255 research outputs found

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Simulation of packet and cell-based communication networks

    Get PDF
    This thesis investigates, using simulation techniques, the practical aspects of implementing a novel mobility protocol on the emerging Broadband Integrated Services Digital Network standard. The increasing expansion of telecommunications networks has meant that the demand for simulation has increased rapidly in recent years; but conventional simulators are slow and developments in the communications field are outstripping the ability of sequential uni-processor simulators. Newer techniques using distributed simulation on a multi-processor network are investigated in an attempt to make a cell-level simulation of a non-trivial B.-I.S.D.N. network feasible. The current state of development of the Asynchronous Transfer Mode standard, which will be used to implement a B.-I.S.D.N., is reviewed and simulation studies of the Orwell Slotted Ring protocol were made in an attempt to devise a simpler model for use in the main simulator. The mobility protocol, which uses a footprinting technique to simplify hand- offs by distributing information about a connexion to surrounding base stations, was implemented on the simulator and found to be functional after a few 'special case' scenarios had been catered for

    Evaluating Mobility Predictors in Wireless Networks for Improving Handoff and Opportunistic Routing

    Get PDF
    We evaluate mobility predictors in wireless networks. Handoff prediction in wireless networks has long been considered as a mechanism to improve the quality of service provided to mobile wireless users. Most prior studies, however, were based on theoretical analysis, simulation with synthetic mobility models, or small wireless network traces. We study the effect of mobility prediction for a large realistic wireless situation. We tackle the problem by using traces collected from a large production wireless network to evaluate several major families of handoff-location prediction techniques, a set of handoff-time predictors, and a predictor that jointly predicts handoff location and time. We also propose a fallback mechanism, which uses a lower-order predictor whenever a higher-order predictor fails to predict. We found that low-order Markov predictors, with our proposed fallback mechanisms, performed as well or better than the more complex and more space-consuming compression-based handoff-location predictors. Although our handoff-time predictor had modest prediction accuracy, in the context of mobile voice applications we found that bandwidth reservation strategies can benefit from the combined location and time handoff predictor, significantly reducing the call-drop rate without significantly increasing the call-block rate. We also developed a prediction-based routing protocol for mobile opportunistic networks. We evaluated and compared our protocol\u27s performance to five existing routing protocols, using simulations driven by real mobility traces. We found that the basic routing protocols are not practical for large-scale opportunistic networks. Prediction-based routing protocols trade off the message delivery ratio against resource usage and performed well and comparable to each other

    Mobility Management and Congestion Control in Wireless Mesh Networks

    Get PDF
    Today, wireless mesh networks are increasingly popular. In order to be better adapted to the increasing number of offered services in telecommunications, many Quality of Service (QoS) problems are being considered. Some of the important issues are: admission control, congestion control, and handoff management of the network. Our research focuses on those issues individually and combining them together in order to find solutions to enhance the quality of service provided to each user as demanded in their SLA. A novel Markov Decision-based Admission Control and Routing (MDACR) algorithm is proposed. The MDACR algorithm finds a sub-optimal solution using the value iteration method. Admission rate increases for both types of user associations (handoff and new user association request), which is addressed by a proposed multi-homing admission and routing algorithm. This algorithm associates the user with two different access points. This is beneficial in a highly congested network, which permits a new routing metric to assure seamless handoff in the network. When a user is moving, MDACR algorithm finds a maximally jointed route with the old route, which decreases the handoff delay. Another aspect is considered in order to improve the QoS in WMN, which is the congestion control, a novel proactive approach is proposed. Where a Variable Order Markov (VOM) prediction model is introduced to predict the congestion status in each link in the network, a new route is established for the traffic based on the output of the VOM model, and the transmission rate is adjusted based on the link congestion status to increase the overall user satisfaction. Sub-optimal model is introduced and solved using Lagrange method. Based on the predicted link congestion, rerouting algorithm is implemented in order to insure load balancing and to mitigate congestion over WMN network. Our ultimate goal is to improve the QoS in WMN by dealing individually with the issues stated above and try to combine them together and provide QoS framework which deals with many types of services

    Exploiting user contention to optimize proactive resource allocation in future networks

    Get PDF
    In order to provide ubiquitous communication, seamless connectivity is now required in all environments including highly mobile networks. By using vertical handover techniques it is possible to provide uninterrupted communication as connections are dynamically switched between wireless networks as users move around. However, in a highly mobile environment, traditional reactive approaches to handover are inadequate. Therefore, proactive handover techniques, in which mobile nodes attempt to determine the best time and place to handover to local networks, are actively being investigated in the context of next generation mobile networks. The Y-Comm Framework which looks at proactive handover techniques has de�fined two key parameters: Time Before Handover and the Network Dwell Time, for any given network topology. Using this approach, it is possible to enhance resource management in common networks using probabilistic mechanisms because it is now possible to express contention for resources in terms of: No Contention, Partial Contention and Full Contention. As network resources are shared between many users, resource management must be a key part of any communication system as it is needed to provide seamless communication and to ensure that applications and servers receive their required Quality-of-Service. In this thesis, the contention for channel resources being allocated to mobile nodes is analysed. The work presents a new methodology to support proactive resource allocation for emerging future networks such as Vehicular Ad-Hoc Networks (VANETs) by allowing us to calculate the probability of contention based on user demand of network resources. These results are veri�ed using simulation. In addition, this proactive approach is further enhanced by the use of a contention queue to detect contention between incoming requests and those waiting for service. This thesis also presents a new methodology to support proactive resource allocation for future networks such as Vehicular Ad-Hoc Networks. The proposed approach has been applied to a vehicular testbed and results are presented that show that this approach can improve overall network performance in mobile heterogeneous environments. The results show that the analysis of user contention does provide a proactive mechanism to improve the performance of resource allocation in mobile networks

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed

    WIMAX LINK PERFORMANCE ANALYSIS FOR WIRELESS AUTOMATION APPLICATIONS

    Get PDF
    Wireless broadband access technologies are rapidly growing and a corresponding growth in the demand of its applicability transcends faster internet access, high speed file download and different multimedia applications such as voice calls, video streaming, teleconferencing etc, to industrial operations and automation. Industrial and automation systems perform operations that requires the transmission of real time information from one end to another through high-performance wireless broadband communication links. WiMAX, based on IEEE 802.16 standard is one of the wireless broadband access technologies that has overcome location, speed, and access limitations of the traditional Digital Subscriber Line and Wireless Fidelity, and offers high efficient data rates. This thesis presents detailed analysis of operational WiMAX link performance parameters such as throughput, latency, jitter, and packet loss for suitable applicability in wireless automation applications. The theoretical background of components and functionalities of WiMAX physical and MAC layers as well as the network performance features are presented. The equipment deployed for this field experiment are Alvarion BreeZeMAX 3000 fixed WiMAX equipment operating in the 3.5 GHz licensed band with channel bandwidth of 3.5 MHz. The deployed equipment consisting of MBSE and CPE are installed and commissioned prior to field tests. Several measurements are made in three link quality scenarios (sufficient, good and excellent) in the University of Vaasa campus. Observations and results obtained are discussed and analyzed.fi=OpinnäytetyÜ kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    High-Speed Mobile Networks for Modern Farming and Agricultural Systems

    Get PDF
    ABSTRACT High-Speed Mobile Networks for Modern Farming and Agricultural Systems J.Santos Najar-Ramirez High-speed mobile networks are necessary for agriculture to inventory individual plant health, maximize yield and minimize the resources applied. More specifically, real-time information on individual plant status is critical to decisions regarding the management of resources reserved and expended. This necessity can be met by the availability of environmental sensors (such as humidity, temperature, and pH) whose data is kept on storage servers connected to static and mobile local area networks. These static and mobile local area networks are connected to cellular, core and satellite networks. For instance, agricultural experts remotely working on vast acreage farms from business offices or while traveling can easily connect their notebook computers and other portable devices to these networks in order to check farm status, send email, read industry news or arrange a visit to neighbor farms or suppliers. Today, several mobile phone companies offer broadband service with 2Mbps downlink in rural and dense urban areas, however, they do not typically exist in farm areas. Although these networks (such as 802.11ac/n, 3G, 4G, etc) are significant achievements, they do not meet the projected needs of the agricultural industry. The present use model of high-speed networks for email and multimedia content, together with agriculture’s expected intensive use of real-time plant and environmental condition monitoring, with statistics/plots and real-time high resolution video, necessitates a highly integrated and highly available networked system. For agricultural experts, attentive to market needs, seamless high-speed wireless communication ‘anywhere, anytime at any speed’ is critical to enhancing their productivity and crop yields
    • …
    corecore