667 678

10×5 Proposed GA 666 666.00 0.00 666 666

666 Proposed MA 666 666.00 0.00 666 666

la02 MA [87] 655 656.27 3.39 655 666

10×5 Proposed GA 655 658.22 3.66 657 669

655 Proposed MA 655 655.00 0.00 655 655

la03 MA [87] 597 613.93 7.63 617 619

10×5 Proposed GA 597 606.40 9.34 603 617

597 Proposed MA 597 597.00 0.00 597 597

la04 MA [87] 590 593.33 2.44 595 595

10×5 Proposed GA 590 592.92 2.60 593 602

590 Proposed MA 590 590.60 1.26 590 593

la05 MA [87] 593 593.00 0.00 593 593

10×5 Proposed GA 593 593.00 0.00 593 593

593 Proposed MA 593 593.00 0.00 593 593

Table 3.8 – Continued on next page
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Table 3.8: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la06 MA [87] 926 926.00 0.00 926 926

15×5 Proposed GA 926 926.00 0.00 926 926

926 Proposed MA 926 926.00 0.00 926 926

la07 MA [87] 890 890.00 0.00 890 890

15×5 Proposed GA 890 890.00 0.00 890 890

890 Proposed MA 890 890.00 0.00 890 890

la08 MA [87] 863 863.00 0.00 863 863

15×5 Proposed GA 863 863.00 0.00 863 863

863 Proposed MA 863 863.00 0.00 863 863

la09 MA [87] 951 951.00 0.00 951 951

15×5 Proposed GA 951 951.00 0.00 951 951

951 Proposed MA 951 951.00 0.00 951 951

la10 MA [87] 958 958.00 0.00 958 958

15×5 Proposed GA 958 958.00 0.00 958 958

958 Proposed MA 958 958.00 0.00 958 958

la11 MA [87] 1222 1222.00 0.00 1222 1222

20×5 Proposed GA 1222 1222.00 0.00 1222 1222

1222 Proposed MA 1222 1222.00 0.00 1222 1222

la12 MA [87] 1039 1039.00 0.00 1039 1039

20×5 Proposed GA 1039 1039.00 0.00 1039 1039

1039 Proposed MA 1039 1039.00 0.00 1039 1039

la13 MA [87] 1150 1150.00 0.00 1150 1150

20×5 Proposed GA 1150 1150.00 0.00 1150 1150

1150 Proposed MA 1150 1150.00 0.00 1150 1150

Table 3.8 – Continued on next page
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Table 3.8: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la14 MA [87] 1292 1292.00 0.00 1292 1292

20×5 Proposed GA 1292 1292.00 0.00 1292 1292

1292 Proposed MA 1292 1292.00 0.00 1292 1292

la15 MA [87] 1207 1207.13 0.52 1207 1209

20×5 Proposed GA 1207 1207.00 0.00 1207 1207

1207 Proposed MA 1207 1207.00 0.00 1207 1207

la16 MA [87] 945 968.27 15.46 979 982

10×10 Proposed GA 945 964.85 15.33 966 982

945 Proposed MA 945 952.40 8.72 950 973

la17 MA [87] 784 788.93 4.18 792 793

10×10 Proposed GA 784 784.81 2.44 784 804

784 Proposed MA 784 784.00 0.00 784 784

la18 MA [87] 848 859.27 4.57 861 861

10×10 Proposed GA 848 859.37 4.55 861 876

848 Proposed MA 848 848.50 1.41 848 852

la19 MA [87] 842 855.47 7.76 855 869

10×10 Proposed GA 842 859.34 8.09 860 876

842 Proposed MA 842 849.00 3.13 849 854

la20 MA [87] 907 910.00 2.54 912 912

10×10 Proposed GA 907 910.76 3.46 911 932

902 Proposed MA 902 906.90 2.13 907 911

la21 MA [87] 1079 1097.60 12.48 1096 1124

15×10 Proposed GA 1055 1074.22 11.69 1075 1116

1046 Proposed MA 1053 1058.20 4.02 1059 1067

Table 3.8 – Continued on next page
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Table 3.8: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la22 MA [87] 960 981.00 13.58 979 1000

15×10 Proposed GA 937 954.28 8.53 951 981

927 Proposed MA 927 934.20 4.54 933.5 941

la23 MA [87] 1032 1032.00 0.00 1032 1032

15×10 Proposed GA 1032 1032.20 0.99 1032 1038

1032 Proposed MA 1032 1032.00 0.00 1032 1032

la24 MA [87] 959 996.40 16.21 1003 1011

15×10 Proposed GA 950 970.41 10.28 967 998

935 Proposed MA 941 954.70 11.61 953 967

la25 MA [87] 991 1016.67 19.64 1013 1076

15×10 Proposed GA 990 1012.13 12.40 1009 1039

977 Proposed MA 984 986.90 2.60 986 992

la26 MA [87] 1218 1234.27 16.12 1228 1266

20×10 Proposed GA 1218 1246.57 13.98 1245 1285

1218 Proposed MA 1218 1218.00 0.00 1218 1218

la27 MA [87] 1286 1306.33 13.17 1301 1333

20×10 Proposed GA 1269 1295.13 10.76 1294 1326

1235 Proposed MA 1256 1267.10 6.44 1269 1275

la28 MA [87] 1286 1306.33 13.17 1301 1333

20×10 Proposed GA 1229 1262.12 11.75 1262 1296

1216 Proposed MA 1223 1231.80 6.01 1234 1241

la29 MA [87] 1221 1240.47 6.98 1240.5 1249

20×10 Proposed GA 1201 1229.14 10.61 1228 1250

1157 Proposed MA 1187 1196.40 6.10 1198 1206

Table 3.8 – Continued on next page
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Table 3.8: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la30 MA [87] 1355 1362.33 8.23 1359.5 1380

20×10 Proposed GA 1355 1376.06 13.59 1374 1409

1355 Proposed MA 1355 1355.00 0.00 1355 1355

la31 MA [87] 1784 1784.00 0.00 1784 1784

30×10 Proposed GA 1784 1784.00 0.00 1784 1784

1784 Proposed MA 1784 1784.00 0.00 1784 1784

la32 MA [87] 1850 1850.00 0.00 1850 1850

30×10 Proposed GA 1850 1850.41 1.19 1850 1856

1850 Proposed MA 1850 1850.00 0.00 1850 1850

la33 MA [87] 1719 1719.00 0.00 1719 1719

30×10 Proposed GA 1719 1719.00 0.00 1719 1719

1719 Proposed MA 1719 1719.00 0.00 1719 1719

la34 MA [87] 1721 1721.00 0.00 1721 1721

30×10 Proposed GA 1721 1734.29 6.84 1734 1750

1721 Proposed MA 1721 1721.00 0.00 1721 1721

la35 MA [87] 1888 1888.00 0.00 1888 1888

30×10 Proposed GA 1888 1888.02 0.14 1888 1889

1888 Proposed MA 1888 1888.00 0.00 1888 1888

la36 MA [87] 1307 1328.67 11.59 1327 1346

15×15 Proposed GA 1291 1310.97 10.06 1308.5 1334

1268 Proposed MA 1276 1285.70 10.50 1278 1300

la37 MA [87] 1442 1473.60 11.51 1479 1487

15×15 Proposed GA 1425 1434.90 18.81 1425 1483

1397 Proposed MA 1401 1420.40 8.68 1425 1425

Table 3.8 – Continued on next page
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Table 3.8: (continued from previous page)

Problem Algorithm Best Average SD Median Worst

la38 MA [87] 1266 1309.13 14.52 1314 1329

15×15 Proposed GA 1219 1252.20 14.36 1252 1304

1196 Proposed MA 1208 1218.30 8.07 1218 1238

la39 MA [87] 1252 1282.60 16.62 1277 1301

15×15 Proposed GA 1258 1276.76 9.79 1275 1309

1233 Proposed MA 1240 1251.30 4.81 1251 1258

la40 MA [87] 1252 1279.60 17.84 1289 1303

15×15 Proposed GA 1244 1266.91 7.66 1269 1287

1222 Proposed MA 1233 1246.70 7.18 1246.5 1259

To compare the results, the best-known solutions and the results of another MA

recently proposed by Hasan et al. [87] have been presented in Table 3.8 as well.

Clearly, our proposed GA without LS outperforms their MA in 39 test problems out

of 40. Only on test problem la39 we observe their result to be better than the result

of our proposed GA. However, our proposed MA outperforms their MA for all the 40

test problems.

Furthermore, regarding algorithm efficiency, our proposed method outperforms

Hasan et al.’s method [87]. As mentioned before, the time complexity of our proposed

local search on Lawrence’s benchmark [113] can be calculated using Equation 3.1.

Based on values 1000 and 200 for PopSize and IterationNo, the TimeComplexity

would be less than 250, 000 fitness evaluations. Therefor, the overall time complexity

of our proposed method would be less than 450, 000 fitness evaluations, while the time

complexity of their method is 2, 500, 000 fitness evaluations. In the other words, our
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proposed method offers better solutions while it only needs less than 1
5

of the fitness

evaluations used by their method.

The proposed method is also compared with other algorithms for classical JSSP

including our previous work [164], the heuristic method introduced by Adams et al.

[2] and the hybrid GA proposed by Goncalves et al. [70]. This comparison has been

represented in Table 3.9. The optimal solutions are illustrated in bold face, and

asterisk (*) determines the best solutions found by compared algorithms. All the

results of our proposed method received a bold face or asterisk except two problems:

la21 and la25. This means that the proposed method outperforms all the mentioned

algorithms by offering the best solution in almost all test problems. To be able to

compare the algorithms over all 40 problems, an Error Rate (ER) is defined as follows.

ER =
C − LB
LB

× 100%

where LB is the best-known solution, and C is the best solution found by the algo-

rithms. Table 3.9 represents the ER values in brackets. As illustrated in this table,

our proposed method has the minimum average of ER values for all the 40 test prob-

lems. To show more comprehensive comparisons, the ER values corresponding to the

most challenging test problems have been illustrated in Figure 3.11.

Table 3.9: Results on Lawrence’s benchmark [113] (la01-la40)

Problem
Heuristic Hybrid Hassan et al. Our Previous Proposed

[2] GA [70] MA [87] MA [164] MA

LA01 666(0.00%) 666(0.00%) 666(0.00%) 666(0.00%) 666(0.00%)

LA02 669 (2.14%) 655(0.00%) 655(0.00%) 655(0.00%) 655(0.00%)

LA03 605 (1.34%) 597(0.00%) 597(0.00%) 597(0.00%) 597(0.00%)

LA04 593 (0.51%) 590(0.00%) 590(0.00%) 590(0.00%) 590(0.00%)

LA05 593(0.00%) 593(0.00%) 593(0.00%) 593(0.00%) 593(0.00%)

Table 3.9 – Continued on next page81



Table 3.9: (continued from previous page)

Problem
Heuristic Hybrid Hassan et al. Our Previous Proposed

[2] GA [70] MA [87] MA [164] MA

LA06 926(0.00%) 926(0.00%) 926(0.00%) 926(0.00%) 926(0.00%)

LA07 890(0.00%) 890(0.00%) 890(0.00%) 890(0.00%) 890(0.00%)

LA08 863(0.00%) 863(0.00%) 863(0.00%) 863(0.00%) 863(0.00%)

LA09 951(0.00%) 951(0.00%) 951(0.00%) 951(0.00%) 951(0.00%)

LA10 959 (0.10%) 958(0.00%) 958(0.00%) 958(0.00%) 958(0.00%)

LA11 1222(0.00%) 1222(0.00%) 1222(0.00%) 1222(0.00%) 1222 (0.00%)

LA12 1039(0.00%) 1039(0.00%) 1039(0.00%) 1039(0.00%) 1039 (0.00%)

LA13 1150(0.00%) 1150(0.00%) 1150(0.00%) 1150(0.00%) 1150 (0.00%)

LA14 1292(0.00%) 1292(0.00%) 1292(0.00%) 1292(0.00%) 1292 (0.00%)

LA15 1207(0.00%) 1207(0.00%) 1207(0.00%) 1207(0.00%) 1207 (0.00%)

LA16 978 (3.49%) 945(0.00%) 945(0.00%) 945(0.00%) 945(0.00%)

LA17 787 (0.38%) 784(0.00%) 784(0.00%) 784(0.00%) 784(0.00%)

LA18 859 (1.30%) 848(0.00%) 848(0.00%) 848(0.00%) 848(0.00%)

LA19 860 (2.14%) 842(0.00%) 842(0.00%) 842(0.00%) 842(0.00%)

LA20 914 (1.33%) 907 (0.55%) 907 (0.55%) 907 (0.55%) 902(0.00%)

LA21 1084 (3.63%) 1046(0.00%) 1079 (3.15%) 1057 (1.05%) 1053 (0.67%)

LA22 944 (1.83%) 935 (0.86%) 960 (3.56%) 935 (0.86%) 927(0.00%)

LA23 1032(0.00%) 1032(0.00%) 1032(0.00%) 1032(0.00%) 1032 (0.00%)

LA24 976 (4.39%) 953 (1.93%) 959 (2.57%) 944 (0.96%) 941 (0.64%)*

LA25 1017 (4.09%) 986 (0.92%) 991 (1.43%) 983 (0.61%)* 984 (0.72%)

LA26 1224 (0.49%) 1218(0.00%) 1218(0.00%) 1218(0.00%) 1218(0.00%)

LA27 1291 (4.53%) 1256 (1.70%)* 1286 (4.13%) 1269 (2.75%) 1256 (1.70%)*

LA28 1250 (2.80%) 1232 (1.32%) 1286 (5.76%) 1223 (0.58%)* 1223 (0.58%)*

LA29 1239 (7.09%) 1196 (3.37%) 1221 (5.53%) 1191 (2.94%) 1187 (2.59%)*

LA30 1355(0.00%) 1355(0.00%) 1355(0.00%) 1355(0.00%) 1355 (0.00%)

Table 3.9 – Continued on next page
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Table 3.9: (continued from previous page)

Problem
Heuristic Hybrid Hassan et al. Our Previous Proposed

[2] GA [70] MA [87] MA [164] MA

LA31 1784(0.00%) 1784(0.00%) 1784(0.00%) 1784(0.00%) 1784 (0.00%)

LA32 1850(0.00%) 1850(0.00%) 1850(0.00%) 1850(0.00%) 1850 (0.00%)

LA33 1719(0.00%) 1719(0.00%) 1719(0.00%) 1719(0.00%) 1719 (0.00%)

LA34 1721(0.00%) 1721(0.00%) 1721(0.00%) 1721(0.00%) 1721 (0.00%)

LA35 1888(0.00%) 1888(0.00%) 1888(0.00%) 1888(0.00%) 1888 (0.00%)

LA36 1305 (2.92%) 1279 (0.87%) 1307 (3.08%) 1281 (1.03%) 1276 (0.63%)*

LA37 1423 (1.86%) 1408 (0.79%) 1442 (3.22%) 1429 (2.29%) 1401 (0.29%)*

LA38 1255 (4.93%) 1219 (1.92%) 1266 (5.85%) 1208 (1.00%)* 1208 (1.00%)*

LA39 1273 (3.24%) 1246 (1.05%) 1252 (1.54%) 1248 (1.22%) 1240 (0.57%)*

LA40 1269 (3.85%) 1241 (1.55%) 1252 (2.45%) 1234 (0.98%) 1233 (0.90%)*

Avg. ER 1.46% 0.42% 1.07% 0.42% 0.26%

Furthermore, our proposed MA is also evaluated for Flexible Job Shop Schedul-

ing. The results have been presented in Table 3.10. The results are compared to the

state-of-the-art approaches including Hybrid GA proposed by Gao et al. [63], Arti-

ficial Immune Algorithm proposed by Bagheri et al. [10], three Genetic Algorithms

proposed by Chen et al. [30], Pezzella et al. [158] and Zhang et al. [221], and Clonal

Selection approach suggested by Ong et al. [150]. The results show that our pro-

posed method offers competitive solutions compared to the existing state-of-the-art

methods in FJSS. The proposed method finds the best solution for 8 problems out of

the 10. Though Ong et al. [150] claimed that they found 39 as the makespan for test

problem mk01, the makespan of 39 for this test problem is not feasible and the best

solution is 40. This issue has been proved in Appendix A.
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Figure 3.11: Comparison of different types of algorithms on Lawrence’s benchmark
[113]
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Table 3.10: Comparison of different types of algorithms on BRData [22]

Problem Size
hGA AIA GA GA GA Clonal Proposed
[63] [10] Chen[30] Pezzella[158] Zhang[221] [150] MA

mk01 10×6 40 40 40 40 40 39 40
mk02 10×6 26 26 29 26 26 27 26
mk03 15×8 204 204 204 204 204 - 204
mk04 15×8 60 60 63 60 60 65 60
mk05 15×4 172 173 181 173 173 173 172
mk06 10×15 58 63 60 63 58 70 59
mk07 20×5 139 140 148 139 144 145 139
mk08 20×10 523 523 523 523 523 523 523
mk09 20×10 307 312 308 311 307 311 307
mk10 20×15 197 214 212 212 198 - 216

The proposed MA was also applied in MO-FJSS problems. The benchmarks

presented in Xing et al. [208] are considered as test problems. The scheduling goal is

to minimize a multi-objective function with different weight represented in Equation

3.2. The results of both our proposed MA and their algorithm have been presented

in Table 3.11. Our proposed MA found the best solutions for all the problems.

Moreover, it improves the solution for the 4th benchmark. The solution found for this

benchmark, whose problem specification is presented in Table 3.5, has been depicted

in Figure 3.12.

Table 3.11: Results on FJSS benchmarks used by Xing et al. [208]

Benchmarks
Xing et al. [208] Proposed MA

F1 F2 F3 F F1 F2 F3 F
Instance 1 12 32 8 14.8 12 32 8 14.8
Instance 2 14 77 12 26 14 77 12 26
Instance 3 11 62 10 20.9 11 62 10 20.9
Instance 4 7 42 6 13.7 7 43 5 13.6
Instance 5 11 91 11 27 11 91 11 27

3.3.6 Conclusions

In this article, a Memetic Algorithm is proposed to deal with different types of job

shop scheduling problems. The main contributions of our proposed methods are the
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Figure 3.12: Results on 4th FJSS benchmark used by Xing et al. [208]

introduction of the Priority-Based Fitness Function and a new heuristic for local

search approaches.

The experiment results show that incorporating our proposed fitness function im-

proves the final solutions by saving the individuals which have better characteristics.

The proposed GA method itself without the LS outperforms the MA recently pro-

posed by Hasan et al. [87] for 39 test problems out of 40 in JSSP. Moreover, the

proposed GA is improved by incorporating the LS, such that it finds the optimal so-

lutions for two more test problems. The better statistical information for MA such as

standard deviation determines that the LS helps the GA to offers more stable results,

which means it helps the GA to converge faster.

The proposed method is also effective in other types of job shop scheduling prob-

lem. Compared to the state-of-the-art methods in FJSS, our proposed method offers

competitive results by obtaining the optimal solutions for 8 test problems and finding

the near-optimal solutions for the rest two problems. In addition, the application

of the proposed method in MO-FJSS shows that it is efficient for these problems as

well. Our proposed method finds the best solutions for all the test problems and more

importantly it improves the final solution for one test problem.
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The application of the proposed algorithm on Stochastic Flexible Job Shop

Scheduling will be considered in future work. Moreover, the parameters of the

algorithm have not been investigated to find the best set of parameters.

3.3.7 Appendix A

Test problem mk01 is one of the BRData problems published by Brandimarte [22].

The best makespan found for this test problem by the proposed methods and almost

all the existing methods is 40, while Ong et al. [150] claimed that they found 39. This

Appendix is to prove that the makespan of 39 for this test problem is not feasible.

Claim 3.3.1. The makespan of 39 or less for test problem mk01 of BRData is not

feasible.

Proof. The specification of problem mk01 which is a sample of P-FJSS problems has

been presented in Table 3.12. It consists of 10 different jobs including either 5 or 6

operations which should be processed on 6 different machines. For each operations,

the machines which are not applicable are denoted by X.

As can be seen in Table 3.12, there is no flexibility for operations O21, O31, O42,

O53, O64 and O84. They are all supposed to be processed on machine m2. The

processing times for all of them are the same as 6 time units. So, machine m2 is

supposed to work on these operations from time 0 to 36. It means that one of these

operations has to be processed in time interval (30−36). As all of these operations are

not the last operations of their job, they have one or more job-proceeding operations.

The minimum processing time needed for the job-proceeding operations of operations

O21, O31, O42, O53, O64 and O84 are 10, 8, 4, 14, 3 and 6, respectively. So, if there is

any schedule with makespan 39, it should assign operation O64 in the time interval

(30 − 36), and assign O65 to machine m1 from time 36 to 37, and O66 to machine

m4 from time 37 to 39. Therefore, if it can be proved that machine m4 is not idle in
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Table 3.12: Test problem mk01 of BRData [22]

Operations
Machines

Operations
Machines

m1 m2 m3 m4 m5 m6 m1 m2 m3 m4 m5 m6

J1

O11 5 X 4 X X X

J6

O61 X X 4 X X 2
O12 X 1 5 X 3 X O62 2 X X X X X
O13 X X 4 X X 2 O63 X 6 4 X X 6
O14 1 6 X X X 5 O64 X 6 X X X X
O15 X X 1 X X X O65 1 6 X X X 5
O16 X X 6 3 X 6 O66 3 X X 2 X X

J2

O21 X 6 X X X X

J7

O71 X X X X X 1
O22 X X 1 X X X O72 3 X X 2 X X
O23 2 X X X X X O73 X 6 4 X X 6
O24 X 6 X 6 X X O74 6 6 X X 1 X
O25 1 6 X X X 5 O75 X X 1 X X X

J3

O31 X 6 X X X X

J8

O81 X X 4 X X 2
O32 X X 4 X X 2 O82 X 6 4 X X 6
O33 1 6 X X X 5 O83 1 6 X X X 5
O34 X 6 4 X X 6 O84 X 6 X X X X
O35 1 X X X 5 X O85 X 6 X 6 X X

J4

O41 1 6 X X X 5

J9

O91 X X X X X 1
O42 X 6 X X X X O92 1 X X X 5 X
O43 X X 1 X X X O93 X X 6 3 X 6
O44 X 1 5 X 3 X O94 2 X X X X X
O45 X X 4 X X 2 O95 X 6 4 X X 6

O96 X 6 X 6 X X

J5

O51 X 1 5 X 3 X

J10

O101 X X 4 X X 2
O52 1 6 X X X 5 O102 X 6 4 X X 6
O53 X 6 X X X X O103 X 1 5 X 3 X
O54 5 X 4 X X X O104 X X X X X 1
O55 X 6 X 6 X X O105 X 6 X 6 X X
O56 X 6 4 X X 6 O106 3 X X 2 X X
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time interval (37-39), it has been proved that there is no feasible schedule for problem

mk01 with makespan 39 or less.

Operations O24, O55, O85, O96 and O105 have the flexibility to be processed on

either machine m2 or m4. Since their processing time on both machines are 6, and

machine m2 is already assigned from time 0 to 36, all the 5 operations should be

processed on machine m4. Since all the 5 operations are not the first operations of

their corresponding jobs, they have a number of job-preceding operations. So, the

minimum time needed for the job-preceding operations to be processed for operations

O24, O55, O85, O96 and O105 are 9, 12, 13, 11 and 8, respectively. So, in the best case,

machine m4 should process these operations from time 8 to 38. It means that machine

m4 is not idle from time 37 to 38. Therefore, it is proved that machine m4 is not idle

in the time interval (37-39) and the best starting time for operation O66 on machine

m4 is time 38, for which the processing lasts to time 40. Also, O66 can be processed

on machine m2 from time 37 to 40. For both possible cases, the makespan is 40, and

not less. So, the claim has been proved.
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3.4 Incorporating a Genetic Algorithm to improve

the performance of Variable Neighborhood

Search

Abstract. Variable Neighborhood Search (VNS) is an efficient meta-

heuristics in solving optimization problems. Although VNS has been suc-

cessfully applied on various problem domains, it suffers from its inefficient

search exploration. To improve this limitation, VNS can be joined with

a population-based search to benefit from its search exploration. In this

article, a Memetic Algorithm (MA) is proposed which is based on a Ge-

netic Algorithm (GA) incorporating VNS as a local search method. To

evaluate the proposed method, it has been applied on the classical Job

Shop Scheduling Problem (JSSP) as a well-known optimization problem.

The experimental results show that the proposed MA outperforms the

VNS method. Furthermore, compared to the state-of-the-art Evolution-

ary Algorithms (EAs) proposed to solve JSSP, the proposed method offers

competitive solutions.

3.4.1 Introduction

Metaheuristics are general procedures to design heuristics for optimization problems.

Heuristics try to find an optimal solution by working on the solution space, while

metaheuristics incorporate different strategies to build a heuristic with a good per-

formance on one problem domain. Variable neighborhood search (VNS) is a meta-

heuristic proposed to solve combinatorial and global optimization problems.

The main idea of VNS is to change the neighborhood within a local search to avoid

trapping into local optima. A VNS incorporates a number of neighborhood structures
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to switch among them at the time of local search execution. When local search finds

an optimal solution with respect to a neighborhood structure, VNS switch to another

neighborhood structure to scape from the local optima.

Although VNS is recently introduced by Mladenovic and Hansen [136], it has been

successfully applied in various combinatorial optimization problems such as Travel-

ing Salesman Problem (TSP) [55], Open Vehicle Routing problem [57], and Graph

problems [24].

In spite of successful application of VNS in different problems due to its powerful

exploitation, it suffers from its inefficient search space exploration. Based on the def-

inition of neighborhood structures, it is possible for VNS to spins in some previously

investigated regions. Therefore, it cannot jump to other regions to look for better

solutions. There are a number of methods proposed to overcome this limitation such

as Parallel VNS [42], Multi-Start VNS [127], and Population-based VNS [205].

In this article, a Genetic Algorithm (GA) is incorporated to overcome the limita-

tion of VNS. In other words, in this article, a Memetic Algorithm (MA) is proposed

which uses a GA as a population-based search and incorporates VNS as a local search

method. The main contribution of this article is to show that the joint GA and VNS

works better than the single VNS. In other words, VNS as a local search has better

performance than as a global search method. To evaluate our proposed method, it

has been applied on Job Shop Scheduling Problem (JSSP) which is a well-known

combinatorial optimization problem, specially in manufacturing systems.

The structure of this article is as follows. VNS is briefly introduced in Subsection

3.4.2, followed by a concise description of MA in Subsection 3.4.3. The definition of

JSSP problem domain is presented in Subsection 3.4.4. Subsection 3.4.5 describes

our proposed method in details. Finally, the experimental results are represented in

Subsection 3.4.6, followed by conclusion remarks in Subsection 3.4.7.
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3.4.2 Variable neighborhood search (VNS)

Some heuristics start with a feasible solution and look for a better solution by applying

some moves in the neighborhood of the current solution. The main drawback of these

heuristics is their immature convergence. If they trap in a local optimum, they spins

around the neighborhood of that local optimum and never scape from that region.

So they converge into a local optimum instead of the global one. This issue is more

challenging in large size problems where the chance of trapping into local optima is

higher. The larger the search space, the more likely to trap into local optima.

To defeat this issue, metaheuristics are appeared where they try to design a heuris-

tic, more powerful for a problem domain. VNS is one of the most recent metaheuristics

in the literature proposed to deal with optimization problems. The literature shows

that it has a remarkable performance on various optimization problems.

VNS defines a multiple neighborhood structures and switches among them sys-

tematically within a local search. VNS change the neighborhood structure when

local search finds a local optimum with respect to one neighborhood structure. So

the neighborhood structures should be complementary to each other to bring this

capability for the VNS to scape from local optima. Therefore, designing a multiple

neighborhood structures is very crucial to build an efficient VNS method.

The main idea of VNS comes from the following facts:

1. A local optimum in one neighborhood is not necessarily a local optimum in

another neighborhood.

2. A global optimum is a local optimum for all possible neighborhood structures.

3. For many problems, local optima with respect to one or more neighborhood

structures are relatively close to each other.

The last one is an empirical observation. It implies that a local optimum often

provides some information about the global optimum.
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3.4.3 Memetic Algorithm (MA)

Evolutionary Algorithm (EA) is another category of metaheuristics proposed to solve

combinatorial optimization problems. Although EAs show a very good performance

on optimization problems, most of the recent work in this area hybridized an EA

with a local search method to improve its performance. This hybridization not only

improves the quality of the final results, but also helps the EA to convergence faster.

MA defined by Moscato [139] is a combination of a population-based global search

and a local search heuristic to deal with an optimization problem. The population-

based global search works as search space exploration, while the local search works

as the exploitation of the regions where the best found solutions belongs to [149]. In

other words, the global search finds the promising regions and the local search finds

the local optimal solutions in those regions.

So based on the definition of Moscato [139], all the combinations of an EA with

a local search heuristic can be considered as MAs. There are a large number of

successful combinations of an EA and a local search in the literature, but as we applied

our proposed method on the scheduling problems, we refer to the MAs published by

Gao et al. [63], Caumond et al. [28] and Chiang et al. [33] as the efficient MAs

proposed to deal with different scheduling problems.

Three different priority rules are incorporated by Hassan et al. [87] to proposed

different MAs to solve JSSP. The authors showed that incorporating joint of Gap

Reduction and Restricted Swapping offers the most efficient MA. Moving operations

to the first available gap in their corresponding machine is called Gap Reduction rule,

while Restricted Swapping rule is to swap the adjacent operations on a machine.

3.4.4 Job Shop Scheduling Problem (JSSP)

Job Shop Scheduling Problem (JSSP) is an optimization problem which is very well-

known in different areas, as it is applicable in various fields of study. In JSSP, there

93



are a number of jobs to be processed on a number of machines. Each job consists of a

number of operations which have to be processed in a predefined sequence. The task of

assigning the operations to the machines is called job scheduling. There are different

types of scheduling problems in the literature, each of which has its own definition

and constraints. One of the main optimization function in scheduling problems is to

minimize the makespan which is the maximum completion time of all the jobs. Since

JSSP is still an open problem, it is a good case study to evaluate the new methods.

Moreover, it has been proved by Garey et al. [65] that JSSP systems with more than

two machines are NP-complete problems. It means that there is no exact algorithm

capable to find the optimal solution for all the scheduling problems in acceptable

time.

Classical JSSP is one class of scheduling problems which is defined by Baker [11]

as a process of assigning N jobs denoted by Ji to M machines denoted by mk, where

i is the job index ranging from 1 to N , and k is the machine index ranging from 1

to M . Each job consists of a fixed sequence of operations which are denoted by Oij

where i is the job index and j is the operation index in that job. In classical JSSP,

each operation can be processed on only one machine in a known processing time.

Moreover, there are a number of rules considered in classical JSSP which are as

follows:

1. Jobs are independent to each other.

2. All jobs are available at the beginning.

3. There is no due date for the jobs.

4. Each machine processes each job only one time which cannot be interrupted.

5. The machine set up time and part movement time between machines are con-

sidered negligible.
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Table 3.13: A sample classical JSSP

Operation Index 1 2 3
J1 m2,1 m1,2 m3,3
J2 m1,2 m2,1 m3,2
J3 m1,2 m3,4 m2,1

Figure 3.13: Sample schedule for the sample problem.

A sample classical JSSP is represented in Table 3.13. The sample problem consists

of 3 jobs and 3 machines. The applicable machine and its corresponding processing

time for each operation is presented in the table. For an instance, the second operation

of the third job O32 has to be processed on machine m3 for 4 time units. Fig. 3.13

illustrates a sample schedule for this sample problem with makespan of 13.

The concept of critical operations is described here which will be used later in the

definition of neighborhood structures. The longest path of consecutive operations in

a schedule which starts from time zero and ends at the makespan is called a critical

path. A schedule may have one or more critical paths. The operations included in

critical paths are called critical operations such that any delay in their processing

time increases the makespan of the schedule. The adjacent critical operations on the

same machine is called critical block.

Based on this definition, there is only one critical path in the sample schedule

illustrated in Figure 3.13 which is as follows.

CriticalPath : O21 ≺ O31 ≺ O32 ≺ O13 ≺ O23
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So, there are the following two critical blocks.

CriticalBlock1 : O21 ≺ O31

CriticalBlock2 : O32 ≺ O13 ≺ O23

The first operation in a critical block is called block head, the last one is called block

rear, and the others are called internal operations.

3.4.5 Proposed Memetic Algorithm

As mentioned before, VNS suffers from its inefficient search space exploration. To

improve its exploration, a population-based metaheuristic is incorporated such that

VNS works as a local search method. The main contribution of this article is to

compare the effectiveness of VNS, both as a single method and as a local search

method for an EA. In this article, a GA is considered as the population-based search

to improve the search exploration of VNS. The details of the proposed method are

described in the following Sub-subsections.

3.4.5.1 Chromosome Representation

There are different chromosome representations for JSSP in the literature. In the

proposed algorithm, an operation based representation is used. This representation

which is introduced by Gen et al. [66] is also known as modified operation based

representation. In this representation, a schedule is encoded into one string of num-

bers with the length of the total number of operations. Each number denotes one

operation and the order of these numbers defines the operations processing sequence.

In this representation, the operations are denoted by their job index in the string.

Since the operations of the same job have to be processed in their fixed sequence, the

operations with the same index are determined by the occurrence of that index. For
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an instance, the second occurrence of the first job index in the string is decoded to

the second operation of the first job.

This representation always generates feasible solutions, so there is no need for

any repair mechanisms. One drawback of this representation is its n to 1 mapping.

It means that different chromosomes in this representation could be decoded to the

same schedule. Therefore, the number of possible chromosomes in this representation

is much more than the number of different possible schedules.

The following string, for an instance, is a sample chromosome for the sample

problem.

{1, 2, 2, 3, 1, 3, 1, 2, 3}

This chromosome is decoded into the following operation sequence.

O11 ≺ O21 ≺ O22 ≺ O31 ≺ O12

≺ O32 ≺ O13 ≺ O23 ≺ O33

This sequence produces the following schedule.

m1 : O21 ≺ O31 ≺ O12

m2 : O11 ≺ O22 ≺ O33

m3 : O32 ≺ O13 ≺ O23

Figure 3.13 depicts the Gantt chart corresponding to this schedule.

3.4.5.2 Genetic Operators

Genetic operators for a GA include initialization, parent selection mechanisms,

crossover and mutation operators, and fitness evaluation. To produce an initial
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population, a number of individuals are generated randomly. This number is the

population size which is a fixed parameter denoted by PopSize.

To generate offspring for the next generation, two parent individuals are selected.

The first one is selected from a top best individuals of the whole population. This top

proportion of the whole population is denoted by TopBest parameter. The second

parent is selected randomly from the whole population. After selecting two parents,

the crossover operator is applied to generate two new individuals. In the proposed

method, precedence preserving Order-based Crossover (POX) introduced by Lee et

al. [114] is used as the crossover operator. This crossover selects one or more jobs

randomly and copies all the operations of those jobs from the first parent to the first

child. The remaining operations are inserted into the first child’s chromosome by the

same order as they have in the chromosome of second parent. The same procedure is

applied to generate the second child from the selected parents.

A sample example of this crossover operation is presented as follows. Consider

the following parents.

Parent1 : {3, 4, 1, 4, 2, 1, 2, 3, 1, 3, 4, 4, 1, 2, 2, 3}

Parent2 : {1, 2, 4, 3, 3, 2, 1, 2, 4, 3, 1, 2, 3, 4, 4, 1}

If both jobs 3 and 4 are selected by the crossover operator, after copying their

corresponding operations, the children would be as follows.

Child1 : {3, 4,−, 4,−,−,−, 3,−, 3, 4, 4,−,−,−, 3}

Child2 : {−,−, 4, 3, 3,−,−,−, 4, 3,−,−, 3, 4, 4,−}
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Finally, the gaps are filled by the remanning operations based on their order in

the chromosome of another parent.

Child1 : {3, 4, 1, 4, 2, 2, 1, 3, 2, 3, 4, 4, 1, 2, 1, 3}

Child2 : {1, 2, 4, 3, 3, 1, 2, 1, 4, 3, 1, 2, 3, 4, 4, 2}

As a mutation operator, the simple swap method is incorporated which swaps

two randomly selected operations. To evaluate each individual, the makespan of

its schedule is considered as a fitness value. The lower the makespan, the better

the individual. Since the goal is to minimize the makespan, it is better to call the

evaluation function as a cost function not a fitness function. But like other published

papers in this area, the well-known fitnessfunction term has been used, while the

goal is to minimize the fitness value.

3.4.5.3 Neighborhood Structures

There are various neighborhood structures proposed for JSSP in the literature. A list

of six popular neighborhood structures for JSSP is provided by Blazewicz et al. [20].

The authors called these six structures as N1 to N6. It has to be mentioned that the

successful neighborhood structures are based on critical operations. The first struc-

ture, so-called N1, is introduced by Van Laarhoven et al. [200]. N1 neighborhood

structure is the simplest structure which generates neighbors by swapping any two

adjacent critical operations.

Neighborhood structure N4 is introduced by Dell’Amico and Trubian [50] which

includes moving an internal operation to the very beginning or the very end within

a critical block. Nowicki and Smutnicki [146] introduced neighborhood structure N5

including swapping the first two operations or the last two operations of a critical
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block. Among the six neighborhood structures, N1 and N5 structures generate the

largest and the smallest neighborhood, respectively.

In our proposed method, we incorporate onlyN4 and N5 neighborhood structures.

It should be mentioned here that in our implementation we did not apply any pre-

processing or post-processing procedures for our moves. We just move one element

in the chromosome exactly like mutation operator.

3.4.5.4 Proposed VNS

Our proposed VNS consists of one Shake method and one LocalSearch method.

Applying Shake method followed by LocalSearch on an individual is called a run.

Using the Shake method, a neighbor individual of the current individual is generated.

Then the LocalSearch method finds the local optimum solution in the neighborhood

of that neighbor individual. In the Shake method, we applied four random consecu-

tive moves as follows.

Shake : N5→ N4→ N5→ N4

LocalSearch method incorporates both N4 and N5 as the regular neighborhood

searches and moreover it uses N5 as a nested neighborhood search. It should be men-

tioned that to save the computational time, we used the first improvement strategy

instead of the best improvement one in our LocalSearch method.

3.4.5.5 MA Framework

The overall framework of the proposed method is as follows. First, the GA generates

the initial population with PopSize random individuals. Then in each generation,

after applying genetic operators and generating offspring, the proposed VNS is applied

on the top best individuals of the current population and the offspring one. As

mentioned before, the top best individuals is a proportion of the whole population
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denoted by TopBest parameter. This routine continues for a predefined number of

iterations denoted by IterationNo parameter.

3.4.6 Results

The proposed algorithm is implemented and evaluated using the java programming

language version 1.6.0.18 on a system with Intel(R) Core(TM)2Quad 2.50GHz CPU

and 8.00GB RAM . The algorithm parameters are adjusted using extensive experi-

ments. We used a population of 100 individuals with the top 10 best individuals to

be evolved for 400 iterations.

To evaluate the performance of the proposed method it has been applied on clas-

sical JSSP. One of the well-known benchmark in this area is introduced by Lawrence

[113] including 40 different problems with different size. All the evaluations are ex-

perimented by 10 independent runs for each problem.

In order to compare the proposed method with a single VNS, the proposed VNS

itself is also applied on this benchmark. Regarding the time complexity of proposed

VNS and GA, it should be mentioned that the most time consuming part of these

algorithms is fitness evaluation, and the time required for the rest is negligible com-

pared to fitness evaluation time complexity. Therefore, the single VNS is applied for

200,000 runs (Shake followed by LocalSearch) in order to have the same number

of fitness evaluations for both proposed MA and VNS. So the comparison would be

fair. Table 3.14 presents some sample results 1 of applying both proposed MA and

proposed VNS on LA benchmark.

The experimental results show that the proposed method finds the optimal solu-

tions for 34 LA test problems out of 40, and the proposed VNS itself finds 33 optimal

solutions. In other words, the proposed MA finds the optimal solution for test prob-

lem la25, while the proposed VNS cannot reach to that solution. Comparing all the

1To see all the results please refer to Subsection 3.4.8. These results are also accessible online at
http://cs.uwindsor.ca/∼raeesim/NaBIC/Statictical-Analysis.pdf
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Table 3.14: Sample Results on LA Benchmark

Method Problem (BK) Best Average SD Median Worst

VNS la25 (977) 979 985.7 5.40 984.0 996
MA 15× 10 977 981.1 3.11 981.5 984
VNS la29 (1152) 1169 1187.0 15.19 1185.0 1216
MA 20× 10 1163 1175.4 9.65 1178.0 1188
VNS la36 (1268) 1291 1294.6 6.26 1291.5 1311
MA 15× 15 1281 1285.2 5.43 1281.0 1292
VNS la37 (1397) 1397 1420.5 12.55 1422.5 1442
MA 15× 15 1397 1398.9 2.13 1398.0 1402

results show that the proposed MA always offers a good solution, while the range

of obtained makespans by VNS are much wider. Consider test problem la37 for an

instance. Our proposed MA finds the optimal solution for this test problem 5 times

in 10 independent runs, while the single VNS finds the optimal solution only 1 time

in 10 runs. Moreover, comparing the average, median, standard deviation and worst

found solutions shows that the proposed MA is more stable to find good quality solu-

tions than the single VNS. Comparing the results over all 40 test problems shows that

the proposed MA outperforms the proposed VNS itself by offering better solutions as

well as better convergence rate.

The results obtained by the VNS itself shows that it suffers from its inefficient

search space exploration since it offers the results with a wide range of quality. This

limitation is defeated by the efficient exploration of a GA. Therefore, this combina-

tion always offers good quality solutions. In order to show the performance of the

proposed method, the state-of-the-art methods in this area are considered for com-

parison, including a hybrid EA and our published MA, and a hybrid GA. It should

be mentioned that all these three algorithm are recently published. The hybrid EA

proposed by Zobolas et al. [225] incorporates VNS as its local search method. More-

over, they used Differential Evolution (DE) to generate a valuable initial population.

Our recently published MA [169] incorporate a simple local search method to find

the optimal solutions. The hybrid GA proposed by Qing-dao-er-ji and Wang [45]

102



Table 3.15: Comparison among Different EAs proposed recently to solve JSSP

Problem BK
hEA (2009) MA (2012) hGA (2012) Proposed Proposed

[225] [169] [45] VNS MA

LA20 902 - 907 (0.55%) 907 (0.55%) 902 (0.00%) 902 (0.00%)
LA21 1046 1046 (0.00%) 1053 (0.67%) 1046 (0.00%) 1046 (0.00%) 1046 (0.00%)
LA22 927 927 (0.00%) 927 (0.00%) 935 (0.86%) 927 (0.00%) 927 (0.00%)
LA24 935 935 (0.00%) 941 (0.64%) 953 (1.93%) 935 (0.00%) 935 (0.00%)
LA25 977 977 (0.00%) 984 (0.72%) 981 (0.41%) 979 (0.20%) 977 (0.00%)
LA27 1235 1236* (0.08%) 1256 (1.70%) 1236* (0.08%) 1244 (0.73%) 1238 (0.24%)
LA28 1216 1224 (0.66%) 1223 (0.58%) 1216 (0.00%) 1216 (0.00%) 1216 (0.00%)
LA29 1152 1160* (0.69%) 1187 (3.04%) 1160* (0.69%) 1169 (1.48%) 1163 (0.95%)
LA36 1268 1268 (0.00%) 1276 (0.63%) 1287 (1.50%) 1291 (1.81%) 1281 (1.03%)
LA37 1397 1408 (0.79%) 1401 (0.29%) 1407 (0.72%) 1397 (0.00%) 1397 (0.00%)
LA38 1196 1202* (0.50%) 1208 (1.00%) 1196 (0.00%) 1208 (1.00%) 1208 (1.00%)
LA39 1233 1233 (0.00%) 1240 (0.57%) 1233 (0.00%) 1241 (0.65%) 1241 (0.65%)
LA40 1222 1229* (0.57%) 1233 (0.90%) 1229* (0.57%) 1233 (0.90%) 1233 (0.90%)

Avg. ER 0.27% 0.87% 0.56 0.52% 0.37%

introduced new genetic operators as well as a new local search method specified for

JSSP.

To save the space in this article, the results on the most challenging test problems

are represented in Table 3.15. To have a fair comparison over these 13 test problems,

the Error Rate (ER) parameter is incorporated which is defined as follows.

ER =
C − LB
LB

× 100%

where C is the best solution found by an algorithm and LB is the best-known solution.

The ER values for each test problem are represented in brackets in Table 3.15, and

the last row shows the average ER over 13 test problems. This comparison shows that

our proposed MA offers competitive solutions compared to state-of-the-art methods.

3.4.7 Conclusions

In this article, a VNS is combined with a GA to improve its performance. VNS which

is one of the most recent metaheuristics in combinatorial optimization problem, has

103



been successfully applied in various research areas. In spite of its successfulness,

it suffers from its inefficient search space exploration. The main contribution of this

paper is to increase the exploration capability of a VNS by incorporating a population-

based search such as a GA.

The experiments show that the single VNS offers solutions in different qualities.

Sometimes it finds the optimal solution and sometimes it returns an awful solution.

Combining VNS with a GA offers a more powerful algorithm than the VNS itself.

The experimental results determine that the proposed MA always results good quality

solutions and outperforms the simple VNS over all the test problems. In other words,

the proposed MA benefits from the efficient search space exploration of a GA and

the powerful exploitation strategy of a VNS. While the proposed MA is introduced

to show the effectiveness of VNS search exploration, the results obtained by this

method represents its performance over combinatorial optimization problems such

that compared to the state-of-the-art methods, the proposed MA offers competitive

solutions.

3.4.8 Complete Results

Table 3.16 represents the complete results of our proposed MA as well as single VNS

on a well-known benchmark introduced by Lawrence [113].

Table 3.16: Results on the Lawrence [113] benchmark (la01-la40)

Problem Size BK Algorithm Best Average SD Median Worst

la01 10×5 666
VNS 666 666 0.00 666 666

MA 666 666 0.00 666 666

la02 10×5 655
VNS 655 655 0.00 655 655

MA 655 655 0.00 655 655

Table 3.16 – Continued on next page
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Table 3.16: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la03 10×5 597
VNS 597 597 0.00 597 597

MA 597 597 0.00 597 597

la04 10×5 590
VNS 590 590 0.00 590 590

MA 590 590 0.00 590 590

la05 10×5 593
VNS 593 593 0.00 593 593

MA 593 593 0.00 593 593

la06 15×5 926
VNS 926 926 0.00 926 926

MA 926 926 0.00 926 926

la07 15×5 890
VNS 890 890 0.00 890 890

MA 890 890 0.00 890 890

la08 15×5 863
VNS 863 863 0.00 863 863

MA 863 863 0.00 863 863

la09 15×5 951
VNS 951 951 0.00 951 951

MA 951 951 0.00 951 951

la10 15×5 958
VNS 958 958 0.00 958 958

MA 958 958 0.00 958 958

la11 20×5 1222
VNS 1222 1222 0.00 1222 1222

MA 1222 1222 0.00 1222 1222

la12 20×5 1039
VNS 1039 1039 0.00 1039 1039

MA 1039 1039 0.00 1039 1039

la13 20×5 1150
VNS 1150 1150 0.00 1150 1150

MA 1150 1150 0.00 1150 1150

la14 20×5 1292
VNS 1292 1292 0.00 1292 1292

MA 1292 1292 0.00 1292 1292

Table 3.16 – Continued on next page
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Table 3.16: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la15 20×5 1207
VNS 1207 1207 0.00 1207 1207

MA 1207 1207 0.00 1207 1207

la16 10×10 945
VNS 945 945 0.00 945 945

MA 945 945 0.00 945 945

la17 10×10 784
VNS 784 784 0.00 784 784

MA 784 784 0.00 784 784

la18 10×10 848
VNS 848 848 0.00 848 848

MA 848 848 0.00 848 848

la19 10×10 842
VNS 842 842 0.00 842 842

MA 842 842 0.00 842 842

la20 10×10 902
VNS 902 906.2 1.58 907 907

MA 902 906.0 2.11 907 907

la21 15×10 1046
VNS 1046 1059.1 12.79 1057.5 1085

MA 1046 1049.5 4.09 1048.0 1058

la22 15×10 927
VNS 927 927 0.00 927 927

MA 927 927 0.00 927 927

la23 15×10 1032
VNS 1032 1032 0.00 1032 1032

MA 1032 1032 0.00 1032 1032

la24 15×10 935
VNS 935 941.9 4.51 982.0 984

MA 935 941.9 3.93 942.5 946

la25 15×10 977
VNS 979 985.7 5.40 984.0 996

MA 977 981.1 3.11 981.5 984

la26 20×10 1218
VNS 1218 1218 0.00 1218 1218

MA 1218 1218 0.00 1218 1218

Table 3.16 – Continued on next page
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Table 3.16: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la27 20×10 1235
VNS 1244 1254.1 6.77 1255.0 1264

MA 1238 1250.9 9.77 1249.5 1265

la28 20×10 1216
VNS 1216 1219.2 6.60 1216 1234

MA 1216 1217.7 2.87 1216 1223

la29 20×10 1152
VNS 1169 1187.0 15.19 1185 1216

MA 1163 1175.4 9.65 1178 1188

la30 20×10 1355
VNS 1355 1355 0.00 1355 1355

MA 1355 1355 0.00 1355 1355

la31 30×10 1784
VNS 1784 1784 0.00 1784 1784

MA 1784 1784 0.00 1784 1784

la32 30×10 1850
VNS 1850 1850 0.00 1850 1850

MA 1850 1850 0.00 1850 1850

la33 30×10 1719
VNS 1719 1719 0.00 1719 1719

MA 1719 1719 0.00 1719 1719

la34 30×10 1721
VNS 1721 1721 0.00 1721 1721

MA 1721 1721 0.00 1721 1721

la35 30×10 1888
VNS 1888 1888 0.00 1888 1888

MA 1888 1888 0.00 1888 1888

la36 15×15 1268
VNS 1291 1294.6 6.26 1291.5 1311

MA 1281 1285.2 5.43 1281.0 1292

la37 15×15 1397
VNS 1397 1420.5 12.55 1422.5 1442

MA 1397 1398.9 2.13 1398.0 1402

la38 15×15 1196
VNS 1208 1223.6 8.80 1225 1236

MA 1208 1216.2 3.52 1217 1221

Table 3.16 – Continued on next page
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Table 3.16: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la39 15×15 1233
VNS 1241 1247.3 4.90 1247 1258

MA 1241 1245.7 3.09 1246 1250

la40 15×15 1222
VNS 1233 1239.0 5.19 1239.5 1246

MA 1233 1239.2 4.92 1239.5 1247
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3.5 Incorporating highly explorative methods to

improve the performance of Variable Neigh-

borhood Search

Abstract. Variable Neighborhood Search (VNS) is one of the most re-

cently introduced metaheuristics. Although VNS is successfully applied

on various problem domains, there is still some room for it to get im-

proved. While VNS has an efficient exploitation strategy, it suffers from

its inefficient solution space exploration. To overcome this limitation,

VNS can be joined with explorative methods such as Evolutionary Al-

gorithms (EAs) which are global population-based search methods. Due

to its effective search space exploration, Differential Evolution (DE) is a

popular EA which is a great candidate to be joined with VNS. In this

article, two different DEs are proposed to be combined with VNS. The

first DE uses explorative evolutionary operators and the second one is a

Multi-Population Differential Evolution (MP-DE). Incorporating a num-

ber of sub-populations improves the population diversity and increases the

chance of reaching to unexplored regions. Both proposed hybrid methods

are evaluated on the classical Job Shop Scheduling Problems. The exper-

imental results reveal that the combination of VNS with more explorative

method is more reliable to find acceptable solutions. Furthermore, the

proposed methods offer competitive solutions compared to the state-of-

the-art hybrid EAs proposed to solve JSSPs.
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3.5.1 Introduction

Optimization is an area of research where the goal is to optimize a system based on

its input parameters. In general, an optimization problem is defined as finding the

best set of input parameters to make a system as effective as possible. Optimization

problems are categorized into two classes based on the type of their input parame-

ters. The problems with continuous parameters are classified as global optimization

problems, while the ones with discrete parameters are considered as combinatorial

optimization problems. The focus of this paper is on a permutation problem which

is a combinatorial optimization problem.

Various types of algorithms are proposed to solve optimization problems. A num-

ber of heuristics are presented to deal with very specific optimization problems. Al-

though they perform well in their applicable domain, they cannot offer the same

performance for related problem domains. Local search, for instance, is a heuristic

which starts at an initial random solution, looks for a better solution in the neighbor-

hood of its current solution, and returns the best found solution when it converges.

Due to the fact that heuristics are not successful in general, metaheuristics are

presented which are general procedures to design heuristics for optimization problems.

Metaheuristics are so-called complex heuristics. For example, there are a number of

extended versions of simple local search such as Repeated Local Search (RLS) and

Iterated Local Search (ILS). Since a local search might trap into local optimal regions,

its execution for a number of times increases the chance of finding an acceptable

solution. This strategy is known as RLS. ILS is an extended version such that it

incorporates the best solutions found in previous executions. In fact, instead of

starting from another random solution, ILS perturbs the recently found best solution

and continues.

Variable Neighborhood Search (VNS) is one of the most recently introduced meta-

heuristics proposed by Mladenovic and Hansen [136]. VNS can also be considered as
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an extended version of ILS. The idea of VNS is to incorporate a number of neigh-

borhood structures and switch among them at the time of local search execution.

VNS starts with searching locally with respect to one neighborhood structure and it

switches to another one as soon as it converges. This strategy decreases the chance

of immature convergence dramatically.

Due to its generality, VNS is successfully applied in various areas such as the

Traveling Salesman Problem [55], the Open Vehicle Routing problem [57], the p-

Median problem [56], and the Graph problem [24].

The performance of VNS is highly dependent to the definition of its neighborhood

structures. Complement neighborhood structures provide VNS a powerful exploita-

tion strategy. However, since VNS is a local search approach, there is still some chance

of trapping into a local optimum by spinning in some previously investigated regions.

Although a number of different strategies such as Parallel VNS [42], Multi-Start VNS

[127], and Population-based VNS [205] are proposed to overcome this limitation, VNS

cannot perform well as a global approach to deal with complex optimization problems;

it suffers from its inefficient solution space exploration.

A more effective way to enhance VNS is to join it with a highly explorative method.

In fact, the solution space exploration should be conducted by the joint method to

find promising regions and VNS should be responsible for exploiting the promising

regions. It is expected for this combination to have a great performance. In our

recently published article [167], we incorporated a Genetic Algorithm (GA) [93] as the

joint method. This combination which is a Memetic Algorithm (MA) [139] benefits

a global population-based approach for its exploration and a powerful local search

method as its exploitation strategy. The results of this combination show that the

GA helps VNS to offer a better performance compared to the single VNS as a global

method.
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In this article, two more approaches are presented to improve the performance of a

VNS. The first approach is to combine VNS with a Differential Evolution (DE) [191].

DE is a popular evolutionary method due to its powerful solution space exploration,

and therefore it could be the best candidate to be combined with VNS. Although this

combination is one of the bests in terms of incorporating both powerful exploration

and exploitation strategies, there is still some chance of immature convergence. An

approach to decrease this chance is to incorporate multiple populations for DE. Di-

viding the whole population into a number of sub-populations decreases the chance

of trapping into local optimal regions. When a sub-population converges to a local

optimum, it can recover itself by incorporating the knowledge migrated from other

sub-populations. In other words, in this article two methods are proposed including

the joint of DE and VNS and combination of Multi-Population Differential Evolution

(MP-DE) and VNS.

The main contribution of this article is to represent the impact of different

population-based searches with different levels of exploration on the performance of

VNS. Since VNS is a powerful local search with a great exploitation strategy, it is ex-

pected that its combination with more explorative methods offer better performance.

In order to evaluate the proposed methods, Job Shop Scheduling Problem (JSSP)

is considered as our test bed. JSSP is a well-known combinatorial optimization

problem which is considered as a complex problem based on the dependency of its

input parameters to each other.

The remainder of this article is organized as follows. Subsection 3.5.2 briefly

introduces VNS, followed by an introduction of DE and MP-DE in Subsections 3.5.3

and 3.5.4, respectively. The problem domain of JSSP is concisely defined in Subsection

3.5.5. The proposed methods are described in details in Subsection 3.5.6, followed by

representing the experimental results in Subsection 3.5.7. Finally the last subsection

illustrates the conclusion remarks.
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3.5.2 Variable Neighborhood Search

A simple local search method determines a neighborhood area for each solution which

is defined based on a neighborhood structure. It starts with a feasible solution which

is usually selected randomly from the solution space. It then searches for a better

solution by applying some moves with respect to the neighborhood structure. The

main drawback of this simple structure is its immature convergence. If a local search

is trapped in a local optimum, it spins around the local optimal region and never

escape from that region. Therefore, instead of converging to the global optimum, it

converges to a local one. This issue is more crucial in complex optimization problems,

specially large ones, where the chance of trapping into local optima is higher.

To defeat this issue, VNS is introduced which incorporates a number of neighbor-

hood structures. VNS starts searching with respect to the first neighborhood structure

and as soon as it finds a local optimum it switches to the next neighborhood structure.

This routine continues until an optimum with respect to all neighborhood structures

is reached. Therefore, complement neighborhood structures provides a more powerful

VNS.

It can be concluded that the idea of VNS comes from the following facts:

1. A local optimal solution in one neighborhood area is not necessarily a local

optimum in another neighborhood area.

2. A global optimal solution is a local optimal solution for all possible neighbor-

hood areas.

3. In general, local optimal solutions within one or more neighborhood structures

are relatively close to each other.

Although the last one is not really a fact for all optimization problems, it is an

empirical observation implying that a local optimal solution may carry some useful

information about other local optimal solutions and even the global optimum.
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3.5.3 Differential Evolution

Evolutionary Algorithms (EAs) are a class of algorithms inspired by the natural se-

lection. EAs are global population-based search methods incorporating evolutionary

operators including recombination, modification and selection. Differential Evolu-

tion (DE) is the most recently introduced EA proposed by Storn and Price [191] .

DE which is designed to solve continuous optimization problems shows remarkable

performance on various continuous optimization problems such as space trajectory

optimization [201] and multi-area economic dispatch [183].

The key characteristic of DE which makes it a popular EA is its effective solution

space exploration. DE incorporates a number of mathematical equations in order to

highly explore the solution space. DE defines each solution as a d-dimensional vector

of real numbers and uses its mutation and crossover equations to generate offspring.

Although DE has a strong exploration strategy, due to its inefficient exploitation

mechanism it is not able to perform well on complex optimization problems. There-

fore, DE is a good candidate to be joined with a local search method. Recently, a

number of successful hybrid DEs are reported in the literature such as the combination

of a DE and an adaptive local search published by Noman and Iba [144].

As mentioned before, DE was designed to deal with continuous optimization prob-

lems. In order to apply it on combinatorial optimization problems, two approaches

have been introduced. The first approach is to incorporate a transformation pro-

cedure such that each solution can be mapped from continuous domain to discrete

one and vice versa. It should be noted that the mapping from continuous domain

to discrete must be a many-to-one mapping (n → 1). Incorporating this strategy

provides a continuous domain for DE to be applied on. There are a number of suc-

cessful applications of this approach on permutation optimization problems such as

the ones published by Onwubolu and Davendra [151], Qian et al. [162], and Zhang

and Wu [223]. The second approach is to modify DE’s operators to be applicable in
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a discrete domain. Modifying DE’s operators makes it a specific algorithm for the

problem domain and there is no guarantee to obtain the same performance. Two

successful modified DEs are published by Pan et al. [153] and Wang et al. [203] to

solve flow-shop scheduling. As presented in details in Subsection 3.5.6, the former

approach is incorporated in our proposed methods.

All the components of DE are defined mathematically. The solution space S

is a d-dimensional domain of real numbers and each solution s is determined as a

d-dimensional vector:

S = D0 ×D1 × ...×Dd−1 (3.3)

s = [x0, x1, ..., xd−1] , xj ∈ Dj (3.4)

where xj represents the value of solution s for dimension j ranging from 0 to d− 1.

DE starts with an initial population of randomly generated solutions. The pop-

ulation is evolved over a number of generations. A solution within the population

so-called target vector is denoted by the generation number and an index. For in-

stance, target vector Xi,g represents the ith target vector of generation g:

Xi,g = [x0,i,g, x1,i,g, ..., xd−1,i,g] (3.5)

where xj,i,g represents the value of target vector Xi,g for dimension j ranging from 0

to d− 1.

The recombination and modification operators of DE are also defined as mathe-

matical formulae. The mutation operator applies on a target vector Xi,g and gener-

ates a new vector which is called mutant vector denoted by Vi,g. The basic mutation

equation is presented in Equation 3.6:

Vi,g = Xr1,g + F × (Xr2,g −Xr3,g) (3.6)
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where Xr1,g, Xr2,g, and Xr3,g are three different randomly selected target vectors.

Xr1,g is called the base vector and the other two are called perturbing vectors. F is

a scale factor to determine how much to perturb the base vector.

There are various mutation equation incorporated by different researchers. Each

equation is determined based on its base vector and the number of perturbations. The

basic mutation equation illustrated in Equation 3.6, for instance, is called DE/rand/1

which means that the base vector is a randomly selected target vector and the per-

turbation is done only one time. Four more equations are presented by Price et al.

[161] which are presented as follows:

DE/rand/2 :

Vi,g = Xr1,g + F1 × (Xr2,g −Xr3,g) + F2 × (Xr4,g −Xr5,g) (3.7)

DE/best/1 :

Vi,g = Xbest,g + F × (Xr1,g −Xr2,g) (3.8)

DE/best/2 :

Vi,g = Xbest,g + F1 × (Xr1,g −Xr2,g) + F2 × (Xr3,g −Xr4,g) (3.9)

DE/current− to− best/1 :

Vi,g = Xi,g + F1 × (Xbest,g −Xi,g) + F2 × (Xr1,g −Xr2,g) (3.10)

where Xr1,g, Xr2,g, Xr3,g, Xr4,g, and Xr5,g are randomly selected target vectors, Xbest,g

denotes the best found solution so far, and F , F1, and F2 are scale factors.

Equation 3.11 represents one more mutation equation which is introduced by

Wisittipanich and Kachitvichyanukul [207]:
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DE/localbest/1 :

Vi,g = Xilbest,g + F × (Xr1,g −Xr2,g) (3.11)

where Xr1,g and Xr2,g are randomly selected target vector, Xilbest,g denotes the local

best solution of target vector Xi,g, and F is a scale factor.

These equations use different base vectors and different levels of perturbation.

The more important point is that although Equations 3.10 and 3.11 incorporates the

target vector Xi,g either explicitly or implicitly, other equations generate the mutant

vector Vi,g regardless of the target vector Xi,g. Nevertheless, the crossover operator

incorporates both the target vector Xi,g and the mutant vector Vi,g to generate a trial

vector Zi,g. The most popular crossover operator for DE is binomial crossover which

is illustrated in Equation 3.12:

zj,i,g =

 vj,i,g if rj ≤ Cr or j = jrand

xj,i,g otherwise
(3.12)

where rj is a random number uniformly distributed in interval [0, 1) selected for the

jth dimension, Cr is the crossover probability which could be either fixed or dynamic,

and jrand is a randomly selected dimension to ensure that the trial vector Zi,g differs

from target vector Xi,g at least in one dimension.

After generating trial vectors, a selection function is incorporated by DE to select

the better solutions for the next generation. Comparing the target vector Xi,g and

the trial vector Zi,g, this function selects the one with the better objective value as a

target vector for the next generation denoted by Xi,g+1.

Xi,g+1 =

 Zi,g if f(Zi,g) ≤ f(Xi,g)

Xi,g otherwise
(3.13)

117



3.5.4 Multi-Population Differential Evolution

In Multi-Population Differential Evolution (MP-DE), the whole population is divided

into a number of sub-populations and each sub-population is evolved by a local DE.

Local DEs may communicate with each other in order to exchange knowledge. The

main reason to incorporate a number of sub-populations instead of a single population

is to decrease the chance of premature convergence. In fact, this strategy helps the

method to maintain the population diversity and consequently it increases the chance

of exploring unvisited regions.

There are various MP-DEs with different characteristics proposed in the literature.

A parallel DE is proposed by Tasoulis et al. [196] in which the local DEs communicate

with each other by migrating their best found solutions in a ring topology. The

migrated solutions replace the randomly selected solutions in the destination sub-

populations. Tasgetiren and Suganthan [195] proposed a MP-DE which incorporates a

re-grouping strategy. The mutation strategy in this method selects the random target

vectors from the whole population instead of just the corresponding sub-population.

In addition to the solution migration, there are a number of strategies for MP-DE

in which only the DE parameters are exchanged among the sub-populations. Yu and

Zhang [218] proposed a MP-DE in which in each generation the successful local DEs

send their own parameters to other local DE to adjust theirs. The factor value in

mutation equation and the crossover probability are considered as the exchanging

control parameters in this method.

Furthermore, there are a number of strategies where no exchange occurs at all.

The MP-DE proposed by Mendes and Mohais [132] which is called DynDE defines

an acceptable distance between the best solutions of different sub-populations as

a threshold. If such a distance gets smaller than the threshold, one of the sub-

populations will be re-initialized.
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3.5.5 Job Shop Scheduling Problem

In order to evaluate our proposed methods, the Job Shop Scheduling Problem (JSSP)

is selected as our test bed. Being applicable in various research areas makes JSSP

a well-known class of combinatorial optimization problems. JSSP is defined as the

process of sequencing a number of jobs to be completed on a number of machines in

order to utilize the resources as efficient as possible. The most popular objective in

JSSP is to decrease the total time required to perform all the existing jobs. Therefore,

the goal is to minimize the maximum completion time of all the jobs, called the

makespan.

Garey et al. [65] proved that the JSSP problems including more than two machines

are NP-complete which implies that there is no exact algorithm capable to find the

optimal solution for all the sample problems in an acceptable time. Since JSSP is

a complex permutation optimization problem which is still an open problem, it is a

great case study to evaluate the new proposed methods.

Although there are various versions of JSSP represented in literature, in general,

JSSP is defined by Baker [11] as a task of scheduling N jobs denoted by Ji to be

processed on M machines denoted by mk, where i is the job index and k is the

machine index ranging from 1 to N and 1 to M , respectively. Each job consists of

a number of operations which have to be processed in a pre-defined sequence. Each

operation is denoted by Oij where i is the job index and j is the operation index in

the ith job. In classical JSSP, there are a number of rules which may be partially

shared with other types of JSSP. These rules are presented as follows:

1. Jobs are independent to each other and are available at the beginning.

2. There is no due date for any jobs.

3. All the jobs have the same number of operations which is equal to the number

of applicable machines.
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Table 3.17: A sample 3× 3 classical JSSP

Jobs
Operation Index
O1 O2 O3

J1 m3,3 m1,3 m2,2
J2 m1,2 m2,3 m3,2
J3 m1,2 m2,3 m3,2

Machines
Jobs

J1 J2 J3
m1 O12,3 O21,2 O31,2
m2 O13,2 O22,3 O32,3
m3 O11,3 O23,2 O33,2

Figure 3.14: A sample schedule for the sample problem.

4. Each machine processes only one operation of a job which cannot be interrupted.

5. There is only one applicable machine for each operation such that there is no

machine selection flexibility for operations.

6. The processing time of each operation on its applicable machine is known and

the machine set up time and the movement time between machines are consid-

ered negligible.

A sample classical JSSP is illustrated in Table 3.17 in two different formats, namely

job-based and machine-based. The sample problem is a 3×3 problem including 3 jobs

to be processed on 3 machines. The table represents the applicable machine for each

operation and its corresponding processing time. The second operation of the first

job (O12), for instance, has to be processed on the first machine (m1) for 3 time units.

A sample schedule for this problem is depicted in Fig. 3.14. The sample schedule has

the makespan of 12 which is not the minimum makespan for this sample problem.

There are a number of important concepts in JSSP such that reaching the optimal

solution without considering these concepts is almost impossible. The most important

concepts are critical paths, critical blocks and critical operations. A critical path is

the longest path of consecutive operations in a schedule starting from time zero and

ending at the makespan. A schedule has at least one critical path. Critical paths
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are important because they determine the makespan and the only way to decrease

the makespan is to break all the critical paths. Therefore, in order to define efficient

neighborhood structures for local search heuristics, breaking the critical paths should

be considered as an approach to reach better solutions.

The operations on the critical paths are called critical operations. In other words,

critical operations are such operations that any delay in their processing increases

the makespan of the whole schedule. A critical operation may belongs to more than

one critical paths. A sequence of adjacent critical operations on the same machine is

called a critical block.

In the sample schedule presented in Fig. 3.14, for example, there are two critical

paths including:

CriticalPaths :

 O21 ≺ O31 ≺ O32 ≺ O22 ≺ O13

O21 ≺ O31 ≺ O32 ≺ O22 ≺ O23

Therefore, there are 6 critical operations in the sample schedule where 4 of them

are on two different critical paths. The critical blocks are as follows.

CriticalBlocks :


m1 : O21 ≺ O31

m2 : O32 ≺ O22 ≺ O13

m3 : O23

In fact, there is only one critical operation on the third machine and there is no

sequence of critical operations. Therefore, considering it as a critical block does not

have any effect on the process of optimization. The first and the last operations in a

critical block are called block head and block rear, respectively, and others are called

internal operations.

In addition to the critical operations, there are a number of terms which should

be defined clearly. The following terms are used later to describe neighborhood struc-
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tures. There are two different kinds of operation sequence in a schedule including

job operation sequence and machine operation sequence. The former determines the

sequence of operations of a job which is predefined in classical JSSP, while the latter

one represents the sequence of operations which have to be processed on a specific

machine. The adjacent operations, namely the previous operation and the next one,

of an operation in a sequence are called its predecessor and successor operations,

respectively. In fact, in a job operation sequence they are called Job-Predecessor

operation and Job-Successor operation of an operation Oi,j denoted by JP (Oi,j) and

JS(Oi,j), respectively. MP (Oi,j) and MS(Oi,j) also represent Machine-Predecessor

and Machine-Successor operations of an operation Oi,j, respectively. Since the oper-

ation sequence for each job is predefined, the following statements are always right,

provided Oi,j+1 and Oi,j−1 exist:

JS(Oi,j) = Oi,j+1

JP (Oi,j) = Oi,j−1

Another valuable concept in JSSP is active schedule which is very useful to limit

the solution space. An active schedule is defined by Croce et al. [43] as a schedule

which does not have any operation that can be started earlier without delaying the

process of another operation. Based on this definition, an optimal solution is more

likely an active solution and even if it is not, it has an equivalent active schedule

which is optimal as well. It should be noted here that an equivalent schedule is a

schedule with the same makespan and the same critical paths which could have one

or more different machine operation sequences. Each active schedule may have many

equivalent non-active schedules and therefore the solution space of active schedules

is much smaller than the main solution space. Consequently, exploring the active

solution space is more efficient compared to searching in the whole solution space.
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Various strategies are represented in order to incorporate the active schedule concept

such as the gap reduction rule proposed by Hasan et al. [87] and the priori knowledge

introduced by Becerra and Coello [14].

3.5.6 Proposed Methods

As mentioned before, VNS has a powerful exploitation strategy which suffers from its

inefficient search space exploration. In order to enhance VNS, we published recently

a combination of a GA and a VNS [167]. The results show that incorporating a

population-based global search improves the results of VNS applications. In this

article, more explorative methods are joined with VNS in order to illustrate their

effects on the final results. It is expected that the results should be improved more

compared to ones recently published [167]. Two methods are proposed in this article

which are the combination of VNS with two different DEs. The first proposed method

incorporates a simple DE while the second one benefits from a MP-DE which has a

more explorative mechanism.

In our proposed methods, VNS is combined with EAs in order to improve its per-

formance. As defined by Moscato [139], these combinations are considered as Memetic

Algorithms (MAs). In general, a MA is defined as a combination of a population-

based global search and a local search heuristic to solve optimization problems. The

population-based global search provides an effective solution space exploration for a

MA and the local search highly exploits the promising regions. Therefore, the per-

formance of a MA should be higher than each of the combined methods. Various

successful applications of MAs have been reported in the literature such as the MAs

published by Gao et al. [63], Caumond et al. [28], and Chiang et al. [33] to deal

with scheduling problems. Since both proposed methods in this article as well as the

methods published previously [167] are instances of MA, in order to differentiate them
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in this article they are called based on their combination as VNS+DE, VNS+MPDE

and VNS+GA, respectively.

The details of both proposed methods are represented in the following sub-

subsections starting with the description of solution representation in Sub-

subsection 3.5.6.1. The neighborhood structures incorporated in our proposed

VNS are described in Sub-subsection 3.5.6.2 followed by the definition of the genetic

operators of the proposed DE and MPDE in Sub-subsection 3.5.6.3. Finally, the

frameworks of both proposed methods are illustrated in Sub-subsection 3.5.6.4.

3.5.6.1 Solution Representation

As mentioned before, in order to apply DE on combinatorial optimization problems,

there are two approaches. In our proposed methods, the transformation strategy is

incorporated. Therefore, two different solution representations are considered; one

in discrete domain and one in continuous. The proposed DE and MPDE deal with

the representation in a continuous domain, while in order to evaluate each solution it

should be transformed to a permutation domain to be considered as a JSSP solution.

Various representations with different characteristics are proposed for JSSP. Per-

mutation with repetition representation introduced by Bierwirth [18] is one of the

well-known representations. As an operation-based representation, this representa-

tion encodes a schedule based on the sequence of the operations into a string of

digits. The length of the string equals to the total number of operations in a schedul-

ing problem and each operation is denoted by its job index in the string. Therefore

the operations of the same job are denoted by the same index. Considering the opera-

tion dependency within a job operation sequence, the operations with the same index

are differentiated based on the occurrence number of the corresponding index. For

instance, the second occurrence of the third job’s index denotes the second operation

of the third job (O32). A sample solution for the sample problem illustrated in Table
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3.17 is represented in permutation with repetition representation as follows:

{1, 2, 3, 1, 3, 2, 3, 2, 1}

The decoding of this sample solution results in the following operation sequence:

O11 ≺ O21 ≺ O31 ≺ O12 ≺ O32 ≺ O22 ≺ O33 ≺ O23 ≺ O13

This operation sequence generates the following schedule which is depicted as a

Gantt chart in Fig. 3.14.

m1 : O21 ≺ O31 ≺ O12

m2 : O32 ≺ O22 ≺ O13

m3 : O11 ≺ O33 ≺ O23

The key advantage of permutation with repetition representation is that all the

possible permutations in this representation are feasible solutions. Therefore, the

decoding mechanism is straightforward such that no repair mechanism is required.

The main drawback of this representation is its inefficient many-to-one mapping (n→

1). In fact, there could be a huge number of different permutations which are decoded

to the same schedule. The schedule illustrated in Fig. 3.14 might be decoded from

the following permutations (not limited to):

{1, 2, 3, 1, 3, 2, 3, 2, 1} {1, 2, 3, 3, 1, 2, 3, 2, 1}

{1, 2, 3, 3, 2, 1, 3, 2, 1} {1, 2, 3, 3, 2, 3, 1, 2, 1}

{1, 2, 3, 3, 2, 3, 2, 1, 1} {2, 1, 3, 3, 2, 3, 2, 1, 1}

{2, 3, 1, 3, 2, 3, 2, 1, 1} {2, 3, 3, 1, 2, 3, 2, 1, 1}
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{2, 3, 3, 2, 1, 3, 2, 1, 1} {2, 1, 3, 1, 3, 2, 3, 2, 1}

{2, 3, 1, 1, 3, 2, 3, 2, 1} {2, 3, 1, 3, 1, 2, 3, 2, 1}

{2, 3, 1, 3, 2, 1, 3, 2, 1} {2, 3, 1, 3, 2, 3, 1, 2, 1}

However, due to its coding and decoding efficiency, permutation with repetition

representation is incorporated by various researchers. In our proposed method, we

also use this representation.

As a representation in continuous domain, random key representation is selected

for our proposed methods. In this representation, a solution is represented as a vector

of real numbers. Each dimension in this vector corresponds to one operation. The

following vector illustrates a sample solution for the sample problem described in

Table 3.17.

{0.49, 0.98, 0.38, 0.42, 0.73, 0.51, 0.48, 0.89, 0.63}

The corresponding value for each operation in this sample solution is presented

as follows. The minimum value, for instance, corresponds to O13 which means that

this operation should be started first. Due to the operation dependency within a job

operation sequence, O11 is processed first instead of O13.

Operation O11 O12 O13 O21 O22 O23 O31 O32 O33

Job Index 1 1 1 2 2 2 3 3 3
Random Key 0.49 0.98 0.38 0.42 0.73 0.51 0.48 0.89 0.63

In order to transform a solution from random key representation to permutation

with repetition representation, Smallest Position Value (SPV) rule [194] is incorpo-

rated, in which the job indices should be sorted based on their corresponding random

key values ascendingly which is as follows:

Random Key 0.38 0.42 0.48 0.49 0.51 0.63 0.73 0.89 0.98

Job Index 1 2 3 1 2 3 2 3 1
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The sorted string of job indices is the equivalent solution in the discrete domain

which is

{1, 2, 3, 1, 2, 3, 2, 3, 1}

where its encoded operation sequence is presented as follows.

O11 ≺ O21 ≺ O31 ≺ O12 ≺ O22 ≺ O32 ≺ O23 ≺ O33 ≺ O13

In addition to the fitness evaluation function, VNS works in the discrete domain

as well. Therefore, the results of VNS should be transformable to the continuous

domain. In order to do so, each solution in discrete domain updates its random key

when a swapping or insertion occurs, accordingly.

3.5.6.2 Neighborhood Structures

In order to be able to compare the proposed methods with the published ones [167],

the same neighborhood structures are incorporated in this article. In our recently

published methods [167], two neighborhood structures N4 and N5 were incorpo-

rated. These structures are two of the six popular neighborhood structures reviewed

by Blazewicz et al. [20] which are denoted by N1 to N6 by the authors. These

neighborhood structures are described briefly as follows:

• Neighborhood Structure N1: This structure defines the largest neighborhood

area by considering the swapping of two adjacent critical operations as a valid

move [200].

• Neighborhood Structure N2: This neighborhood structure considers the swap-

ping of two critical operations p and q as a valid move if either p is a block

head or q is a block rear. In order to improved the neighbor solutions two ad-

ditional moves are also considered which include the swapping of MP (JP (p))

and JP (p) and the swapping of JS(q) and MS(JS(q)) [129].
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• Neighborhood Structure N3: Considering p and q are two adjacent critical

operations, this structure looks into all permutations of three operations

{MP (p), p, q} as well as three operations {p, q,MS(q)} in which p and q are

swapped [50]. Since the neighborhood area of this structure is very large, a

limited version is introduced which is called N3′ in which either p or q should

be a block end.

• Neighborhood Structure N4: Moving an internal operation to the very begin-

ning or to the very end of a block is considered as a valid move in this structure

[50].

• Neighborhood Structure N5: This structure only swaps the first two opera-

tions or the last two operations of a critical block which makes the smallest

neighborhood area [146].

• Neighborhood Structure N6: This structure is an extension of all previously

described neighborhood structures. The valid moves in this structure include

moving q right before p if JP (p) belongs to the critical path and moving p

right after q if JS(q) belongs to the critical path, given p and q as two critical

operations on a critical block [12].

As mentioned above, only two neighborhood structures N4 and N5 are considered

in our proposed methods without any pre-processing or post-processing procedures.

The structure of the incorporated VNS is exactly the same as the one recently pub-

lished [167] which includes a Shake method followed by a LocalSearch method. The

Shake method consists of four consecutive random moves with respect to the follow-

ing neighborhood structures.

Shake : N5→ N4→ N5→ N4
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The LocalSearch method incorporates both the regular neighborhood search and

the nested neighborhood search. In regular one, both neighborhood structures N4

and N5 are considered while for the nested search only the smaller neighborhood (N5)

is incorporated. In terms of local search strategy, in order to save the computational

time, the first improvement strategy is incorporated instead of the best improvement

one [167].

3.5.6.3 Genetic Operators

As DE is incorporated in order to increase the exploration power, it should be de-

signed using more explorative evolutionary operators. The most explorative mutation

strategy is DE/rand/1 which is illustrated in Equation 3.6. Incorporating this strat-

egy in our experiment declares that this strategy is not useful for JSSP because it does

not keep any information regarding previous generations. Other strategies presented

in Equations 3.7 through 3.11 are more exploitative than explorative. Therefore, a

new mutation strategy is introduced in this article which is called DE/current/1

presented as follows:

Vi,g = Xi,g + F × (Xr1,g −Xr2,g) (3.14)

where Xi,g is the current target vector, Xr1,g and Xr2,g are two different randomly

selected target vectors, and F is a scale factor.

Although this strategy incorporates the existing target vectors, it is more explo-

rative compared to other strategies while benefiting from the evolved solutions instead

of just random ones. The combination of both DE/current/1 and DE/rand/1 is also

evaluated on some JSSP benchmark problems. In this combination, for a top portion

of a population DE/current/1 is incorporated while for the rest of the population

DE/rand/1 is used. It was expected to obtain good performance for this combina-

tion, but it returns poor results. Therefore, only DE/current/1 is incorporated as

129



the mutation strategy in the proposed DE and MP-DE with a small difference. In

order to provide a more explorative mutation strategy, a modification is considered

for MP-DE which will be described later in this subsection. To incorporate more in-

formation of the best found solution so far in case of no improvement for a number of

generations, the mutation strategy switches to DE/current− to− best/1 illustrated

in Equation 3.10.

For the crossover operator, the binomial crossover illustrated in Equation 3.12

is considered for both proposed methods exactly the same. Like for the crossover

operator, both proposed methods incorporate the same selection function which is

presented in Equation 3.13. It should be noted here that in order to consider more

information in selection procedure, instead of a simple evaluation function, a Priority-

Based Fitness Function (PBFF) [169] is incorporated. The idea of this function comes

from the fact that in simple evaluation functions when a tie happens the winner is

selected arbitrarily while it could be selected based on a comparison with respect to

another factor. In PBFF, a number of factors are defined with different priorities

and then the comparison procedures considers lower priority factors in case of ties in

higher priority factors.

In our proposed methods, a PBFF is incorporated such that the first priority factor

is the makespan and the second one is the number of critical machines. Based on

this fitness function, if two schedules have the same makespan, the selection function

selects the one with the lower number of critical machines. If they have the same

number of critical machines, one of them will be selected randomly.

3.5.6.4 Frameworks

The first proposed method is a combination of DE and VNS, so-called VNS+DE.

The framework of the proposed DE+VNS is illustrated in Fig. 3.15 which starts with

an initial population of random solutions (line 03). PopSize denotes the size of the
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PROCEDURE: VNS+DE
INPUT: Algorithm Parameters and Problem Specification
OUTPUT: Optimal or Near-Optimal Solutions

01 BEGIN
02 g ← 0

03
Generate an initial population P0 with

PopSize random solutions
04 REPEAT
05 FOR ( Each Target Vector Xi,g of Pg)
06 Vi,g ←Mutate(Xi,g)
07 Zi,g ← Crossover(Xi,g, Vi,g)
08 Xi,g+1 ← Selection(Xi,g, Zi,g)
09 END FOR
10 FOR ( Each Top Target Vector Xi,g+1 )
11 Li,g+1 ← V NS(Xi,g+1)
12 END FOR
13 Construct population Pg+1

14 g ← g + 1
15 UNTIL (termination criteria are met)
16 Output The Best Found Solution
17 END

Figure 3.15: The framework of the VNS+DE

population which is fixed during the evolution. In each generation, first DE evolves the

population and then VNS applies on a top best portion of the evolved population. DE

incorporates its mutation, crossover and selection operators to explore the solution

space (lines 05 through 09). Then the exploitation of the promising regions (the

neighborhood of the top best solutions) is conducted by VNS (lines 10 through 12).

The top best solutions are determined using TopBest parameter which is fixed for

all generations. In our proposed method, in order to find out the top best solutions

the whole population is sorted in each generation. After the application of VNS, its

results combined with the rest of the population provides the population for the next

generation denoted by Pg+1 (line 13). This routine continues until the criteria are

met (line 15). A maximum number of generations is considered as our termination

criterion denoted by MaxGen.
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Table 3.18: Parameters of the Proposed Methods

Parameter Value
MaxGen 200
PopSize 1000
TopBest 100
SubPopsNo 5
Mutate(Xi,g) Equations 3.14 and 3.10
Crossover(Xi,g, Vi,g) Equation 3.12
Selection(Xi,g, Zi,g) Equation 3.13 with a PBFF

The second proposed method is a combination of a VNS and a Multi-Population

Differential Evolution denoted by VNS+MPDE. Although this method is similar to

the proposed VNS+DE, it benefits from the concept of multiple populations. In

this method, first the whole population is divided into a number of sub-populations

denoted by SubPopsNo and then each sub-population is evolved by a local DE.

As mentioned before, the local DEs incorporate both DE/current/1 and

DE/current − to − best/1 illustrated in Equations 3.14 and 3.10, respectively. The

point is that in order to enhance the solution space exploration the random target

vectors in both mutation strategies for each sub-population is selected from other

sub-populations. This mechanism increases the population diversity and improves

the chance of reaching unexplored regions.

3.5.7 Results

Both proposed algorithms are implemented using the java programming language

version 1.6.0.18 and the experiments are conducted on a system with Intel(R)

Core(TM)2Quad 2.50GHz CPU and 8.00GB RAM . The algorithm parameters

presented in Table 3.18 are adjusted through extensive experiments. A population of

1000 individuals with the top 100 best individuals are evolved for 200 generations.

In order to evaluate the performance of the both proposed methods, classical JSSP

is considered as the our test bed. The data set introduced by Lawrence [113] is one
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of the well-known benchmark for classical JSSP which includes 40 different problems

with various sizes. Both proposed methods are applied on all the 40 test problems for

50 independent runs. Both proposed methods find the optimal solution for 28 test

problems in every run. The results of the experiments on the rest of the problems

which are more challenging are presented in Table 3.19.

Table 3.19: Results on the challenging problems of LA Benchmark

Problem Method Best Average SD Median Worst Hit

LA20
VNS 902 906.72 1.13 907.0 907 2

VNS + GA 902 906.46 1.49 907.0 907 3

10× 10 VNS + DE 902 906.30 1.63 907.0 907 3

902 VNS + MPDE 902 905.98 1.95 907.0 907 7

LA21
VNS 1046 1058.18 7.96 1056.0 1077 4

VNS + GA 1046 1053.28 3.85 1054.0 1060 8

15× 10 VNS + DE 1046 1049.86 3.49 1049.0 1056 16

1046 VNS + MPDE 1046 1049.40 3.11 1048.0 1054 18

LA24
VNS 935 944.42 5.60 944.0 960 1

VNS + GA 935 943.00 3.52 943.0 949 1

15× 10 VNS + DE 935 941.16 2.44 941.0 945 2

935 VNS + MPDE 935 940.98 2.38 941.0 944 3

LA25
VNS 978 984.62 4.38 984.0 1000 2

VNS + GA 977 982.48 2.22 983.0 987 2

15× 10 VNS + DE 977 981.18 2.21 982.0 984 3

977 VNS + MPDE 977 979.50 1.88 979.0 983 7

LA27
VNS 1238 1251.44 8.66 1251.0 1265 3

VNS + GA 1238 1251.60 6.58 1252.0 1263 4

20× 10 VNS + DE 1236 1248.58 6.74 1250.0 1262 1

1235 VNS + MPDE 1235 1248.12 6.78 1250.0 1256 3

Table 3.19 – Continued on next page
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Table 3.19: (continued from previous page)

Problem Method Best Average SD Median Worst Hit

LA28
VNS 1216 1219.76 6.49 1216.0 1234 29

VNS + GA 1216 1218.72 3.61 1217.0 1228 23

20× 10 VNS + DE 1216 1216.68 1.56 1216.0 1223 37

1216 VNS + MPDE 1216 1216.26 0.60 1216.0 1218 41

LA29
VNS 1169 1188.26 10.96 1190.5 1210 1

VNS + GA 1163 1180.88 7.29 1180.5 1194 1

20× 10 VNS + DE 1163 1177.12 6.47 1177.5 1190 2

1152 VNS + MPDE 1163 1176.86 6.69 1178.0 1187 2

LA36
VNS 1281 1291.88 5.77 1291.0 1309 7

VNS + GA 1277 1289.48 6.35 1291.0 1302 4

15× 15 VNS + DE 1274 1287.78 6.12 1291.0 1298 1

1268 VNS + MPDE 1271 1284.70 5.94 1286.0 1291 1

LA37
VNS 1397 1420.22 11.08 1420.0 1442 1

VNS + GA 1397 1403.40 8.07 1401.0 1433 2

15× 15 VNS + DE 1397 1409.46 6.99 1408.5 1421 5

1397 VNS + MPDE 1397 1408.74 6.08 1408.0 1418 5

LA38
VNS 1207 1229.34 16.72 1229.5 1265 1

VNS + GA 1207 1220.52 5.76 1219.0 1237 1

15× 15 VNS + DE 1206 1215.88 3.62 1216.0 1225 1

1196 VNS + MPDE 1202 1215.38 3.76 1216.0 1220 1

LA39
VNS 1240 1246.76 4.11 1248.0 1256 4

VNS + GA 1240 1248.40 3.17 1249.0 1253 5

15× 15 VNS + DE 1238 1247.52 2.60 1249.0 1249 2

1233 VNS + MPDE 1238 1246.80 3.25 1248.0 1249 3

Table 3.19 – Continued on next page
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Table 3.19: (continued from previous page)

Problem Method Best Average SD Median Worst Hit

LA40
VNS 1231 1240.98 4.83 1242.0 1249 1

VNS + GA 1230 1238.94 5.40 1239.0 1252 2

15× 15 VNS + DE 1228 1235.62 3.49 1234.5 1242 1

1222 VNS + MPDE 1228 1235.26 3.99 1234.0 1242 2

In order to have a fair comparison with the recently published methods [167],

these methods including the simple VNS and the combination of the VNS with a GA

are also re-applied on the benchmark problems for 50 independent runs. The results

of these experiments are also presented in Table 3.19 which is slightly different than

the ones presented in the previously published article. This small difference is due to

the fact that the published results are experimented for 10 independent runs while

the new ones are averaged over 50 runs.

As presented in Table 3.19, the simple VNS can find the optimal solution for

5 challenging test problems out of 12, while the VNS+GA and the VNS+DE are

able to find the optimal solution for the same 6 problems, and the VNS+MPDE is

able to offer the optimal solution for 7 test problems. In total, the simple VNS, the

VNS+GA, the VNS+DE and the VNS+MPDE find the optimal solutions for 33, 34,

34 and 35 test problems out of 40, respectively.

In addition to offering the optimal solution for more test problems, the

VNS+MPDE offers more acceptable solutions compared to the other methods.

In other words, not only the VNS+MPDE can find better solutions with a lower

makespan, but also the range of its results for 50 independent runs is smaller

compared to the result ranges of other methods. The average, median and worst

results presented in Table 3.19 which are calculated over the 50 runs proves this
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claim. For test problem la38, for instance, not only the best solution is found by

the VNS+MPDE, but also the range of its obtained solutions in the 50 runs is from

1202 to 1220 (19 time units wide) which is thinner compared to this range for other

methods specially the simple VNS which is from 1207 to 1265 (59 time units wide).

In order to compare all the four method over all the 12 challenging test problem,

the Error Rate (ER) parameter is incorporated which is defined as follows:

ER =
C − LB
LB

× 100%

where C is the makespan of a solution found by the methods and LB is the best-

known solution. The ER values for the best, average and worst solutions for each

methods are calculated and represented in Table 3.20. In this table, the zero errors

are emphasized with bold face and the average ERs over all the 12 test problems are

presented in the last three rows. Comparing all the ERs illustrates that the proposed

VNS+MPDE is the most reliable method to find acceptable solutions. The next

reliable method is the proposed VNS+DE, and the least reliable one is the simple

VNS. This statement is represented in a graph in Fig. 3.16 more clearly.

This comparison proves our hypothesis mentioning that combining a VNS with

more explorative methods offers better solutions. Explorative methods increases the

chance of finding the promising regions in a solution space which can be exploited by

the VNS. Exploiting more promising regions improves the final results which increases

the reliability of finding acceptable solutions.

In order to evaluate the performance of both proposed methods, they are also

compared with the state-of-the-art methods in this area . Three recently published

methods are considered for this comparison including a hybrid EA proposed by Zobo-

las et al. [225], our published MA [169] and a hybrid GA proposed by Qing-dao-er-ji

and Wang [45]. The hybrid EA incorporates VNS as its local search method and uses
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Table 3.20: Comparison of the best, average and worst results of the proposed meth-
ods.

Problem VNS VNS+GA VNS+DE VNS+MPDE

LA20
Best 0.00% 0.00% 0.00% 0.00%
Average 0.52% 0.49% 0.48% 0.44%
Worst 0.55% 0.55% 0.55% 0.55%

LA21
Best 0.00% 0.00% 0.00% 0.00%
Average 1.16% 0.70% 0.37% 0.33%
Worst 2.96% 1.34% 0.96% 0.76%

LA24
Best 0.00% 0.00% 0.00% 0.00%
Average 1.01% 0.86% 0.66% 0.64%
Worst 2.67% 1.50% 1.07% 0.96%

LA25
Best 0.10% 0.00% 0.00% 0.00%
Average 0.78% 0.56% 0.43% 0.26%
Worst 2.35% 1.02% 0.72% 0.61%

LA27
Best 0.24% 0.24% 0.08% 0.00%
Average 1.33% 1.34% 1.10% 1.06%
Worst 2.43% 2.27% 2.19% 1.70%

LA28
Best 0.00% 0.00% 0.00% 0.00%
Average 0.31% 0.22% 0.06% 0.02%
Worst 1.48% 0.99% 0.58% 0.16%

LA29
Best 1.48% 0.95% 0.95% 0.95%
Average 3.15% 2.51% 2.18% 2.16%
Worst 5.03% 3.65% 3.30% 3.04%

LA36
Best 1.03% 0.71% 0.47% 0.24%
Average 1.88% 1.69% 1.56% 1.32%
Worst 3.23% 2.68% 2.37% 1.81%

LA37
Best 0.00% 0.00% 0.00% 0.00%
Average 1.66% 0.46% 0.89% 0.84%
Worst 3.22% 2.58% 1.72% 1.50%

LA38
Best 0.92% 0.92% 0.84% 0.50%
Average 2.79% 2.05% 1.66% 1.62%
Worst 5.77% 3.43% 2.42% 2.01%

LA39
Best 0.57% 0.57% 0.41% 0.41%
Average 1.12% 1.25% 1.18% 1.12%
Worst 1.87% 1.62% 1.30% 1.30%

LA40
Best 0.74% 0.65% 0.49% 0.49%
Average 1.55% 1.39% 1.11% 1.09%
Worst 2.21% 2.45% 1.64% 1.64%

Avgerage ER
Best 0.42% 0.34% 0.27% 0.22%
Average 1.44% 1.13% 0.97% 0.91%
Worst 2.82% 2.01% 1.57% 1.34%
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Figure 3.16: Comparison of the best, average and worst results of the proposed meth-
ods.

DE to generate a valuable initial population. Our recently published MA incorporates

a GA combined with a local search heuristic. The hybrid GA introduces new genetic

operators and incorporates a new local search method specifically designed for JSSP.

The results of this comparison are presented in Table 3.21 which illustrates the

ER values in brackets, the optimal solutions in bold face, and the best solutions

with an asterisk (*). Since the hybrid GA [45] cannot find the optimal solution

for test problem LA22, this problem should be added to the 12 challenging test

problems. Therefore for this comparison, 13 test problems are considered and the

last row in the table illustrates the average ERs over the 13 test problems. It should

be noted here that in the hybrid EA [225] the result for the test problem LA20 is

not reported. Therefore, excluding this test problem the average ER equals to 0.27%,

while considering that it may find the optimal solution for this test problem decreases

its average ER to 0.25%. However, our proposed VNS+MPDE offers the best average

ER.
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Table 3.21: Comparison with different hybrid EAs proposed recently to solve JSSP

Prob. BK
hEA (2009) MA (2012) hGA (2012) Proposed Proposed

[225] [169] [45] VNS+DE VNS+MPDE

LA20 902 - 907 (0.55%) 907 (0.55%) 902 (0.00%) 902 (0.00%)
LA21 1046 1046 (0.00%) 1053 (0.67%) 1046 (0.00%) 1046 (0.00%) 1046 (0.00%)
LA22 927 927 (0.00%) 927 (0.00%) 935 (0.86%) 927 (0.00%) 927 (0.00%)
LA24 935 935 (0.00%) 941 (0.64%) 953 (1.93%) 935 (0.00%) 935 (0.00%)
LA25 977 977 (0.00%) 984 (0.72%) 981 (0.41%) 977 (0.00%) 977 (0.00%)
LA27 1235 1236 (0.08%) 1256 (1.70%) 1236 (0.08%) 1236 (0.08%) 1235 (0.00%)
LA28 1216 1224 (0.66%) 1223 (0.58%) 1216 (0.00%) 1216 (0.00%) 1216 (0.00%)
LA29 1152 1160* (0.69%) 1187 (3.04%) 1160* (0.69%) 1163 (0.95%) 1163 (0.95%)
LA36 1268 1268 (0.00%) 1276 (0.63%) 1287 (1.50%) 1274 (0.47%) 1271 (0.24%)
LA37 1397 1408 (0.79%) 1401 (0.29%) 1407 (0.72%) 1397 (0.00%) 1397 (0.00%)
LA38 1196 1202* (0.50%) 1208 (1.00%) 1196 (0.00%) 1206 (0.84%) 1202* (0.50%)
LA39 1233 1233 (0.00%) 1240 (0.57%) 1233 (0.00%) 1238 (0.41%) 1238 (0.41%)
LA40 1222 1229 (0.57%) 1233 (0.90%) 1229 (0.57%) 1228* (0.49%) 1228* (0.49%)

Avg. ER 0.27% (0.25%) 0.87% 0.56% 0.27% 0.22%

The proposed VNS+MPDE can find the optimal solution for 8 test problems out

of 13 which is the highest number compared to the other methods. Furthermore, this

method offers the best solution for two more test problems. The results of the pro-

posed VNS+MPDE is not better than the others just for 3 test problems LA29, LA36

and LA39. Among these five methods, only three methods can find solutions with

ER less than 1 for all test problems which include the hybrid EA [225] and the both

proposed methods. Although there is not a significant difference between the pro-

posed methods and the hybrid EA, our proposed VNS+MPDE slightly outperforms

all the mentioned state-of-the-art methods.

3.5.8 Conclusions

VNS is one of the most recent metaheuristics proposed to deal with optimization

problems. Although it has been successfully applied in various research areas, its

mechanism is highly exploitative and it lacks an efficient search space exploration

strategy. Recently, we published an article claiming that VNS is highly a local search

metaheuristic and in order to have a great performance as a global search it should
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be combined with an explorative method [167]. In the published article, VNS is

combined with a GA and results show that this combination outperforms the simple

VNS. In this article, two more explorative methods are combined with VNS in order

to improve the final results. The first combined method is DE which is more explo-

rative compared to GA. The second one is a more explorative method which is a DE

incorporating multiple populations. Dividing the whole population into a number of

sub-populations decreases the chance of premature convergence and encourages the

method to look into different regions.

Both proposed combinations are evaluated on the same benchmark. The experi-

ments show that the proposed VNS+MPDE outperforms all the other combinations

by offering highly acceptable solutions in every run. While the incorporated VNS is

the same for all the combinations, as expected more explorative methods offer better

solutions. Compared to the single VNS which returns solutions with different quali-

ties, the joined VNS with more explorative methods show higher reliability in terms

of finding acceptable solutions. Although the proposed methods are just introduced

to show the effects of combining explorative methods with VNS in its performance,

they offer competitive solutions compared to the state-of-the-art methods.

Acknowledgment

This work is made possible by a grant from the National Science Foundation and

NSERC Discovery No. 327482.

140



3.6 Conclusions

This chapter presents my published MAs to deal with JSSPs. These MAs include

different combinations of population-based global search methods and local search

heuristics. The MAs presented in Sections 3.2 and 3.3 are the combinations of GA

and local search heuristics, while Sections 3.4 and 3.5 present a combination of a GA

and a VNS and a combination of a DE and a VNS, respectively.

In addition to the proposed MAs, a new representation for JSSP is introduce in

Section 3.2. The proposed representation which is called Machine Operation Lists

(MOL) outperforms the most well-known existing representations. Since this repre-

sentation is designed only for classical JSSPs, the proposed MA incorporating this

representation is applied only on the classical JSSPs.

Furthermore, Section 3.3 introduces a new fitness function in addition to the new

local search heuristic for JSSPs. The new fitness function which is called Priority-

Based Fitness Function considers different parameters of a solution with different

priority levels instead of the only fitness value used in traditional fitness functions.

The experiment results show that incorporating the proposed fitness function im-

proves the final solutions by saving the individuals which have better characteristics.

The proposed MA represented in Section 3.3 is a general method applicable on

different types of JSSPs. Its successful applications on classical, flexible and multi-

objective flexible JSSPs have been reported.

As mentioned before, VNS is one of the most recent metaheuristics which has been

successfully applied in various research areas. In spite of its successful applications, it

suffers from its inefficient search space exploration. In other words, it is more likely a

local search heuristic, not a global search method. Therefore, the combination of VNS

with a population-based global search is expected to be a more efficient method. The

MA represented in Section 3.4 is a combination of a GA and a VNS which significantly

outperforms the VNS as a single method. Moreover, this combination is also improved
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by incorporating a more explorative method instead of a GA. The improved method

which is described in Section 3.5 is a combination of a DE and the same VNS. This

combination is also improve by incorporating a Multi-Population DE (MPDE) which

is a more explorative method compared to the traditional DE.

The proposed combinations of VNS are compared with the state-of-the-art evo-

lutionary methods. The comparison results reveal that although there is not a sig-

nificant difference between the performance of the proposed methods and that of the

hybrid EAs, my proposed MAs and specially the combination of VNS and MPDE

slightly outperform the state-of-the-art methods.

In order to improve the proposed methods, a number of approaches have been

considered as the future directions for this research including:

• As mentioned before, the proposed MOL representation is designed only for clas-

sical JSSPs. Therefore, its corresponding MA is only applicable on a restricted

problem domain. Generalizing the proposed representation is considered as a

future direction in order to make the proposed MA applicable in a wide range

of JSSP problem domains including flexible JSSPs and multi-objective JSSPs.

• Evaluating the applications of the general MA described in Section 3.3 on other

types of JSSPs, specially Stochastic Flexible Job Shop Scheduling, is also con-

sidered as the future work.

• As it has been shown that VNS is more likely a local search heuristic, a fu-

ture direction is considered as improving its search space exploration by adding

some features or manipulating its framework instead of hybridizing with more

explorative methods.
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Chapter 4

Multi-Population Cultural

Algorithm: A Survey on

Architectures

4.1 Introduction

A Cultural Algorithm (CA) is an Evolutionary Algorithm (EA) which was developed

by Reynolds (1994) [175]. CA is successfully applied in various areas such that there

are a lot of research efforts done in using CA. CA extracts knowledge from its popu-

lation during evolution and then incorporates the extracted knowledge to amend its

search mechanism. Incorporating knowledge helps CA to find better solutions as well

as to improve its convergence rate.

The architecture of CA is demonstrated in Figure 4.1. CA consists of two different

spaces including population space and belief space. The population space contains

the individuals and works like all other EAs. The individuals are being evolved in this

space to find the optimal solution. Belief space is considered as a storage space for

the extracted knowledge. The knowledge is recorded in, updated, and accessed from
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Figure 4.1: CA Architecture

the belief space. The population space communicates with belief space through two

links, namely acceptance function and influence function. The population space sends

its best individuals to the belief space through the acceptance function. The belief

space updates its own knowledge and passes the updated knowledge to population

space through the influence function. Then the received knowledge is used to generate

offspring from current population. It is possible to say that the CA works like other

EAs such as Genetic Algorithm (GA), but in addition it uses the knowledge to control

the genetic operators to guide the evolution direction.

Almost all of the existing CAs in the literature use a single population. A CA

incorporating multiple populations concept was first introduced by Digalakis and

Margaritis (2002) [51] to schedule electrical generators. Afterwards, other researcher

from different areas applied this concept in their problem domain. In this survey, a

CA which uses multiple populations is called Multi-Population Cultural Algorithm

(MP-CA).

A number of strategies are proposed to benefit multi-population concept in a CA.

Using a number of population spaces with a shared belief space, for instance, is one

of the strategies. Moreover, a CA with multiple populations needs more parameters
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to be adjusted such as the number of sub-populations, their communication type,

communication rate, and updating knowledge. The number of sub-populations is

fixed in some methods, while in others there is a dynamic routine which sets the

number of sub-populations.

In this survey, all the published methods incorporating MP-CA are discussed. By

the knowledge of the author and based on the extensive research in this area, there

is no more published methods to be considered. As mentioned before, the earliest

MP-CA was published in 2002, but the majority of the other existing MP-CAs have

been published in the last two years. It means that recently there is more interest to

use a CA with multiple populations and the area of MP-CA is growing so fast.

The published MP-CAs appeared in various areas, mainly in Optimization Prob-

lems. These methods can be classified into the following categories based on their

problems domain:

1. Optimization Problems (2002).

2. Supply Chain Management (2006).

3. Multimodal Optimization Problems (2007).

4. Neurofuzzy Inference System Training (2008).

5. Interactive Applications (2009).

The number in the brackets shows the year when the earliest paper in each cat-

egory was published. For instance, the first MP-CA in the ares of multimodal opti-

mization problems was published in 2007.

The structure of this survey is as follows. The published MP-CAs are described

based on their problems domain starting with the area of optimization problems in

section 4.2. The method in supply chain management is presented in section 4.3,

followed by the methods in multimodal optimization problems in section 4.4. Section
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4.5 describes the MP-CAs proposed to train neurofuzzy inference systems and section

4.6 presents the interactive applications of MP-CAs. Finally, the last section presents

the concluding comments and future direction.

4.2 Optimization Problems

The field of Optimization Problems (OP) is the first area in which MP-CA was

introduced. The optimization problem also known as the constraint optimization

problem is a class of problems for which there is an optimization function required to

satisfy a number of constraints. There are a number of well-known problems in this

area such as Multiple Knapsack Problem (MKP).

Digalakis and Margaritis [51] introduced a MP-CA for the first time. Though the

first MP-CA in OP was introduced in 2002, recently there has been more interest in

applying MP-CA to optimization problems. The majority of the published papers

in this area were in the last two years, which means that this research area attracts

more interest recently and it is becoming more mature.

4.2.1 Master-Slave Approach

The electrical generator maintenance scheduling problem which involves a combina-

torial optimization is still an open problem. There are a number of methods offering

the optimal solution for small-size problems, but there is no method that guarantees

finding the optimal solution for all problems. Digalakis and Margaritis [51] proposed

a MP-CA to solve electrical generator scheduling.

Digalakis and Margaritis [51] refer to different types of algorithms that have been

proposed to deal with resource constrained project scheduling problem, which includes

traditional heuristics such as dynamic programming [226, 212], modern heuristics such

as Simulated Annealing (SA) [107, 177], and population based search such as GA [67],
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Figure 4.2: MP-CA Architecture of [51]

Hybrid GAs [26, 27] and parallel CAs [131]. However, the authors did not mention

any shortcoming of existing methods in the literature.

Digalakis and Margaritis [51] propose a Parallel Co-operating Cultural Algorithm

(PARCA) to solve the electrical generator scheduling problem. The proposed method

is a master-slave approach, in which the master processor generates the initial pop-

ulation and manages it, while the slave processors execute different CAs on different

sub-populations. The architecture of their proposed method is illustrated in Fig-

ure. 4.2. Their CAs are GA-based methods incorporating local search heuristics.

Three different local search approaches are used in their proposed algorithm includ-

ing Guided Local Search (GLS), Simulated Annealing (SA) and Tabu Search (TS).

For GLS local optimizer, the authors refer to the job done by Moscato and Holstein

[140]. Each CA uses one of the mentioned local search heuristics, arbitrarily.

Each sub-population uses different operators and parameter values. For example,

some sub-populations use adaptive crossover probability whereas others do not. In

their design, sub-populations use different data sets and communicate with each other

using Message-Passing Interface (MPI) [46] to migrate good individuals. When there

is no improvement for a CA after a given number of generations, it accepts immi-

grant from a different sub-population. They used three as the number of generations

without improvement and 10% for the migration rate.
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Digalakis and Margaritis used three problems to evaluate their proposed method.

These problems which are described in detail in [180] have been used by other re-

searchers [27] for their comparison. Four different versions of PARCA were tested

to find out the best combination. These versions include a combination of PARCA

with only TS, its combination with SA, its combination with GLS and its combina-

tion with all the three local optimizers. They also investigated the effect of number

of processors in the performance of the proposed method by experimenting different

number of processors from one to six.

By comparing different types of proposed algorithm, the authors claim that the

algorithm which uses all three local search heuristics outperforms the others which use

only one type of local search approaches. They also claim that using more distributed

processors decreases the number of generations needed to find the optimal solution,

which is because of decreasing the probability of facing local optima.

Digalakis and Margaritis [51] state that their proposed method produces better

results, while its execution time is the same or slightly more. It should be mentioned

that they do not mention any comparison between their work to others’.

4.2.2 Knowledge Migration Strategy

In this section, there is no specific problem to be solved, but overall optimization

problems are referred as the main areas where CAs have been successfully applied.

However, Guo et al. [74] proposed a new idea which is exchanging knowledge among

sub-populations instead of migrating individuals.

In the case of single-population CAs, Guo et al. [74] refer to the methods which

combine CAs with different optimization methods such as work done by Becerra and

Coello [16] and Coelho and Mariani [34]. As the existing CAs with multi-population

model, the authors refer to the algorithm proposed by Digalakis and Margaritis [51] to

deal with electrical generator scheduling optimization (discussed in subsection 4.2.1),
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and the proposed method by Alami et al. [8] which uses fuzzy clustering to divide

population into sub-populations (discussed in subsection 4.4.1).

The CA proposed by Digalakis and Margaritis [51] is a MP-CA in which individ-

uals are migrated between sub-populations as the cultural exchange. [74] state that

exchanging individuals instead of implicit knowledge limits the performance of the

evolutionary process. They also mention that there are no details about the cultural

exchange for another multi-population CA [8].

Guo et al. [74] propose a knowledge-migration-based MP-CA for the first time.

Their proposed method migrates knowledge instead of the exact individuals. Since

the knowledge has more information about the previous generations and the direction

of evolution, it would be more effective to be migrated between sub-populations. In

their model, population is divided into a number of sub-populations evenly, and then

a CA is applied to each of them. The cultural exchange occurs every predefined

number of generations.

Each local CA uses the best individuals by the acceptance function to update

its own belief sub-space which stores normative knowledge as well as topographic

knowledge. Normative knowledge keeps a record of the feasible search space, while

topographic knowledge determines the distribution of current best individuals in the

feasible search space. It divides the search space into some cells and assigns at-

tributes to the cells determining the possibility of existing the optimal solution in the

corresponding cells.

The knowledge in the belief space is used by an influence function to induce

the mutation operator for generating offspring. An influence proportion function is

proposed to determine how many individuals should be influenced by each of type of

knowledge. Moreover, a strategy is proposed to merge the migrated knowledge with

the private knowledge for each sub-population. Only the topographic knowledge is

considered in this strategy.
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Figure 4.3: MP-CA Architecture of [76]

Guo et al. [74] used three benchmark functions to evaluate their proposed method.

They present a table including the results of application of a traditional CA, the

method introduced by Digalakis and Margaritis [51] and their proposed method. But

there is no information saying what the numbers in that table are.

Guo et al. [74] claim that their proposed method has the best performance com-

pared with the traditional CA and the method proposed by Digalakis and Margaritis

[51] for both efficiency and effectiveness. They state that knowledge migration makes

the model more effective, since it has useful information about the evolution process.

An extended version of Guo et al. [74] is published by Guo et al. [76]. In the new

version, they provide a figure to show their proposed architecture which is represented

in Figure 4.3.

In addition to Guo et al. [74], the authors mention that there are five types of

knowledge used by different researchers in implementation of CAs including situa-

tional knowledge, normative knowledge, topographic knowledge, domain knowledge
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and history knowledge [19]. But only both normative knowledge and topographic

knowledge have been considered for the proposed method.

It should be noted that for generating offspring, parent selection and knowledge se-

lection are done by a roulette selection approach [204]. Moreover, the communication

topology between sub-populations is considered as ring or mesh [111].

Guo et al. [76] carried out experiments on three different high-dimension bench-

mark functions. They also defined three different performance measures to evaluate

the performance of the proposed method which include average optimal solution,

average convergence iteration and average iteration when optimal solution appears

for the fist time. To show the effect of the cultural exchange frequency, the authors

examined their proposed method for four different rates. The proposed method was

tested over both communication topologies; ring and mesh.

Guo et al. [76] claim that based on the results of experiments on the cultural

exchange frequency, the best rate is every three generations. They state that a lower

number of generations increases the communication cost, and moreover, it makes the

migrated knowledge to be more similar to the private one, and controversially, the

larger number decreases the effect of migrated knowledge on the evolutionary process.

The authors also claim that the mesh topology has better performance than the ring,

while the ring structure has lower cost of communication.

Comparing with the traditional CA and another multi-population CA [51], they

claim to have better performance in both solution quality and time complexity.

Guo et al. [76] state that by incorporating knowledge migration instead of indi-

vidual migration in multi-population Cultural Algorithms the convergence speed is

increased and better solutions are explored.
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4.2.3 Multi-population Cultural Genetic Algorithm (MCGA)

The Multiple Knapsack Problem (MKP) is a well-known NP-complete optimization

problem which is applicable in a wide range of research areas. da Silva and de Oliveira

[44] proposed a MP-CA to deal with MKP.

da Silva and de Oliveira [44] refer to the multipopulation model described by

Tomassini [197] which divides the population into sub-populations called island mod-

els. Overall, island models are isolated from each other, but they accept migrated

individuals from other sub-populations. They also refer to the work done by Lin et

al. [121] which investigate the effects of different model parameters such as size of

sub-population and migration size and frequency. The authors also refer to the clas-

sification of paralleled EAs, mainly GAs [142], which defines four categories including

global master-slave, island, cellular, and hierarchical parallel GAs.

da Silva and de Oliveira [44] did not mention any shortcomings of the existing

methods in the literature. They just mentioned that they want to investigate the

effect of the multi-population model and its parameters on the performance of CAs.

da Silva and de Oliveira [44] propose a MP-CA called Multi-population Cultural

Genetic Algorithm (MCGA) to solve the MKP. The architecture of their proposed

method is illustrated in Figure 4.4. They divide the population into sub-populations

and apply a genetic-based CA to each sub-population. In their model, a communica-

tion link has been considered between the belief spaces of different CAs which accept

migrations from other populations. CAs communicate with each other every prede-

fined number of generations. In each communication, 20% of the best individuals are

migrated to the belief space.

da Silva and de Oliveira [44] carried out a number of experiments using benchmark

data sets. They claim that their proposed algorithm can find the best solution for

the sample test problems they used. The authors state that combining CA with

multi-population model increases search speed as well as convergence rate.
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Figure 4.4: MP-CA Architecture of [44]

4.2.4 Competitive Co-evolutionary Cultural Differential

Evolution (CCCDE)

The constraint optimization problem is a class of problems for which there is an opti-

mization function required to satisfy a number of constraints. The butane alkylation

process is a real-world constraint optimization problem where the optimization goal

is to maximize the profit of the process. Xu et al. [210] propose a MP-CA to solve

constraint optimization problem and they apply it to butane alkylation process as a

real problem.

As the application of CAs in different fields, Xu et al. [210] refer to the methods

proposed by Coello and Becerra (2002, 2003) [35, 36] and Yu and Gu [217]. The

authors state that the traditional CAs have a high chance to be trapped into local

optimal solutions, which makes it to be inaccurate and premature.

Xu et al. [210] propose a MP-CA which uses Differential Evolution (DE) as its evo-

lution process. The proposed algorithm which is called Competitive Co-evolutionary

Cultural Differential Evolution (CCCDE) divides the whole population into two sub-

populations. To implement competitive co-evolution, CCCDE uses competitive fit-

ness as the fitness function which is proposed by Peter and Jordan [156] and a compet-

itive strategy between different populations proposed by Gu et al. [73] as a diversity

measure. Considering only two sub-populations, the diversity measure is the differ-

ence between each sub-population’s competitive fitness. Using the proposed formula
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which contains three different threshold parameters, the premature convergence and

lack of diversity can be detected and fixed by re-initializing the inactive individuals,

which improves algorithm exploration.

Belief space records two types of knowledge including situational knowledge and

normative knowledge. In the situational knowledge, the best found solution and the

center individual are recorded. The center individual, which is the arithmetic average

of all individuals, moves population to the promising region. The authors state that

the idea of the center individual is inspired by the center particle introduced by Liu et

al. [123]. The belief space which is updated by the top 20% of individuals, influence

the mutation operation by both situational and normative knowledge, separately. So,

two mutated individuals are generated for each individual.

Xu et al. [210] carried out experiment using four constrained optimization prob-

lems used by Koziel and Michalewicz [110]. To compare the results, each experiment

was done 30 times to a maximum of 1000 generations. The authors state that all

of the three threshold parameters are adjusted through extensive experiments, and

the effect of each is investigated. Moreover, as a real constrained optimization prob-

lem, the authors applied their proposed method to the butane alkylation process.

The optimizing model for this process is introduced by Bracken and McCormick [21]

including 7 variables and 11 constraints.

Xu et al. [210] state that regarding the results the proposed method offers better

solutions than Homomorphous Mapping (HM) proposed by Koziel and Michalewicz

[110], and Stochastic Ranking (SR) proposed by Runarsson and Yao [176]. The au-

thors also compare the results of CCCDE on the alkylation process with α-based

Branch and Bound (αBB) proposed by Adjiman et al. [3], Constrained Ant Colony

System (CACS) introduced by He and Chen [88] with different δ values, and CA with

Evolutionary Programming (CAEP) proposed by Huang et al. [94]. The authors

claim that the comparison shows that the proposed method outperforms CACS for
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two δ values of 0 and 5×10−6, while αBB, CACS for δ = 5×10−4, and CAEP outper-

forms CCCDE. However, the authors state that those algorithms violate constraints,

while CCCDE does not.

Xu et al. [210] claim that CCCDE has better performance as well as better

convergence efficiency, compared to HM and SR methods. Moreover, they also claim

that while considering constraints very well, their proposed method offers competitive

results.

4.2.5 Multi-population Cultural Differential Evolution

(MCDE)

The ammonia synthesis production is another real-world constrained optimization

problem where the optimization goal is to maximize the net value of ammonia. Xu

et al. [211] propose a MP-CA to deal with optimization problem and as a real-world

application they apply their method to ammonia synthesis production.

Xu et al. [211] refer to some existing Cultural Algorithms (CAs) which use differ-

ent types of Evolutionary Algorithms (EAs) to evolve their population space, such as

Genetic Algorithm (GA) used by Gao et al. [61], Particle Swarm Optimization (PSO)

proposed by Lin et al. [118] and Differential Evolution (DE) used by Becerra and

Coello [15]. They also state that Differential Evolution (DE) is a population-based

search introduced by Storn and Price [189] which uses a differential formulation to

generate the offspring population. The authors state that the traditional CA suffers

from trapping in local optimal solutions, which makes it premature and inaccurate.

Xu et al. [211] propose a Multi population Cultural Differential Evolution

(MCDE) which uses both situational knowledge and normative knowledge for its

belief space. In the situational knowledge, the optimal solution and center individual

are recorded in each iteration. The center individual is the mean vector of all
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individuals for each generation. The influence function of their model generates two

new individuals by mutation operation using both knowledge types.

Only two sub-populations are considered in the MCDE model. The cultural ex-

change between these two sub-population occurs every predefined number of gener-

ations, which is set to 10 in the experiments. In the exchange process, 10% of each

sub-population is selected randomly, then the better individuals, based on their fitness

values, replace the worse ones.

To guarantee population diversity, a procedure is proposed which evaluates culture

fusion between sup-populations using two parameters. If evaluation determines that

the diversity is fail, two sub-populations are merged to one, and one of the sub-

populations which has the shorter radius is re-initialized.

To evaluate proposed method, Xu et al. [211] considered 11 constrained optimiza-

tion problems which have been used by Koziel and Michalewicz [110]. They did the

experiments 30 times for each problem with a whole population size of 100 and 1000

generations. As the fitness function, they used the penalty function introduced by

Zangwill [219]. The authors mention that the algorithm parameters are tuned based

on many experiments. Moreover, the authors applied their proposed method to a

real chemical process which is called ammonia synthesis. A constrained optimization

model was derived for this problem which is a function of five different parameters.

Xu et al. [211] compare their results for the 11 optimization problems with those

of Homomorphous Mapping (HM) proposed by Koziel and Michalewicz [110] and

Stochastic Ranking (SR) approach introduced by Runarsson and Yao [176], and they

state that the proposed method offers better performance than the others by finding

the best solution for seven problems and the near optimal solutions for others. Re-

garding experiments on ammonia synthesis, the authors state that since the optimal

solutions are infeasible in the first 98 generations, their corresponding fitness value do
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Figure 4.5: MP-CA Architecture of [209]

not make sense and after 98th generation, the solutions move to feasible area, such

that the optimal solution is found.

Xu et al. [211] claim that their proposed algorithm offers better solution than some

of the existing approaches, and moreover, they state that it is capable of solving other

constrained optimization problems.

An extended version of Xu et al. [211] is published by Xu et al. [209]. In addition

to the references of Xu et al. [211], the authors of the newer version referred to multi-

population CAs proposed by Digalakis and Margaritis [51], Alami et al. [8], and Guo

et al. [76].

In the newer version [209] a figure of the proposed method is provided which is

represented in Figure 4.5. They also mentioned that when the influence function

generates two new populations by mutation operation using each kind of knowledge,

then offspring generation is provided using the a tournament strategy.

In addition to the experiments done by Xu et al. [211], Xu et al. [209] con-

ducted experiments to compare their method with a GA proposed by Janikow and

Michalewicz [100] and a PSO presented by Shi and Eberhart [185]. They also inves-

tigated finding the optimal values for diversity preservation thresholds.

In addition to the results presented in the former version [211], Xu et al. [209]

claim that their proposed method uses a lower number of fitness evaluation comparing
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to HM [110] and SR [176] which means that it has better computational efficiency.

Compared to GA [100] and PSO [185], the authors claim to have better results with

the same number of fitness evaluations.

Experimenting the proposed method with different values for the thresholds of

diversity preservation, the authors state that the optimal values for three problems

can be reached with different values of both thresholds. Moreover, they claim that

the proposed method with different threshold values outperforms HM [110] and SR

[176]. Through these experiments the authors determined a compromise setting for

both thresholds.

Regarding experiments on ammonia synthesis, Xu et al. [209] compare the method

with DEbest and DErand methods proposed by [190]. They state that the DErand

and DEbest reach the optimum at 432nd and 235th generations, respectively, while

the proposed method converges to the best solution at 119th generation.

4.2.6 Multi-population Cooperative Particle Swarm Cultural

Algorithm (MCPSCA)

Particle Swarm Cultural Algorithm (PSCA) is joint of PSO and CA which is used to

deal with optimization problems. Guo and Liu [82] propose a PSCA incorporating

multiple populations which is called Multi-Population Cooperative Particle Swarm

Cultural Algorithm (MCPSCA).

Guo and Liu [82] refer to Coelho and Mariani [34], Sheng et al. [184] and Qiang et

al. [163] as the three algorithms combined Particle Swarm Optimization with Cultural

Algorithm which are called Particle Swarm Cultural Algorithm (PSCA). They also

refer to another PSCA proposed by Ma and Ye [125] which uses multiple population

in its population space. The PSCA introduced by Lin et al. [118] for parameter

optimization of RBF fuzzy neural networks is also referred which is discussed in
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Figure 4.6: MP-CA Architecture of [82]

subsection 4.2.5. Lin et al. [118] define the m sub-population by dividing the m-

dimension decision variable into m groups.

Guo and Liu [82] mention that Lin et al. [118] did not use the information mi-

gration among sub-populations on knowledge level, and moreover they optimized the

parameters independently.

Guo and Liu [82] proposed a Multi-Population Cooperative Particle Swarm Cul-

tural Algorithm (MCPSCA) which uses a co-evolution PSO in population space.

The architecture of their proposed method is illustrated in Figure 4.6. The popula-

tion is divided into several sub-populations and there is only one belief space shared

with local PSOs which are applied on each sub-population independently. Initially

the population is divided into the sub-populations with the same size, but the sub-

populations size may be changed during the evolutionary process based on the density

of each sub-population. The density increment is calculated for each sub-population,

then for the sub-populations with positive density increment some new individuals

are added and for others the individuals with the worst fitness value are eliminated.

Guo and Liu [82] refer to Guo et al. [76] (discussed in subsection 4.2.2) as a MP-

CA which uses distinct knowledge migration among the sub-population to show that

there is no direct knowledge migration in their proposed method. But the knowledge

is exchanged indistinctly in the shared belief space.

The belief space stores two types of knowledge including situational knowledge and

normative knowledge. The situational knowledge is incorporated to direct the local
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search to the dominant particles and the normative knowledge is used to influence the

initial positions of individuals. The belief space is updated by an acceptance function

which gets a top best portion of individuals. The knowledge stored in belief space

is used to influence the individuals according to the successful ratio of each type of

knowledge.

Finally, the authors investigated the effect of knowledge migration intervals to be

whether fixed or dynamic.

To evaluate the proposed method, Guo and Liu [82] applied it on 5 benchmark

functions. They used three measurements for comparison including average optimal

solution, average convergence generation, and convergence times. To investigate the

effect of knowledge migration interval, four different experiments are done including

three different fixed intervals with 1, 5, and 10 generations and one dynamic intervals.

The author also did the experiments to compare their method with PSCA and multi-

population PSCA.

Guo and Liu [82] state that the results for dynamic knowledge migration inter-

vals are better than those three fixed intervals. They also claim that their proposed

method has better convergence rate, better solutions and better success ratio com-

paring to PSCA and multi-population PSCA.

Guo and Liu [82] claim that the dynamic knowledge migration intervals outper-

forms the fixed intervals because it make the intervals shorter if the sub-population is

trapped into the local optima. They also claim that the adjust-ability of the propor-

tion of each sub-population to be influenced by each type of knowledge prevents the

sub-populations to search unexplored regions and helps them to scape from tapping

into local optima.
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Table 4.1: Comparison of Proposed MP-CAs in Optimization Problems

ID Method Architecture Knowledge Migration
Evolutionary
Approach

1 Master-Slave Approach [51]
Centralized Local

CAs
Individuals

GA with
LS

2
Knowledge Migration
Strategy [74, 76]

Peer Local CAs
Normative and

topographic among
Belief Spaces

EP

3
Multi-population Cultural
Genetic Algorithm (MCGA)
[44]

Peer Local CAs
Individuals among

Belief Spaces
GA

4
Competitive Co-evolutionary
Cultural Differential
Evolution (CCCDE) [210]

Peer Local CAs
Situational and

Normative
DE

5
Multi-population Cultural
Differential Evolution
(MCDE) [211, 209]

Peer Local CAs
Individuals among
Population Spaces

DE

6

Multi-population
Cooperative Particle Swarm
Cultural Algorithm
(MCPSCA) [82]

Shared Belief
Space

Situational and
Normative

PSO

4.2.7 Summary

As mentioned before, there are a number of proposed MP-CAs in the field of op-

timization problems. The proposed methods incorporate various architecture with

different specification. They use different EAs including GA, EP and DE. Some

methods migrate best individuals, while others use different types of knowledge such

as situational, normative and topographic knowledge to be migrated. Table 4.1 gives

comparison among proposed MP-CAs in this area.

As presented in Table 4.1, there are three different architectures proposed for

MP-CA in the field of optimization problems. These architectures include centralized-

local-CAs, peer-local-CAs, and shared-belief-space. In centralized-local-CAs architec-

ture, the local CAs are managed by a server, while peer local CAs communicate and

cooperate with each other without using a controller server. There are a number of
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MP-CAs with peer-local-CAs architecture proposed in this area which incorporate

different knowledge migration strategies. Some methods migrate individuals between

population spaces while some others used knowledge migration between belief spaces.

In the third methodology, shared-belief-space architecture, local CAs do not have

their own local belief space, and there is only one belief space which is shared among

all the local CAs. In this architecture there is no need to a knowledge migration

strategy.

4.3 Supply Chain Management

Supply chain management area is the second field in which MP-CA was appeared. By

the knowledge of the authors, there is only one proposed MP-CA in this area which

is published by Al-Mutawah et al. [4].

4.3.1 CA-based Distributed Multi-Objective Genetic Algo-

rithm (CA-DMOGA)

The existing methods and principles for Supply Chain Management (SCM) assume a

homogeneous cultural environment for the whole chain, while in reality the environ-

ment is dynamic and non-homogeneous. So, a SCM system should have a learning

capability to adapt itself with environmental changes. Al-Mutawah et al. [4] propose

a MP-CA to deal with the dynamic environment of SCM systems.

Al-Mutawah et al. [4] refer to GA-based methods that are proposed to deal with

SCM systems such as the algorithms proposed by Joines et al. [101] and Truong and

Azadivar [199]. As another multi-population GA, they refer to Distributed Multi-

Objective Genetic Algorithm (DMOGA) proposed by Al-Mutawah et al. [5] which

uses three different sub-populations including supplier, manufacturer, and retailer.

Each sub-population uses a local GA to find its optimal attributes. DMOGA uses a
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Figure 4.7: MP-CA Architecture of [4]

matchmaker model to generate the individuals containing three segments from differ-

ent sub-populations. Finally, a global GA is used to generate a better configuration.

Al-Mutawah et al. [4] state that the main shortcoming of DMOGA and similar

multi-objective GAs is the inheritance issue, such that new generations get experiences

only from their parents and influences of other external sources are ignored.

Al-Mutawah et al. [4] propose a CA-based DMOGA to find the best sub-chain

configuration for a SCM system. The proposed CA contains one belief space and

one population space which is divided into three sub-populations including supplier,

manufacturer and retailer. Figure 4.7 illustrates the architecture of their proposed

method. A Decision Tree (DT) is also used for acceptance function which generates

rules with confidence values. The confidence value is calculated using Dempter-Shafer

(DS) theory [182].

Al-Mutawah et al. [4] carried out experiments on simulated data of a supply chain

consisting of three sub-chains. To test the effect of cultural concepts, two test cases

were considered one with a belief space and one without any cultural knowledge.

Al-Mutawah et al. [4] claim that the results of incorporating cultural concepts

show an improvement in the convergence rate compared to the results of the method

without using them. Moreover, they state that using global knowledge generates indi-

viduals with almost the same fitness value, while the GA by itself generates individuals

with a clear variation in their fitness values. They state that cultural concepts have
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a good influence on SCM systems, as the CA-based version of the DMOGA makes it

faster.

Table 4.2: Comparison of Proposed MP-CAs in SCM

ID Method Architecture Knowledge Migration
Evolutionary
Approach

1
CA-based Distributed
Multi-Objective Genetic
Algorithm (CA-DMOGA) [4]

Shared Belief
Space and

Heterogeneous
Sub-Populations

Rules GA

4.3.2 Summary

Since there is only one published method in this area, there is no comparison. How-

ever, Table 4.2 represents characteristics of the proposed method [4].

However, the MP-CA architecture proposed by Al-Mutawah et al. [4] is different

from others in case of their population space which consists of a number of heteroge-

neous sub-populations. They used a shared belief space to extract, store and update

knowledge. In terms of knowledge type, they used a kind of rules which is defined by

themselves.

4.4 Multimodal Optimization Problems

The field of multimodal optimization problems is another research area where MP-

CAs have been introduced. Multimodal optimization problem is a subclass of op-

timization problems which needs to find a set of optimal or local optimal solutions

instead of the only optimal one. Some multimodal optimization problems need to

find all the optimal solutions, both local and global ones. There are a number of

MP-CAs published in this area to find the optimal solutions of various multimodal

optimization problems. The majority of these papers are published in 2007.
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4.4.1 Fuzzy Clustering based Parallel Cultural Algorithm

(FC-PACA)

The problem considered in this subsection is the multimodal optimization problem.

While CAs perform well in optimization problems, they are not efficient for multi-

modal optimization where it is required to find multi global optima or maybe the local

ones. Other methods such as niching approaches and immune system algorithms are

proposed to deal with multimodal optimization. Alami et al. [6] propose a MP-CA

incorporating fuzzy clustering to deal with multimodal optimization problems.

Many algorithms have been proposed to solve multimodal optimization problems.

Among them, Alami et al. [6] refer to some niching techniques that are proposed in

this field such as the GA proposed by Michalewicz [134] which uses niching to diversify

its population, and the sharing method proposed by Goldberg and Richardson [69].

They also refer to other types of algorithms introduced to deal with multimodal

optimization such as an Artificial Immune Algorithm (AIA) and a Particle Swarm

Optimization (PSO) proposed by Castro and Timmis [48] and Li [115], respectively.

Alami et al. [6] state that the main shortcoming of the previous work is their

dependency on some parameters that are required to be estimated based on each

problem. As the authors mention, the parameter estimation influences the algorithm’s

performance. The performance of niching methods, for instance, depends on the niche

radius and its spatial disposition [13, 179]. There is the same problem for the PSO

proposed by Li [115] which needs an Euclidean radius parameter.

Alami et al. [6] propose Parallel Cultural Algorithms which uses fuzzy clustering

to divide the population into clusters. Their proposed algorithm, which is called

Fuzzy Clustering based Parallel Cultural Algorithm (FC-PACA) consists of three

layers including a CAEP layer , a fuzzy clustering layer and a Spatial Separation

(SS) layer. At the first cycle, FC-PACA generates the whole population, then it

classifies some clusters of individuals, also called nations. SS is used to generate the
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nations based on the results of fuzzy classifier, and separating the nations makes it

possible to have parallel algorithms. Afterwards, a local CA is applied to each nation,

so each nation has its own sub-population and belief sub-space. The nation’s elite

corresponds to the best individual in each nation. The belief space of each nation

keep both situational knowledge and normative knowledge.

In the CAEP layer, the new population is generated from the parent population

using only a mutation operator, such that each parent generates one child by random

mutation. So, the belief space is used to influence the mutation operator.

Alami et al. [6] state that they select fuzzy clustering, since it can work as an un-

supervised learning method to deal with the individuals without any prior knowledge

about the data distribution. Moreover, it can handle overlapping clusters efficiently.

The result of clustering is evaluated using a partition entropy parameter, such that

it terminates the evolution cycles, when it reaches its corresponding threshold.

Parallel CAs communicate with each other to exchange their culture. Each na-

tion communicates with its neighbors which are determined based on the distances

between centers of nations. In the communication, nations exchange their normative

knowledge. The exchange rate decreases over the iterations.

To evaluate the proposed algorithm, Alami et al. [6] used the multimodal functions

incorporated by Beasley et al. [13] and Li [115] which are seven different functions

with a different number of optima and different data distributions.

Alami et al. [6] claim that their proposed methods find all the optima and converge

in each nation to its corresponding maximum. Comparing their method to the fitness

sharing method proposed by Beasley et al. [13], the authors claim that they have

identified the optima with more quality which is determined by the maximum peaks

ratio criterion, while both methods locate all the optima. Moreover, the authors state

that the proposed method is faster than the sharing method, which has been shown

by comparing the number of fitness function evaluations.
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They also compared their method to the AIA method proposed by Castro and

Timmis [48] using two measurements defined by Castro and Timmis which are finding

the global optimum and number of located optima. They state that both methods

find the global maximum, but their proposed method finds 83 maxima by the 7th

iteration while AIA method finds only 61 optima at the 451st iteration.

Moreover, they claim that the success rate of their method is better or at least

the same as the approaches proposed by Beasley et al. [13] and Li [115] while their

method uses a smaller number of fitness evaluations.

Alami et al. [6] state that incorporating fuzzy clustering improves the CA perfor-

mance in the multimodal optimization problems. They claim to have better search

performance both qualitatively and quantitatively, without increasing the time com-

plexity. Since the main time consuming part of many optimization problems is their

fitness evaluation, they state that the time complexity of other parts of their proposed

method is relatively small. Finally, the authors mention that their proposed method

is more efficient than the other existing methods in such problems that there is no

prior knowledge about them.

An extended version of Alami et al. [6] is published by Alami et al. [8]. The newer

method is the same as the former one with some slight changes. The exchange rate

of nations’ culture depends on the degree of their neighborhood, such that exchange

probability for neighboring nations are more than that of remote nations. Moreover,

in the extended version, the authors provide an image to show the architecture of

their proposed method which is illustrated in Figure 4.8.

To evaluate the effectiveness and efficiency of the proposed method, Alami et al.

[8] defined three parameter including:

1. Maximum Peak Ratio (MPR) which evaluates both quality and quantity of the

results. It is calculated by dividing sum of the fitness of identified optimum by

sum of the fitness of actual ones.
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Figure 4.8: MP-CA Architecture of [8]

2. Effective number of Peaks Maintained (EPM).

3. Number of Fitness unction Evaluations (NFE).

As in Alami et al. [6], different multimodal functions have been used to evaluate

the newer version. Alami et al. [8] used six different functions, four of which are the

same as used in Alami et al. [6].

In addition to the claims of Alami et al. [6], Alami et al. [8] state that the

inefficient results of the sharing method is caused by not estimating niche radius

appropriately.

An extended version of Alami et al. [8] is also published by Alami and Imrani [7].

The method presented is the same as that mentioned in Alami et al. [6] and Alami

et al. [8] with some slight changes. The important change is that they alter their

proposed architecture a bit, which is presented in Figure 4.9. Moreover, Alami and

Imrani [7] mention that they tested several validity criteria to validate the clustering

method including a partition coefficient, the Xie and Beni index, the Fukuyama and

Sugeno index, the separation / compactness index, the Bensaid index and the entropy

criterion [152]. They mention that they chose the entropy criterion in their method

because experiments show that it is more reliable than others. Unlike Alami et al.

[8], the Maximum Peak Ratio (MPR) measure is not used to compare the methods.

Like the two earlier versions [6, 8], different multimodal functions were used to

evaluate the proposed method. Alami and Imrani [7] used four different functions, two
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Figure 4.9: MP-CA Architecture of [7]

of which are similar to two functions they used in previous studies, one is exactly the

same as one used before, and the last one is used only in Alami et al. [6]. In addition

to these multimodal functions, the authors applied their proposed method on an

electromagnetic benchmark for dielectric composite multimodal optimization problem

to show the performance of their method on a real-world optimization problem. For

this problem, any optimization technique can find the optimal solution, but the goal

is to identify all the optima.

Alami and Imrani [7] claim the same results as Alami et al. [6, 8] for the multi-

modal functions. For the dielectric problem, the method converged after 4 generations

using the population size 100.

In addition to the claims of Alami et al. [6, 8], Alami and Imrani [7] state that

their method can be perfectly applied to real-world optimization problems since it

does not require any prior knowledge of the input data.
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4.4.2 Multi-population Multi-Objective Cultural Algorithm

(MMOCA)

There are some multi-objective optimization problems which need to find a set of

optimal solutions instead of only the optimal one. Guo et al. [75] propose a MP-CA

to solve such problems.

Guo et al. [75] refer to different algorithms as the existing methods dealing with

multi-objective problems including a strength pareto EA [224], a GA [49], a PSO

[198], and a CA [36].

Guo et al. [75] mention that Zitzler et al. [224], Deb et al. [49], and Tripathi et al.

[198] do not extract the evolution information completely, and the method proposed

by Coello and Becerra [36] which is using the implicit knowledge is a single-population

CA.

Guo et al. [75] propose a MP-CA to deal with multimodal optimization prob-

lem. First of all, a population is initialized with a number of individuals, then it

is divided to different sub-population randomly. The local CAs are applied on each

sub-population using EP to evolve population space and extract normative knowl-

edge and topographic knowledge to update belief space. The knowledge migration is

performed every predefined number of generation using the mesh topology.

Guo et al. [75] considered three different benchmark functions to evaluate their

proposed method. The experiments were carried out 20 times using population

size 250 on 4 sub-populations. Two measures are considered for comparison includ-

ing SP-metric and GD-metric. SP-metric measures the average distribution of the

non-dominated solutions, and the GD-metric measures the distance between non-

dominated solutions and Pareto front.

Guo et al. [75] claim to have the better results for both measurement compared to

the EA [224], GA [49], and PSO [198]. The authors state that knowledge migration
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avoids blind selections and keeps the distribution and diversity of individuals which

results in better solutions.

Table 4.3: Comparison of Proposed MP-CAs in Multimodal Optimization Problems

ID Method Architecture Knowledge Migration
Evolutionary
Approach

1
Fuzzy Clustering based
Parallel Cultural Algorithm
(FC-PACA) [6, 8, 7]

Peer Local CAs
Situational and

Normative among
Belief Spaces

EP

2
Multi-population
Multi-Objective Cultural
Algorithm (MMOCA) [75]

Peer Local CAs
Normative and
Topographic

EP

4.4.3 Summary

A number of published MP-CAs were presented in this section which are proposed to

deal with multimodal optimization problems. These methods are compared in Table

4.3 based on their architectures, knowledge migration strategies and incorporated

EAs.

As it can be seen in the table, all the MP-CAs in this area incorporate peer-local-

CAs architecture and also all of them use EP as their evolutionary approach, while

they benefit from different types of knowledge.

4.5 Neurofuzzy Inference System Training

MP-CAs are introduced in Neurofuzzy Inference System (NFIS) as well. NFIS is

a fuzzy system based on Neural Network approaches. The NFIS need a training

procedure to optimize its parameters as well as to find the optimal solution. So the

problem is which training approach should be used for the NFIS. There are a number

of published MP-CAs in this research area, the majority of which were published in

2008.
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4.5.1 Cultural Cooperative Particle Swarm Optimization

(CCPSO)

Similar MP-CAs are proposed by Lin et al. [117], Chen et al. [29] and Lin et al.

[118, 120] to train Neurofuzzy Inference Systems (NFISs). The most complete version

of these methods is published by Lin et al. [117]. Lin et al. [118] considered prediction

as the main problem for which some algorithms based on neural fuzzy networks have

been proposed.

Neurofuzzy Inference Systems (NFISs) are fuzzy systems based on Neural Network

approaches. NFISs contain a training procedure to optimized their parameters. Lin

et al. [117] refer to Genetic Fuzzy Systems, as fuzzy systems which use EAs for

their learning approach [39, 38, 89]. There are various strategies to incorporate EAs

for NFISs, among which the authors refer to the three main strategies which are as

follows:

1. Pittsburg-type: It uses fuzzy systems as individuals [188].

2. Michigan-type: It uses each fuzzy rule as an individual [155, 98].

3. Iterative rule learning: It searches for the best rule set in each generation [72,

37].

Lin et al. [117] also refer to an adaptive neuro-evolution method called symbiotic

which is proposed by Moriarty and Miikkulainen [138]. In the symbiotic evolution, a

GA is applied on a population of neurons. The individuals are the fuzzy rules which

are combined together to form a fuzzy system. To decrease the effect of inappropri-

ate fuzzy rule in a fuzzy system, a crossover operator is applied. In the symbiotic

evolution, unlike other EAs, the best solution is found in different, unconverted pop-

ulations. In other words, the symbiotic evolution does not converge to the optimal

or near optimal solution [138, 102].
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Lin et al. [117] refer to PSO developed by Kennedy and Eberhart [106, 52] as

an EA which is used on different optimization problems [216, 1, 60]. They also

refer to Cooperative Particle Swarm Optimization (CPSO) proposed by Bergh and

Engelbrecht [17] which is a modification of the traditional PSO. CPSO uses p swarms

of 1-dimensional vectors instead of one swarm of p-dimensional vectors. In CPSO,

each swarm aims at optimizing one component of the vector.

Lin et al. [117] state that PSO does not work efficiently for multi-dimensional

problems. The higher the dimensionality, the lower the PSO performance. They also

state that the improved PSO, CPSO, still uses the same formula as the traditional

one, so its particle diversity is still not sufficient which results in high chance to tarp

into local optimal solution. In the other words, CPSO suffers from its inefficient

exploration procedure [187, 128].

Lin et al. [117] propose an algorithm called Self-Evolving Evolutionary Learning

Algorithm (SEELA) to deal with Neurofuzzy Inference Systems (NFIS). The archi-

tecture of their proposed method is illustrated in Figure 4.10. There are two types

of learning in this algorithm, structure learning which sets the number of fuzzy rules

and parameter learning which tunes the parameters for a NFIS.

The structure learning approach incorporates Subgroup Symbiotic Evolution

(SSE) and Elite-based Structure Strategy (ESS) and uses the probability values to

find the best number of fuzzy rules. Parameter learning is based on the combination

of strategies of a CA and a CPSO. The combination strategy is called Cultural

Cooperative Particle Swarm Optimization (CCPSO).

In the proposed method, a local CA is applied to each swarm such that each swarm

plays as the population space and has a local belief space. The authors do not mention

exactly what types of knowledge they are using, but they keep records of the local

and global best position which can be considered as the situational knowledge and

moreover they use an interval as the belief space which is the normative knowledge.
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Figure 4.10: MP-CA Architecture of [117, 29, 118, 120]

To update the belief space, the best particles are selected by an acceptance function.

The number of selected particles decreases during the evolution process.

The authors used normative knowledge to update the position of each particle, and

used the situational knowledge to update the velocity to generate the new particle.

There is no explicit knowledge migration between belief spaces. However, since each

swarm is optimizing one variable and the final vector includes all the variables, the

knowledge is exchanged implicitly.

Lin et al. [117] state that all parameters of the algorithm, excluding the acceptance

function parameter are determined using extensive experiments. The parameter of

acceptance function which is the number of the best particles to be selected to update

the belief space is set to 20% which is suggested by Saleem [178].

Lin et al. [117] considered three examples to evaluate the proposed algorithm,

including chaotic time series prediction [41], forecasting the number of sunspots [122],

and backing up the truck controller [143]. For the first example, three cross-validation

sets is considered to train and test the algorithm. In the second example, the number
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of sunspot forecasting [122], which is a difficult prediction of the number of sunspots

in non-stationary and non-Gaussian cycles from 1700 to 2004, the data of the first 151

years is used for training, while the whole data is used to test the proposed model.

The main goal of the last example is to control the truck to move backward to a

desire destination.

The experiments were carried out for ten runs, and for 1000 generations for the

first two examples and 500 generations for the truck example.

Regarding chaotic time series prediction, Lin et al. [117] claim that the results

show that nine is the best number of rules for the first cross-validation set. The

authors compared the performance of their proposed method with those of PSO

[106], CPSO [17], and GA-based neural fuzzy system [116]. They state that for

all three cross-validations the proposed method has the smallest RMS error. They

also claim that comparing the generalization capability of the proposed method with

other methods presented by Jang [99], Kasabov and Song [105], Juang et al. [102] and

Cowder [41] shows that the proposed method has the smallest RMS error to predict

500 points immediately after training session.

Lin et al. [117] also state that as with the first example, the best number of

rules for the second example, the number of sunspots forecasting, is nine too, and

comparing with PSO [106], CPSO [17], and GA-based neural fuzzy system [116], the

proposed model offers better prediction with less RMS error.

Lin et al. [117] also state that the best number of rules for the third example

is again nine, like both the first two examples, and comparing with other existing

methods including Lin and Lin [119], Juang et al. [102] and Nomura et al. [145], the

proposed method outperforms other methods by offering smaller RMS error.

Lin et al. [117] claim that their proposed method is a novel method which uses

an EA to determine the number of fuzzy rules and adjusts the model parameters.
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They also state that their proposed model outperforms the traditional PSO as well

as CPSO generally.

Lin et al. [120] also claim that using the belief space increases the global search

capacity. They also state that the proposed method avoids trapping into local optimal

solutions.

Table 4.4: Comparison of Proposed MP-CAs in NFIS Training

ID Method Architecture Knowledge Migration
Evolutionary
Approach

1
Cultural Cooperative Particle
Swarm Optimization
(CCPSO) [117, 29, 118, 120]

Parallel Local
CAs (each

working on one
variable)

Situational and
Normative (Implicit

Knowledge Migration)
PSO

4.5.2 Summary

All of the proposed MP-CAs to be used in NFIS training are a hybrid of CA and

CPSO. So it can be mentioned that the EA for all the methods is PSO. Moreover, all

of them used parallel local CAs which are the same, but working on different variables.

Each local CA is applied to a local swarm which is designed to optimize one variable.

So, each belief space has information related to its corresponding variable. Therefore,

there is no exact knowledge migration among belief spaces, but the knowledge is

exchanged implicitly. Table 4.4 represents specification of proposed MP-CAs in NFIS

training.

4.6 Interactive Applications

MP-CAs are also used in interactive applications where some optimization problems

need to be solved interactively. Interactive optimization problems such as music

compositions and production design are categorized in the area of optimization field.
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Since there is no explicit fitness function for these problems, they have to be evaluated

by a human.

There are a number of MP-CAs proposed in interactive applications. They were

recently published in this field such that the earliest one was published in 2009.

4.6.1 Cooperative Interactive Cultural Algorithms (CICA)

In some optimization problems for which there is no explicit fitness function, each

individual should be evaluated by a human. Since the evaluation is performed by

a human, human fatigue can influence the evaluation performance. So it limits the

population size as well as the number of generations. Therefore, finding the optimal

solution using a small-size population in a few generations would be a difficult issue.

Moreover, human cognition and preference is another issue which is included in the

evaluation as well. A number of MP-CAs are proposed by Guo et al. [78], Guo et al.

[80], and Guo et al. [83] to deal with interactive optimization problems.

Guo et al. [78] refer to two Interactive Genetic Algorithms (IGAs) proposed by

Gong et al. [71] and Guo et al. [79] as the related work. Actually in this article, the

authors referred to those IGAs as Interactive Cultural Algorithms (ICAs).

Guo et al. [78] mention that some of previous work cannot be applied to different

computer nodes. In other words, it is not possible for different users to participate in

the evolutionary process. Moreover, they state that most of the parallel ICAs migrate

only the best individuals, while migrating the knowledge extracted from the evolu-

tionary process may have much more useful information than just best individuals,

such as human cognition and preference.

Guo et al. [78] propose a Cooperative Interactive Cultural Algorithm (CICA)

which has two evolutionary layers including population evolution layer and knowledge

evolution layer. The architecture of proposed CICA is presented in Figure 4.11.

The population layer interacts with users in computer nodes separately, while in the
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Figure 4.11: MP-CA Architecture of [78]

knowledge layer, the implicit knowledge is extracted from each node and migrated

among others. The implicit knowledge which reflects the persons’ cognition and

preference is used to decrease human fatigue and improve convergence rate by sharing

the knowledge and shrinking the search space.

The traditional IGA is used in the population layer and the implicit knowledge

introduced by Guo et al. [77] is used in the knowledge layer. Since human fatigue

depends on the number of individuals evaluated by the user and the similarity between

those individuals, the authors defined the reliability of extracted knowledge as a

function of population similarity and proportion of population evaluated by user.

Moreover, they defined the evolution status as a measure to judge trapping in local

optima or not. The evolution status is the difference between the average fitness

of two consecutive generations. If the evolution status determines trapping in local

optima, the knowledge migration is performed to scape from this situation.

If two users have similar preferences, their extracted human cognition knowledge

from their computer nodes would be the same. So, exchanging the knowledge between
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these two nodes is not useful. Therefore, the computer nodes with dissimilar implicit

knowledge are the best candidates for knowledge migration. The authors categorize

computer nodes in different knowledge tribes such that each knowledge tribe includes

the computer nodes with dissimilar implicit knowledge. For knowledge migration,

the computer nodes with the largest difference in the same tribe are selected. To

update the private knowledge using migrated knowledge, a decision-making function

is introduced which provides the common knowledge to be used to generate next

population.

Guo et al. [78] considered cooperative fashion evolutionary design system to eval-

uate their proposed method. There are 16 persons divided into 4 groups using 4

computer nodes to interact with algorithm. The authors also compared two different

migration strategies by experimenting the implicit knowledge migration as well as

migrating the best individuals.

Guo et al. [78] claim that their proposed method converges faster than the IGA

proposed by Guo et al. [79], and moreover its corresponding human fatigue is much

less which is because of decreasing the number of individuals evaluated by users. The

authors also claim that the knowledge migration shows better convergence rate as

well as lower human fatigue than the individual migration strategy.

Guo et al. [78] state that migrating the knowledge of other users’ cognition and

preference improves the diversity of the population which will helps the population to

escape from trapping into the local optima, and finally it improves the convergence

rate and decrease the human fatigue. They also state that the implicit knowledge has

much more useful information than the best individuals, so the propagation of the

knowledge in the individual migrated strategy would be slower which results in lower

convergence rate than using the knowledge migration strategy.

An extended version of Guo et al. [78] was published by Guo et al. [80]. Guo et

al. [80] refer to an IGA proposed by Guo et al. [81]. As the shortcomings of existing
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Figure 4.12: MP-CA Architecture of [80]

algorithms, Guo et al. [80] mention that since they are using the crossover operator

on two individuals from different processors, the communication cost of the system is

massive which makes the system inefficient.

The differences between Guo et al. [78] and Guo et al. [80] are as follows. Guo et

al. [80] considered a server to keep and update the knowledge. Figure 4.12 illustrates

the architecture of their proposed CICA. In each iteration, the acceptance function

sends the best individuals of all of the populations to the server to update the knowl-

edge. To find the similar users, the users’ preferences are extracted using IP multicast

transfer protocol instead of traditional TCP/IP protocol. Then the similar users join

the same group automatically. Finally, the preferences from different users is used to

influence the evolution.

Like Guo et al. [78], Guo et al. [80] considered a fashion evolutionary design

system to evaluate their proposed method. In this system, a dress is expressed by

four characteristics including coat pattern and color, dress pattern and color. There

are 5 users to interact with the algorithm which is using the roulette wheel selection

and elitism strategy on a population with 8 individuals. They also compared they

method with the traditional IGA.
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Guo et al. [80] claim that their proposed method converges fast while the users

do not feel tired. Comparing to the traditional IGA, they claim that their method

offers lower convergence time, lower evaluation by user, less user’s fatigue, and better

solutions. They state that their proposed method offers satisfied results by finding

the optimal solution and converging fast.

Another MP-CA is published by Guo et al. [83] which is an extended version

of Guo et al. [80]. Guo et al. [83] refer to an IGA published by Guo et al. [81]

which uses frequent pattern mining to extract users’ preference. They also refer to

a distributed collaborative IGA published by Sun et al. [192], and an asynchronous

collaborative IGA presented by Miki et al. [135]. The idea of using collaboration in

an online shopping navigation system proposed by Hiroyasu and Yokouchi [90] is also

referred by authors. They refer to the CICA proposed by Guo et al. [80] as a method

which uses the extracted users’ preferences to influence the evolution of other users

with dissimilar preferences.

The authors state that the CICA proposed by Guo et al. [80] suffers from its

network communication cost.

The differences between Guo et al. [80] and Guo et al. [83] are as follows. Guo et

al. [83] used K-means clustering algorithm to classify the users into K different groups

called knowledge alliances. Each alliance consists of users with the same preference.

The classification is performed every generation, so the users may be switched between

alliances. The common knowledge of each alliance is migrated among alliances which

will be used by alliances to notice their own individuals using IP broadcast. In other

words, the authors used a hierarchical exchange to decrease the communication cost

of the network such that the alliance-oriented knowledge is migrated among alliances

while the user-oriented knowledge is exchanged within the alliance. The authors

state that for N users the communication complexity without hierarchical structure
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is N (N − 1), while hierarchical structure makes it N + K (K − 1) for K knowledge

alliance.

Since, in the interactive algorithms, the times spending by users are different, the

steps of algorithm are asynchronous. The proposed method waits for %80 percent

of the users to start knowledge migration. To fuse the migrated knowledge with self

knowledge, the authors considered an add operation because both types of knowledge

are in binary format.

Since human’s cognitive is variable, the preference of users may be changed dur-

ing the evolution. So it is possible for the users to be switched between alliances.

Therefore, authors used K-mean clustering method which does not need any prior

knowledge about data. In each classification, the users are classified into K knowl-

edge alliances. The numbers of users in alliances are different and may be changed

during the evolution.

Like Guo et al. [80], Guo et al. [83] used a fashion evolutionary design system.

They also used roulette selection as well as an elitism strategy. In their experiments,

they used K = 3 and population size 8 evaluated by 10 users.

Guo et al. [83] claim that their proposed method outperforms the CICA and the

IGA by offering lower number of user evaluation, smaller generations, more satisfying

results as well as better convergence rate.

Guo et al. [83] state that knowledge migration among alliances speeds up the

convergence and improves the population diversity.

4.6.2 Summary

In this section, the proposed MP-CAs in the field of interactive optimization problems

were discussed. The specifications of these methods are presented in Table 4.5. As

presented in this table, all the methods used implicit knowledge and incorporated

IGA.
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Table 4.5: Comparison of Proposed MP-CAs in Interactive Applications

ID Method Architecture Knowledge Migration
Evolutionary
Approach

1
Cooperative Interactive
Cultural Algorithms (CICA)
[78]

Peer Local CAs
Implicit Knowledge
(Migrated within a
Knowledge Tribe)

IGA

2
Cooperative Interactive
Cultural Algorithms (CICA)
[80, 83]

Centralized Local
CAs with a

shared Belief
Space in a Server

Implicit Knowledge
(Migrated among

Knowledge Alliances
IGA

While the authors used the same name for the methods, their proposed architec-

tures are different. The former method used peer-local-CAs architecture to extract

implicit knowledge, while other methods incorporated a centralized architecture with

a shared belief space. The former method extracts knowledge to construct knowl-

edge tribes. Then within each knowledge tribe, the extracted knowledge is migrated

among individuals. The recent methods use a server to extract, store and update

the knowledge. The extracted knowledge is used by the server to construct knowl-

edge alliances. Then the extracted knowledge is migrated among the individuals from

different alliances.

4.7 Conclusions

In this survey, published CAs which use multiple populations have been discussed.

A CA incorporating multi-population concept is called Multi-Population Cultural

Algorithm (MP-CA) in this article. Based on extensive research and the knowledge

of the authors in this area, all the published MP-CAs in the literature are surveyed in

this article. Since these methods are published in various areas, we categorize them

based on their problem domain into five classes including optimization problems,
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supply chain management, multimodal optimization problems, neurofuzzy inference

system training, and interactive applications.

The main category is optimization problems class which contains greater number

of published methods. Digalakis and Margaritis [51] introduced a MP-CA for the

first time. They used MP-CA to solve an optimization problem, namely electrical

generator scheduling problem. Afterwards, Guo et al. [74, 76] introduced knowledge

migration for the first time. They exchanged the extracted knowledge instead of

individuals, since the knowledge has more useful information regarding previous gen-

erations and evolutionary direction. A MP-CA was also published by da Silva and de

Oliveira [44] to solve another optimization problem called Multiple Knapsack Prob-

lem. Then other methods were introduced to solve real optimization problems namely

butane alkylation process and ammonia synthesis process Xu et al. [210, 211, 209].

The application of a hybrid of PSO and CA using multiple populations in optimization

problems was proposed by Guo and Liu [82].

MP-CA was also introduced in supply chain management systems by Al-Mutawah

et al. [4]. They proposed a MP-CA to manage the complexity of dynamic environment

which exists in the real supply chain systems.

The application of MP-CAs in multimodal optimization problems was introduced

by Alami et al. [6]. They used fuzzy clustering in their method to generate a number

of sub-populations. The extended versions of this work were published by Alami et

al. [8] and Alami and Imrani [7]. The most recent method in this class was published

by Guo et al. [75] to solve multi-objective problems.

A number of MP-CAs are also used a training approach for neurofuzzy inference

systems [117, 29, 118, 120]. The most recent paper in this category was published by

Lin et al. [118] to represent the prediction application of the training method.

The last category where MP-CAs are applied is interactive applications. The first

one was published by Guo et al. [78] which introduced Knowledge Migration in this
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category, followed by using user’s preference aggregation published by Guo et al. [80].

Finally, Guo et al. [83] incorporated the new concept of dynamic knowledge alliance

in MP-CA to use in interactive applications.

While the idea of all the proposed MP-CAs are similar, researchers determined

various architectures for their proposed methods. Moreover, they used different char-

acteristics for their methods such as different evolutionary approaches, knowledge

types, exchange policies, and knowledge migration rates. It can be said that they

tuned their methods based on their problem domains.

Table 4.6: Comparison of All Proposed MP-CAs based on their Architectures

Architecture Methods

Centralized Local CAs
Master-Slave Approach [51]
Cooperative Interactive Cultural Algorithms (CICA)
[80, 83]

Shared Belief Space

CA-based Distributed Multi-Objective Genetic
Algorithm (CA-DMOGA) [4]
Cooperative Interactive Cultural Algorithms (CICA)
[80, 83]
Multi-population Cooperative Particle Swarm
Cultural Algorithm (MCPSCA) [82]

Heterogeneous Sub-Populations
CA-based Distributed Multi-Objective Genetic
Algorithm (CA-DMOGA) [4]

Peer Local CAs

Fuzzy Clustering based Parallel Cultural Algorithm
(FC-PACA) [6, 8, 7]
Cooperative Interactive Cultural Algorithms (CICA)
[78]
Knowledge Migration Strategy [74, 76]
Multi-population Cultural Genetic Algorithm
(MCGA) [44]
Competitive Co-evolutionary Cultural Differential
Evolution (CCCDE) [210]
Multi-population Multi-Objective Cultural Algorithm
(MMOCA) [75]
Multi-population Cultural Differential Evolution
(MCDE) [211, 209]

Parallel Local CAs
Cultural Cooperative Particle Swarm Optimization
(CCPSO) [117, 29, 118, 120]

However, the proposed architectures could be classified in a number of groups

which are as follows:
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1. Centralized Local CAs (2002): There are a number of local CAs which cooperate

to find the optimal solution such that all the local CAs are controlled by a server.

2. Shared Belief Space (2006): There is only one belief space for the whole system

which is shared among the local CAs.

3. Heterogeneous Sub-Populations (2006): In this architecture, the whole popula-

tion consists of a number of heterogeneous sub-populations.

4. Peer Local CAs (2007): There are a number of local CAs which work the same

as each other to find the optimal solution.

5. Parallel Local CAs (2008): Like peer local CAs, there are a number of local

CAs which cooperate to find the optimal solution, but in parallel architecture,

local CAs do not work the same such that each local CA is designed to optimize

one specific parameter.

The numbers in the brackets indicate the year when the architectures were introduced.

The main group of architectures is peer-local-CAs one which is used with different

methodologies by a number of researchers in various areas [6, 8, 7, 74, 44, 210, 211,

75, 76, 209]. Table 4.6 represents the classification of all discussed methods based on

their architectures.

As the future work, there are a number of jobs suggested by some researchers

such as a theoretical research on the convergence behavior and a study on knowledge

migration strategies. Besides, other researchers suggest do apply MP-CAs on greater

number of real-world problems.

However, we do recommend a comparative study on different architectures which

represents the strengthes and weaknesses of each architecture relative to others. It

will clarify that whether or not it is possible to determine the best architecture for

each problem domain.
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Furthermore, we suggest to study the effects of different parameters on the per-

formance of each method. Then it would be easy to tune a method just based on its

architecture.
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Chapter 5

Multi-Population Cultural

Algorithm

5.1 Introduction

As fully described in Chapter 4, Multi-Population Cultural Algorithm (MP-CA) is

an improved version of the traditional CA. MP-CA was first introduced by Digalakis

and Margaritis [51] to schedule electrical generators.

MP-CAs have more parameters to be optimized compared to the traditional CA

such as the number of local CAs, their communication topology and frequency, and

knowledge fusion. Therefore, many works have been conducted by various researchers

to improve MP-CAs. One of the main improvement is to incorporate knowledge

migration instead of individual migration between local CAs which is introduced by

Guo et al. [74].

The successful applications of MP-CA have been recently reported in various areas

such as constraint optimization problem [210], multimodal optimization problems [75],

and interactive optimization problems [80, 83].
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This chapter presents my proposed MP-CAs to deal with JSSPs which are pub-

lished as research papers. These papers include:

• M. R. Raeesi N. and Z. Kobti, “A knowledge-migration-based multi-population

cultural algorithm to solve job shop scheduling,” in The 25th Florida Artificial

Intelligence Research Society Conference (FLAIRS-25), Marco Island, FL, USA,

May 23-25 2012, pp. 68-73 [168]:

In this research paper, a MP-CA is proposed to deal with JSSPs. All of the

proposed CAs in JSSP by the time use a single population in their popula-

tion space. Therefore, the proposed method is the first attempt to use a CA

with multiple populations to solve JSSPs. The proposed MP-CA incorporates a

number of homogeneous local CAs communicating with each other by exchang-

ing their extracted knowledge. In the proposed method, two different types of

knowledge are considered to guide the search direction including normative and

topographic knowledge. The details of the knowledge extraction and update,

knowledge migration topology and frequency are presented in Section 5.2.

• M. R. Raeesi N. and Z. Kobti, “A multiagent system to solve JSSP using a multi-

population cultural algorithm,” in The 25th Canadian Conference on Artificial

Intelligence (Canadian AI), no. 7310, Toronto, ON, Canada, May 28-30 2012,

pp. 362-367 [170]:

This research paper introduces a new knowledge for JSSPs which is called struc-

tured belief. Structured belief is incorporated within a MP-CA which uses

knowledge migration as the communication strategy between its local CAs.

Section 5.3 further describes the new knowledge and its incorporation mecha-

nism.
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5.2 A Knowledge-Migration-Based Multi-Population

Cultural Algorithm to Solve Job Shop Schedul-

ing

Abstract. In this article, a multipopulation Cultural Algorithm (MP-

CA) is proposed to solve Job Shop Scheduling Problems (JSSP). The idea

of using multiple populations in a Cultural Algorithm is implemented for

the first time in JSSP. The proposed method divides the whole popula-

tion into a number of sub-populations. On each sub-population, a local

CA is applied which includes its own population space as well as belief

space. The local CAs use Evolutionary Programming (EP) to evolve their

populations, and moreover they incorporate a local search approach to

speed up their convergence rates. The local CAs communicate with each

other using knowledge migration which is a novel concept in CA. The pro-

posed method extracts two types of knowledge including normative and

topographic knowledge and uses the extracted knowledge to guide the

evolutionary process to generate better solutions. The MP-CA is evalu-

ated using a well-known benchmark. The results show that the MP-CA

outperforms some of the existing methods by offering better solutions as

well as better convergence rates, and produces competitive solutions when

compared to the state-of-the-art methods used to deal with JSSPs.

5.2.1 Introduction

Job Shop Scheduling Problem (JSSP) is a combinatorial optimization problem which

is well-known in different areas, specially manufacturing systems. JSSP is the task

of scheduling different operations to be processed on different machines. The main

190



goal of this type of problems is minimizing the maximum completion time of all the

operations. The maximum completion time of a schedule is also called makespan.

JSSP is still an open problem. It is proved that the job shop scheduling systems with

more than two machines are NP-complete [65], which means that there is no method

capable to find the best solution for all the scheduling problems in an acceptable time.

There are various types of algorithms proposed to deal with JSSPs including

heuristic approaches, meta-heuristic methods and Evolutionary Algorithms (EAs).

In the area of Evolutionary Computation, there are various algorithms with different

versions proposed to solve JSSPs including Genetic Algorithm (GA), hybrid GA,

Ant Colony Optimization (ACO), Memetic Algorithm (MA), and Cultural Algorithm

(CA). Each method has its own strengths and weaknesses. However, combinations of

different types of algorithms work better.

In this article, a new CA is proposed to solve JSSPs. The proposed method in-

corporate a multipopulation design which is called multipopulation CA (MP-CA). In

this design, there are a number of sub-populations incorporating local CAs to cooper-

ate with each other to generate better solutions. The sub-populations communicate

with each other by exchanging their extracted knowledge every predefined number of

generations.

The structure of this article is as follows. Subsection 5.2.2 present the existing

Evolutionary Algorithm introduced in the area of Job Shop Scheduling, which is

followed by the definition of the classical JSSPs in Subsection 5.2.3. Subsection 5.2.4

describes the proposed MP-CA in details, and Subsection 5.2.5 shows the results of

evaluating the MP-CA. Finally, the conclusions are represented in Subsection 5.2.6.

5.2.2 Related Work

The application of EAs in JSSPs is first introduced by Lawrence [112] as a GA. Hasan

et al. [87] combined a GA with different priority rules including Partial Reordering,
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Gap Reduction, and Restricted Swapping. An ACO method is proposed by Wang et

al. [202] and recently we proposed a MA to solve JSSPs [164].

Becerra and Coello [14] introduced the application of CA in JSSP for the first time.

CA, developed by Reynolds [175], is an EA which extracts knowledge to improve its

search mechanism as well as its convergence rate. CA consists of population space

and belief space. Population space contains individuals which are evolving to generate

the optimal solution. The knowledge is extracted from the best individuals every

generation. The extracted knowledge which is also called belief is recorded in the

belief space to be used in the next generations to direct the evolutionary process.

The link from population space to belief space which sends the best individuals in

order to update the extracted knowledge is called acceptance function, and the link

from belief space to population space which sends the updated knowledge to guide

the evolution is called influence function.

The CA proposed by Becerra and Coello [14] incorporates Evolutionary Program-

ming (EP) for population space evolution which only uses the mutation operator to

generate the offspring population. The belief space of their proposed method only

records the best individual as the situational knowledge. An improved version of the

first CA [14] in JSSP is proposed by Cortes et al. [40]. The newer method is simi-

lar to the first version with the main differences being in the implementation of the

mutation operator and influence function.

Ho and Tay [91] proposed a CA to solve Flexible Job Shop Scheduling which is

called GENACE. Like Becerra and Coello [14], they used EP and situational knowl-

edge. The next version of GENACE is also proposed by Ho and Tay [92] which is

called LEGA.

All of the proposed CAs in JSSP use a single population in their population space.

Our proposed method would be the first attempt to use a CA with multiple popula-

tions which is called MP-CA. However, there are a number of CAs in different fields
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which are using multiple populations. Digalakis and Margaritis [51] introduced the

multipopulation concept in CA for the first time by proposing a master-slave design.

The master processor generates the initial population and manages it, while the slave

processors execute different CAs on different sub-populations. The communication

among sub-populations is implemented using Message-Passing Interface (MPI). The

latter also used the situational knowledge.

One of the main issues in MP-CAs is the communication among the sub-

populations. Most of the existing methods consider exchanging the best individuals

as the communication process. But there is a more powerful strategy which exchanges

the extracted knowledge instead of the best individuals. The new strategy is called

knowledge migration which was first proposed by Guo et al. [74]. The extracted

knowledge can incorporate more useful information about the previous generations to

be used to direct the evolutionary process. Consequently, it would be more effective

to use knowledge migration as the sub-populations communication mechanism.

5.2.3 Problem Definition

Classical JSSP is defined as a process of assigning different jobs to be processed on

different machines [11]. There are M machines denoted by mk and N jobs denoted

by Ji, where k is the machine index and i is the job index. Each job is defined by

a fixed sequence of operations. Each operation is denoted by Oij where i is the job

index and j is the operation index in that job. Each operation can be processed on

only one machine in a known processing time. In other words, the route of operations

of each job through the given machines is predefined.

In classical JSSP, there are some assumptions which are as follows: All the jobs are

available at the starting point which are independent from each other; the machine

set up time and part movement time between machines are negligible; each job is
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Table 5.1: A sample classical job shop scheduling problem

Operation Index 1 2 3
J1 m2, 1 m1, 2 m3, 3
J2 m1, 2 m2, 1 m3, 2
J3 m1, 2 m3, 4 m2, 1

Figure 5.1: Sample Schedule

processed only one time on each machine; the machines can process only one operation

at a time which cannot be interrupted; and there is no due date for the jobs.

Table 5.1 presents a sample classical JSSP which contains 3 jobs to be processed

on 3 machines. This table shows the applicable machine with the corresponding

processing time for each operation. The third operation of the second job O23 , for

example, is applicable on the third machine, and it needs 2 time units to be processed.

A sample schedule for this example is shown in Figure 5.1.

It should be mentioned that we use the active schedule concept defined by Croce

et al. [43], and used by Hasan et al. [87] as Gap Reduction rule and by Becerra and

Coello [14] as permissible left shift.

5.2.4 Proposed Cultural Algorithm

In this article, a MP-CA is proposed to deal with JSSPs. The proposed method is

the first attempt to incorporate multiple populations in JSSP. In this method, the

whole population is divided into a number of sub-populations. Each sub-population

incorporates a local CA which contains its own belief space. The local CAs are

cooperating to find the optimal solutions. They are communicating with each other

by exchanging their own extracted knowledge which is called knowledge migration.
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Figure 5.2: MP-CA Architecture

The architecture of the MP-CA is represented in Figure 5.2. As it is illustrated

in the figure, like other CAs, each local CA has its own population space and belief

space [175].

Moreover, the overall framework of the proposed MP-CA is represented in Figure

5.3. The number of sub-populations, the number of iterations which is the termina-

tion criterion, and the migration frequency are denoted by the SubPopulationsNo,

IterationNo, and ExchangeRate parameters, respectively. The parameters values

which are used in our experiments are presented in Table 5.2.

5.2.4.1 Population Space

Population space is a set of individuals which are evolving using EP. Our EP uses

the selection and mutation as regular EP, and incorporates a local search heuristic to

speed up the convergence rate.

Chromosome Representation. Chromosome representation is one of the main

characteristics of an EA. In the literature, there are various chromosome represen-

tations, with nine of them described by Cheng et al. [32]. Recently, we introduced

Machine Operation Lists (MOL) representation [164]. MOL is an extended version

of preference list-based representation such that it adds the concept of fixed list, the

operation sequence of which cannot be changed unless due to the permissible left
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PROCEDURE: MP-CA Framework
INPUT: Test Problems and Algorithm Parameters
OUTPUT: Optimal or Near-Optimal Schedules

Generate SubPopulationsNo sub-populations.
FOR (IterationNo)

FOR (each subpopulation)
Evaluate all individuals and sort them.
Apply mutation and local search method

to generate offspring population.
Update belief space.

END
IF (IterationNo mod ExchangeRate = 0)

Exchange knowledge.
END

END
Output the best found individual so far.

Figure 5.3: MP-CA Framework

shift. In [164], we showed that MOL representation outperforms preference list-based

representation by yielding better solutions.

In our proposed algorithm, we incorporate the MOL representation. MOL con-

siders a list of operations for each machine determining the sequence of operations to

be processed on that machine. Because each machine only processes one operation of

each job, the operations in the list can be denoted by their job indices. For example,

the sample schedule illustrated in Figure 5.1 is represented as follows.

{(1, 2, 3) , (1, 2, 3) , (2, 3, 1)}

Evolutionary Programming. The proposed method uses EP to evolve the popu-

lation space. The EP incorporates only the mutation operator as a genetic operator.

The mutation operator uses the knowledge recorded in belief space to influence the

direction of evolution. The EP applies the mutation operator on all the individuals

to generate new ones. In our proposed MP-CA, there are two mutation operators

which will be described in details in subsection 5.2.4.2.
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Local Search. After generating the offspring population, a number of best individ-

uals will be selected to be investigated by a local search heuristic. We use the same

local search method as we used before [164] which is compatible with MOL represen-

tation. The search method reassigns all the operations of a randomly selected job to

decrease the makespan. It has been shown by the authors that the time complexity

of the local search method is negligible compared to the number of fitness evaluations

in each generation.

5.2.4.2 Belief Space

Each local CA has its own belief space which space gets updated every generation

using the acceptance function. The acceptance function passes a number of best

individuals from the sub-population to the belief space. We consider the top 20

percent of the individuals in our implementation. The belief space extracts both

normative and topographic knowledge from the individuals, and updates its own belief

by the extracted knowledge. The knowledge stored in the belief space is incorporated

to direct the mutation operator using the influence function.

The local CAs migrate their knowledge to each other to improve the search explo-

ration in different sub-populations. The knowledge migration occurs every predefined

number of generations. In knowledge migration, the sub-population which finds the

best individual so far sends its own knowledge to others. The sub-populations which

receive the migrated knowledge replace their own knowledge with migrated one.

Normative Knowledge. We use normative knowledge to improve the search explo-

ration of our proposed method. Since normative knowledge records the feasible search

space, it is used to explore all the feasible search space uniformly. In our method, we

consider the position of each operation in its corresponding machine list as the search

variable. So we have M × N variables for a system with M machines and N jobs.

For each operation Oij, there are a lower position LOij
and an upper one UOij

. The
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normative knowledge is initialized using the best individual as follows:

LOij
= POij

− 0.5

UOij
= POij

+ 0.5

where POij
denotes the position of operation Oij in its corresponding machine list

in the best individual at the first iteration. The 0.5 is used to provide a range of 1

for each position. The normative knowledge gets updated every generation by each

individual passed by acceptance function using:

LOij
= min

(
LOij

, POij
− 0.5

)
UOij

= max
(
UOij

, POij
+ 0.5

)
where POij

denotes the position of operation Oij in its corresponding machine list in

that individual.

Topographic Knowledge. We use the topographic knowledge to exploit certain

regions which have more individuals. The topographic knowledge for each operation

keeps the record of all positions used by all the individuals passed through the accep-

tance function. For each operation, there is a list of N available positions where N

is the number of jobs. The topographic knowledge counts the number of occurrences

for each position. Since the greater number of occurrences determines the existence

of more good individuals in that region, the topographic knowledge is used to exploit

those regions. Like the normative knowledge, topographic knowledge is also updated

every generation, and it has its own mutation operator which influences the evolution

to exploit certain regions.

Influence Function. Each type of knowledge has its own mutation operator, one

mutation for normative knowledge and another one based on topographic knowledge.

To generate a new individual, each machine list of an existing individual is mutated
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using one of both mutation operators which is selected randomly with the same

chance.

The normative-knowledge-based mutation operator calculates a position for each

operation using the following formula, and then it sequences the operations in their

operation lists based on their calculated position values.

POij
=


POij

+R×
(
UOij

− LOij

)
POij

< LOij
,

POij
−R×

(
UOij

− LOij

)
POij

> UOij
,

POij
+G otherwise,

where R is a random number uniformly distributed between 0 and 1, and G is a

random number in a normal distribution with mean 0 and variance 1.

In topographic knowledge, there is a list of position occurrences for each opera-

tion such that we need to use the position with greater occurrence to generate new

individuals. Here we use roulette-wheel selection strategy to choose the new position

for each operation.

5.2.5 Results

The proposed algorithm is implemented and evaluated using the java programming

language version 1.6.0.18 on a system with Intel(R) Core(TM)2Quad 2.50GHz CPU

and 8.00GB RAM. Table 5.2 presents the parameters used in our experiments which

are adjusted using extensive experiments. In our experiments, we generate 7 sub-

populations with 142 individuals, approximately 1000 individuals in total. We run

the method for 200 iterations such that the knowledge migration occurs every 20

iterations.

In our experiments, we consider a well-known benchmark [113] for classical JSSP.

The benchmark consists of 40 different problems with different size. All the experi-

ments are done 10 times independently.
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Table 5.2: Parameters of the proposed algorithm

Parameters Value

SubPopulationsNo 7
SubPopSize 142
IterationNo 200
ExchangeRate 20

Table 5.3: Sample Results on LA Benchmark

Problem Algorithm Best Median Worst

la02 CA [40] 655 660.5 667
655 MP-CA 655 655.0 655
la20 CA [40] 907 912.6 924
902 MP-CA 902 907.0 907
la40 CA [40] 1256 1277.4 1328
1222 MP-CA 1228 1234.0 1245

The experiment results show that the proposed MP-CA finds the optimal solution

for 28 test problems out of 40. To show the performance of the proposed method,

we compare our method with another CA recently published by Cortes et al. [40].

The authors claim that their method finds the optimal solution for 26 test problems.

However, our MP-CA outperforms their method by finding the best solution for 2

more test problems as well as by offering better statistical results (lower median

and worst solutions) for those 26 test problems which means that the convergence

rate of our proposed method is better than theirs. Moreover, for the remaining test

problems, our method offers better solutions comparing to theirs, for all the best,

median and worst solutions. Table 5.3 shows three sample results of our proposed MP-

CA compared to the result of Cortes et al. [40]1. The results show that incorporating

multi-population and using knowledge exchange offers better solution and improves

the convergence rate.

To have a fair comparison, we compare our results with their results for 200,000

fitness evaluations, not for more than 2,000,000 evaluations [40]. The maximum

1Please refer to Subsection 5.2.7 to see the complete results. These results are also accessible
online at http://cs.uwindsor.ca/∼raeesim/Flairs-25/Statictical-Analysis.pdf.
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Table 5.4: Comparison among Different Evolutionary Algorithms proposed recently
to solve JSSP on LA Benchmark

Problem(Size)
Best Hybrid GA MA CA Proposed

Known [70] [164] [40] MP-CA
LA20 (10×10) 902 907 (0.55%) 907 (0.55%) 907 (0.55%) 902 (0.00%)
LA21 (15×10) 1046 1046* (0.00%) 1057 (1.05%) 1059 (1.24%) 1048 (0.19%)
LA22 (15×10) 927 935 (0.86%) 935 (0.86%) 947 (2.16%) 932* (0.54%)
LA24 (15×10) 935 953 (1.93%) 944 (0.96%) 950 (1.60%) 943* (0.86%)
LA25 (15×10) 977 986 (0.92%) 983* (0.61%) 998 (2.15%) 983* (0.61%)
LA26 (20×10) 1218 1218 (0.00%) 1218 (0.00%) 1219 (0.08%) 1218 (0.00%)
LA27 (20×10) 1235 1256* (1.70%) 1269 (2.75%) 1279 (3.56%) 1264 (2.35%)
LA28 (20×10) 1216 1232 (1.32%) 1223 (0.58%) 1236 (1.64%) 1219* (0.25%)
LA29 (20×10) 1157 1196 (3.37%) 1191 (2.94%) 1219 (5.36%) 1182* (2.16%)
LA36 (15×15) 1268 1279 (0.87%) 1281 (1.03%) 1296 (2.21%) 1274* (0.47%)
LA37 (15×15) 1397 1408* (0.79%) 1429 (2.29%) 1416 (1.36%) 1415 (1.29%)
LA38 (15×15) 1196 1219 (1.92%) 1208 (1.00%) 1231 (2.93%) 1202* (0.50%)
LA39 (15×15) 1233 1246 (1.05%) 1248 (1.22%) 1269 (2.92%) 1240* (0.57%)
LA40 (15×15) 1222 1241 (1.55%) 1234 (0.98%) 1256 (2.78%) 1228* (0.49%)

Average ER 1.20% 1.20% 2.18% 0.73%
Average Ranking 2.39 2.46 3.79 1.36

number of evaluations in our method is 200,000 which is 1000 evaluations in 200

iterations.

Furthermore, different Evolutionary Algorithms are considered to be compared

with our MP-CA including a hybrid GA [70], our published MA [164], and the CA [40].

All the four algorithms find the optimal solution for certain 26 test problems including

la01-la19, la23, and la30-la35. Table 5.4 represents the results for the remaining 14

test problems. The Error Rate (ER) is considered to be able to compare the results

over all the 14 problems which is defined as follows.

ER =
C − LB
LB

× 100%

where LB is the best-known solution, and C is the best solution found by the algo-

rithms. The ER values are represented in brackets in Table 5.4.
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To compare the 4 algorithms on the 14 problems, we used the non-parametric

procedure incorporated by Garcia et al. [64] with the same levels of significance as

theirs which are α = 0.05 and α = 0.10. To do so, first the algorithms are ranked

using Friedman’s test. The p-value for this test is less than 0.0001 which is also

less than both significance levels; this means there are significant differences between

the compared algorithms. Then, the algorithm with the minimum average ranking

is selected as the control algorithm which is our MP-CA. Afterwards, the critical

differences (CD) for control algorithm MP-CA are calculated using Bonferroni-Dunns

test which are:

CD = 1.17 for α = 0.05

CD = 1.09 for α = 0.10

Now, the algorithms with the average rankings greater than the summation of

the control algorithm ranking and CDs are considered as the algorithms with worse

performance than the control algorithm. In other words, the summation of the average

ranking of the MP-CA and the CD for each significance level is a threshold to find

the worse algorithms. So the thresholds are as follows.

Threshold = 2.53 for α = 0.05

Threshold = 2.45 for α = 0.10

Figure 5.4 represents this concept graphically. The thresholds for α = 0.05 and

α = 0.10 are illustrated using a solid line and a dashed line, respectively. This

figure shows that the control algorithm MP-CA outperforms the algorithms whose

bar exceeds the threshold line. So based on the Friedman’s test and Bonferroni-Dunn’s

approach, we can claim that our proposed MP-CA outperforms the CA proposed by

Cortes et al. [40] with significance level α = 0.05 and outperforms our published MA

[164] with level α = 0.10. However, while the average ER and average ranking of

the proposed MP-CA are better than the hybrid GA [70], these statistical tests show
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Figure 5.4: The Graphical Representation of Statistical Result of Friedman’s test and
Bonferroni-Dunn’s method

Table 5.5: Overall Mutual Comparison

Proposed MP-CA Win Tie Lose

HGA [70] 10 27 3
MA [164] 12 28 0
CA [40] 14 26 0

that the differences are not significant enough to say their performance is worse than

our method’s performance.

Finally, we compare our algorithm with others mutually over all the 40 problems.

The comparison results illustrated in Table 5.5 shows that, for example, the MP-CA

works similar to the hybrid GA [70] for 27 problems, outperforms it for 10 problems,

and works worse for the remaining 3 problems.

5.2.6 Conclusions

In this article, we propose a MP-CA to solve JSSP which is a combinatorial opti-

mization problem proved to be NP-Complete. This article introduces application of

the MP-CA in JSSPs for the first time. Using multipopulation we improve the search

exploration. The proposed method incorporates local CAs on the sub-populations

cooperating to find the optimal solution. In addition, it uses knowledge migration
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among sub-populations as the communication link. In the proposed method, we

consider the extraction of normative and topographic knowledge.

The experiments show that the proposed MP-CA offers better solutions. More-

over, it improves the convergence rate. The comparison of the MP-CA with the

traditional CA shows that using multiple populations as well as incorporating knowl-

edge migration enhance the search space exploration and help the algorithm to avoid

trapping into local optimal solutions.

The statistical comparisons reveal that the proposed method outperforms some

existing methods very well and offers competitive solutions compared to other state-

of-the-art methods. Furthermore, while the statistical comparisons do not show the

significant differences between the proposed MP-CA and those methods, the results

show that it outperforms others by offering lower error rates.

The proposed method is also applicable for other types of JSSPs, but since it uses

the MOL representation and this representation does not cover other JSSP types, we

need to use another representation or provide an extension for MOL, in future work.

5.2.7 Complete Results

Table 5.6 represents the complete results of our proposed MP-CA on a well-known

benchmark introduced by Lawrence [113]. The tables also illustrates the results of

another CA proposed by Cortes et al. [40].

Table 5.6: Results on the Lawrence [113] benchmark (la01-la40)

Problem Size BK Algorithm Best Average SD Median Worst

la01 10×5 666
CA [40] 666 666.5 668

MP-CA 666 666.00 0.00 666.0 666

Table 5.6 – Continued on next page
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Table 5.6: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la02 10×5 655
CA [40] 655 660.5 667

MP-CA 655 655.00 0.00 655.0 655

la03 10×5 597
CA [40] 597 610.2 623

MP-CA 597 597.00 0.00 597.0 597

la04 10×5 590
CA [40] 590 593.0 599

MP-CA 590 590.00 0.00 590.0 590

la05 10×5 593
CA [40] 593 593.5 595

MP-CA 593 593.00 0.00 593.0 593

la06 15×5 926
CA [40] 926 926.0 926

MP-CA 926 926.00 0.00 926.0 926

la07 15×5 890
CA [40] 890 890.0 890

MP-CA 890 890.00 0.00 890.0 890

la08 15×5 863
CA [40] 863 863.4 865

MP-CA 863 863.00 0.00 863.0 863

la09 15×5 951
CA [40] 951 951.3 953

MP-CA 951 951.00 0.00 951.0 951

la10 15×5 958
CA [40] 958 958.1 959

MP-CA 958 958.00 0.00 958.0 958

la11 20×5 1222
CA [40] 1222 1222.3 1224

MP-CA 1222 1222.00 0.00 1222.0 1222

la12 20×5 1039
CA [40] 1039 1039.3 1041

MP-CA 1039 1039.00 0.00 1039.0 1039

la13 20×5 1150
CA [40] 1150 1150.4 1152

MP-CA 1150 1150.00 0.00 1150.0 1150

Table 5.6 – Continued on next page
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Table 5.6: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la14 20×5 1292
CA [40] 1292 1292.4 1294

MP-CA 1292 1292.00 0.00 1292.0 1292

la15 20×5 1207
CA [40] 1207 1207.8 1209

MP-CA 1207 1207.00 0.00 1207.0 1207

la16 10×10 945
CA [40] 945 962.8 990

MP-CA 945 945.00 0.00 945.0 945

la17 10×10 784
CA [40] 784 793.4 811

MP-CA 784 784.00 0.00 784.0 784

la18 10×10 848
CA [40] 848 857.5 863

MP-CA 848 848.00 0.00 848.0 848

la19 10×10 842
CA [40] 842 859.0 872

MP-CA 842 842.40 1.26 842.0 846

la20 10×10 902
CA [40] 907 912.6 924

MP-CA 902 906.50 1.58 907.0 907

la21 15×10 1046
CA [40] 1059 1093.0 1114

MP-CA 1048 1057.20 4.78 1059.0 1063

la22 15×10 927
CA [40] 947 964.3 985

MP-CA 932 936.20 3.49 935.0 945

la23 15×10 1032
CA [40] 1032 1035.5 1045

MP-CA 1032 1032.00 0.00 1032.0 1032

la24 15×10 935
CA [40] 950 976.6 997

MP-CA 943 949.30 3.65 948.5 956

la25 15×10 977
CA [40] 998 1010.7 1034

MP-CA 983 986.30 2.00 987.0 988

Table 5.6 – Continued on next page
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Table 5.6: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la26 20×10 1218
CA [40] 1219 1234.4 1260

MP-CA 1218 1218.50 1.58 1218.0 1223

la27 20×10 1235
CA [40] 1279 1300.0 1324

MP-CA 1264 1268.20 1.75 1269.0 1269

la28 20×10 1216
CA [40] 1236 1260.7 1291

MP-CA 1219 1232.20 6.63 1234.0 1242

la29 20×10 1157
CA [40] 1219 1238.8 1271

MP-CA 1182 1207.20 13.51 1204.5 1229

la30 20×10 1355
CA [40] 1355 1357.5 1369

MP-CA 1355 1355.00 0.00 1355.0 1355

la31 30×10 1784
CA [40] 1784 1784.0 1784

MP-CA 1784 1784.00 0.00 1784.0 1784

la32 30×10 1850
CA [40] 1850 1850.1 1851

MP-CA 1850 1850.00 0.00 1850.0 1850

la33 30×10 1719
CA [40] 1719 1719.0 1719

MP-CA 1719 1719.00 0.00 1719.0 1719

la34 30×10 1721
CA [40] 1721 1721.0 1721

MP-CA 1721 1721.00 0.00 1721.0 1721

la35 30×10 1888
CA [40] 1888 1888.0 1888

MP-CA 1888 1888.00 0.00 1888.0 1888

la36 15×15 1268
CA [40] 1296 1316.7 1351

MP-CA 1274 1284.20 6.32 1282.0 1291

la37 15×15 1397
CA [40] 1416 1464.9 1514

MP-CA 1415 1420.80 5.05 1419.5 1432

Table 5.6 – Continued on next page
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Table 5.6: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la38 15×15 1196
CA [40] 1231 1265.3 1276

MP-CA 1202 1215.40 8.85 1216.0 1235

la39 15×15 1233
CA [40] 1269 1294.6 1327

MP-CA 1240 1244.20 3.29 1243.5 1250

la40 15×15 1222
CA [40] 1256 1277.4 1328

MP-CA 1228 1235.80 5.85 1234.0 1245
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5.3 A Multiagent System to Solve JSSP Using a

Multi-Population Cultural Algorithm

Abstract. In this article, a multiagent system is proposed to solve

Job Shop Scheduling Problems. In the proposed system, a number of

autonomous agents cooperate in a Multi-Population Cultural Algorithm

(MP-CA) framework. The proposed multiagent system consists of a num-

ber of groups of agents called sub-populations. The agents in each sub-

population are co-evolving using a local CA. The local CAs are working

in parallel and communicating to each other to exchange their extracted

knowledge. The knowledge is migrated in the form of structured belief

which is defined as a statistical records of an agent or a group of agents.

Experiments show that our method outperforms some existing methods

by offering better solutions as well as a better convergence rate.

5.3.1 Introduction

Job Shop Scheduling Problem (JSSP) is a well-known optimization problem in differ-

ent areas, specially manufacturing systems. JSSP is the process of assigning various

operations to different machines to be processed in predefined time while meeting

some criteria. The optimization function of JSSP is to minimize the maximum com-

pletion time of all the jobs called makespan. There are lots of algorithms proposed

to solve JSSPs which can be categorized into different types of algorithms such as

heuristics, meta-heuristics and Evolutionary Algorithms (EAs). Moreover, there are

combinations of different types which work better.

In this article, a multiagent system is designed and introduced to solve JSSP by

incorporating a Multi-Population Cultural Algorithm (MP-CA) which is one of the

first MP-CAs proposed in this area.

209



Operation Index 1 2 3

J1 m2,1 m1,2 m3,3
J2 m1,2 m2,1 m3,2
J3 m1,2 m3,4 m2,1

Figure 5.5: Sample Schedule

5.3.2 Related Work

There are various EAs proposed to solve JSSP. Lawrence [112] introduced an appli-

cation of EAs in JSSP by proposing a Genetic Algorithm (GA). Cultural Algorithm

(CA) is introduced in JSSP for the first time by Becerra and Coello Coello [14]. All

of the existing CAs in JSSP use a single population. This article is one of the first

attempts to use multi-population concept of CAs in JSSP. The idea of MP-CA is first

introduced by Digalakis and Margaritis [51] to schedule electrical generators. Almost

all the existing MP-CAs migrate the best individuals. Guo et al. [74] introduced a

CA with knowledge migration for the first time. Since knowledge has more informa-

tion about previous generations and evolution direction, it would be more effective

to migrate knowledge among sub-populations.

Classical JSSP is a process of assigning different jobs to different machines. Each

job is defined by a fixed sequence of operations. Each operation can be processed on

only one machine in a known processing time. The machine set up time and part

movement time between machines are negligible. Each job is processed only one time

on each machine. The machines can process only one operation at a time which

cannot be interrupted. Fig. 5.5 presents a sample classical JSSP containing 3 jobs to

be processed on 3 machines.

5.3.3 Proposed Multi-Population Cultural Algorithm

The proposed multiagent system incorporates a Multi-Population Cultural Algorithm

(MP-CA). Figure 5.6 illustrates the architecture of the proposed MP-CA. In this sys-
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Figure 5.6: MP-CA Architecture which is an extended version of the traditional CA

tem, a number of autonomous agents are generated, which are randomly divided

to some groups called sub-populations. Each agent has a chromosome which is

an encoded schedule. The agents themselves use mutation operators to improve

their chromosomes. There are two mutation operators, the random one and the

knowledge-based one. A local CA is applied on each sub-population, such that each

sub-population has its own belief space. The local CAs communicate with each other

by exchanging their belief also called knowledge migration which is occurred every

predefined number of generations.

Like other CAs, the proposed local CAs consist of both population space and

belief space. Our population space includes a set of autonomous agents with their

corresponding chromosomes which are represented using MOL representation [164].

The agents are autonomous and they mutate their own chromosomes. The agents

are capable to incorporate a local search heuristic as well. We use the local search

method presented in our previous publication [164].

The belief space is used to store the extracted knowledge which is represented as a

structured belief. The structured belief is introduced for the first time in JSSP, which

is an array of statistical data of operation positions in their corresponding machine’s

operation list. The length of the array equals to the total number of operations. The

structured belief for one chromosome is an array of their operation positions. For
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instance, the structured belief for {(1, 2, 3) , (1, 2, 3) , (2, 3, 1)} as a sample chromosome

is as follows:

O11 O12 O13 O21 O22 O23 O31 O32 O33

1 1 3 2 2 1 3 2 3

The belief of a sub-population is calculated by an average function of the be-

lief of the chromosome of its best agents. Consider a sub-population with 100

agents for the sample problem such that the five best agents of which have the

chromosomes as follows: {(1, 2, 3),(1, 2, 3),(1, 2, 3)} , {(1, 3, 2),(3, 1, 2),(2, 1, 3)} ,

{(2, 1, 3),(1, 3, 2),(1, 2, 3)} , {(3, 2, 1),(3, 2, 1),(2, 1, 3)} , and {(2, 3, 1),(2, 3, 1),(2, 3, 1)}

. So the structured belief for this population of its top 5% agents would be the same

as the following array.

O11 O12 O13 O21 O22 O23 O31 O32 O33

2 2 1.8 1.8 2.2 1.4 2.2 2.8 1.8

Each belief can be converted to an individual by sorting the operations in their corre-

sponding machine’s operation lists based on their position values represented in the

belief. Using this definition, the resulted belief of the whole population would be

converted to the chromosome {(2, 1, 3) , (3, 1, 2) , (2, 1, 3)}.

To find the new position for each operation the same routine is done. It finds

out the position of the values in the structured belief regarding the values of other

operations in the same operation list. For instance, if the position value for an

operation is the lowest value, that operation should be reassigned to the first position

of the list. Consider operation O21 in the belief mentioned above. Its value is 1.8

which is not the lowest value in this belief, but it is the lowest value compared to the

operations having to be processed on machine m1. So, its new position would be the

first position on machine m1.

Each local CA has its own belief space which gets updated every generation. The

population space sends the top best agents to the belief space using an acceptance
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function. The belief space generates a new belief using those agents. It updates its

own belief as the average of its old belief and the new one. Then the belief space

sends its updated belief to the population space by an influence function. Finally, the

mutation operator uses the belief to generate offsprings.

In each generation the agents decide how to mutate their chromosomes. If there

is no appropriate belief, the random mutation operator work as follows. First it finds

the critical operations of the schedule and select two consecutive critical operations

on the same machine randomly. Then, it swaps the positions of those operations. The

second mutation operator uses the structured belief and works as follows. It finds

all the critical operations and reassigns them to the positions whose information is

embedded in the structured belief.

The overall framework of the proposed MP-CA is as follows. First, it generates

PopulationSize autonomous agents, and divides them into SubPopulationsNo sub-

populations. The number of iterations is predefined by the IterationNo parameter.

In the first iteration, each agent generates a chromosome randomly and afterwards,

it uses the mutation and local search methods to improve its own chromosome. The

fitness for each agent is the makespan of its chromosome, so the agents are sorted

based on that ascendingly; the smaller, the better. After sorting the agents, the belief

space is updated using the top best agents determined by the TopBest parameter.

Finally, the knowledge migration is occurred every predefined number of generations

denoted by ExchangeRate.

5.3.4 Results

Parameters are adjusted using extensive experiments. We used the whole population

of 1000 agents divided into 7 sub-populations. The top best agents includes the two

best agents. The algorithm runs for 100 iterations and knowledge migration occurs

every 20 generations. We used the Lawrence’s benchmark [113] and carried out the
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Table 5.7: Sample Results on LA Benchmark

Problem Algorithm Best Average Median Worst
la24 CA[40] 950 976.6 997

15× 10 SP-CA 948 958.40 956.5 970
935 MP-CA 941 951.90 952.0 962
la40 CA[40] 1256 1277.4 1328

15× 15 SP-CA 1240 1251.40 1252.5 1262
1222 MP-CA 1234 1247.50 1249.5 1259

experiments for 10 independent runs for each problem. The MP-CA is also evaluated

using only one sub-population which is called Single-Population CA (SP-CA). Some

sample results 2 are represented in Table 5.7.

The results show that both SP-CA and MP-CA find the optimal solutions for

28 test problems out of 40, but in these problems the statistical results shows lower

average, standard deviation and median values for MP-CA. It means that the MP-CA

offers better convergence rate than SP-CA. Moreover for the rest of the test problems,

the MP-CA outperforms SP-CA by offering better solutions. So, it is possible to say

that MP-CA works better than SP-CA in all of the 40 test problems. In other words,

incorporating multi-population and using knowledge exchange offers better solution

and improves the convergence rate.

In order to show the performance of the proposed method, another CA recently

published by Cortes et al. [40] is considered for the comparison. Their results are also

shown in Table 5.7. Their method finds the optimal solution for 26 test problems,

while our MP-CA finds the best solution for 2 more problems. For all other problems,

the MP-CA offers better solution comparing to their CA. Furthermore, the proposed

method is compared with different EAs proposed recently including a hybrid GA

proposed by Goncalves et al. [70], our recently published Memetic Algorithm (MA)

[164], and the CA proposed by Cortes et al. [40]. For certain 26 test problems of LA

benchmark , all the five algorithms can find the optimal solution. The results of the

2Please refer to Subsection 5.3.6 to see the complete results. These results are also accessible
online at http://cs.uwindsor.ca/∼raeesim/CanadianAI2012/Statictical.pdf.
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Table 5.8: Comparison among Different EAs proposed recently to solve JSSP

Prob. BK hGA [70] MA [164] CA [40] SP-CA MP-CA

LA20 902 907 (0.55%) 907 (0.55%) 907 (0.55%) 902 (0.00%) 902 (0.00%)
LA21 1046 1046* (0.00%) 1057 (1.05%) 1059 (1.24%) 1059 (1.24%) 1057 (1.05%)
LA22 927 935 (0.86%) 935 (0.86%) 947 (2.16%) 935 (0.86%) 934* (0.76%)
LA24 935 953 (1.93%) 944 (0.96%) 950 (1.60%) 948 (1.39%) 941* (0.64%)
LA25 977 986 (0.92%) 983 (0.61%) 998 (2.15%) 989 (1.23%) 980* (0.31%)
LA26 1218 1218 (0.00%) 1218 (0.00%) 1219 (0.08%) 1218 (0.00%) 1218 (0.00%)
LA27 1235 1256* (1.70%) 1269 (2.75%) 1279 (3.56%) 1269 (2.75%) 1269 (2.75%)
LA28 1216 1232 (1.32%) 1223* (0.58%) 1236 (1.64%) 1234 (1.48%) 1225 (0.74%)
LA29 1157 1196 (3.37%) 1191* (2.94%) 1219 (5.36%) 1205 (4.15%) 1197 (3.46%)
LA36 1268 1279* (0.87%) 1281 (1.03%) 1296 (2.21%) 1294 (2.05%) 1281 (1.03%)
LA37 1397 1408* (0.79%) 1429 (2.29%) 1416 (1.36%) 1414 (1.22%) 1410 (0.93%)
LA38 1196 1219 (1.92%) 1208* (1.00%) 1231 (2.93%) 1215 (1.59%) 1208* (1.00%)
LA39 1233 1246 (1.05%) 1248 (1.22%) 1269 (2.92%) 1248 (1.22%) 1243* (0.81%)
LA40 1222 1241 (1.55%) 1234* (0.98%) 1256 (2.78%) 1240 (1.47%) 1234* (0.98%)

Avg. ER 1.20% 1.20% 2.18% 1.48% 1.03%
Avg. Ranking 2.61 2.50 4.75 3.29 1.86

algorithms as well as their error rates (ER) on the remaining 14 test problems are

represented in Table 5.8.

To compare all the 5 algorithms, the non-parametric procedure incorporated by

Garcia et al. [64] is used which includes Friedman’s ranking and Bonferroni-Dunn’s

tests. We used the same levels of significance as they did which are α = 0.05 and

α = 0.10 . These tests inform us that the proposed MP-CA outperforms the CA [40]

with significance level α = 0.05 and outperforms the proposed SP-CA with α = 0.10.

While the average ER and average ranking of the proposed MP-CA is better than the

hybrid GA [70] and the MA [164], but these statistical tests show that the differences

are not significant enough.

5.3.5 Conclusions

In this article, a multiagent system is proposed in which agents use knowledge-based

evolution to improve their fitness. The proposed method uses multi-population and

knowledge migration to improve search space exploration as well as to prevent trap-
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ping into local optima. The experiments show the proposed method outperforms the

traditional CA by offering better solutions. Moreover, the comparison of MP-CA with

another CA shows that the proposed method finds better solutions while it improves

the convergence rate. Comparing to other types of algorithms, the proposed method

offers competitive solutions. However, it is possible to say that the proposed MP-CA

outperforms the existing methods, while it is not significant enough.

5.3.6 Complete Results

Table 5.9 represents the complete results of our proposed SP-CA and MP-CA on a

well-known benchmark introduced by Lawrence [113]. The tables also illustrates the

results of another CA proposed by Cortes et al. [40].

Table 5.9: Results on the Lawrence [113] benchmark (la01-la40)

Problem Size BK Algorithm Best Average SD Median Worst

la01 10×5 666

CA [40] 666 666.5 668

SP-CA 666 666.00 0.00 666.0 666

MP-CA 666 666.00 0.00 666.0 666

la02 10×5 655

CA [40] 655 660.5 667

SP-CA 655 655.00 0.00 655.0 655

MP-CA 655 655.00 0.00 655.0 655

la03 10×5 597

CA [40] 597 610.2 623

SP-CA 597 597.60 1.90 597.0 603

MP-CA 597 597.20 0.63 597.0 599

la04 10×5 590

CA [40] 590 593.0 599

SP-CA 590 590.00 0.00 590.0 590

MP-CA 590 590.00 0.00 590.0 590

Table 5.9 – Continued on next page
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Table 5.9: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la05 10×5 593

CA [40] 593 593.5 595

SP-CA 593 593.00 0.00 593.0 593

MP-CA 593 593.00 0.00 593.0 593

la06 15×5 926

CA [40] 926 926.0 926

SP-CA 926 926.00 0.00 926.0 926

MP-CA 926 926.00 0.00 926.0 926

la07 15×5 890

CA [40] 890 890.0 890

SP-CA 890 890.00 0.00 890.0 890

MP-CA 890 890.00 0.00 890.0 890

la08 15×5 863

CA [40] 863 863.4 865

SP-CA 863 863.00 0.00 863.0 863

MP-CA 863 863.00 0.00 863.0 863

la09 15×5 951

CA [40] 951 951.3 953

SP-CA 951 951.00 0.00 951.0 951

MP-CA 951 951.00 0.00 951.0 951

la10 15×5 958

CA [40] 958 958.1 959

SP-CA 958 958.00 0.00 958.0 958

MP-CA 958 958.00 0.00 958.0 958

la11 20×5 1222

CA [40] 1222 1222.3 1224

SP-CA 1222 1222.00 0.00 1222.0 1222

MP-CA 1222 1222.00 0.00 1222.0 1222

la12 20×5 1039

CA [40] 1039 1039.3 1041

SP-CA 1039 1039.00 0.00 1039.0 1039

MP-CA 1039 1039.00 0.00 1039.0 1039

Table 5.9 – Continued on next page
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Table 5.9: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la13 20×5 1150

CA [40] 1150 1150.4 1152

SP-CA 1150 1150.00 0.00 1150.0 1150

MP-CA 1150 1150.00 0.00 1150.0 1150

la14 20×5 1292

CA [40] 1292 1292.4 1294

SP-CA 1292 1292.00 0.00 1292.0 1292

MP-CA 1292 1292.00 0.00 1292.0 1292

la15 20×5 1207

CA [40] 1207 1207.8 1209

SP-CA 1207 1207.00 0.00 1207.0 1207

MP-CA 1207 1207.00 0.00 1207.0 1207

la16 10×10 945

CA [40] 945 962.8 990

SP-CA 945 945.60 0.70 945.5 947

MP-CA 945 945.20 0.42 945.0 946

la17 10×10 784

CA [40] 784 793.4 811

SP-CA 784 784.90 1.20 784.5 787

MP-CA 784 784.20 0.42 784.0 785

la18 10×10 848

CA [40] 848 857.5 863

SP-CA 848 848.00 0.00 848.0 848

MP-CA 848 848.00 0.00 848.0 848

la19 10×10 842

CA [40] 842 859.0 872

SP-CA 842 846.60 2.84 847.0 850

MP-CA 842 845.50 3.92 844.5 852

la20 10×10 902

CA [40] 907 912.6 924

SP-CA 902 907.70 2.75 907.0 911

MP-CA 902 904.00 2.58 902.0 907

Table 5.9 – Continued on next page
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Table 5.9: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la21 15×10 1046

CA [40] 1059 1093.0 1114

SP-CA 1059 1067.00 6.20 1066.0 1078

MP-CA 1057 1067.70 8.33 1065.0 1085

la22 15×10 927

CA [40] 947 964.3 985

SP-CA 935 941.10 8.27 938.0 962

MP-CA 934 942.30 6.15 941.0 954

la23 15×10 1032

CA [40] 1032 1035.5 1045

SP-CA 1032 1032.00 0.00 1032.0 1032

MP-CA 1032 1032.00 0.00 1032.0 1032

la24 15×10 935

CA [40] 950 976.6 997

SP-CA 948 958.40 7.89 956.5 970

MP-CA 941 951.90 5.76 952.0 962

la25 15×10 977

CA [40] 998 1010.7 1034

SP-CA 989 995.10 5.26 997.5 1002

MP-CA 980 987.00 5.06 988.5 994

la26 20×10 1218

CA [40] 1219 1234.4 1260

SP-CA 1218 1226.50 9.13 1226.0 1244

MP-CA 1218 1228.70 6.07 1229.0 1236

la27 20×10 1235

CA [40] 1279 1300.0 1324

SP-CA 1269 1280.40 11.64 1278.5 1304

MP-CA 1269 1280.30 7.62 1282.5 1293

la28 20×10 1216

CA [40] 1236 1260.7 1291

SP-CA 1234 1254.70 12.49 1256.5 1273

MP-CA 1225 1239.40 10.07 1241.0 1258

Table 5.9 – Continued on next page
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Table 5.9: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la29 20×10 1157

CA [40] 1219 1238.8 1271

SP-CA 1205 1217.40 9.83 1215.5 1238

MP-CA 1197 1231.00 14.04 1233.0 1249

la30 20×10 1355

CA [40] 1355 1357.5 1369

SP-CA 1355 1355.00 0.00 1355.0 1355

MP-CA 1355 1355.00 0.00 1355.0 1355

la31 30×10 1784

CA [40] 1784 1784.0 1784

SP-CA 1784 1784.00 0.00 1784.0 1784

MP-CA 1784 1784.00 0.00 1784.0 1784

la32 30×10 1850

CA [40] 1850 1850.1 1851

SP-CA 1850 1850.00 0.00 1850.0 1850

MP-CA 1850 1850.00 0.00 1850.0 1850

la33 30×10 1719

CA [40] 1719 1719.0 1719

SP-CA 1719 1719.00 0.00 1719.0 1719

MP-CA 1719 1719.00 0.00 1719.0 1719

la34 30×10 1721

CA [40] 1721 1721.0 1721

SP-CA 1721 1721.00 0.00 1721.0 1721

MP-CA 1721 1721.00 0.00 1721.0 1721

la35 30×10 1888

CA [40] 1888 1888.0 1888

SP-CA 1888 1888.00 0.00 1888.0 1888

MP-CA 1888 1888.00 0.00 1888.0 1888

la36 15×15 1268

CA [40] 1296 1316.7 1351

SP-CA 1294 1300.70 5.60 1301.0 1312

MP-CA 1281 1289.80 7.11 1291.0 1301

Table 5.9 – Continued on next page
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Table 5.9: (continued from previous page)

Problem Size BK Algorithm Best Average SD Median Worst

la37 15×15 1397

CA [40] 1416 1464.9 1514

SP-CA 1414 1435.60 13.03 1440.0 1449

MP-CA 1410 1426.60 12.26 1425.0 1447

la38 15×15 1196

CA [40] 1231 1265.3 1276

SP-CA 1215 1235.90 12.74 1235.5 1254

MP-CA 1208 1226.10 10.47 1227.5 1240

la39 15×15 1233

CA [40] 1269 1294.6 1327

SP-CA 1248 1256.40 9.48 1253.5 1275

MP-CA 1243 1254.30 9.90 1251.0 1275

la40 15×15 1222

CA [40] 1256 1277.4 1328

SP-CA 1240 1251.40 6.72 1252.5 1262

MP-CA 1234 1247.50 8.11 1249.5 1259
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5.4 Conclusions

This chapter represents my proposed MP-CAs which are designed to solve classical

JSSPs. It should be noted here that the MP-CA illustrated in Section 5.2 intro-

duces the application of MP-CAs in JSSPs for the first time. Moreover, Section 5.2

represents a statistical analysis procedure to evaluate whether the performance im-

provement is significant or not.

Furthermore, the incorporated knowledge in these proposed MP-CAs are differ-

ent such that the first MP-CA illustrated in Section 5.2 incorporates two types of

knowledge including normative and topographic knowledge, while a new knowledge

is introduced in the second MP-CA characterized in Section 5.3.

The proposed MP-CAs are evaluated over a well-known JSSP benchmark. The

evaluation experiments reveal that the proposed methods outperform well to deal with

classical JSSPs such that they offer competitive solutions compared to the state-of-

the-art methods.

Since the proposed MP-CAs use the MOL representation and this representation

does not cover other types of JSSPs, the proposed methods have only applied on

the classical JSSPs. Therefore, incorporating another representation or providing an

extension for MOL is considered as future directions for this research.
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Chapter 6

Heterogeneous Multi-Population

Cultural Algorithm

6.1 Introduction

Different architectures have been proposed to implement MP-CAs. Each architecture

has its own strengthes and weaknesses. Homogeneous local CAs is one of the common

architectures in which the local CAs have their own local belief spaces and works

exactly the same [211, 76, 168].

Heterogeneous local CAs is another architecture for MP-CAs in which the local

CAs are designed to work on different sub-problems instead of the whole problem.

This architecture is introduced by Lin et al. [117, 118, 120] in their proposed Cultural

Cooperative Particle Swarm Optimization (CCPSO) to train a Neurofuzzy Inference

System. In CCPSO, each local CA is designed to work on only one dimension by

incorporating Particle Swarm Optimization (PSO) to evolve its population. The

local CAs in CCPSO have their own local belief spaces to record and update the

extracted knowledge.
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The most recent architecture to implement MP-CAs is my proposed Heterogenous

Multi-Population Cultural Algorithm (HMP-CA) [171] which belongs to the category

of heterogeneous local CAs architectures. HMP-CA and its improved versions are the

key contribution of this dissertation which are published or accepted to be published

as research papers.

This chapter represents the proposed HMP-CA and its improved versions in the

following order:

• M. R. Raeesi N. and Z. Kobti, “Heterogeneous multi-population cultural al-

gorithm,” in IEEE Congress on Evolutionary Computation (CEC), Cancun,

Mexico, June 20-23 2013, pp. 292-299 [171]:

This research paper introduces HMP-CA which includes a number of heteroge-

neous local CAs designed to optimize different subsets of the problem dimen-

sions. HMP-CA incorporates only one belief space which is shared among local

CAs instead of one local belief space for each local CA. The performance of the

proposed HMP-CA is evaluated by its application on numerical optimization

problems. Section 6.2 further characterized the proposed architecture and the

results of its performance evaluation.

• M. R. Raeesi N., J. Chittle, and Z. Kobti, “A new dimension division scheme for

heterogenous multi-population cultural algorithm,” in The 27th Florida Arti-

ficial Intelligence Research Society Conference (FLAIRS-27), Pensacola Beach,

FL, USA, May 21-23 2014 [165]:

In order to incorporate HMP-CA, first a problem decomposition technique

should be incorporated to divide the problems dimensions into a number of

groups. This research paper investigates the effect of different static decom-

position techniques on the performance of the proposed HMP-CA. The inves-

tigated static techniques include sequential, jumping, sequential with overlap,
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logarithmic and customized logarithmic approaches. The details of the investi-

gated techniques and their effects on the algorithm performance is presented in

Section 6.3.

• M. R. Raeesi N. and Z. Kobti, “Heterogeneous multi-population cultural algo-

rithm with a dynamic dimension decomposition strategy,” in The 27th Canadian

Conference on Artificial Intelligence (Canadian AI), Montreal, QC, Canada,

May 6-9 2014 [174]:

In this research paper, the proposed HMP-CA is improved such that it is able to

deal with dynamic decomposition strategies. In addition to this improvement,

two new dynamic decomposition techniques are introduced which are called

top-down and bottom-up strategies. The idea of the former approach is to start

with a local CA designed to optimize all the problem dimensions and split it

if it cannot find a better solution for a number of generations. Conversely, the

idea of the latter approach is to start with a number of local CAs designed

to optimize only one dimension and merge them if they cannot find a better

solution for a number of generations. The proposed dynamic approaches are

fully described in Section 6.4.

• M. R. Raeesi N. and Z. Kobti, “Adaptive heterogenous multi-population cul-

tural algorithm for large scale global optimization,” in The 21st European Con-

ference on Artificial Intelligence (ECAI), Praque, Czech Republic, August 18-22

2014 [173]:

This research paper suggests to incorporate a more systematic composition in-

stead of the random merging used in the bottom-up approach presented in the

previous research article. In order to do so, a technique is introduced in this

research paper to detect additively dimension interactions. The proposed tech-

nique which is called Variable Additively Interdependence Learning (VAIL) is
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incorporated to design an adaptive dimension decomposition technique which

merges the interacting dimensions into one local CA and preserves the non-

interacting dimensions within different local CAs. The proposed VAIL tech-

nique and its effect on HMP-CA performance is presented in Section 6.5.
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6.2 Heterogeneous Multi-Population Cultural Al-

gorithm

Abstract. In this article, a new architecture for Cultural Algorithms is

proposed. The new architecture incorporates a number of sub-populations

such that each sub-population is designed to optimize different parame-

ters. According to the assigned parameters, each sub-population is a set

of partial solutions which are managed by a local CA. Local CAs do not

communicate with each other directly. In this architecture, a shared be-

lief space is considered to record the best parameters. Local CAs send

their best partial solutions to the belief space every generation. The be-

lief space then updates its record of best parameters which will be used

later by local CAs to evaluate their partial solutions. Due to incorporating

a number of heterogeneous sub-populations, the proposed architecture is

called Heterogeneous Multi-Population Cultural Algorithm (HMP-CA).

Additionally, a local search heuristic is proposed to speed up the conver-

gence of HMP-CA. The proposed HMP-CA is evaluated using a number of

numerical optimization benchmark functions. The results show that the

HMP-CA without the local search offers competitive results compared to

the state-of-the-art methods and incorporating the proposed local search

heuristic makes the proposed HMP-CA more efficient such that it outper-

forms all the state-of-the-art methods.

6.2.1 Introduction

Optimization problems are a set of problems where the goal is to find a set of input

parameters to make a system as effective as possible. The input parameters could be

either discrete or continuous. A problem with continuous parameters is called a global
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optimization problem, while one with discrete parameters is called a combinatorial

optimization problem. The focus of this paper is on numerical optimization where

the input is a D-dimensional vector of continuous parameters.

There are various types of algorithms proposed to solve optimization problems.

Evolutionary Algorithms (EAs) is a subset of those methods successfully applied to

deal with optimization problems. EAs are population-based approaches incorporat-

ing the concept of evolution inspired from what is seen in nature. An EA starts with

a population of randomly generated individuals which is called an initial population.

Incorporating evolutionary operators including mutation and crossover, it generates

new population of individuals from the current population. Afterwards a selection

method finalizes the population for the next generation. This method is inspired

by the natural selection mechanism which states that the individuals which survive

for the next generation are more likely the ones which show to be fitter to the envi-

ronment. This routine stops when termination criteria (e.g. CPU time, predefined

number of generations) are met.

Various types of EAs with different specifications are introduced in the literature.

Genetic Algorithm (GA) and Genetic Programming (GP) are two popular EAs pro-

posed by Holland [93] and Koza [109], respectively. Another instance of EA which is

popular due to its efficient search space exploration is Differential Evolution (DE). DE

is the most recent evolutionary method introduced in literature which was designed

by Storn and Price [191] to solve global optimization problems. Cultural Algorithm

(CA) is another EA developed by Reynolds [175] incorporating knowledge to improve

the search mechanism. CA extracts the knowledge during the process of evolution

and uses the extracted knowledge to direct the search process. The knowledge is

stored and updated within another space different than the population space, called

the belief space.
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Although EAs are successfully applied on various types of optimization problems,

they suffer from immature convergence. This is due to the fact that they cannot

preserve the population diversity over generations. There are a number of strategies

introduced to do so such as rejecting duplicate solutions and high mutation rate.

Recently, researchers have been interested in incorporating multiple populations to

keep the population diversity and scape the local optimal regions. The multiple

populations approach divides the whole population into a number of sub-populations.

Each sub-population then is evolved by a local EA. During the process of evolution,

sub-populations communicate to each other. It is also possible to say that the local

EAs are communicating. In fact parallel EAs could be considered as multi-population

methods.

In this article, a new architecture is proposed for Multi-Population CA such that

the sub-populations are not exactly the same. The optimization parameters are di-

vided among sub-populations and each sub-population is a set of partial solutions

which is responsible to optimize its own parameters. Each sub-population is evolved

by a local CA which does not communicate to other local CAs directly. A local CA

transforms its best partial solution to a shared belief space which will be access by

other local CAs for evaluating their partial solutions. As a matter of fact, the local

CAs are cooperating to find the best combination for the input parameters. Because

the proposed architecture incorporates a number of sub-population with different

set of parameters, it is called Heterogeneous Multi-Population Cultural Algorithm

(HMP-CA). The proposed architecture incorporates DE as its evolutionary approach

due to its ability to highly explore the search space, especially in global optimization

problems.

The remainder of this article is organized as follows. Subsection 6.2.2 concisely

describes DE and CA, and Subsection 6.2.3 mathematically introduces the definition

of numerical optimization. The proposed HMP-CA is described in detail in Subsection
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6.2.4, followed by representing the experiments designed to evaluate the proposed

method, the discussion on the results and the comparison of the results with the

state-of-the-art methods in Subsection 6.2.5. Finally, Subsection 6.2.6 represents

conclusion remarks. It should be noted that the optimization functions incorporated

for experiments are illustrated in Appendix 6.2.7.

6.2.2 Related Work

6.2.2.1 Differential Evolution

Differential Evolution (DE) is an EA designed by Storn and Price [191] to solve global

optimization problems. Although the canonical DE was designed to deal with contin-

uous domains, it also shows great performance on combinatorial optimization prob-

lems. However, it is not possible to directly apply the traditional DE on continuous

domains. Overall DE shows remarkable performance on both types of optimization

problems such as space trajectory optimization [201] and multi-area economic dis-

patch [183] as global optimization problems and a number of permutation problems

as combinatorial ones [151, 162, 223].

DE is a popular EA due to its strong search space exploration. It incorporates

a differential formulation mechanism to generate offspring from current individuals.

Its mechanism includes both mutation and crossover operators which will be applied

on all individuals of all generations. Each individual which is also considered as a

solution is represented by a D-dimensional vector of real-value numbers. This vector

is so-called target vector denoted by Xi,g, the ith target vector of generation g:

Xi,g = [x1,i,g, x2,i,g, ..., xD,i,g] (6.1)

where xj,i,g denotes the value of target vector Xi,g for dimension j ranging from 1 to

D.

230



In each generation g the mutation operator is applied on each target vector Xi,g

to generate a mutant vector Vi,g. Although there are a number of different mutation

strategies introduced for DE, the general strategy is to incorporate Equation 6.2:

Vi,g = Xr1,g + F × (Xr2,g −Xr3,g) (6.2)

where Xr1,g, Xr2,g, and Xr3,g are three different target vectors which are randomly

selected within the same generation g. Xr1,g is called the base vector and the other

two are called perturbation vectors. F is a scale factor to determine how much the

base vector Xr1,g should be perturbed.

Clearly, in this equation the mutant vector Vi,g is calculated without considering

any values of the target vector Xi,g, but modern equations may use the target vector

values or some of its information such as its locality. Each mutation strategy includes

a base vector and a number of perturbation levels. Since the general strategy in-

corporates a randomly selected base vector and one level of perturbation it is called

DE/rand/1. Four different strategies are introduced by Price et al. [161], and one

more is proposed by Wisittipanich and Kachitvichyanukul [207].

A comparative study is provided by Mezura-Montes et al. [133] to compare eight

DEs incorporating different mutation and crossover operators. The authors claim

that DE/best/1/bin is the most competitive DE regardless of the problem domain.

It should be noted that bin refers to the crossover operator which is described as

follows and mutation operator DE/best/1 is presented in Equation 6.3:

Vi,g = Xbest,g + F × (Xr1,g −Xr2,g) (6.3)

where Xr1,g and Xr2,g are randomly selected target vectors within generation g, Xbest,g

represents the best solution within the same generation, and F is a scale factor.
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After applying the mutation operator and generating mutant vector Vi,g, crossover

operator is applied on both target vector Xi,g and mutant vector Vi,g to generate a

trial vector Zi,g. The most popular crossover strategy for DE is binomial crossover

operator which is represented in Equation 6.4:

zj,i,g =

 vj,i,g if rj ≤ Cr or j = jrand

xj,i,g otherwise
(6.4)

where rj is a random number uniformly distributed in interval [0, 1) for jth dimension,

Cr is the crossover probability which could be fixed for all generations or changing

over the generations, and jrand is a randomly selected index to ensure that the trial

vector Zi,g differs from target vector Xi,g at least in one component.

Like other evolutionary methods, the final step of each generation is applying a

selection mechanism. The selection function selects the better solution between target

vector Xi,g and trial vector Zi,g by comparing their objective values. The selected

solution is considered as a target vector for the next generation denoted by Xi,g+1.

Xi,g+1 =

 Zi,g if f(Zi,g) ≤ f(Xi,g)

Xi,g otherwise
(6.5)

6.2.2.2 Cultural Algorithm

Cultural Algorithm (CA) is an EA incorporating knowledge to direct the search pro-

cess [175]. A large number of successful applications of CA shows the performance

of a knowledge-based EA. The knowledge is extracted and then incorporated by a

CA to amend its search mechanism. The extracted knowledge helps the CA to find

solutions with better quality and moreover it improves the convergence rate.

Figure 6.1 illustrates the architecture of a CA. As depicted in the figure, CA has

a population space like other EAs where the individuals are being evolved. This

space is managed by an EA such as a GA or a DE. CA has one more space which is
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Figure 6.1: CA Architecture

called the belief space. Belief space is incorporated to save and update the extracted

knowledge over all generations. In each generation, both spaces communicate to each

other using two communication links, namely the acceptance and influence functions.

The knowledge circulation is described as follows.

1. The belief space receives the top best individuals within generation g from the

population space using acceptance function.

2. The belief space updates its own knowledge.

3. In the next generation g + 1, the belief space sends the updated knowledge

through the influence function to the population space.

4. The population space incorporates the knowledge to generate offspring from

generation g and produce next generation g + 1.

5. The top individuals within generation g+1 are sent to the belief space to update

its knowledge.

This routine continues until the CA stops. It would seem that the population space

of a CA works like other EAs, but it uses knowledge-based evolutionary operators

instead of random ones.
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It should be noted here that the local search presented in Figure 6.1 is not a

specific component of a CA but it is usually incorporated by CAs in order to improve

the convergence rate.

As mentioned before, EAs suffer from their immature convergence and one possi-

ble solution is to incorporate multiple populations. There are a number of Multi-

Population Cultural Algorithms (MP-CAs) introduced in the literature, the first

MP-CA being introduced by Digalakis and Margaritis [51] to schedule electrical gen-

erators. Recently, there has been more effort made by researchers to benefit the

multi-population concept and a number of strategies have been proposed to design

MP-CAs. Peer local CAs [211, 76, 168], for instance, is one of these strategies in which

each sub-population is managed by a local CA having its own local belief space.

There are more parameters which can be adjusted for a MP-CA compared to a

single-population CA. For instance, the number of sub-populations could be either

fixed or dynamic, the local CAs could be homogeneous or heterogeneous, and the com-

munication topology could be either a ring, a mesh or something else. Furthermore,

the information which is migrated could be either the best found solution within each

sub-population, the refined algorithm parameters or the knowledge extracted during

the previous generations.

6.2.3 Numerical Optimization

Global optimization problems is a class of optimization problem where the input pa-

rameters are continuous and the goal is to minimize or maximize an optimization

function. Since both minimization and maximization problems work the same, we

only consider the minimization approach which is mathematically defined in Equa-

tion 6.6:
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Minimize f(X)

X = {x1, x2, ..., xD}

f : RD → R

Subject to gi(X) = 0, i = 1, ...,m

hj(X) ≤ 0, j = 1, ..., n

(6.6)

where X is a D-dimensional vector of real-value parameters and xi denotes the value

for ith dimension. gi(X) and hj(X) are a number of equality and inequality con-

straints, correspondingly.

Minimization is defined as finding vector x∗ which has the lowest objective value

among all possible vectors in the solution space S.

X∗ ∈ S and f(X∗) ≤ f(X),∀X ∈ S

Numerical optimization is a global optimization problem where the optimiza-

tion function is a mathematical equation dependent to a vector of input parameters.

Sphere model presented in Equation 6.7 is a sample of numerical optimization func-

tions where the goal is to find the minimum value for this model and both upper and

lower bounds are considered for each dimension.

f1(X) =
D∑
i=1

xi
2 (6.7)

−100 ≤ xi ≤ 100

min(f1) = f1(0, ..., 0) = 0
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6.2.4 Proposed Method

A new architecture is proposed for MP-CA incorporating a number of heteroge-

neous sub-populations. The optimization parameters are divided among these sub-

populations such that each sub-population which is directed by a local CA optimizes

its own parameters. Based on the parameters assigned to each sub-population, it

defines a partial solution structure. Therefore, each sub-population is a set of partial

solutions instead of complete solutions. The proposed architecture called Heteroge-

neous Multi-Population Cultural Algorithm (HMP-CA) incorporates a shared belief

space to be contacted by all local CAs.

Figure 6.2 illustrates the proposed architecture which is composed of a number

of heterogeneous local CAs and a shared belief space. The shared belief space in

our proposed architecture is a very simple space which records only best parameter

for each dimension with its corresponding objective value. Moreover, the proposed

method in this architecture incorporates the simplest DE (DE/rand/1 presented in

Equation 6.2 with binomial crossover illustrated in Equation 6.4) as the evolutionary

approach for local CAs. The crossover probability of the simplest DE is set to 0.5 for

all generations, and the scale factor is selected randomly from intervals [0.5, 2.5] for

each generation. These parameters are adjusted based on an extensive experiments.

Incorporating heterogeneous local CAs is introduced in Cultural Cooperative Par-

ticle Swarm Optimization (CCPSO) which is published by Lin et al. [117, 118, 120].

CCPSO is designed to train a Neurofuzzy Inference System (NFIS). Each local CA

in CCPSO is a PSO-based method with its local belief space working to optimize one

variable. Shared belief space is also used in Cooperative Interactive Cultural Algo-

rithms (CICA) [80, 83] to deal with interactive optimization problems. Therefore,

the proposed architecture is a new one which benefits both a shared belief space and

heterogeneous characteristic of local CAs.
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Figure 6.2: HMP-CA Architecture

The details of dimensions division strategy, population space’s definition and the

structure of the belief space are described in the following sub-subsections, and this

subsection is finalized with a precise description of the proposed HMP-CA’s frame-

work.

6.2.4.1 Dimensions Division

The first step of our proposed HMP-CA is parameter division in which the optimiza-

tion parameters are divided among the sub-populations. The division is designed

such that the difference of the number of dimensions between each pair of local CAs

is one at maximum. The proposed division strategy assigns the dimensions one by

one to different local CAs sequentially and when it reaches the last local CA, it starts

from the first one. The following example shows the division of 10 dimension among

4 local CAs. In this example the first two local CAs get three dimensions each and

others get two dimensions each.

Local CAs 1 2 3 4

Dimensions
1 2 3 4
5 6 7 8
9 10
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6.2.4.2 Population Space

The population space of our proposed methods consists of a number of sub-

populations. The individuals of a sub-population include only the dimensions that

are assigned to the corresponding sub-population. Therefore these individuals are

called partial solutions. Considering the example presented in Sub-subsection 6.2.4.1,

the partial solutions of the second sub-population only have the parameters for

dimensions 2, 6 and 10.

In order to evaluate a partial solution, it is completed by its complement param-

eters coming from the belief space. The complete individual then is evaluated based

on a numerical optimization function. Incorporating this strategy makes parameters

comparison fair since the complements of all partial solutions within a population at

a given generation are exactly the same.

Furthermore, since only the partial solutions are recorded within a sub-population,

the proposed HMP-CA is an efficient method in terms of both CPU time and mem-

ory usage. Considering the instance illustrated in Sub-subsection 6.2.4.1, a partial

solution in the first two sub-populations is a 3-dimensional vector and for the other

sub-populations it is a 2-dimensional vector which are much shorter than a complete

solution with a 10-dimensional vector. Moreover, to apply the mutation and crossover

operators only the partial solutions are taken into account. It means that for the same

example only 2 or 3 dimensions are considered to be used in Equations 6.2 and 6.4

instead of 10 dimensions. It implies that the CPU time required for calculating these

equations is approximately saved by 70%.

6.2.4.3 Belief Space

The HMP-CA’s belief space has a very simple structure. It only has a vector of the

best found parameters and a vector of their corresponding objective value. Figure

6.3 illustrates a sample belief space for a 10-dimensional problem. Actually, this
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belief space could be the belief space of applying our proposed HMP-CA to solve a

10-dimensional Sphere Model (presented in Equation 6.7) when the best solution is

found.

Dimensions 1 2 3 4 5 6 7 8 9 10
Parameters 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Values 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 6.3: A sample belief space.

When belief space receives a best partial solution from a local CA, it updates

its parameters of the corresponding dimensions if the objective value of that partial

solution is better than that of those dimensions. Although each sub-population is

improving during the process of evolution and they never sends worse partial solutions

than the ones they sent before, the idea of comparing the objective value is due to

the fact that the belief space may incorporate a local search method to optimize all

the dimensions at the same time.

6.2.4.4 Local Search

In order to speed up the convergence of the proposed method, a simple local search

heuristic is incorporated which is looking into the neighborhood of each dimension to

find out the local optimum parameter. The pseudo-code of the proposed local search

is presented in Figure 6.4. The local search method can be called either by each

sub-population or by belief space. The belief space calls it by sending a complete

solution while sub-populations call it by sending a partial solution. The local search

heuristic defines the factor parameter and incorporating addition, subtraction and

cut operators, it looks for better parameters for the dimensions presented in the given

solution. Cut is considered as removing the tenth and higher decimal digits. Then if

a better solution is obtained, the local search continues with the best found solution.
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PROCEDURE: Local Search
INPUT: Partial Solution or Complete Solution
OUTPUT: Local Optimal Solution

BEGIN
factor ← 10
FOR (IterationNo)

FOR (each dimension i)
minusClone [i]← input [i]× (1 + factor)
plusClone [i]← input [i]× (1− factor)
cuttedClone [i]← Cut(input [i])

END
Evaluate all three new solutions.
Assign the best one to bestClone.
IF (bestClone is better than input)

input← bestClone
ELSE

factor ← 0.1× factor
END

END
Output input.

END

Figure 6.4: The pseudo-code for local search.

Otherwise, factor parameter is decreased. This routine continues for IterationNo

iterations.

The factor parameter is initialized by 10, and if no improvement is made, it

continues to be decreased by 90%. Therefore the value of the factor parameter in a

given iteration is one of the following values.

[
10, 1, 0.1, 0.01, ..., 10(2−IterationNo)

]
Since the local search heuristic is an additional component for the proposed HMP-

CA, the HMP-CA which incorporates the local search method is called HMP-CA +

LS.
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PROCEDURE: HMP-CA Framework
INPUT: Test Problems and Algorithm Parameters
OUTPUT: Optimal or Near-Optimal Solution

BEGIN
Initialize LocalCAsNo Local CAs.
Divide D Dimensions among local CAs.
Generate initial sub-populations.
FOR (MaxGen)

FOR (each subpopulation)
Apply DE’s operators to generate offspring.
Evaluate all partial solutions and sort them.
Call local search method.
Update belief space.

END
END
Output the best found individual so far.

END

Figure 6.5: The framework of proposed HMP-CA

6.2.4.5 Framework

As depicted in Figure 6.5, the framework of the proposed HMP-CA starts by initial-

izing LocalCAsNo local CAs. The D dimensions are then divided among local CAs

using the approach presented in Sub-subsection 6.2.4.1. Then each local CA initial-

izes its own sub-population with a number of randomly generated partial solutions.

It should be noted here that the partial solutions from different sub-populations are

different. The local CAs run for MaxGen generations and then returns their best

found solution.

In each generation, local CAs evolve their own sub-population of partial solutions

using DE’s operators to generate offspring population. The generation step is followed

by the evaluation of the new partial solutions. After sorting the new partial solutions,

each local CA calls local search method by sending its own best found solution.

Finally, the local CAs sends their own best found solutions through the acceptance

function to update belief space. It should be noted here again that the influence

function is used when a partial solution is evaluated.
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As mentioned before, the local search method is an additional component and

it is not be used for the proposed HMP-CA. When it is incorporated, the proposed

method is called HMP-CA + LS.

6.2.5 Experiments and Results

The proposed HMP-CA is implemented by using the java programming language

version 1.6.0.18 and evaluated on a system with Intel(R) Core(TM)2Quad 2.50GHz

CPU and 8.00GB RAM. The algorithm parameters used in our experiments are listed

in Table 6.1. In our experiments, we consider the whole population size to be 1000

individuals to be divided into a number of sub-populations evenly. In case of having

30 sub-populations, the size of each one is 33. The method runs for the maximum of

10000 generations and the local search runs for exactly 10 iterations.

Table 6.1: Parameters of the proposed algorithm

Parameters Value Parameters Value

WholePopSize 1000 MaxGen 10000
LocalCAsNo 30 IterationNo 10
SubPopSize 33 D 30

In our experiments, we consider a number of well-known numerical optimization

functions which are incorporated by different researchers [218, 133]. Appendix 6.2.7

presents a list of all incorporated functions with their corresponding optimal solutions.

For our experiment, we used the common number of dimension which is 30. For each

function, the experiments are done 10 times independently.

The results of applying the proposed HMP-CA shows that it is able to find the

minimum value for seven numerical optimization functions out of 8. It cannot find

the minimum value for function f2 in an acceptable time because of the dependency

between different dimensions. Actually, the HMP-CA does not converge for function

f2 in an acceptable time and it continues looking for smaller value. When the proposed
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Table 6.2: The number of generations required to find the best solution for both
proposed methods with different number of sub-populations

Problem Min
HMP-CA HMP-CA + LS

5 10 15 30 5 10 15 30

f1 0.00E+00 7834.9 4122.7 3061.1 1794.7 3.0 2.0 2.0 2.0
f2 0.00E+00 - - - - 2.0 2.0 2.0 2.0
f3 -12569.49 463.7 184.6 118.0 61.7 118.2 55.5 42.9 23.5
f4 0.00E+00 7998.6 4301.0 2933.8 1582.9 127.0 39.5 20.2 4.1
f5 0.00E+00 10000+ 4376.5 3038.8 1782.9 3.0 2.0 2.0 2.0
f6 0.00E+00 7361.8 4525.5 2764.3 1663.0 3.0 2.0 2.0 2.0
f7 1.57E-32 1132.5 539.8 382.5 210.5 2.0 2.0 2.0 2.0
f8 1.35E-32 1103.7 581.0 375.8 220.3 2.0 2.0 2.0 2.0

method incorporates the local search heuristic, it is able to find the optimum value

for all experimented functions very quickly. As presented in Table 6.2, the proposed

HMP-CA + LS is able to find the minimum value for all test functions in less than

25 generations.

The effect of the number of local CAs is also evaluated for the proposed HMP-CA.

Four different numbers of local CAs are considered for this comparison including 5,

10, 15, and 30. When the number of local CAs is increased, the number of dimensions

to be optimized in one local CAs is decreased. For instance, when there are 30 local

CAs for a 30-dimensional problem, each local CA is supposed to optimize only one

dimension, while with 10 local CAs each one gets 3 dimensions to optimize. Therefore,

the higher number of local CAs results in a faster convergence. The results of this

evaluation are presented in Table 6.2. In this table, each value is the average number of

generations when an optimal value is reached for each test function with each number

of local CAs. The results confirm that when the number of local CAs increases, the

generations required to find the minimum value decreases.

It should be mentioned here that the HMP-CA is not able to find the minimum

value for function f5 just in 10000 generations when incorporating 5 sub-populations,

but it is able to do so if it gets the permission to use higher number of generations.
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Therefore, the number of generations required to find the minimum value for this case

is represented as 10000+.

Furthermore, Table 6.2 illustrates that the proposed HMP-CA + LS is able to find

the optimal solution for all the test problems within 200 generations. In other words,

the proposed HMP-CA + LS can find the optimal solution for all test problems using

less than 200,000 fitness evaluation.

In order to compare our proposed method with the state-of-the-art methods, a

number of recently published methods are considered. It should be noted here that

since there is no MP-CA proposed to deal with numerical optimization and because

our local CAs are DE-based CAs, a number of multi-population DEs are considered

for comparison. These algorithms include jDE [23], JADE [222], PLADE [220], and

MPDE [218]. These methods incorporate different strategies to optimize the con-

trol parameter of a DE. jDE incorporates an aging mechanism to deal with dynamic

optimization problems and JADE incorporates historical knowledge to adapt DE’s

parameters. PLADE benefits a learning strategy inspired by Particle Swarm Opti-

mization and MPDE uses an adaptive parameter control based on parameters of the

most successful local DE within a generation.

The results of the comparison are presented in Table 6.3. Each values in this table

is the average of the best values obtained in 10 independent runs and the minimum

values are emphasized in bold face. Although the minimum value for functions f7

and f8 is mathematically zero, it is not possible for a computer program to reach to

that minimum and this is due to the fact that the results of functions sin and cos are

calculated approximately.

The results presented in Table 6.3 show the the only algorithm which is able to

offer the minimum values for all the eight numerical optimization functions is the

proposed HMP-CA + LS. Furthermore, the second best algorithm is HMP-CA which

is able to find the minimum value for seven functions out of eight.
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Table 6.3: Comparison among Different Multi-Population Differential Evolution

Problem
jDE JADE PLADE MPDE

HMP-CA
HMP-CA

[23] [222] [220] [218] + LS

f1 3.05E-31 2.09E-58 1.75E-29 8.62E-43 0.00E+00 0.00E+00
f2 2.39E-01 7.97E-01 7.97E-02 3.76E-30 8.59E-16 0.00E+00
f3 -12569.49 -12498.40 -12569.49 -12567.12 -12569.49 -12569.49
f4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f5 4.28E-15 6.34E-15 4.71E-15 4.14E-15 0.00E+00 0.00E+00
f6 0.00E+00 1.53E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f7 3.93E-32 7.60E-30 3.06E-30 1.57E-32 1.57E-32 1.57E-32
f8 2.84E-31 1.35E-32 4.69E-30 1.35E-32 1.35E-32 1.35E-32

6.2.6 Conclusions

In this article, a new architecture for MP-CA is proposed incorporating heterogeneous

local CAs. The local CAs are supposed to optimize different sets of parameters. The

proposed method which is called Heterogeneous Multi-Population Cultural Algorithm

(HMP-CA) defines a belief space shared among all the local CAs. The local CAs send

their best combinations to the shared belief space to update its record. The proposed

HMP-CA which is an efficient method in terms of both CPU time and memory usage

is effective such that it presents competitive results compared to the state-of-the-art

methods.

Furthermore, a local search heuristic is proposed which is a very powerful mecha-

nism to accelerate the HMP-CA’s convergence. The results show that the HMP-CA +

LS is able to find the minimum values for all the experimented functions very quickly.

It is possible to claim that the proposed HMP-CA outperforms all the state-of-the-art

methods.

Although the HMP-CA offers a remarkable performance over all the eight test

functions, it should be evaluated by more complex functions with higher dimension-

ality which is considered as a future direction. Another direction is to optimize the

DE’s parameter instead of using random values.
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6.2.7 Optimization Functions

The details of the optimization functions used in our experiments are presented as

follows.

f1 - Sphere Model:

f1(X) =
D∑
i=1

xi
2 (6.8)

−100 ≤ xi ≤ 100

min(f1) = f1(0, ..., 0) = 0

f2 - Generalized Rosenbrock’s Function:

f2(X) =
D−1∑
i=1

∣∣∣100
(
xi+1 − xi2

)2
+ (xi − 1)2

∣∣∣ (6.9)

−30 ≤ xi ≤ 30

min(f2) = f2(1, ..., 1) = 0

f3 - Generalized Schwefel’s Problem 2.26:

f3(X) =
D∑
i=1

(
−xisin

(√
|xi|
))

(6.10)
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−500 ≤ xi ≤ 500

min(f3) = f3(420.9687, ..., 420.9687) ' −12569.5

f4 - Generalized Rastrigin’s Function:

f4(X) =
D∑
i=1

[
xi

2 − 10cos (2πxi) + 10
]

(6.11)

−5.12 ≤ xi ≤ 5.12

min(f4) = f4(0, ..., 0) = 0

f5 - Ackley’s Function:

f5(X) = −20 exp

−0.2

√√√√ 1

D

D∑
i=1

xi2

− exp

(
1

D

D∑
i=1

cos (2πxi)

)
+ 20 + e (6.12)

−32 ≤ xi ≤ 32

min(f5) = f5(0, ..., 0) = 0

f6 - Generalized Griewank’s Function:

f6(X) =
1

4000

D∑
i=1

xi
2 −

D∏
i=1

cos

(
xi√
i

)
+ 1 (6.13)

−600 ≤ xi ≤ 600

min(f6) = f6(0, ..., 0) = 0
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f7 and f8 - Generalized Penalized Functions:

f7(X) =
π

D

{
10 sin2 (πy1) +

D−1∑
i=1

(yi − 1)2
[
1 + 10 sin2 (πyi+1)

]
+ (yD − 1)2

}

+
D∑
i=1

u (xi, 10, 100, 4) (6.14)

−50 ≤ xi ≤ 50

min(f7) = f7(−1, ...,−1) = 0

f8(X) = 0.1

{
sin2 (3πx1) +

D−1∑
i=1

(xi − 1)2
[
1 + sin2 (3πxi+1)

]
+ (xD − 1)2

[
1 + sin2 (2πxD)

]}
+

D∑
i=1

u (xi, 10, 100, 4) (6.15)

−50 ≤ xi ≤ 50

min(f8) = f8(1, ..., 1) = 0

where

u (xi, a, k,m) =


k (xi − a)m if xi > a

0 if − a ≤ xi ≤ a

k (−xi − a)m if xi < −a

yi = 1 +
1

4
(xi + 1)
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6.3 A New Dimension Division Scheme for Het-

erogeneous Multi-Population Cultural Algo-

rithm

Abstract. Heterogeneous Multi-Population Cultural Algorithm (HMP-

CA) is a new class of Multi-Population Cultural Algorithms which incor-

porates a number of local Cultural Algorithms (CAs) designed to optimize

different subsets of the dimensions of a given problem. In this article,

various dimension decomposition techniques for HMP-CAs are proposed

and compared. The concept of using a dimension decomposition scheme

which does not result in populations having the same number of dimen-

sions is implemented, and named imbalanced dimension division. All the

techniques are evaluated using a number of well-known benchmark op-

timization functions and two measures are defined in order to compare

them including success rate and convergence ratio. The results show that

imbalanced dimension division schema works better with a higher number

of local CAs, and outperforms all the other evaluated techniques in both

measures.

6.3.1 Introduction

Evolutionary Algorithms (EAs) are subset of optimization methods successfully ap-

plied to solve problems in various research areas. EAs are population-based ap-

proaches incorporating the concept of evolution inspired by natural selection; that

individuals which survive for the next generation are more likely to be fitter for their

environment. An EA starts with a population of randomly generated individuals

called the initial population. New populations are generated by applying evolutionary
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operators on the individuals from the previous population, followed by incorporating

a selection method afterward for finalization. This routine halts when a predefined

termination criterion (e.g. CPU time, predefined number of generations) has been

met.

A Cultural Algorithm (CA) is an EA incorporating knowledge to improve the

search mechanism. In a CA, knowledge is extracted, stored, and updated in a space

separate form the population, called the belief space. The recorded knowledge in the

belief space is then used to direct the search process during evolution.

Although CAs are successfully applied to various types of optimization problems,

they suffer from immature convergence. There are a number of strategies introduced

to resolve converging to local optima, however researchers have recently been inter-

ested in incorporating multiple populations to increase diversity and escape to the

global optimum. The multiple populations approach divides the whole population

into a number of sub-populations, with each sub-population being evolved using a

local CA independently while the local CAs communicate with each other between

generations.

In addition to incorporating multiple populations in CAs, we recently showed that

incorporating heterogeneous local CAs offers better solutions compared to the homo-

geneous ones. We proposed a Heterogeneous Multi-Population Cultural Algorithm

(HMP-CA) to deal with numerical optimization problems where the goal is to opti-

mize mathematical functions with a D-dimensional vector of continuous parameters

[171]. The results showed that dividing the dimensions among the local CAs improves

the convergence rate. Furthermore, by incorporating partial solutions our published

method saves both memory and CPU usage while handling the same total number of

individuals in each generation.

There are various techniques to divide the dimensions among local CAs in a HMP-

CA. In this article, an analysis is conducted to study the performance of these tech-
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niques. Our published HMP-CA [171] is modified such that it is capable of dealing

with a number of dimension division strategies and any number of local CAs. The

modified HMP-CA includes a number of heterogeneous sub-populations with a shared

belief space. Each sub-population includes only partial solutions corresponding to its

assigned dimensions and sends its best partial solutions to the belief space every gen-

eration. For each dimension, the shared belief space keeps the best parameters with

their corresponding objective value. In order to evaluate the strategies, a number

of benchmark numerical optimization functions are incorporated. Each strategy is

investigated with variable number of sub-populations.

The structure of this article is as follows. Subsection 6.3.2 briefly describes CA and

its multi-population version, followed by a concise description of HMP-CA in Subsec-

tion 6.3.3. Subsection 6.3.4 illustrates the proposed HMP-CA in detail, followed by

representing the investigated dimension decomposition strategies in Subsection 6.3.5.

Subsection 6.3.6 represents the experiments and the discussion on the results, followed

by representing concluding remarks and future directions in Subsection 6.3.7.

6.3.2 Cultural Algorithm

Cultural Algorithm (CA) as developed by Reynolds [175] is an EA which extracts

knowledge during the evolutionary process in order to redirect the search process.

CA incorporates two spaces, namely a population space and a belief space. The

population space evolves individuals over generations while the belief space is respon-

sible for storing and updating the extracted knowledge. CAs incorporate a two-way

communication between the spaces, namely an acceptance function which transfers

the best individuals from the population space to the belief space and an influence

function which carries the extracted knowledge from the belief space to influence the

operations in the population space. The evolution process in population space can
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be managed by any evolutionary algorithm such as a Genetic Algorithm (GA) or a

Differential Evolution (DE).

In spite of their successful application in various fields, CAs suffer from imma-

ture convergence. The main reason is the fact that they do not preserve population

diversity over generations. There are a number of strategies introduced to over-

come this limitation such as rejecting duplicate solutions or having a high mutation

rate. Incorporating multiple populations is another such strategy which represents a

good performance in order to do so. The first Multi-Population Cultural Algorithm

(MP-CA) was introduced by Digalakis and Margaritis [51] which was incorporated

to schedule electrical generators. The main characteristic of a MP-CA is its architec-

ture which determines the knowledge propagation within the local CAs. There are

different architectures proposed to implement a MP-CA. The most common one is

homogeneous local CAs [211, 76, 168] in which there are a number of homogeneous

local CAs with their own local belief spaces cooperating to find the best solution.

Heterogeneous local CAs is another class of architectures for MP-CA where the

sub-populations are heterogeneous such that each sub-populations is working on dif-

ferent dimensions. Lin et al. [117, 118, 120] introduced heterogeneous local CAs

by proposing their Cultural Cooperative Particle Swarm Optimization (CCPSO) to

train a Neurofuzzy Inference System (NFIS). In CCPSO, each local CA has its own

local belief space and incorporates a Particle Swarm Optimization (PSO) to evolve

its corresponding sub-population. In this framework each local CA is responsible for

optimizing only one variable.

In addition to the architecture, incorporating multiple populations brings more

algorithm parameters to be adjusted in order to get a good performance. The number

of sub-populations, the communication topology, and the type of migrated knowledge

are three instances of MP-CAs parameters.
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6.3.3 Heterogeneous Multi-Population Cultural Algorithm

Heterogeneous Multi-Population Cultural Algorithm (HMP-CA) is an architecture in

the class of Heterogeneous local CAs in which there is only one belief space shared

among all local CAs [171]. In this architecture, there are a number of local CAs

working on optimization of different subsets of the all dimensions. The only one

shared belief space is responsible to keep a track of the best parameters found for

each dimension. The focus of this paper is on this architecture where there are

various strategies to divide dimensions among local CAs.

In HMP-CA, each local CA is designed to handle only its assigned dimensions.

Therefore instead of complete solutions, each sub-population provides a set of par-

tial solutions. For instance, if a local CA is responsible to optimize the first three

dimensions of a 30-dimensional optimization problem, it only works with the values

for the first three dimensions of a solution meaning only a 3-dimensional vector is

used instead of a complete 30-dimensional solution. In other words, in this example

a sub-population including 100 partial solutions deals with only 300 parameters in

each generation while a sub-population with the same number of complete solutions

incorporates 3,000 parameters. Due to this huge deduction in the number of param-

eters for each generation, the HMP-CA is an efficient method in terms of both CPU

time and memory usage.

It should be mentioned here that in order to evaluate a partial solution, it is

completed by the complement of its parameters coming from the belief space. This

mechanism provides a fair comparison platform for partial solutions such that all the

partial solutions are completed with the same parameters complement.

Heterogeneous local CAs incorporating either a shared belief space or local belief

spaces are initialized by dividing the dimensions. Lin et al. [117, 118, 120] assigned

each dimension to a local CA, and in our published HMP-CA [171] a jumping strategy

was incorporated for dimension decomposition. There are more dimension division
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strategies, the most common ones are investigated in this study which are represented

in Subsection Dimension Decomposition Strategies.

6.3.4 Proposed Method

The architecture of the proposed method is similar to our recently published HMP-CA

[171]. A number of sub-populations including only partial solutions are incorporated

alongside a shared belief space. In the published HMP-CA, sub-populations cooperate

with each other by transferring only their best partial solution to the belief space,

and the belief space updates its only one parameter for each dimension with its

corresponding objective value. In contrast, the architecture of the proposed method

provides the flexibility to set the number of best partial solutions to be transferred to

the belief space as well as to set the number of parameters to be stored in the belief

space for each dimension.

Furthermore, the published HMP-CA incorporates only one static dimension di-

vision strategy, while the proposed method is capable to deal with any dimension

decomposition technique such as sequential, logarithmic, and even customized ones.

Like the published HMP-CA, in order to evolve the sub-population a simple DE is

incorporated which benefits from DE/rand/1 mutation represented in Equation 6.16,

binomial crossover illustrated in Equation 6.17, and a selection mechanism depicted

in Equation 6.18. Due to the extensive experiments conducted in the published HMP-

CA, the scale factor for Equation 6.16 is selected randomly from intervals [0.5, 2.5]

for each generation and the crossover probability for Equation 6.17 is set to 0.5 for

all generations.

Vi,g = Xr1,g + F × (Xr2,g −Xr3,g) (6.16)
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Table 6.4: A sample belief space with size 3.

Dimensions 1 2 3 4 5

Set 1
Parameters 0.0 0.0 -0.88 -0.23 -0.43
Objective 1.01 1.01 1.01 1.01 1.01

Set 2
Parameters 0.01 -0.26 1.06 -0.24 -0.44
Objective 1.02 1.09 1.37 1.01 1.01

Set 3
Parameters 0.39 -0.31 -0.73 -0.62 0.79
Objective 1.19 1.12 1.49 1.35 1.79

where Xr1,g, Xr2,g, and Xr3,g are three randomly selected target vectors within the

same generation g. F is a scale factor to determine how much the base vector Xr1,g

should be perturbed by the difference of the other two.

zj,i,g =

 vj,i,g if rj ≤ Cr or j = jrand

xj,i,g otherwise
(6.17)

where rj is a real number randomly selected within the interval [0, 1) for jth dimension,

and Cr is the crossover probability. In order to ensure that the trial vector Zi,g differs

from target vector Xi,g at least in one component, jrand is randomly selected as the

index of the different dimension.

Xi,g+1 =

 Zi,g if f(Zi,g) ≤ f(Xi,g)

Xi,g otherwise
(6.18)

where Xi,g and Zi,g denote a target vector and its corresponding trial in generation g,

respectively and Xi,g+1 represents the selected target vector for the next generation.

A shared belief space is incorporated in the proposed HMP-CA which tracks the

best found parameters with their corresponding objective values for each dimension.

A sample belief space of size 3 is illustrated in Table 6.4 which is incorporated to

solve a 5-dimensional sphere model.
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The framework of the belief space starts with receiving a number of best partial so-

lutions from a local CA. For each parameter of each partial solution, the corresponding

records are reviewed in order to avoid pushing duplicate parameters. Therefore, for

the existing parameters only the objective value is updated and the new parameters

are inserted into the belief space if they have a better objective value.

The belief space influences the search direction only in fitness evaluations. When

a local CA requires a partial solution to be evaluated the belief space is queried for

the complement of its set of parameters, the belief space returns the complement

parameters which are randomly selected from its recorded parameters.

The number of local CAs in the proposed HMP-CA and their corresponding as-

signed dimensions are dependent to its dimension division strategy. Therefore the

proposed HMP-CA starts by receiving a dimension division strategy. Based on the

given strategy, each local CA is initialized with its corresponding sub-population of

randomly generated partial solutions. The local CAs are evolved incorporating the

previously mentioned DE for the maximum number of generations such that they

transfer their best partial solutions to the belief space in every generation and they

request the belief space for the complement parameters for each fitness evaluation.

In order to avoid trapping into local optimal regions within a sub-population, a re-

initialization mechanism is incorporated such that if a local CA cannot find a better

solution for a number of generations its sub-population will be re-initialized with

random partial solutions while the belief space continues with its recorded parameters.

It should be mentioned that in the proposed HMP-CA, there is no local search method

incorporated to speed up the convergence.

6.3.5 Dimension Decomposition Strategies

In this article, a number of different dimension division strategies are studied which

can be categorized into two classes including balanced and imbalanced techniques.
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The division strategies which assigns the same number of dimensions to each local CA

is classified as balanced divisions. In balanced divisions, the difference of the number

of dimensions between any two local CAs is at most one. All decomposition strategies

where this difference could be greater than one are considered to be imbalanced

division methods.

Within the balanced category, sequential division, jumping division, and over-

lapped sequential division are investigated. The jumping strategy assigns the adjacent

dimensions to different local CAs while the sequential strategy assigns the adjacent

dimensions to the same local CA. The overlapped sequential division is a modified

version of sequential division such that each dimension is assigned to two different

local CAs.

A logarithmic division method is considered as well, belonging to the category of

imbalanced strategies. It starts by assigning all the dimensions to the first local CA.

Two additional local CAs are generated by selecting each half of the dimensions of the

first local CA. Remaining local CAs are generated in a similar fashion by recursively

dividing the dimensions in half.

Table 6.5 illustrates the described dimension decomposition strategies dividing 30

dimensions among 15 local CAs. As mentioned before, the balanced strategies assign

almost the same number of dimensions to each local CA, while the imbalanced ones

assign various number of dimensions to each local CA ranging from one dimension to

the all dimensions.

For a 30-dimensional optimization problem, the logarithmic strategy can generate

up to 59 local CAs including one local CA with 30 dimensions, two local CAs with 15

dimensions, 4 local CA with 7 or 8 dimensions, 8 local CAs with 3 or 4 dimensions,

14 local CAs of 2 dimensions, and 30 local CAs including only one dimension.

In this article, a new strategy similar to the logarithmic strategy is also defined

which is called customized logarithmic. The new strategy incorporates 35 local CAs
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Table 6.5: Dividing 30 dimension into 15 local CAs incorporating different strategies.

Local CAs
Balanced Imbalanced

Jumping Sequential
Overlapped

Logarithmic
Sequential

1 1,16 1, 2 1, 2, 3, 4 1, 2, 3, ..., 30
2 2, 17 3, 4 3, 4, 5, 6 1, 2, 3, ..., 15
3 3, 18 5, 6 5, 6, 7, 8 16, 17, 18, ..., 30
4 4, 19 7, 8 7, 8, 9, 10 1, 2, 3, ..., 8
5 5, 20 9, 10 9, 10, 11, 12 9, 10, 11, ..., 15
6 6, 21 11, 12 11, 12, 13, 14 16, 17, 18, ..., 23
7 7, 22 13, 14 13, 14, 15, 16 24, 25, 26, ..., 30
8 8, 23 15, 16 15, 16, 17, 18 1, 2, 3, 4
9 9, 24 17, 18 17, 18, 19, 20 5, 6, 7, 8
10 10, 25 19, 20 19, 20, 21, 22 9, 10, 11, 12
11 11, 26 21, 22 21, 22, 23, 24 13, 14, 15
12 12, 27 23, 24 23, 24, 25, 26 16, 17, 18, 19
13 13, 28 25, 26 25, 26, 27, 28 20, 21, 22, 23
14 14, 29 27, 28 27, 28, 29, 30 24, 25, 26, 27
15 15, 30 29, 30 29, 30, 1, 2 28, 29, 30

for a 30-dimensional problem which includes 5 local CAs with the following 5 dimen-

sion subsets in addition to the 30 local CAs with one dimension each.

{1, 2, 3, ..., 30}, {1, 2, 3, ..., 15}, {16, 17, 18, ..., 30}, {1, 2, 3, ..., 8}, {16, 17, 18, ..., 23}

6.3.6 Experiments and Results

In order to evaluate the mentioned strategies, they are incorporated by the proposed

HMP-CA considering the total population size to be set to 1000 individuals which

can be divided into any number of sub-populations evenly. Considering 15 local

CAs in the proposed HMP-CA, each local CA will have 66 solutions within its sub-

population. The size of the belief space is set to 3 and sub-populations transfer their 3

best solutions to the belief space in each generation. The maximum generation to find

the optimal solution is considered to be 10,000 generations, and if an optimal solution

is not obtained before this upper limit the run is considered to be an unsuccessful one.
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For each experiment, 100 independent runs were conducted to provide a statistically

significant sample size.

A number of well-known numerical optimization functions were considered for the

experiments which have been used by various researchers [218, 133]. The 12 considered

benchmark problems are listed as follows and are detailed in the aforementioned

references:

• f1 - Sphere Model.

• f2 - Generalized Rosenbrock’s Function.

• f3 - Generalized Schwefel’s Problem 2.26.

• f4 - Generalized Rastrigin’s Function.

• f5 - Ackley’s Function.

• f6 - Generalized Griewank’s Function.

• f7 and f8 - Generalized Penalized Functions.

• f9 - Schwefel’s Problem 1.2.

• f10 - Schwefel’s Problem 2.21.

• f11 - Schwefel’s Problem 2.22.

• f12 - Step Function.

The generalized Rosenbrock’s function (f2), for instance is represented in Equa-

tion 6.19:

f2(x) =
D−1∑
i=1

∣∣∣100
(
xi+1 − xi2

)2
+ (xi − 1)2

∣∣∣ (6.19)

−30 ≤ xi ≤ 30

min(f2) = f2(1, ..., 1) = 0
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In addition to these 12 functions, a modified version of the function f2 is considered

in this analysis which is called modified Rosenbrock’s function (f2M) illustrated in

Equation 6.20:

f2M(x) =
D−4∑
i=1

∣∣∣100
(
xi+4 − xi2

)2
+ (xi − 1)2

∣∣∣ (6.20)

In our experiment, the number of dimensions is set to 30 which is a common number

in the area of numerical optimization.

In order to evaluate and compare the strategies using the benchmark functions,

two measures are defined including Success Rate (SR) and Convergence Ratio (CR).

The former measure refers to the percentage of runs which find the optimal solution

within one experiment (100 independent runs). An experiment with the 100% SR is

referred as a reliable experiment. The later measure deals with the average number of

generations required to find the optimal solution. Within the conducted experiments,

the experiment which has the minimum average is considered to be the base of the

CR calculation, which is as follows.

ConvergenceRatio =
AV G− AV Gmin

AV Gmax − AV Gmin

× 100%

where AV G refers to the average number of generations required to find the optimal

solution for an experiment, and AV Gmin and AV Gmax denote the minimum and the

maximum averages obtained over all experiments with respect to each optimization

function. Therefore, the zero CR value represents the experiment which requires the

minimum average number of generations to find the optimal solution.

Each dimensions division strategy is evaluated with different number of local CAs.

The sequential, jumping, and logarithmic strategies are experimented by 5, 7, 10, 15,

and 30 local CAs. Additionally, the logarithmic strategy with 59 local CAs, over-

lapped sequential with 15 local CAs, and customized logarithmic with 35 local CAs

are evaluated. It should be mentioned here that the sequential and jumping strate-
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gies with 30 local CAs are equivalent. Therefore, there are 17 different experiments

conducted in this study.

The detail results of all experiments are presented in Tables 6.6 and 6.7 where all

the numbers are in percentile form. In these tables the Seq, Jump, Over Seq, and Cust

refer to the sequential, jumping, logarithmic, overlapped sequential, and customized

logarithmic techniques, respectively. For each optimization function, the first row

represents CR value, followed by SR value in the second row. The average CR and

SR value with respect to the different experiments are presented in the last two rows.

The zero CR values emphasizes with bold face illustrate that the logarithmic strategy

with 59 sub-populations offers the zero CR for 8 functions, the sequential and jumping

strategies with 30 sub-populations offers the zero CR for 4 other functions and the

zero CR for the last one which is function f2M is offered by the customized logarithmic

strategy with 35 local CAs.

It should be mentioned here that CR value for each experiment is calculated based

on the runs where an optimal solution is found. For instance, the sequential strategy

with 30 local CAs can find an optimal solution in only 9 independent runs out of

100, meaning that its CR value is calculated only based on those 9 successful runs.

Consequently, for the experiments where no optimal solution is found there is no CR

value, such as the jumping strategy with 10 local CAs applied on function f2.

Table 6.6 illustrates that the sequential strategy works nearly equivalently to the

jumping strategy with the exception of function f2, where the difference value of the

adjacent dimensions is a key point. Therefore, for this function the strategies assigning

adjacent dimensions to the same local CA work better. In order to prove this claim,

function f2M is proposed and the results show that if this key point is removed the

sequential strategy works the same as the jumping one. The results also show that

the logarithmic strategy works well only with higher number of sub-populations.
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Table 6.6: The CR and SR values with respect to each experiments for balanced
strategies in percentile form alongside their average in the last two rows.

Style
Balanced Strategies

Seq Jump Seq/Jump Over Seq
Local CAs 5 7 10 15 5 7 10 15 30 15

f1
CR 25.08 18.48 8.62 4.25 26.30 18.13 8.60 4.29 0.50 9.29
SR 99 100 100 100 100 100 100 100 100 100

f2
CR 24.23 11.90 11.17 24.59 - - - 100.00 99.55 7.85
SR 95 100 100 100 0 0 0 6 9 100

f2M
CR - - - - - - - - - -
SR 0 0 0 0 0 0 0 0 0 0

f3
CR 26.98 16.84 7.82 3.62 27.61 16.41 7.89 3.63 0.20 8.75
SR 100 100 100 100 100 100 100 100 100 100

f4
CR 25.02 15.36 5.89 2.34 32.12 16.22 5.98 2.35 0.00 7.01
SR 100 99 100 100 100 100 100 100 100 100

f5
CR 32.83 20.98 10.13 5.20 33.41 19.98 10.41 5.13 0.61 11.26
SR 100 100 100 100 100 100 100 100 100 100

f6
CR 31.96 18.03 7.16 2.98 24.36 15.19 6.67 2.91 0.00 7.12
SR 100 100 100 100 100 100 100 100 100 97

f7
CR 27.65 17.49 8.63 4.36 25.88 18.08 8.47 4.35 0.48 9.40
SR 100 100 100 100 100 100 100 100 100 100

f8
CR 31.81 19.73 9.78 5.05 32.23 21.14 9.88 4.97 0.59 10.91
SR 100 100 100 100 100 100 100 100 100 100

f9
CR 35.08 24.62 10.12 4.25 32.08 20.64 8.99 4.29 0.00 10.22
SR 99 100 100 100 100 100 100 100 100 100

f10
CR 33.17 20.85 5.92 2.43 31.70 20.52 5.95 2.41 2.52 9.03
SR 93 97 99 100 97 99 98 100 100 100

f11
CR 38.11 24.82 13.27 6.66 41.96 25.83 13.25 6.73 0.74 14.72
SR 100 100 100 100 99 100 100 100 100 100

f12
CR 12.98 6.53 3.15 1.29 12.49 7.50 3.21 1.27 0.00 3.86
SR 100 100 100 100 100 100 100 100 100 100

Average
CR 28.74 17.97 8.47 5.58 29.10 18.15 8.12 11.86 8.77 9.12
SR 91.2 92.0 92.2 92.3 84.3 84.5 84.5 85.1 85.3 92.1

Generally, the only configurations that offer the SR of 100% for all 13 optimization

functions include: (1) the customized logarithmic strategy with 35 local CAs, (2) the

logarithmic strategy with 59 local CAs, and (3) the logarithmic strategy with 30 local

CAs. Within these three configurations, the first two offer average CR values less than

1.00% which is much lower than 4.27% of the third one. This is due to the fact that

the third one does not include the assignment of each dimension to one local CA.
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Table 6.7: The CR and SR values with respect to each experiments for imbalanced
strategies in percentile form alongside their average in the last two rows.

Style
Imbalanced Strategies
Logarithmic Cust

Local CAs 5 7 10 15 30 59 35

f1
CR 100.00 49.14 42.40 11.69 3.61 0.00 0.42
SR 38 95 91 100 100 100 100

f2
CR 52.78 31.43 22.43 7.70 1.90 0.00 1.20
SR 33 72 73 100 100 100 100

f2M
CR 90.18 84.22 100.00 59.62 18.52 7.43 0.00
SR 33 52 48 100 100 100 100

f3
CR 100.00 54.49 44.31 11.31 3.33 0.00 0.36
SR 20 100 94 100 100 100 100

f4
CR 100.00 48.93 48.94 9.51 1.84 0.54 0.15
SR 49 90 46 99 100 100 100

f5
CR 100.00 61.21 53.42 14.79 4.24 0.00 0.58
SR 33 96 89 100 100 100 100

f6
CR 100.00 42.18 38.73 9.21 2.28 0.06 0.29
SR 54 98 85 100 100 100 100

f7
CR 100.00 46.73 49.34 11.83 3.54 0.00 0.45
SR 31 94 93 100 100 100 100

f8
CR 100.00 52.55 53.56 13.63 4.16 0.00 0.56
SR 21 92 86 100 100 100 100

f9
CR 100.00 51.90 51.95 13.09 3.28 0.03 0.38
SR 39 92 88 100 100 100 100

f10
CR 100.00 53.89 53.92 10.12 1.68 0.00 2.15
SR 2 71 68 95 100 100 100

f11
CR 100.00 60.93 59.53 19.06 5.75 0.00 0.73
SR 16 94 85 100 100 100 100

f12
CR 100.00 19.33 23.25 5.15 1.35 0.41 0.10
SR 69 100 100 100 100 100 100

Average
CR 95.61 50.53 49.37 15.13 4.27 0.65 0.57
SR 33.7 88.2 80.5 99.5 100.0 100.0 100.0

In fact assigning only one dimension to a local CA helps to find an optimal solution

when the dimensions of the problem are independent to each other, and assigning a

number of dimensions to a local CA is more useful where the dimensions are inter-

dependent. Consequently, incorporating a hybrid mechanism works better when there

is no prior knowledge about the given optimization function. Therefore, generally the

imbalanced dimension division techniques outperform the balanced strategies.
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Table 6.8: The average SR and the number of experiments with the CR of 100%
obtained for each optimization function.

Functions f1 f2 f2M f3 f4 f5 f6
Average SR 95.5% 64.0% 31.4% 94.9% 93.1% 95.2% 96.1%
Reliable Experiments 13 8 4 15 12 14 13

Functions f7 f8 f9 f10 f11 f12
Average SR 95.2% 94.1% 95.2% 89.4% 93.8% 98.2%
Reliable Experiments 14 14 13 7 13 16

The overall results are represented in Table 6.8 illustrating the average SR ob-

tained by all the configurations for each optimization function and the number of

reliable experiments capable to obtain the SR of 100%. This information determines

the most challenging optimization functions which are f2M , f10, and f2. For the rest

of the functions, more than 12 experiments out of 17 are able to find the optimal

solutions in all of their 100 independent runs.

6.3.7 Conclusions

HMP-CA is a new architecture for MP-CA which incorporates heterogeneous local

CAs with a shared belief space. In HMP-CA, local CAs are working to optimize

different subsets of dimensions. Therefore, the mechanism that divides the dimensions

among local CAs plays a key role in the performance of the method. In this article,

a study is conducted to analyze different dimension division strategies.

The evaluated strategies are classified into two categories; namely balanced and

imbalanced. Within the former category, sequential, jumping, and overlapped sequen-

tial strategies are taken into account in addition to the logarithmic and customized

logarithmic strategies from the latter category.

The results show that generally the imbalanced techniques offer better perfor-

mance compared to the balanced schemes. More specifically, the logarithmic strategy
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with 59 local CAs and the customized logarithmic technique with 35 local CAs present

the best success rates as well as the minimum convergence ratios.

Future work may include exploring additional dimension division schemes to dis-

cover even better success rates and convergence ratios. The proposed algorithms

may also be tested in the future against other optimization functions, particularly on

functions with inter-dependent variables.
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6.4 Heterogeneous Multi-Population Cultural Al-

gorithm with a Dynamic Dimension Decom-

position Strategy

Abstract. Heterogeneous Multi-Population Cultural Algorithm (HMP-

CA) is one of the most recent architecture proposed to implement Multi-

Population Cultural Algorithms which incorporates a number of hetero-

geneous local Cultural Algorithms (CAs) communicating with each other

through a shared belief space. The heterogeneous local CAs are designed

to optimize different subsets of the dimensions of a given problem. In

this article, two dynamic dimension decomposition techniques are pro-

posed including the top-down and bottom-up approaches. These dynamic

approaches are evaluated using a number of well-known benchmark nu-

merical optimization functions and compared with the most effective and

efficient static dimension decomposition methods. The comparison re-

sults reveals that the proposed dynamic approaches are fully effective and

outperforms the static approaches in terms of efficiency.

6.4.1 Introduction

Cultural Algorithm (CA) developed by Reynolds [175] is an Evolutionary Algorithm

incorporating knowledge to improve its search mechanism. CA extracts knowledge

during the process of evolution and incorporates the extracted knowledge to guide

the search direction. Although successful applications of CAs have been reported

in various research areas, they are still suffering from immature convergence. One

of the most common strategy to overcome this limitation is to incorporate multiple

populations. In Multi-Population Cultural Algorithm (MP-CA), the population is
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divided into a number of sub-populations and each sub-population is directed by a

local CA. The local CAs communicate with each other by migrating their extracted

knowledge [170].

Different architectures have been proposed to implement MP-CAs. Each archi-

tecture has its own strengthes and weaknesses. Homogeneous local CAs is one of the

common architectures in which the local CAs have their own local belief spaces and

works exactly the same [211, 76, 168]. Heterogeneous local CAs is another architec-

ture for MP-CAs in which the local CAs are designed to optimize one of the problem

dimensions. This architecture is introduced by Lin et al. [118] in their proposed

Cultural Cooperative Particle Swarm Optimization (CCPSO) to train a Neurofuzzy

Inference System.

The most recent architecture is Heterogeneous Multi-Population Cultural Algo-

rithm (HMP-CA) which incorporates only one belief space shared among local CAs

instead of one local belief space for each local CA [171]. The shared belief space

is responsible to keep a track of the best parameters found for each dimension. In

this architecture the local CAs are designed to optimize different subsets of problem

dimensions.

There are various approaches to divide dimensions among local CAs such as as-

signing one dimension to a local CA [118] and a jumping strategy with various number

of local CAs [171]. Recently we investigated various static dimension decomposition

approaches including the balanced and imbalanced techniques [165]. The techniques

assigning the same number of dimensions to the local CAs are called balanced tech-

niques while the imbalanced ones assign different number of dimensions to the local

CAs. As imbalanced techniques, logarithmic and customized logarithmic approaches

were investigated with various number of local CAs. The results of this investiga-

tion reveals that the imbalanced techniques outperform the balanced approaches by

offering 100% success rate and very low convergence ratio.
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Although various static strategies have been investigated, it may would be worth-

while to evaluate dynamic strategies. The goal of this article is to design the dynamic

dimension decomposition methods.

6.4.2 Proposed Method

In this article, two new dynamic dimension decomposition approaches are introduced

to improve the efficiency of HMP-CA. The framework of the proposed method is

similar to the one incorporated to investigate various static dimension decomposition

techniques [165]. Like the published HMP-CA, in the proposed algorithm the local

CAs communicate with each other by sending their best partial solutions to the shared

belief space and use its updated knowledge to evaluation their partial solutions.

In the published HMP-CA, various static dimension decomposition techniques

with various number of local CAs are considered such that the whole population is ini-

tially divided among the local CAs evenly. In contrast, our main contribution in this

article is to incorporate two dynamic dimension decomposition approaches. There-

fore, instead of considering a huge population and dividing it into sub-populations,

each local CA gets assigned with a small sub-population of a constant size referred

by PopSize parameter. Another parameter is also required as a threshold for the

number of generations a local CA cannot find a better solution which is denoted by

NoImpT parameter.

In order to design a dynamic dimension decomposition technique, there are two

approaches including:

• Top-Down strategy : In this strategy, the idea is to start with a local CA designed

to optimize all the problem dimensions and recursively split the dimensions be-

tween two newly generated local CAs if a local CA cannot find a better solution

for a number of generations. It should be noted here that the decomposed local

CA cooperates with the two new local CAs for the next generations such that
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the decomposed local CA will not be split again. Local CAs with only one

assigned dimension will not be decomposed as well.

• Bottom-Up strategy : The idea of this approach is to merge the dimensions of two

local CAs when they reach to the no improvement threshold. This approach

starts with a number of local CAs, each of which is designed to optimized

only one dimension. The number of initially generated local CAs equals to

the number of problem dimensions. These local CAs start to optimize their

assigned dimensions until two of them reach to the no improvement threshold.

In this stage, a new local CA is generated to optimize all the dimensions of

those two local CAs together. Like the top-down approach, each local CA is

merged only one time. Therefore, a local CA with all the problem dimensions

never get merged.

As the results of the investigation of static dimension decomposition techniques

show [165], the imbalanced strategies which assign one dimension to a local CA offer

the best efficiency and effectiveness. Therefore, it is expected to see better results

from the second approach where the local CAs are initially set to optimize only

one dimension compared to the first approach in which it takes a high number of

generations to generate the local CAs with only one assigned dimension.

In order to have a fair comparison with static dimension decomposition techniques,

the rest of the proposed method is exactly the same as the published HMP-CA [165]

such that each local CA incorporates a simple DE with DE/rand/1 mutation and bi-

nomial crossover operators, and communicates with the shared belief space by sending

its best partial solutions. It should be noted here that the belief space contributes to

the search process only by providing the complement parameters to evaluate partial

solutions.
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Table 6.9: Well-known numerical optimization benchmarks.

ID Function Name Parameter Range Minimum Value

f1 Sphere Model [-100,100] 0
f2 Generalized Rosenbrock’s Function [-30,30] 0
f3 Generalized Schwefel’s Problem 2.26 [-500,500] -12569.5
f4 Generalized Rastrigin’s Function [-5.12,5.12] 0
f5 Ackley’s Function [-32,32] 0
f6 Generalized Griewank’s Function [-600,600] 0
f7 Generalized Penalized Function 1 [-50,50] 0
f8 Generalized Penalized Function 2 [-50,50] 0
f9 Schwefel’s Problem 1.2 [-500,500] 0
f10 Schwefel’s Problem 2.21 [-500,500] 0
f11 Schwefel’s Problem 2.22 [-500,500] 0
f12 Step Function [-100,100] 0

6.4.3 Experiments and Results

Numerical optimization problems are considered to evaluate the proposed dynamic

techniques. The goal of these problems is to find the optimal value of a given function.

The numerical optimization function is a black box which gets a D-dimensional vector

of continuous parameters as input and returns a real number as the objective value

for the given parameters. Researchers in this area usually incorporate the set of well-

known numerical optimization benchmarks represented in Table 6.9 [218, 181, 133].

This table lists 12 benchmark problems with their corresponding parameter ranges

and optimal values. These functions are more detailed in the aforementioned papers.

In addition to these 12 functions, modified Rosenbrock’s function (f2M) [165] is also

considered.

The proposed dynamic strategies are evaluated with two different values for each

of PopSize and NoImpT parameters including 10 and 20 for the former parameter,

and 5 and 10 for the latter one. The other parameters are set the same as the

ones incorporated to investigate the static dimension decomposition techniques [165].

The number of dimensions is set to 30 which is the common number in the area

of numerical optimization and the upper limit for fitness evaluations is considered
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Table 6.10: The average number of FE with respect to each experiments.

Style Top-Down Bottom-Up
PopSize

10(5) 10(10) 20(5) 20(10) 10(5) 10(10) 20(5) 20(10)
(NoImpT )

f1 123K 120K 235K 215K 70K 71K 97K 93K
f2 391K 370K 729K 499K 379K 544K 663K 1,065K
f2M 986K 987K 1,586K 1,437K 1,256K 1,192K 1,815K 1,716K
f3 128K 139K 216K 248K 57K 64K 55K 46K
f4 253K 271K 355K 375K 172K 149K 157K 158K
f5 103K 98K 202K 167K 62K 61K 92K 88K
f6 142K 145K 270K 249K 97K 97K 116K 110K
f7 123K 128K 221K 219K 65K 67K 96K 91K
f8 118K 116K 219K 212K 64K 66K 93K 89K
f9 169K 156K 268K 273K 106K 101K 123K 103K
f10 197K 196K 357K 353K 123K 124K 227K 226K
f11 104K 109K 173K 192K 55K 56K 83K 81K
f12 69K 68K 131K 123K 17K 22K 12K 13K

Average 224K 223K 382K 351K 194K 201K 279K 298K

as 10,000,000. Each experiment is conducted by 100 independent runs to provide

statistically significant sample size.

In order to evaluate the effectiveness of the proposed approaches, Success Rate

(SR) is incorporated which refers to the percentage of the independent runs where

an optimal solution is reached. A higher SR means more reliability of the method to

find optimal solutions. Therefore, a method with the 100% SR is the most reliable

method being able to find an optimal solution within each run. For the efficiency

evaluation, the number of Fitness Evaluations (FE) is considered in contrast to the

number of generations incorporated to evaluate static dimension decomposition ap-

proaches [165]. This is due to the fact that dynamic approaches use different number

of solutions within each generations.

The experimental results represent that both proposed approaches with all of the

four configurations are able to find the optimal solution with respect to each opti-

mization function in every independent run. Therefore, the SR for all the experiments

is 100% which implies that both proposed techniques are fully effective methods. The
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average number of fitness evaluations used to find the optimal solution are illustrated

in Table 6.10 such that the minimum values with respect to each optimization function

is emphasized with bold face. The letter K in the table means that the numbers are

in thousands and the last two rows represent the average number of fitness evaluation

over all the 13 optimization functions.

In order to evaluate the efficiency of the proposed techniques Convergence Ratio

(CR) measure [165] is incorporate:

ConvergenceRatio =
AV G− AV Gmin

AV Gmax − AV Gmin

× 100%

where AV G denotes the average number of fitness evaluation required by a specific al-

gorithm to find an optimal solution, and AV Gmin and AV Gmax refer to the minimum

and the maximum averages obtained by all methods for each optimization function.

Therefore, the lower CR value represents the more efficient algorithm.

In order to compare the proposed dynamic approaches with the static techniques,

the most efficient ones with 100% success ratio are selected which includes the loga-

rithmic approach with 30 and 60 local CAs and the customized logarithmic approach

with 35 local CAs [165]. The CR values are calculated with respect to each opti-

mization function and then they are averaged over all the 13 optimization functions.

Therefore, each algorithm gets assigned with a CR value.

Table 6.11 illustrates the average CR values for both static and proposed dynamic

dimension decomposition techniques. The customized logarithmic approach is de-

noted by Cust in the table. The numbers on the third row specify the configuration

of each technique which is the number of local CAs for each static technique and

the values for PopSize and NoImpT parameters for each dynamic method with the

format of PopSize(NoImpT ). The lowest average CR is represented in bold face.
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Table 6.11: The average CR values to compare dimension decomposition techniques.

Static Approaches Dynamic Approaches
Logarithmic Cust Top-Down Bottom-Up
30 60 35 10(5) 10(10) 20(5) 20(10) 10(5) 10(10) 20(5) 20(10)

75.71% 36.30% 29.01% 29.85% 30.06% 84.79% 79.94% 3.37% 4.61% 20.09% 21.70%

As expected, the table shows that the best efficiency is offered by the dynamic

bottom-up approach with various parameter values. However the best configuration

for this strategy is PopSize of 10 and NoImpT of 5.

6.4.4 Conclusions

HMP-CA is the most recent architecture proposed to implement MP-CA, in which

local CAs are designed to optimized a subset of the problem dimensions. Therefore,

the incorporated dimension decomposition approach has a major effect on the algo-

rithm performance. In this article, two dynamic strategies are proposed including the

top-down and bottom-up approaches.

The results of extensive experiments reveals that both dynamic approaches are

fully effective to find optimal solutions. In addition to the effectiveness, the results il-

lustrate that the bottom-up approach outperforms the top-down approach by offering

the better efficiency. Compared to the most effective and efficient static dimension

decomposition methods, the bottom-up approach offers better efficiency while the

top-down technique presents competitive efficiency.

As incorporating extra knowledge to choose dimensions for merging or splitting

may results in a more efficient method, it has been considered as the future direction

for this research area. Furthermore, incorporating more sophisticated optimization

functions and higher number of dimensions would be useful to highly evaluate the

proposed methods and deeply differentiate them based on their performance.
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6.5 Adaptive Heterogenous Multi-Population Cul-

tural Algorithm for Large Scale Global Opti-

mization

Abstract. Detecting interacting variables has a major effect on the per-

formance of an optimization algorithm especially in large scale global opti-

mization. In this article, a technique based on additively interdependency

is introduced which is called Variable Additively Interdependence Learn-

ing (VAIL). VAIL uses a very simple mathematical equation to evaluate

the additively interdependencies. The proposed method incorporating

VAIL is called Adaptive Heterogeneous Multi-Population Cultural Algo-

rithm (A-HMP-CA) which consists of a number of local Cultural Algo-

rithms (CAs) and a shared belief space. The proposed method which has

the ability to generate new local CAs during the evolutionary process,

incorporates VAIL to detect additively interactive variables, merges the

interactive variables into one group and assigns the group to a new local

CA to improve the optimization. The A-HMP-CA is evaluated over large

scale global optimization problems and compared with the state-of-the-

art methods. The comparison which is statistically analyzed reveals that

the A-HMP-CA significantly outperforms the existing methods by offering

better results.

6.5.1 Introduction

Optimization problems are a set of problems where the goal is to make a system as

effective as possible by adjusting its input parameters. The optimization problems

are categorized based on the type of their input parameters. The problems with
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continuous parameters are called global optimization problems, while the others with

discrete parameters are called combinatorial optimization problems.

The research area of optimization is very well-known due its wide range of applica-

tions. Numerical optimization problems are a subset of optimization problems where

the goal is to find the optimal value of a given function. The numerical optimization

function is considered as a black box which gets a D-dimensional vector of continuous

parameters as input referred by a solution and returns a real number as the objective

value for the given solution. The problems where D is a large number are called large

scale global optimization problems.

Various kinds of algorithms are proposed to deal with optimization problems. As

reported in the literature, working with a population of solutions instead of only one

solution usually increases the performance of an optimization algorithm. Evolution-

ary Algorithms (EAs) is a subset of population-based methods which are successfully

applied to solve optimization problems. Although there are different types of EAs in-

troduced in the literature, their common strategy is the evolutionary process inspired

by the natural selection which states that the fitter individuals to the environment

are more likely the ones surviving for the next generations.

The most popular EA is Genetic Algorithm (GA) which is proposed by Holland

[93] and improved by various researchers consequently. The most recently introduced

evolutionary approach in the literature is Differential Evolution (DE) designed by

Storn and Price [191] to solve global optimization problems. DE is well-known due to

its efficient search space exploration which makes it the best candidate to be joined

with a local search heuristic to provide an effective algorithm.

Cultural Algorithm (CA) is also an EA which incorporates knowledge to improve

its search mechanism. CA which is developed by Reynolds [175] is designed to ex-

tract knowledge during the evolutionary process and to incorporate the extracted

knowledge to guide the search direction. CA works in two different spaces, namely
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population space and belief space. The former one is where the individuals are getting

evolved which is similar to the solution population of other types of EAs. The latter

one is designed to extract, update and record knowledge.

Although a wide range of successful applications of CAs has been reported in the

literature, they are still suffering from their immature convergence. This is mainly

due to the fact that they are not capable to preserve the population diversity over

generations. Various strategies have been proposed in order to help CAs to overcome

this limitation such as rejecting duplicate solutions, incorporating a high mutation

rate, and removing solutions with the same objective value. One of the most common

strategy is to incorporate multiple populations with lower size instead of a big single

population. In Multi-Population Cultural Algorithm (MP-CA), the single population

is divided into a number of sub-populations and each sub-population is directed by

a local CA. Digalakis and Margaritis [51] introduced the first MP-CA which was

designed to schedule electrical generators.

Within MP-CAs, the local CAs communicate with each other over generations

by exchanging their extracted knowledge. The local CAs can be homogeneous such

that they work exactly the same, or they can be heterogeneous such that they coop-

erate with each other by working on different parts of the given problem. In order

to incorporate heterogeneous local CAs, first the given problem should be decom-

posed into a number of sub-problems. For the numerical optimization problems, the

problem dimensions are divided into a number of groups. There are various decom-

position techniques proposed in the literature, each of which has its own strengthes

and weaknesses.

In this article, a technique is proposed to detect the dimension interdependencies

in order to provide an adaptive algorithm for large scale global optimization. The

proposed technique detects the interactions over the evolutionary process and merges

the interacting dimensions into one group to speed up their optimization. The re-
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maining of this article is structured as follows. Subsection 6.5.2 briefly describes the

large scale global optimization, followed by reviewing the MP-CA architectures in

Subsection 6.5.3. Subsection 6.5.4 represents the existing dimension decomposition

techniques. The proposed method is represented in Subsection 6.5.5, followed by il-

lustrating the experiments and results in Subsection 6.5.6. Finally the last subsection

represents concluding remarks and future directions.

6.5.2 Large Scale Global Optimization

Numerical optimization is a class of optimization problems where the goal is to find

the optimal objective value of a mathematical optimization function with a set of

continuous input parameters. A numerical optimization problem is mathematically

defined in Equation 6.21:

Minimize f(X)

X = {x1, x2, ..., xD}

f : RD → R

Subject to gi(X) = 0, i = 1, ...,m

hj(X) ≤ 0, j = 1, ..., n

(6.21)

where f(X) denotes to the optimization function where its input is a D-dimensional

vector of continuous parameters denoted by X including D parameters denoted by

xi where i is the dimension index. Each optimization function is accompanied with a

number of equality and inequality constraints denoted by gi(X) and hj(X), respec-

tively.

The optimization problems with a large number of dimensions are called large

scale global optimizations. The common number of dimensions in this area is 1000.

The numerical optimization functions are usually categorized into three classes

based on the interdependency of their input variables. These classes include fully
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separable functions, partially separable functions and non-separable functions. A

fully separable function is defined in Definition 6.5.1 [193].

Definition 6.5.1. A function f(x) is fully separable if and only if

arg min
(x1,...,xn)

f (x1, ..., xn) =

(
arg min

x1

f (x1, ...) , ..., arg min
xn

f (..., xn)

)
(6.22)

The fully separable functions are the functions that can be optimized by opti-

mizing their dimensions separately since there is no interdependencies between their

dimensions. These interdependencies are also known as variable interactions. The

partially separable functions and the non-separable functions are also defined in Def-

inition 6.5.2.

Definition 6.5.2. The optimization functions where the interacting variables can be

grouped into a number of independent subsets are called partially separable func-

tions, and the functions where there is only one independent group including all the

dimensions are called non-separable functions.

The benchmark functions for the CEC’2010 competition on large scale global

optimization [193] is one of the well-known benchmarks in the literature. This bench-

mark includes twenty 1000-dimensional numerical optimization functions which can

be categorized into the three following classes based on Definitions 6.5.1 and 6.5.2:

1. Shifted Fully Separable Functions (f1 − f3).

2. Shifted Partially Separable Functions (f4 − f18).

3. Shifted Nonseparable Functions (f19 − f20).

6.5.3 Multi-Population Cultural Algorithm

As mentioned before, MP-CAs are the improved version of the traditional CAs. In

order to implement MP-CAs, there are different architectures proposed in the liter-
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Figure 6.6: HMP-CA Architecture [171]

ature. The most common architecture is homogeneous local CAs [211, 76, 168] in

which the local CAs have the same goal. Although in this architecture the local CAs

may use different parameters or even different evolutionary approaches, they have the

same goal which is to solve the whole given problem.

The architectures in which the local CAs have different goals belong to het-

erogeneous local CAs category. Cultural Cooperative Particle Swarm Optimization

(CCPSO) proposed by Lin et al. [120] is one of the architectures in this category.

In CCPSO, the local CAs are designed to optimize only one of the problem dimen-

sions separately in parallel. Each local CA incorporates Particle Swarm Optimization

(PSO) to evolve its population while it has its own local belief space to record the

extracted knowledge.

The most recent architecture is Heterogenous Multi-Population Cultural Algo-

rithm (HMP-CA) [171] which is illustrated in Figure 6.6. As presented in the figure,

instead of a local belief space for each local CA, HMP-CA incorporates only one be-

lief space shared among local CAs which is responsible to keep a track of the best

parameters found for each dimension.

HMP-CA has the flexibility to design local CAs to optimize any subset of the

problem dimensions. Additionally, HMP-CA [171] incorporates the concept of par-
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tial solution. A partial solution is a solution including the parameters for specific

dimensions. In HMP-CA each sub-population is designed to carry only the partial

solutions with respect to its assigned dimensions instead of complete solutions. Since

the total number of solutions within each generation is constant, the number of pa-

rameters for each generation is dramatically decreased which makes the HMP-CA an

efficient method in terms of both CPU time and memory usage.

Although dealing with partial solutions utilized the CPU time and memory usage,

since fitness evaluation is conducted only on complete solutions, a partial solution has

to be completed with its complement parameters before being evaluated. Therefore,

incorporating partial solution does not affect the efforts needed for fitness evalua-

tions. It should be noted here that the only influence of the shared belief space is its

participation in fitness evaluations of partial solutions.

Dynamic HMP-CA (D-HMP-CA) [174] is recently introduced which is the HMP-

CA improved by incorporating dynamic decomposition techniques. The dynamic

version is able to generate new local CAs with different dimension subsets during the

evolutionary process. Additionally, it is able to terminate the previously generated

local CAs.

6.5.4 Dimension Decomposition Techniques

In order to decompose dimensions between local CAs, there are various approaches

proposed in the literature which can be divided into two categories including static

approaches and dynamic ones. In static decomposition techniques, the dimensions

are initially divided among local CAs such that this division will not be altered during

the evolutionary process, while in dynamic approaches the dimension groups or even

the number of local CAs will be changed.

The static decomposition techniques usually work with specific number of local

CAs. The CCPSO [120], for instance, assigns each dimension to a local CA meaning
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that the number of local CAs in this approach equals to the number of problem

dimensions. Unlike the CCPSO, HMP-CA [171] incorporates a jumping strategy

with four different number of local CAs including 5, 10, 15, and 30.

Various static dimension decomposition approaches with different number of lo-

cal CAs are recently investigated [165]. This investigation classifies the techniques

into two groups of balanced and imbalanced approaches. The techniques assigning

the same number of dimensions to different local CAs are considered as balanced

techniques and others which assign different number of dimensions to local CAs are

called imbalanced approaches. In this investigation, sequential, jumping and sequen-

tial with overlap approaches as balanced techniques are compared with logarithmic

and customized logarithmic approaches as imbalanced techniques. The investigation

results reveal that the imbalanced techniques including local CAs with one assigned

dimension outperform others in both efficiency and effectiveness.

Two dynamic dimension decomposition techniques are introduced in D-HMP-CA

[174] including the top-down and bottom-up techniques. In the former approach the

algorithm starts with a local CA designed to optimize all the problem dimensions

and if it cannot find a better solution after a specific number of generations two new

local CAs will be generated to optimize half of its dimensions. The latter approach

for optimizing a D-dimensional optimization problem starts with D local CAs, each

of which gets assigned with only one dimension. In this approach if two local CAs

cannot find a better solution after a specific number of generations, a new local CA

will be generated to optimize their dimensions together.

The dimension decomposition techniques are not limited to the area of HMP-CA.

Another area where the dimension decomposition is highly important is Cooperative

Coevolution (CC) [160]. CC incorporates a divide-and-conquer approach to decom-

pose a problem into a number of smaller sub-problems such that each sub-problem

is getting optimized by an EA separately in parallel. Although the framework of
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CC is similar to the HMP-CA, the HMP-CA benefits from its belief space which

incorporates knowledge to guide the search direction.

CC is first introduced in a Genetic Algorithm which is called Cooperative Co-

evolutionary Genetic Algorithm (CCGA) [160]. CCGA uses the same dimension

decomposition technique as CCPSO [120] which is dividing D-dimensional optimiza-

tion problem into D 1-dimensional sub-problems. Fast Evolutionary Programming

with Cooperative Co-evolution(FEPCC) [124] which is the first attempt for apply-

ing CC to large scale global optimization also used the same strategy for dimension

decomposition.

Another decomposition strategy is splitting-in-half [186] in which all the dimen-

sions are decomposed into two halves and each half is optimized with a DE. The

main drawback of this mechanism is that it cannot be scaled up for large scale global

optimization. This is due to the fact that in high dimensional problem, the two

sub-problems are also high dimensional.

One of the most popular dimension decomposition strategy in CC is random

grouping which is proposed by Yang et al. [214]. Their algorithm which is called

DECC-G divides a D-dimensional problem into m s-dimensional problem satisfying

m× s = D. This division is a dynamic process such that the groups will be changed

in every cycles. DECC-G which uses a constant group size works efficient with a

small group size for separable problems and with a large group size for non-separable

problems. Consequently, in order to be an efficient algorithm DECC-G needs to know

the best group size in advance.

DECC-G is improved by incorporating a multilevel strategy for decomposition.

The improved version which is called Multilevel Cooperative Coevolution (MLCC)

[215] uses a pool of different group sizes and select a group size based on the problem

under investigation and the stage of the evolution. Although MLCC works better

than DECC-G, determining a good pool of group sizes is also difficult.
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Consequently, a dynamic decomposition technique considering the variable inter-

actions would results in a better performance. Recently a technique for detecting the

variable interactions is proposed which is called Variable Interaction Learning (VIL)

[31]. This technique which is computationally expensive is incorporated within a

CC framework so-called Cooperative Coevolution with Variable Interaction Learning

(CCVIL).

Another systematic way to detect interacting variables is proposed by Omidvar et

al. [148]. Their proposed method so-called DECC-DML incorporates a delta grouping

technique which considers the low-improved dimensions to be interacting.

6.5.5 Adaptive Heterogeneous Multi-Population Cultural

Algorithm

As determining the variable interactions is a key factor in the performance of an

optimization algorithm especially in large scale global optimization, in this article a

new technique to detect the additively interdependent variables is introduced. This

technique which is the main contribution of this article is called Variable Additively

Interdependence Learning (VAIL).

The VAIL technique is incorporated in a D-HMP-CA [174] framework which has

the ability to generate new local CAs as well as to terminate the existing local CAs.

The belief space of the D-HMP-CA is upgraded by incorporating the VAIL module in

order to keep the independent variables in different groups and merge the interdepen-

dent variables into one group. Since with this mechanism the proposed algorithm can

be adapted to the given optimization problem, it is called Adaptive Heterogeneous

Multi-Population Cultural Algorithm (A-HMP-CA). Sub-subsection 6.5.5.1 further

describes the VAIL technique, followed by representing the evolutionary approach in

Sub-subsection 6.5.5.2. The overall framework of the proposed A-HMP-CA is de-

scribed in Sub-subsection 6.5.5.3.
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6.5.5.1 Variable Additively Interdependence Learning

In addition to the separability concept defined in Definition 6.5.1, there is another

important concept to evaluate functions separability which is called additively sepa-

rability as defined in Definition 6.5.3.

Definition 6.5.3. A function f(x) is fully additively separable if and only if

f (x1, x2, ..., xn) = f1 (x1) + f2 (x2) + ...+ fn (xn) (6.23)

Based on this definition, a fully additively separable function consists of a num-

ber of sub-functions with respect to each dimension. Consequently, a fully additively

separable function is fully separable as well, but a fully separable function is not neces-

sarily a fully additively separable. Ackley’s function (f3 in the CEC’2010 benchmark

[193]), for instance, is a fully separable function, but it is not a fully additively sepa-

rable function.

Additionally, Definition 6.5.3 states that a partially additively separable function

consists of a number of sub-functions with respect to different mutually exclusive

subsets of dimensions. For instance, the function f illustrated in Equation 6.24 is

partially additively separable.

f (x1, ..., xn) = f1 (x1, ..., xi) + f2 (xi+1, ..., xn) (6.24)

In partially additively separable functions, the dimensions in the same subsets are

additively dependent to each other while they are additively independent to the rest of

the dimensions. Therefore if two variables are additively independent, their changes

should only affect their corresponding sub-functions. In function f represented in

Equation 6.24, for instance, if xi will be changed to x′i, the results of f2 will not be
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changed. Therefore, the difference in the total objective equals to the changes in f1.

f (x1, ..., x
′
i, ..., xn)− f (x1, ..., xi, ..., xn) =

f1 (x1, ..., x
′
i)− f1 (x1, ..., xi) (6.25)

Based on Equation 6.25 if two different dimensions xi and xj are additively indepen-

dent, the total objective changes due to the changing xi is independent to xj:

f (x1, ..., x
′
i, ..., xj, ..., xn)− f (x1, ..., xi, ..., xj, ..., xn) =

f1 (x1, ..., x
′
i)− f1 (x1, ..., xi) (6.26)

f
(
x1, ..., x

′
i, ..., x

′
j, ..., xn

)
− f

(
x1, ..., xi, ..., x

′
j, ..., xn

)
=

f1 (x1, ..., x
′
i)− f1 (x1, ..., xi) (6.27)

Consequently, Equations 6.26 and 6.27 results in the following fact:

f (x1, ..., x
′
i, ..., xj, ..., xn)− f (x1, ..., xi, ..., xj, ..., xn) =

f
(
x1, ..., x

′
i, ..., x

′
j, ..., xn

)
− f

(
x1, ..., xi, ..., x

′
j, ..., xn

)
(6.28)

Since if two different dimensions xi and xj are additively independent, they should

satisfy Equation 6.28 with any feasible values. Therefore, failure in satisfying this

equation means that dimensions xi and xj are not additively independent and they

should be considered as additively interacting variables. Since the other dimensions

in Equation 6.28 are constants, its equivalency is also dependent to the values of

those dimensions. Therefore, satisfying this equation does not infer the additively

independency of dimensions xi and xj.
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Our proposed VAIL module incorporates Equation 6.28 to detect variable inter-

actions during the process of evolution. This module which is included in the shared

belief space recognizes the interacting variables and nominates them to be merged into

one group, while it emphasizes to keep non-interacting variables in different groups.

6.5.5.2 Evolutionary Approach

Like the main HMP-CA [171], the proposed A-HMP-CA incorporates a simple DE

with the following components for each local CA:

• DE/rand/1 mutation operator represented in Equation 6.29 with a scale factor

selected randomly from intervals [0.5, 2.5] for each generation.

Vi,g = Xr1,g + F × (Xr2,g −Xr3,g) (6.29)

where Xr1,g, Xr2,g, and Xr3,g are three randomly selected target vectors in gen-

eration g. F is a scale factor determining the amount of perturbation of the

base vector Xr1,g.

• Binomial crossover operator illustrated in Equation 6.30 with crossover proba-

bility 0.5 for all generations.

zj,i,g =

 vj,i,g if rj ≤ Cr or j = jrand

xj,i,g otherwise
(6.30)

where Cr is the crossover probability and rj is a randomly selected value within

the interval [0, 1) for the jth dimension. jrand is a randomly selected index to

ensure that the trial vector Zi,g differs from target vector Xi,g at least in one

dimension.
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• Selection mechanism depicted in Equation 6.31.

Xi,g+1 =

 Zi,g if f(Zi,g) ≤ f(Xi,g)

Xi,g otherwise
(6.31)

where Xi,g and Zi,g denote a target vector and its corresponding trial vector in

the current generation g, respectively, and Xi,g+1 represents the selected target

vector for the next generation.

6.5.5.3 A-HMP-CA Framework

For a D-dimensional optimization problam, the proposed A-HMP-CA starts with D

local CAs each of which gets assigned with only one dimension. In every generation,

the local CAs gets their complement parameters from the shared belief space to

evaluate their partial solutions. Then they sends back their best partial solutions to

update the belief space. The belief space reviews the coming best partial solutions

and updates its records of best solutions with respect to each dimension. This routine

continues until the shared belief space detects at least two non-improving local CAs.

The non-improving local CAs are the ones which are not able to find a better

solution after a specific number of generations. When the shared belief space detects

two non-improving local CAs, it sends their dimension subsets to the VAIL module

for interdependency evaluation. If VAIL nominates them to be merged, the belief

space merges their dimension subsets and generates a new local CA assigned with the

merged dimension subset. Otherwise, the local CAs will not be touched. It should be

noted here that each dimension subset will be merged only once. Therefore, merging

ends up in a dimension subset including all the dimensions.
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6.5.6 Experiments and Results

The CEC’2010 benchmark functions for large scale global optimization [193] are con-

sidered in order to evaluate the proposed A-HMP-CA. Although there are more recent

benchmark sets in the literature, due to their usage in evaluating related methods the

CEC’2010 benchmark functions are considered to provide a fair platform for compar-

ison. Based on the regulation of the CEC’2010 benchmark, the number of dimensions

is set to 1000 for all problems, the maximum number of fitness evaluations is consid-

ered as 3.00E+6, and each experiment is conducted by 25 independent runs.

Due to the extensive experiments conducted in D-HMP-CA [174] to adjust the

algorithm parameters, the population size for each local CA is set to 10 and the

threshold for the number of generations with no improvement is considered as 5.

The results of applying the proposed A-HMP-CA on CEC’2010 benchmark func-

tions [193] are represented in Table 6.121. This table also illustrates the results of the

state-of-the-art methods including DECC-G [214], MLCC [215], DECC-DML [148]

and CCVIL [31].

Table 6.12 represents that the proposed method can find the best solution com-

pared to the rest of the methods for 15 functions out of 20. Therefore, it gets the

best rank for these functions. Conversely, the proposed method shows very weak

performance on functions f6, f11 and f16 which are the methods including at least

one group of 50-rotated Ackley’s function. Since A-HMP-CA can find the exact ad-

ditively independent groups of variables for these functions which are 2, 11 and 20,

respectively, the only reason for this failure could be the simple evolutionary approach

incorporated in local CAs.

In order to statistically compare all the five algorithms over all the 20 benchmark

functions, a non-parametric procedure is incorporated [64]. This procedure starts by

1To see the complete results including the obtained solutions with 1.20E+5 and 6.00E+5 fit-
ness evaluations please refer to Subsection 6.5.8. These results are also accessible online at
http://raeesim.myweb.cs.uwindsor.ca/ECAI2014/CompleteResults.pdf.
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Table 6.12: Comparing the proposed A-HMP-CA with the state-of-the-art methods
over the CEC’2010 benchmark functions [193].

Function
DECC-G MLCC DECC-DML CCVIL A-HMP-CA

Mean Mean Mean Mean Mean Std Dev Rank
f1 2.93E-07 1.53E-27 1.93E-25 1.55E-17 0.00E+00 0.00E+00 1
f2 1.31E+03 5.55E-01 2.17E+02 6.71E-09 4.94E-09 1.41E-08 1
f3 1.39E+00 9.86E-13 1.18E-13 7.52E-11 3.51E-13 6.49E-14 2
f4 5.00E+12 1.70E+13 3.58E+12 9.62E+12 1.01E+12 3.54E+11 1
f5 2.63E+08 3.84E+08 2.99E+08 1.76E+08 1.03E+08 1.41E+08 1
f6 4.96E+06 1.62E+07 7.93E+05 2.94E+05 5.24E+06 7.19E+05 4
f7 1.63E+08 6.89E+05 1.39E+08 8.00E+08 5.16E+07 3.64E+07 2
f8 6.44E+07 4.38E+07 3.46E+07 6.50E+07 8.35E+06 1.56E+07 1
f9 3.21E+08 1.23E+08 5.92E+07 6.66E+07 1.44E+07 1.61E+06 1
f10 1.06E+04 3.43E+03 1.25E+04 1.28E+03 7.72E+02 3.62E+02 1
f11 2.34E+01 1.98E+02 1.80E-13 3.48E+00 5.65E+01 2.54E+00 4
f12 8.93E+04 3.48E+04 3.80E+06 8.95E+03 2.07E+03 9.82E+02 1
f13 5.12E+03 2.08E+03 1.14E+03 5.72E+02 7.96E+01 5.88E+01 1
f14 8.08E+08 3.16E+08 1.89E+08 1.74E+08 3.22E+07 3.71E+06 1
f15 1.22E+04 7.10E+03 1.54E+04 2.65E+03 2.17E+03 6.79E+02 1
f16 7.66E+01 3.77E+02 5.08E-02 7.18E+00 1.15E+02 4.28E+00 4
f17 2.87E+05 1.59E+05 6.54E+06 2.13E+04 9.33E+03 1.96E+03 1
f18 2.46E+04 7.09E+03 2.47E+03 1.33E+04 4.17E+02 1.51E+02 1
f19 1.11E+06 1.36E+06 1.59E+07 3.52E+05 3.39E+05 3.76E+04 1
f20 4.06E+03 2.05E+03 9.91E+02 1.11E+03 8.19E+02 1.76E+02 1

Avg. Rank 4.10 3.60 3.00 2.75 1.55

applying Friedman’s ranking test followed by Bonferroni-Dunns test to evaluate the

significance level of the efficiency differences between the 5 algorithm. The Friedman’s

ranking test results in the Friedman’s statistic value of 29.88, the p-value for which

in a chi-squared distribution is less than 0.0001. It means that there are significant

differences between the compared algorithms.

For the second part of the statistical analysis, the algorithm with the minimum

average rank which is our proposed A-HMP-CA is selected as the control algorithm.

Bonferroni-Dunns test calculates the critical differences (CD) for the control algorithm

based on the significance level. In this stage, the two most common significance levels

in the literature is incorporated which are α = 0.05 and α = 0.10. The results of the
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Bonferroni-Dunns test are as follows:

CD =

 1.2490 for α = 0.05

1.1205 for α = 0.10

The next step is to calculate the threshold ranks with respect to both significance

levels which are the summation of the CDs and the average rank of the control

algorithm. The calculated threshold ranks are as follows:

Threshold Rank =

 2.7990 for α = 0.05

2.6705 for α = 0.10

These threshold ranks are used as a threshold to determine the algorithms which

are significantly outperformed by the control algorithm with respect to each signifi-

cance level. In other words, this statistical procedure states that the control algorithm

significantly outperforms the algorithms with average rank higher than the thresh-

old ranks. This concept is illustrated in Figure 6.7 graphically. The solid line and

the dashed line in the chart represent the threshold ranks for the significance levels

α = 0.05 and α = 0.10, respectively. This figure shows that the control algorithm

significantly outperforms the algorithms whose bar exceeds the threshold lines.

Therefore based on the Friedman’s ranking and Bonferroni-Dunn’s tests, it can

be stated that the proposed A-HMP-CA outperforms DECC-G, MLCC and DECC-

DML with the significance level α = 0.05 and it also outperforms CCVIL with the

significance level α = 0.10.

6.5.7 Conclusions

In this article, a new technique is proposed to detect the variable additively inter-

action. The proposed technique which is called Variable Additively Interdependence
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Figure 6.7: The Graphical Representation of Statistical Analysis with Friedman’s test
and Bonferroni-Dunn’s method

Learning (VAIL) incorporates a very simple mathematical equation to evaluated the

interactions. The proposed algorithm incorporating the VAIL module is called Adap-

tive HMP-CA which is able to optimize the interacting dimensions within the same

local CA while optimizing the independent dimensions within different local CAs.

The proposed A-HMP-CA is evaluated over large scale global optimization bench-

mark functions. Although the results show that the proposed method is not effective

in only one type of optimization functions, they represents the great performance of

the proposed method on the rest of optimization functions. The proposed method

is also compared to the state-of-the-art methods. The comparison is statistically

analyzed which reveals that the proposed algorithm significantly outperforms the

state-of-the-art methods.

Calculating the computational cost of the proposed VAIL technique is an im-

portant issue which is considered as the future direction for this research. Another

direction would be incorporating a more efficient evolutionary approach for local CAs

to overcome the algorithm failure in optimizing Ackley’s and similar functions.

292



6.5.8 Complete Results

The complete results of applying Adaptive Heterogenous Multi-Population Cultural

Algorithm (A-HMP-CA) on the CEC’2010 benchmark functions for large scale global

optimization [193] is represented in Table 6.13.

Table 6.13: The results of applying A-HMP-CA on CEC’2010 benchmark functions
for large scale global optimization [193]

FEs Function f1 f2 f3 f4 f5

1.20E+05

Best 1.17E+07 2.56E+02 1.96E+00 2.05E+13 3.06E+08

Median 1.95E+07 2.85E+02 2.06E+00 4.86E+13 4.14E+08

Worst 5.75E+07 3.11E+02 2.21E+00 1.09E+14 5.56E+08

Mean 2.19E+07 2.85E+02 2.07E+00 5.46E+13 4.20E+08

Std 8.95E+06 1.42E+01 7.17E-02 2.23E+13 6.24E+07

6.00E+05

Best 2.37E-02 2.87E+01 1.68E-03 2.81E+12 2.99E+08

Median 1.39E-01 4.27E+01 2.05E-03 6.40E+12 4.08E+08

Worst 8.60E-01 5.73E+01 3.06E-03 1.50E+13 5.46E+08

Mean 1.88E-01 4.24E+01 2.13E-03 6.86E+12 4.13E+08

Std 1.98E-01 7.12E+00 3.52E-04 3.08E+12 6.14E+07

3.00E+06

Best 0.00E+00 2.88E-12 3.13E-13 3.84E+11 8.95E+06

Median 0.00E+00 1.17E-10 3.34E-13 9.93E+11 2.39E+07

Worst 0.00E+00 5.95E-08 6.36E-13 1.80E+12 3.86E+08

Mean 0.00E+00 4.94E-09 3.51E-13 1.01E+12 1.03E+08

Std 0.00E+00 1.41E-08 6.49E-14 3.54E+11 1.41E+08

Table 6.13 – Continued on next page
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Table 6.13: (continued from previous page)

FEs Function f6 f7 f8 f9 f10

1.20E+05

Best 1.85E+07 2.72E+10 6.29E+08 4.70E+08 4.04E+03

Median 2.02E+07 4.57E+10 2.80E+09 5.79E+08 4.37E+03

Worst 2.04E+07 7.82E+10 1.75E+10 7.43E+08 4.73E+03

Mean 2.01E+07 4.63E+10 4.40E+09 5.82E+08 4.38E+03

Std 3.84E+05 1.01E+10 4.65E+09 7.02E+07 1.70E+02

6.00E+05

Best 9.59E+06 2.49E+09 9.57E+06 8.29E+07 3.43E+03

Median 1.94E+07 5.56E+09 9.34E+07 1.04E+08 4.09E+03

Worst 1.98E+07 1.54E+10 1.57E+08 1.32E+08 4.47E+03

Mean 1.90E+07 6.38E+09 9.13E+07 1.05E+08 3.98E+03

Std 1.99E+06 2.69E+09 4.32E+07 1.18E+07 2.67E+02

3.00E+06

Best 3.51E+06 1.97E+07 1.22E+05 1.08E+07 8.36E+01

Median 5.23E+06 4.18E+07 3.15E+06 1.48E+07 7.91E+02

Worst 6.51E+06 1.73E+08 7.42E+07 1.70E+07 1.55E+03

Mean 5.24E+06 5.16E+07 8.35E+06 1.44E+07 7.72E+02

Std 7.19E+05 3.64E+07 1.56E+07 1.61E+06 3.62E+02

FEs Function f11 f12 f13 f14 f15

1.20E+05

Best 1.99E+02 4.31E+05 3.46E+04 9.93E+08 8.00E+03

Median 2.03E+02 4.92E+05 1.15E+05 1.23E+09 8.54E+03

Worst 2.05E+02 6.21E+05 8.41E+05 1.42E+09 9.10E+03

Mean 2.03E+02 5.05E+05 2.05E+05 1.22E+09 8.55E+03

Std 1.02E+00 4.82E+04 1.99E+05 1.10E+08 2.41E+02

Table 6.13 – Continued on next page
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Table 6.13: (continued from previous page)

6.00E+05

Best 1.55E+02 7.46E+04 8.70E+02 2.44E+08 7.67E+03

Median 1.68E+02 9.16E+04 1.19E+03 2.73E+08 8.11E+03

Worst 1.94E+02 1.45E+05 7.41E+03 3.10E+08 8.59E+03

Mean 1.70E+02 9.88E+04 1.50E+03 2.72E+08 8.12E+03

Std 1.12E+01 2.02E+04 1.28E+03 1.87E+07 2.22E+02

3.00E+06

Best 5.16E+01 1.05E+03 9.92E-03 2.51E+07 9.92E+02

Median 5.65E+01 1.87E+03 8.04E+01 3.19E+07 2.21E+03

Worst 6.20E+01 4.74E+03 1.82E+02 4.47E+07 3.19E+03

Mean 5.65E+01 2.07E+03 7.96E+01 3.22E+07 2.17E+03

Std 2.54E+00 9.82E+02 5.88E+01 3.71E+06 6.79E+02

FEs Function f16 f17 f18 f19 f20

1.20E+05

Best 3.99E+02 9.91E+05 1.41E+05 2.22E+07 1.58E+05

Median 4.03E+02 1.08E+06 3.08E+05 5.24E+07 3.49E+05

Worst 4.05E+02 1.19E+06 1.38E+06 1.36E+08 8.14E+05

Mean 4.02E+02 1.09E+06 4.06E+05 5.89E+07 3.77E+05

Std 1.25E+00 5.15E+04 3.15E+05 2.99E+07 1.84E+05

6.00E+05

Best 3.06E+02 2.06E+05 2.34E+03 1.09E+06 1.84E+03

Median 3.52E+02 2.61E+05 2.68E+03 1.62E+06 2.15E+03

Worst 3.90E+02 3.18E+05 5.85E+03 2.18E+06 2.46E+03

Mean 3.51E+02 2.61E+05 2.83E+03 1.58E+06 2.14E+03

Std 2.38E+01 2.46E+04 6.77E+02 2.75E+05 1.69E+02

3.00E+06

Best 1.08E+02 6.36E+03 1.84E+02 2.54E+05 3.81E+02

Median 1.14E+02 8.81E+03 4.01E+02 3.35E+05 8.22E+02

Worst 1.25E+02 1.42E+04 8.05E+02 3.97E+05 1.10E+03

Mean 1.15E+02 9.33E+03 4.17E+02 3.39E+05 8.19E+02

Std 4.28E+00 1.96E+03 1.51E+02 3.76E+04 1.76E+02
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6.6 Conclusions

My proposed HMP-CA and its improved versions which are the key contributions of

this dissertation are fully characterized in this chapter. HMP-CA is a new architecture

for optimization algorithms, in which there are a number of local CAs designed to

work on different parts of the given problem. In this architecture, there is only one

belief space which is shared between all the local CAs. The shared belief space is

responsible for tracking the best component found for each sub-problem.

Due to incorporating the concept of partial solution in the proposed architecture,

it has been shown that HMP-CA is an efficient method in terms of both CPU time

and memory usage.

Since the local CAs in a HMP-CA are designed to optimize different sub-problems,

the incorporated problem decomposition technique has a major effect on the algorithm

performance. The first HMP-CA which is represented in Section 6.2 uses a static

decomposition technique which is called jumping approach.

In order to improve the first HMP-CA, a research is conducted to evaluate various

static decomposition techniques which is described in Section 6.3. The investigated

techniques are categorized into two classes of balanced and imbalanced approaches.

The results of this investigation shows that the imbalanced techniques which assign

different number of dimensions to different local CAs outperform the balanced tech-

niques. Furthermore, the best results are obtained by the imbalanced techniques

including the local CAs with only one assigned dimension.

The results of this investigation suggest to incorporate a dynamic decomposi-

tion technique instead of the static ones. Section 6.4 presents my proposed dynamic

approaches including top-down and bottom-up methods. The results of evaluating

HMP-CA with these dynamic techniques reveal that the dynamic techniques outper-

forms the static ones and also they show that the bottom-up approach is a more
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efficient approach compared to the top-down technique. HMP-CA incorporating a

dynamic decomposition technique is also called Dynamic HMP-CA (D-HMP-CA).

The bottom-up decomposition technique in D-HMP-CA starts by a number of

local CAs assigned with only one dimensions, and then the non-improving local CAs

will be merged together to improve the convergence rate. This merging mechanism

is kind of random. Therefore, incorporating a more systematic way to choose dimen-

sions for merging would results in a better performance. Section 6.5 introduces a new

technique to detect the variable additively interactions which is called Variable Ad-

ditively Interdependence Learning (VAIL). The VAIL module is incorporated in the

dynamic bottom-up decomposition approach in order to force merging the additively

interacting dimensions into one local CA and to avoid merging additively indepen-

dent dimensions. The dynamic approach incorporating the VAIL module is called

an adaptive approach and consequently the HMP-CA using the adaptive approach is

called Adaptive HMP-CA (A-HMP-CA).

The proposed HMP-CA and its improved versions are evaluated by incorporating

a number of numerical optimization benchmark problems. The results of this evalu-

ation reveal that the proposed methods offer a very good performance compared to

the state-of-the-art methods. Furthermore, A-HMP-CA is evaluated over the large

scale global optimization problems the results of which show that it significantly

outperforms the state-of-the-art methods.

In my proposed HMP-CAs including the dynamic and adaptive ones, a simple DE

is incorporated as the evolutionary approach within each local CA. Therefore, the

algorithm performance can also be further improved by incorporating more effective

evolutionary approaches. This improvement is considered as a future direction for

this research study.
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Chapter 7

Conclusions

Optimization problems is a class of problems where the goal is to make a system as

effective as possible. Since the solution space of optimization problems is very large,

an optimization algorithm should be efficient as well. In other words, an optimization

algorithm should be able to find the optimal solution within an acceptable time.

Therefore, there are two measures for evaluating optimization algorithms including

effectiveness and efficiency.

Evolutionary Algorithms (EAs) is a subset of population-based methods which

are successfully applied to solve optimization problems. In this dissertation, I start

reviewing the existing evolutionary methods and looking into their corresponding

future directions. Due to this review, I found some rooms to improve the existing

algorithms.

My first published algorithm [166] was a MA consisting of a GA and a local

search heuristic benefiting from a new representation for classical JSSPs. This MA

is improved by incorporating a new local search heuristic as well as a new fitness

function which is called Priority-Based Fitness Function [169].

I proposed a more powerful MA by combining a GA with a VNS [167]. This

combination shows that the VNS is more likely a local search heuristic and it will
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be improved by incorporating a more explorative method such as a GA. This MA is

improved by incorporating a more explorative method, namely a DE [172]. This MA

is further improved by incorporating a Multi-Population DE which is more explorative

compared to the traditional DE [172].

After investigating MAs, I found that incorporating knowledge may still improve

the existing methods. Therefore, I focused on the area of CAs. Within this area, I

found that although their successful applications have been reported in various area,

CAs still suffer from their immature convergence. Since one of the most useful strate-

gies to overcome this limitation is to incorporate multiple populations, I conducted

a literature survey to highly investigate the area and its applications. This survey

helps me to better understand the existing architectures to implement MP-CAs and

their corresponding strengthes and weaknesses.

Based on the conducted survey, I introduced the applications of MP-CAs in JSSPs

for the first time by publishing a MP-CA incorporating normative and topographic

knowledge [168]. Afterwards, I proposed another MP-CA to deal with JSSPs by

introducing a new knowledge called structured belief [170].

After publishing a couple of MP-CAs using the existing architectures, I introduced

a new architecture for optimization problems. The new architecture which is called

Heterogeneous MP-CA is the key contribution of this dissertation. The proposed

architecture incorporates a number of CAs designed to work on different parts of the

given problem [171].

In order to incorporate HMP-CAs, first a problem decomposition technique should

be used to divide the given problem into a number of sub-problems. The first version

of HMP-CA [171] incorporates a jumping approach to divide the problem dimensions

among local CAs. In order to improve the proposed architecture, a research study is

conducted to evaluate and compare a number of static decomposition techniques. The

results of this research show that the imbalanced techniques which assigns different
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number of dimensions to different local CAs outperforms others by presenting better

solutions [165].

The HMP-CA is further improved by incorporating a dynamic decomposition

technique which is called bottom-up approach [174]. The improved HMP-CA which

is called Dynamic HMP-CA (D-HMP-CA) starts with a number of local CAs, each of

which is designed to optimize only one of the problem dimensions, and then it merges

the non-improving local CAs to speed up the algorithm convergence.

The D-HMP-CA is also improved by incorporating a more systematic merging

strategy. The improved D-HMP-CA which is called Adaptive HMP-CA (A-HMP-

CA) incorporates a technique to detect variable additively interactions [173]. The

new technique which is called Variable Additively Interdependence Learning (VAIL)

is incorporated within the dynamic decomposition technique in order to merge the in-

teracting dimensions into a local CA and preserve the independent dimensions within

different local CAs.

The proposed HMP-CA architecture is evaluated over numerical optimization

problems. The evaluation results reveal that the proposed method is an effective

as well as efficient algorithm compared to the state-of-the-art methods. The im-

proved version, D-HMP-CA, is more effective such that it is able to find the optimal

solution for every single run. The further improved version, A-HMP-CA, shows a

great performance to deal with large scale global optimization problems such that it

significantly outperforms the state-of-the-art methods.

Since A-HMP-CA incorporates a simple DE as the evolutionary approach within

its local CAs, it can be further improved by incorporating more powerful evolutionary

approaches recently introduced in the literature. This improvement is considered as

the future direction for this research.
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