68,120 research outputs found

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio

    Automated user modeling for personalized digital libraries

    Get PDF
    Digital libraries (DL) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from digital libraries. One trend used to improve digital services is through personalization. Up to now, the most common approach for personalization in digital libraries has been user-driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct digital libraries that satisfy user’s necessity for information: Adaptive Digital Libraries, libraries that automatically learn user preferences and goals and personalize their interaction using this information

    Peer assessment and knowledge discovering in a community of learners

    Get PDF
    Thanks to the exponential growth of the Internet, Distance Education is becoming more and more strategic in many fields of daily life. Its main advantage is that students can learn through appropriate web platforms that allow them to take advantage of multimedia and interactive teaching materials, without constraints neither of time nor of space. Today, in fact, the Internet offers many platforms suitable for this purpose, such as Moodle, ATutor and others. Coursera is another example of a platform that offers different courses to thousands of enrolled students. This approach to learning is, however, posing new problems such as that of the assessment of the learning status of the learner in the case where there were thousands of students following a course, as is in Massive On-line Courses (MOOC). The Peer Assessment can therefore be a solution to this problem: evaluation takes place between peers, creating a dynamic in the community of learners that evolves autonomously. In this article, we present a first step towards this direction through a peer assessment mechanism led by the teacher who intervenes by evaluating a very small part of the students. Through a mechanism based on machine learning, and in particular on a modified form of K-NN, given the teacher’s grades, the system should converge towards an evaluation that is as similar as possible to the one that the teacher would have given. An experiment is presented with encouraging results

    Culture and E-Learning: Automatic Detection of a Users’ Culture from Survey Data

    Get PDF
    Knowledge about the culture of a user is especially important for the design of e-learning applications. In the experiment reported here, questionnaire data was used to build machine learning models to automatically predict the culture of a user. This work can be applied to automatic culture detection and subsequently to the adaptation of user interfaces in e-learning

    Automatic Bayesian Density Analysis

    Full text link
    Making sense of a dataset in an automatic and unsupervised fashion is a challenging problem in statistics and AI. Classical approaches for {exploratory data analysis} are usually not flexible enough to deal with the uncertainty inherent to real-world data: they are often restricted to fixed latent interaction models and homogeneous likelihoods; they are sensitive to missing, corrupt and anomalous data; moreover, their expressiveness generally comes at the price of intractable inference. As a result, supervision from statisticians is usually needed to find the right model for the data. However, since domain experts are not necessarily also experts in statistics, we propose Automatic Bayesian Density Analysis (ABDA) to make exploratory data analysis accessible at large. Specifically, ABDA allows for automatic and efficient missing value estimation, statistical data type and likelihood discovery, anomaly detection and dependency structure mining, on top of providing accurate density estimation. Extensive empirical evidence shows that ABDA is a suitable tool for automatic exploratory analysis of mixed continuous and discrete tabular data.Comment: In proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19
    corecore