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Abstract

We evaluate mobility predictors in wireless networks. Handoff prediction in wireless

networks has long been considered as a mechanism to improve the quality of service pro-

vided to mobile wireless users. Most prior studies, however, were based on theoretical

analysis, simulation with synthetic mobility models, or small wireless network traces. We

study the effect of mobility prediction for a large realistic wireless situation.

We tackle the problem by using traces collected from a large production wireless net-

work to evaluate several major families of handoff-location prediction techniques, a set

of handoff-time predictors, and a predictor that jointly predicts handoff location and time.

We also propose a fallback mechanism, which uses a lower-order predictor whenever a

higher-order predictor fails to predict.

We found that low-order Markov predictors, with our proposed fallback mechanisms,

performed as well or better than the more complex and more space-consuming compression-

based handoff-location predictors. Although our handoff-time predictor had modest pre-

diction accuracy, in the context of mobile voice applications we found that bandwidth reser-

vation strategies can benefit from the combined location and time handoff predictor, signif-

icantly reducing the call-drop rate without significantly increasing the call-block rate.

We also developed a prediction-based routing protocol for mobile opportunistic net-

works. We evaluated and compared our protocol’s performance to five existing routing

protocols, using simulations driven by real mobility traces. We found that the basic routing

protocols are not practical for large-scale opportunistic networks. Prediction-based routing

protocols trade off the message delivery ratio against resource usage and performed well

and comparable to each other.
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Chapter 1

Introduction

Wireless-network technology frees people from fixed locations and penetrates into many

aspects of people’s lives. Cellular networks are mature for voice communications around

the world. Wireless local area networks (WLANs) are increasingly popular: “Wi-Fi” is

used to access the Internet and enterprise networks, and Bluetooth technology enables de-

vice communication in a personal area network. A fundamental problem in mobile comput-

ing and wireless networks is the ability to track and predict the location of mobile devices

as they roam, or “handoff,” from one access point (AP) to another. An accurate handoff

location and time predictor can significantly improve the performance or reliability of wire-

less network protocols, the wireless network infrastructure itself, and many applications in

pervasive computing. These improvements lead to a better user experience, to a more cost-

effective infrastructure, or both. In mobile ad hoc networks, especially those networks with

sparse population and frequent link breaks, estimating the probability with which users

meet each other can improve the routing protocols. First, we introduce handoff prediction

in wireless infrastructure networks.

1



1.1 Prediction in wireless infrastructure networks

The flexibility of mobility introduces challenges in guaranteeing quality of service (QoS)

for voice, video, and other real-time traffic. QoS is affected by the packet transmission rate,

packet delay, and network connectivity. When a wireless user associated with one access

point moves to another AP, it disassociates from the previous AP and starts association with

the new AP. This procedure is called “handoff.” If the handoff procedure is slow, packets

will be lost or delayed. Anticipating the next AP can allow the destination AP to prepare

for the new client and reduce the handoff delay. Thus, we can improve the QoS.

Some applications, such as voice or video communications, require a certain minimum

bandwidth. If the required bandwidth cannot be fulfilled by the network, the connection

has to be dropped. In the literature, it is believed that forced termination of an ongoing

call is more objectionable than blocking a new call request [KS03]. In cellular networks,

bandwidth can be reserved for incoming handoff calls. WLAN standards, including Wi-Fi

or Bluetooth networks, do not provide bandwidth-reservation mechanisms. We envision a

future in which WLANs will provide some sort of bandwidth-reservation mechanisms for

real-time traffic. Before a wireless device roams to the next AP, predicting the destination

and time of the handoff may help the network to reserve sufficient bandwidth for the user

at the next AP, reducing the probability of dropped calls, which improves the QoS.

Wireless networks also support pervasive computing. Many pervasive computing ap-

plications include opportunities for location-based services and information. Anticipating

a user’s next location can improve the user experience with some pervasive applications.

With a location predictor, these applications can provide services or information based

on the user’s next location. For example, consider a university student who moves from

dormitory to classroom to dining hall to library. When the student snaps a photo of his

classmates using a wireless digital camera and wishes to print it, the camera’s printing

2



application might suggest printers near the current location and near the next predicted

location, enabling the photo to finish printing while the student walks across campus.

The above cases benefit from predicting the next location. Handoff time or location

prediction is the process of predicting the time or location (destination AP) of the user’s

next handoff. Here, we emphasize two points: (i) prediction accuracy largely depends on

the granularity of the available data set and (ii) the success of a predictor strongly depends

on how close its assumptions about the user mobility model the real situation. In this dis-

sertation, we use the terms location, cell, and access point (AP) interchangeably. Position

should be understood as a point in space.

Every predictor is limited by the granularity of the available information. There are

three common options.

1. Record the visited locations and time of handoff to these locations for each user.

Since this information is readily available to every network operator that supports

roaming, it is widely used [LAN97, LB96, YL02, CS98, LBC98].

2. Record the position and velocity of each user. This information can be obtained

by signal triangulation techniques or client-carried GPS devices, both increasingly

common in cellular phones. Here, mobility prediction requires algorithms that can

infer cell boundaries and user velocity [LBC98, SMY00, AZ01, SK01, SN02].

3. Use high-level information that describes the distinguishing, designating or limiting

properties of each cell, derived from road and building maps [LB96, SK03, SK04].

Location prediction has been proposed in many areas of wireless cellular networks as

a means of enhancing performance, including better mobility management [LM96], im-

proved assignment of cells to location areas [DS99], more efficient paging [BD02, KT04],

call admission control [YL02], and location-based services [KL03]. Most of them, how-

ever, were evaluated by simulations using synthetic data, or small traces of user mobility.
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A fundamental question is how these prior proposed predictors would fare with real user

mobility patterns, in large populations and over long time periods. Because obtaining real

users’ mobility data is difficult, researchers have had trouble evaluating predictors with real

data. Although cellular networks are mature, it is almost impossible for researchers to get

confidential user mobility data from the main wireless service providers.

Fortunately, WLANs are becoming more and more popular at universities, enterprise

campuses, and metropolitan areas. It is relatively easy for researchers to get data from

WLAN administrators. At Dartmouth College, we have collected “syslog” messages from

our campus-wide wireless network for several years. From these messages, which contain

a record of association and re-association events, we extracted traces of users’ location and

handoff events from one location to another. We evaluated prediction methods using our

real wireless mobility data. We evaluated four families of predictors, namely Markov, LZ,

PPM, and SPM predictors. We found that low-order Markov predictors performed as well

or better than the more complex and more space-consuming compression-based predictors.

In addition to predicting the next AP, it is important to anticipate a user’s handoff time to

support applications such as bandwidth reservation, which needs to know when to reserve

bandwidth. It is impossible to predict the exact time of the next handoff. What we can do

is to predict the most likely time period during which the handoff will occur, or to estimate

the probability of handoff within a period of time. We developed Markov, Moving Average,

and cumulative distribution function (CDF) time predictors that can predict the next handoff

time in precision of minutes or hours. We also can combine a location predictor and a time

predictor to compute the probability that a user hands off to a certain AP within a given

period of time.

We must evaluate time predictions differently from location predictions. In location

predictions, the predictor predicts the next AP, and we define the prediction as correct when

our prediction matches the next AP. In time predictions, however, the predictor predicts a
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period of time during which a handoff will occur, or it predicts the probability of handoff

within a given time period. To evaluate the performance of the time predictors, we design

other metrics. One new metric is to measure the lateness or earliness of the predicted time

from the actual handoff time. We do not measure one the magnitude of the error of the

predicted time, because some applications may be more sensitive to early predictions and

others may be more sensitive to late predictions.

To evaluate the combined location-and-time predictor, we defined new metrics for

“over-provisioning” and “under-provisioning.” These metrics were specifically designed

for the bandwidth-reservation application, which reserved bandwidth at APs according to

the user’s probability to visit them next. We also used the call-drop rate and call-block

rate to evaluate our predictor performance when simulating several bandwidth-reservation

schemes using our location-and-time integrated predictor on real mobility data. The results

show that we can reduce call-drop rate significantly without a significant deterioration of

the call-block rate.

Since our simulation indicates that with accurate location-and-time prediction the QoS

of calls can be improved, we believe studying and better understanding the characteristics

of wireless users can improve the performance of predictors. From the results of our lo-

cation or time predictions, we found that we could predict accurately for some users, and

poorly for other users. That means that some users had mobility characteristics to be more

predictable than others. We then studied the predictability of users by correlating their pre-

diction accuracy with the entropy of their movements. It is not surprising that these two

were closely correlated, because the entropy reflects the uncertainty of the user traces. Low

entropy means low uncertainty, thus high prediction accuracy.
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1.2 Prediction in opportunistic networks

The above scenarios assume that mobile devices communicate through a wireless-network

infrastructure. In many cases, no infrastructure exists; mobile wireless devices may form

ad hoc networks and communicate with each other. When the population density is low,

a contemporaneous end-to-end path may not exist for every pair of users. One user may

only communicate with another when they are in a connected subnetwork. We call these

networks mobile opportunistic networks.

Mobile opportunistic networks are one kind of delay-tolerant network (DTN) [Fal03].

Delay-tolerant networks provide service despite long link delays or frequent link breaks.

Long link delays happen in networks with communication between nodes at a great dis-

tance, such as interplanetary networks [BHT+03]. Link breaks are caused by nodes mov-

ing out of range, environmental changes, interference from other moving objects, radio

power-offs, or failed nodes. For us, mobile opportunistic networks are those DTNs with

sparse node population and frequent link breaks caused by power-offs and the mobility of

the nodes.

Mobile opportunistic networks have received increasing interest from researchers. In

the literature, these networks include mobile sensor networks [WW06], wild-animal track-

ing networks [JOW+02], “pocket-switched” networks [HCS+05], and transportation net-

works [BGJL06, LCGZ05]. We expect to see more opportunistic networks when the one-

laptop-per-child (OLPC) project [OLP] starts rolling out inexpensive laptops with wireless

networking capability for children in developing countries, where often no infrastructure

exists. Opportunistic networking is one promising approach that can enable those children

to exchange information.

One fundamental problem in opportunistic networks is how to route messages from

their source to their destination. Mobile opportunistic networks differ from the Internet
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in that disconnections are the norm instead of the exception. In mobile opportunistic net-

works, communication devices can be carried by people [CEL+06], vehicles [BGJL06] or

animals [JOW+02]. Some devices can form a small mobile ad hoc network when the nodes

move close to each other, but a node may frequently be isolated from other nodes. Note that

traditional Internet routing protocols and mobile ad hoc network (MANET) routing proto-

cols, such as AODV [PR99] or DSDV [PB94], assume that a contemporaneous end-to-end

path exists, and thus fail in mobile opportunistic networks. Indeed, there may never exist

an end-to-end path between two given devices. Store-carry-forward approaches are popu-

lar routing schemes in opportunistic networks. Predicting node contacts can help nodes to

make good routing decisions.

We study protocols for routing messages between wireless networking devices carried

by people. We assume that people send messages to other people occasionally, using their

devices; when no direct link exists between the source and the destination of the message,

other nodes may relay the message to the destination. Each device represents a unique

person (we do not consider in this thesis situations in which a single device may be carried

by multiple people). Each message is destined for a specific person and thus for a specific

node carried by that person. Although one person may carry multiple devices, we assume

that the sender knows which device is the best to receive the message. We do not consider

multicast or geocast in this dissertation.

Many routing protocols have been proposed in the literature. Few of them were eval-

uated in realistic network settings, or even in realistic simulations, due to the lack of

any realistic people-mobility model. Random walk or random way-point mobility mod-

els are often used to evaluate the performance of those routing protocols. Although these

synthetic mobility models have received extensive interest by mobile ad hoc network re-

searchers [CBD02], they do not reflect people’s mobility patterns [JLB05]. Realising the

limitations of using random mobility models in simulations, a few researchers have studied
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routing protocols in mobile opportunistic networks with realistic mobility traces. Chain-

treau et al. [CHC+06] theoretically analyzed the impact of routing algorithms over a model

derived from a realistic mobility data set. Su et al. [SGdL06] simulated a set of routing pro-

tocols in a small experimental network. Those studies help researchers better understand

the theoretical limits of opportunistic networks and the routing protocol performance in a

small network (20–30 nodes).

Deploying and experimenting large-scale mobile opportunistic networks is difficult, so

we, too, resort to simulation. Instead of using a complex mobility model to mimic people’s

mobility patterns, we used mobility traces collected in a production wireless network at

Dartmouth College to drive our simulation. Our message-generation model, however, was

synthetic.

To the best of our knowledge, we are the first to simulate the effect of routing protocols

in a large-scale mobile opportunistic network, using realistic contact traces derived from

real traces of a production network with more than 5,000 users.

Using realistic contact traces, we evaluate the performance of three “naive” routing pro-

tocols (direct-delivery, epidemic, and random) and two prediction-based routing protocols,

PRoPHET [LDS04] and Link-State [SGdL06]. We also propose a new prediction-based

routing protocol, and compare it to the above in our evaluation.

1.3 Contributions

In this dissertation we present three major contributions:

• Wireless network users do not move randomly. Many location-prediction techniques

can predict a user’s next location with sufficient accuracy. Using real mobility data

we simulated and compared four families of location predictors. We propose a fall-

back mechanism to improve the overall prediction accuracy of predictors when they
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fail to make a prediction. We found that simple algorithms may perform as well as,

or better than, complex algorithms. Our evaluation of location predictors with ex-

tensive Wi-Fi mobility data was first reported in Infocom 2004 [SKJH04], and later

we extended this work with more predictors and more results in a paper for IEEE

Transactions on Mobile Computing [SKJH06].

• We developed and evaluated several handoff-time predictors. We studied the effect of

bandwidth reservation when we applied the joint time and location prediction tech-

niques to a VoIP application [SDK+06]. Although it is difficult to predict precise

handoff time, even roughly accurate handoff-time predictions combined with loca-

tion predictions can benefit bandwidth-reservation schemes.

• We simulated and evaluated several opportunistic network routing protocols using

real traces [SK07]. We found that direct delivery, random, and epidemic routing

protocols are not practical for large-scale opportunistic networks. Prediction-based

routing protocols trade off message delivery ratio against resource usage. The param-

eters of these algorithms can be configured to suit the design goals of an opportunistic

network.

In the next chapter we introduce the mobility trace that we used to drive our simulation

to evaluate prediction techniques, reservation schemes and routing algorithms. In Chap-

ter 3 we present four families of location-prediction techniques and propose several time

prediction methods. We also define the metrics to compare different approaches. We an-

alyze the performance of predictors in Chapter 4, and examine, in Chapter 5, the effect of

prediction-based bandwidth reservation schemes for voice over IP applications. Chapter 6

covers the study of routing algorithms in opportunistic networks. In Chapter 7 we conclude

and present some ideas for future research.
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Chapter 2

Handoff Traces

In this chapter we introduce the traces that we used to drive our simulations. We first

describe our data collection, discuss the limitations of our data, and the present some char-

acteristics of the traces. At the end, we survey other traces and discuss mobility models.

2.1 Data collection

Dartmouth College has operated a campus-wide Wi-Fi (IEEE 802.11) wireless network

since the spring of 2001. Although there was no specific effort to cover outdoor spaces, the

campus is compact and the interior APs tend to cover most outdoor spaces.

We have monitored network usage since the network was installed. The access points

transmitted a “syslog” message every time a client card authenticated, associated, re-associated,

disassociated or deauthenticated; the message contained the unique MAC address of the

client card. Although a given card might be used in multiple devices or a device used by

multiple people, in this project we think of the wireless card as a “network user” and thus

the term “user” refers to a wireless card.

The wireless population has been growing fast. As of spring 2004 there were more than
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500 access points providing 11 Mbps coverage to the entire campus. There were between

2,500 and 3,500 users active on most school days. After June of 2004, the Dartmouth

College’s Wi-Fi network made a dramatic change: it replaced its more than 500 old access

points with more than 1500 new access points. There were about 4,500 users on most

school days in Spring 2006, while the total student enrollment of Fall 2005 was 5,780

(4,110 were undergraduates). There were also about 1,000 faculty members and 3,000

staff.

2.2 Challenges of our data

We used the data set that was collected between April 2001 and June 2004 [KHA04].

Because of the dramatic change of the network after June 2004, the newer data set, which

was collected after June 2004, was not yet cleaned up. Even the data that we used had

some brief “holes” when the campus experienced a power failure, or when a central syslog

daemon apparently hung up. Most of the holes were shorter than 5 minutes and frequently

happened during the first months of network installation. There were only 16 holes longer

than 5 minutes during 2004. The longest hole, however, was 44 hours. Also, since syslog

uses UDP it is possible that some messages were lost or mis-ordered. In March 2002, we

installed two redundant servers to record the data, so that holes in one of the servers can be

filled by the data recorded by the other server. In October 2003, we moved our server to

the machine room for our wireless network and removed the redundant server.

The AP firmware had several bugs in the first year. In particular, the syslog entries were

sometimes produced using uninitialized strings.

After we cleaned the data of some of these glitches and merged the data from two

servers (where available), we extracted user traces from the data. Although there were

many holes in the early collection of our traces, there were relatively few users. Therefore,
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we did not treat the holes specially.

Each user’s trace is a series of location and time pairs, that is, access-point name and

the time. A user’s traces do not necessarily represent physical moves, because the wireless

card will sometimes associate and re-associate with a number of nearby APs, even while

the user remains stationary.

We introduced the special location “OFF” to represent the user’s departure from the

network (which occurs when the user turns off their computer or their wireless card, or

moves out of range of all access points). It was challenging to detect the “OFF” state. We

found that in our syslog, some cards issued disassociation messages, but most cards did

not. For most cards, the AP eventually issues a deauthentication message when the card

has been inactive for 30 minutes. Thus, we define OFF to have occurred at a card’s disas-

sociation message or after deauthentication by the last-associated AP. Deauthentications

may be issued by an AP for several different reasons. In those cases where “Inactivity”

was the reason, which occurs when the AP detects no activity from the card for 30 minutes,

we set the time of OFF state to 30 minutes prior the time of the deauthentication message.

In all other deauthentication cases, we set the time of the OFF state to the time of the

deauthentication message.

There are three ways to treat the OFF state when doing location prediction. First, we

could treat OFF in exactly the same way as any other symbol (access-point name) in the

users’ traces. Second, we could treat OFF as a transparent state, which means that the

user moves from the AP before OFF to the AP after OFF directly in one step. We used

the first approach because we think that predicting OFF is useful for some applications.

In our joint time and location prediction evaluation (Section 4.2), however, we did not

count the predictions to and from OFF, because the metrics, over-provisioning and under-

provisioning, do not make sense of OFF.
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2.3 Characteristics

Now, we discuss some characteristics of the traces.

2.3.1 Trace length and visit distribution

First, we examined each user’s trace length, which is the number of location changes (in-

cluding OFF). We selected two years of traces that were collected from the beginning of the

network, April 2001 to March 2003. The traces varied widely in length (number of loca-

tions in the sequence), with a median of 494 and a maximum of 188,479; most are shown in

Figure 2.1. Users with longer traces were either more active (using their card more), more

mobile (thus changing access points more often), or used the network for a longer period

(some users have been on the network since April 2001, and some others only later arrived

on campus). Some users visited many APs during the period of measurement, while some

others only visited a small number of APs. Figure 2.2 shows the distribution of the number

of visits for each user. It indicates that most users visited relatively few APs; about 80%

visited about 50 APs or fewer. We are also interested in the density of visits per AP for

each user. Some users visited many APs, but only a few visits for each AP. However, some

other users intensively visited a small number of APs. Figure 2.3 presents the distribution

of average visits per AP for each user. It indicates that most users have relatively few visits

to any given AP; about 80% had about 50 visits or fewer per AP. These curves illustrate the

potential difficulty of prediction; while users visit relatively few APs, the history of their

movement from a given AP is relatively small.

2.3.2 Duration

Wireless users may not always be associated with the network, even in cellular networks

where cell phones are expected to be always on. Users may turn off their devices, and users
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may move out of the radio coverage. We select six months of data when the network was

mature. The data were collected between January 1, 2004 and June 30, 2004. We measure

how long a user stayed at an AP, how long a user stayed connected, and how long a user

was off the network.

We define a session to be the time when a user connects to the network until the time

that the user next disconnects from the network (moved to “OFF”). A session may visit

several APs.

Figure 2.4 shows that all three durations had a similar distribution. The plot was cut

off at one-hour duration. More than 85% of all sessions lasted less than one hour. The

AP durations were generally shorter than than the session durations, since a session often

included more than one AP. The OFF duration curve crosses the other two curves, which

means the OFF duration had a large spread: many short OFF durations, as well as many

long OFF durations. A 6-minute length counts for 80%, 77%, and 69% of AP, OFF, and

session durations, respectively. The short session and OFF durations mean that users switch

often on and off the wireless network. The short AP durations may be caused by the

wireless cards that frequently change their access points.

2.3.3 Device types

Since our wireless network has a variety of devices, such as laptop computers, personal

digital assistants (PDAs), and voice over IP (VoIP) devices, we expected that different

type of devices have different characteristics. The device types were classified by Tristan

Henderson [HKA04]. The types of device were identified by their operating system in use,

or an Organizationally Unique Identifier (OUI) for special devices. Device types include

• Windows: Windows laptop;

• MacOS: Apple laptop;
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• Linux: Linux laptop;

• DualBoot: Windows/Linux dual bootable laptop;

• PocketPC: PDA with PocketPC OS;

• PalmOS: PDA with PalmOS;

• Cisco phone: VoIP device;

• Vocera: Vocera badge - VoIP device;

• Unknown: devices that we cannot identify.

We assume that VoIP devices – Cisco phones and Vocera badges – are usually always-

on, while other devices such as laptop computers or PDAs tend to switch off when they

move (we call the latter on-and-off devices).

Figure 2.5 shows the distribution of durations that a user stayed connected to the net-

work for each type of device. Linux and Windows/Linux dual bootable laptops have longer

session durations than other type of devices. The reason may be that most of the Linux and

Windows/Linux laptops are used by computer science department and engineering school

students and researchers, and many of them have been used for wireless network experi-

ments so that they stay longer for a session. The PalmOS PDAs have the shortest session

duration. We think that those PDAs turn off after a short use to save battery life. However,

the PocketPC PDAs show similar distributions as Windows and MacOS laptops. To our

surprise, the VoIP devices—Cisco phones and Vocera badges—did not behave much dif-

ferently in session duration from Windows and MacOS laptops, because the Cisco phones

and Vocera badges are always-on devices, we were expecting different behavior between

those always-on devices and the on-off devices (laptop computers). And this similarity also

support the validity of our use of the trace for simulation of voice applications (Chapter 5).
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The distribution of OFF durations of devices (Figure 2.6) shows broad differences.

Notice there is a big jump at 1800 seconds (half hour) of the curves for Linux laptop and

Cisco phone. We suspect that jump is caused by some false OFF detection—when we do

not receive the disassociation messages, we consider the devices as OFF at the time a half

hour earlier than the deauthentication messages of “Inactivity.” The devices might not in

fact go off, but the network detected them right after the “Inactivity” message. However,

we counted an exact 30-minute OFF duration. PocketPC PDAs, DualBoot laptops and

PalmOS devices are among the longest OFF-duration devices. We suspect those devices

are not often used for wireless networking. Vocera badges had the shortest OFF duration,

because they use the Wi-Fi network extensively.

2.3.4 OFF state

We studied how often a device went OFF after roaming among APs, that is, after how many

AP changes the device went OFF. This factor is important in the design of association

models.

We define the OFF-state rate as the inverse of the number of consecutive APs plus

one OFF state. For example, a 0.5 OFF-state rate includes all traces consisting of one

AP followed by an OFF; a 0.1 OFF-state rate is those traces in which an OFF follows an

average of 9 consecutive other APs. Figure 2.7 shows distribution of the OFF-state rate of

all devices. There were a significant number of devices that had near half OFF-state rate.

Those devices rarely roam among APs. Since most of the devices in our wireless network

are laptops, we suspect that users did not carry their laptops around while the laptop was

associated with an AP. Users usually close the laptops when they move.

For VoIP devices, they are convenient to use when the users are moving. Figure 2.8

clearly shows that Cisco phones, Vocera badges and PocketPC had lower OFF-state rates.
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These device are easy to carry around, and people do use them while walking, especially

the phones and Vecera badges. In contrast, the PalmOS devices had higher OFF-state rate,

which matches the short session durations in Figure 2.5.

2.4 Other wireless network trace studies

Before the proliferation of wireless local-area networks, there were few studies of real

wireless users because it was (and is) difficult to get cellular network providers to supply

traces. When the Wi-Fi networks became popular, many researchers collected wireless

traces and studied the characteristics of their networks. Most of these traces are available

at the CRAWDAD website [CRA].

Tang and Baker carried out the first large-scale wireless-network usage and mobil-

ity study [TB02]. They studied the Metricom metropolitan-area network with more than

25,000 users for seven weeks. They examined when and where the network was most ac-

tive, and how often and how far users moved. They found that the locations that a user

visits on a daily basis were the locations that were close to each other. Later, they studied a

building-wide local-area network [TB00]. This time they focused more on user traffic than

on user mobility. The population of their study was people in their department of computer

science.

Kotz and Essien [KE05] analyzed Dartmouth’s campus-wide network with 476 APs

and more than 1,700 users during seven weeks. They found that some wireless cards were

unable to settle on one AP, and hence those cards roamed excessively. Later, Henderson,

Kotz and Abyzov [HKA04] studied the changing usage of the Dartmouth wireless network

for a seventeen-week period. This time the network included more than 500 APs and

7,000 users. They introduced “session diameter” to show that there were different mobility

characteristics for different devices. They found that users were surprisingly non-mobile,
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with half remaining close to home (defined as spending more than 50% of their time at one

location) about 98% of the time.

Balazinska and Castro [BC03] analyzed a corporate wireless LAN workload of 1,366

users across 177 access points. They introduced two metrics to characterize the wireless

user mobility, namely, prevalence and persistence. Their finding agrees with Dartmouth’s

traces [HKA04] that many users spend a large fraction of their time at a single location.

Schwab and Bunt [SB04] characterized the usage of a campus wireless network at the

University of Saskatchewan with a week-long traffic trace. They analyzed the roaming

degree and the distribution of the number of access points visited by each unique user. They

found that an average user only connected to a limited number of access points during a

week.

McNett and Voelker [MV05] analyzed the mobility patterns of users of wireless hand-

held PDAs in UCSD’s campus wireless network using an eleven-week trace of wireless

network activity. They developed two wireless network topology models for use in wireless

mobility studies: an evolutionary topology model based on user proximity and a campus

waypoint model that serves as a trace-based complement to the random waypoint model.

Chinchilla, Lindsey, and Papadopouli [CLP04] studied the performance of different

caching paradigms in the wireless infrastructure network at the University of North Car-

olina at Chapel Hill. They used a Markov method to predict a wireless user’s next AP and

achieved high accuracy (86%). Later, Papadopouli, Shen, and Spanakis [PSS05], extend-

ing the previous work, characterized and analyzed the wireless access patterns based on

mobility, session and visit durations. They found that mobility and building type affect the

session and visit durations.

We focused on the mobility of human pedestrians. Some researchers are interested in

studying the mobility of wild animals. ZebraNet [JOW+02] collected the mobility traces

of zebras in Africa, and studied their mobility patterns.
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2.5 Mobility models

Wireless networks encourage mobility. Wireless users’ mobility patterns change over time

and differ from user to user. New protocols or topologies may be required to accommodate

the unusual characteristics of a wireless network. Due to the difficulty of deploying and

configuring of real research networks, most network protocol and design evaluations are

carried out through simulations. A realistic network model is important to such simulations.

A wireless network model usually consists of three sub-models: a user mobility model, a

radio propagation model, and a data traffic model. The user mobility model and the radio

propagation model together determine the connectivity of mobile users in the simulation.

The traffic model is used to generate data traffic over the network.

The Random Walk Model, Random Waypoint Model [JM96], and Random Direc-

tion Model [RMSM01] are the most often used for mobile wireless-network simulations.

Many researchers believe that simulation results obtained with unrealistic movement mod-

els might not correctly reflect the true performance of the network protocols. Kurkowski,

Camp, and Colagrosso [KCC05] surveyed 151 papers from MobiHoc and challenged the

credibility of many papers. Credible simulation results rely on realistic mobility models

or real traces. As one step towards realistic mobility models, Jardosh et al. [JBRAS03]

incorporated obstacles to the random walk models. Bai, Narayanan and Helmy [BNH03]

propose a city model and a freeway model to constrain users mobility within streets and

roads. These improved mobility models, however, still assume that users move randomly.

For more mobility models, please refer to Camp et al.’s survey [CBD02].

All the models surveyed by Camp et al. are based on the assumption that the user will

move randomly, possibly with constraints. These models set up a fixed number of users

who randomly move within the simulated area. In real networks, however, new users join

the network, while current users may leave (move out of the coverage of the network or
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simply disconnect from the network by turning off their wireless devices). In sensor net-

works, sensors may stop functioning and new sensors may be deployed. Furthermore, users

never move truly randomly. None of the existing models takes this reality into account.

Many researchers study the wireless user mobility traces to build realistic mobility mod-

els. Bhattacharjee et al. [BRSS04] developed a hybrid mobility model by physically ob-

serving the actual movement patterns of people on campus and the post-processing the data

to form their spatio-temporal distributions. They claim that their method differs from the

synthetic and wireless trace-based models in that their model is empirical in nature and

devoid of the restrictions as observed in some of the existing mobility models. Kim and

Kotz [KK05a] used the Fourier transform to convert time-dependent user location informa-

tion to the frequency domain and used two strong periods as parameters to classify users

and APs based on Bayesian theory. They found that both users’ and APs’ behavior had a

strong period of one day. Most users had one day as their primary period and a smaller

secondary period. Later, Kim and Kotz proposed a mobility model [KK05b] based on their

findings from the Dartmouth wireless network. Jain, Lelescu, and Balakrishnan [JLB05]

studied the Dartmouth traces and found that user-registration patterns (handoff patterns)

exhibit a distinct hierarchy and that WLAN access points can be clustered based on reg-

istration patterns. They propose a registration model that generates synthetic traces. They

compared the synthetic traces against the corresponding traces from the test set, finding

that the synthetic traces agree well with the test set. They showed that a simple modified

random waypoint model does not represent the real data.

Instead of using a complex mobility model to mimic people’s mobility patterns, we

used mobility traces collected at Dartmouth College to drive our simulations.
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Chapter 3

Predicting Handoff

Handoff prediction is the process of anticipating a roaming user’s next handoff event, which

includes where (location) and when (time) the user will move. In this chapter, we first de-

fine location, then present several location prediction techniques that predict the destination

of a handoff will happen. Next, we introduce time prediction that estimates the handoff

time. Combining the time predictor and location predictor, we get a full predictor. We also

discuss the metrics that we used to evaluate the performance of our prediction algorithms,

and define entropy to study the coefficient correlations between handoff traces and loca-

tion prediction accuracy. At the end of this chapter, we survey other handoff prediction

techniques and discuss their applications.

3.1 Location

In the context of this dissertation we assume that a user resides at a given discrete location

at any given time; sample locations include “room 116” within a building, “Thayer Dining

Hall” within a campus, “cell 24” within a cellular network, or “berry1-ap” access point

within an 802.11 wireless network.
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In our data, as we discuss in Chapter 2, we have available the name of the access point

with which the user’s device is associated. We also have the name of the buildings where

the access points were located (or the nearest buildings). For simplicity we call the access

point where the user’s device is registered a location, although this should not be taken to

imply that we know the user’s precise geographical location in, say, latitude and longitude.

We examine prediction algorithms that use only symbolic locations. Given the limita-

tion of our data, it is not trivial to extract user’s physical mobility, and we do not use speed

and direction to compute the next possible time and location. Instead, we predict the next

location, or compute the probability of a handoff within a period of time, using a history of

prior handoffs.

We list all possible locations in a finite alphabet A, and can identify any location as

a symbol a drawn from that alphabet. For a given user we list the sequence of locations

visited, its location history L, as a string of symbols. If the history has n locations, L =

a1a2 . . . an, and ai ∈ A, for 1 ≤ i ≤ n.

The location history may be a sequence of location observations, for example, the user’s

location recorded once every five seconds, or a sequence of location changes. In the latter

case, ai 6= ai+1 for all 1 ≤ i < n. All of the predictors we consider in this dissertation are

agnostic to this issue. Our data are a sequence of location changes, accompanied with the

time when the location changed. We refer to a location change as a move.

All of the predictors we consider here are domain-independent and operate on the

string L as a sequence of abstract symbols. That is, they do not place any interpreta-

tion on the symbols. For that reason, we ignore any timing information in the location

history, and do not require any associated information relating the symbols, such as geo-

graphic coordinates. As an example, though, consider the environment with six wireless

cells (labeled b through g) diagrammed in Figure 3.1: one possible location history can

be L = gbdcbgcefbdbde. Therefore, in this chapter, the names location and symbol are
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interchangeable.

3.2 Prediction algorithms

We consider four families of location predictors, two approaches to time prediction, and

one combined time and location handoff predictor.

3.2.1 Markov predictors

The order-k (or “O(k)1”) Markov predictor assumes that the location can be predicted from

the current context, that is, the sequence of the k most recent symbols in the location history.

The underlying Markov model represents each state as a context, and transitions represent

the possible locations that follow that context.

Consider a user whose location history is L = a1a2 . . . an. Let substring L(i, j) =

aiai+1 . . . aj for any 1 ≤ i ≤ j ≤ n. We think of the user’s location as a random variable

X . Let X(i, j) be a string XiXi+1 . . . Xj representing the sequence of random variable

Xi, Xi+1, . . . Xj for any 1 ≤ i ≤ j ≤ n. Define the context c = L(n − k + 1, n). The

Markov assumption is that X behaves as follows, for all a ∈ A and i ∈ {1, 2, . . . , n−k+1}:

P (Xn+1 = a | X(1, n) = L)

= P (Xn+1 = a | X(n− k + 1, n) = c)

= P (Xi+k = a | X(i, i + k − 1) = c),

where the notation P (Xi = ai | . . .) denotes the probability that Xi takes the value ai. The

first two lines indicate the assumption that the probability depends only on the context of

1Note that here our notation O(k) is different from traditional “Big-O” notation. Here, the order k means
that the length of the context is k, while traditional “Big-O” notation does not mean exact k.
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Figure 3.1: Sample cell map with six cells
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the k most recent locations. The latter two lines indicate the assumption of a stationary

distribution, that is, that the probability is the same when the context is the same.

These probabilities can be represented by a transition probability matrix M . Both the

rows and columns of M are indexed by length-k strings from Ak so that P (Xn+1 = a |

X(1, n) = L(1, n)) = M(s, s′), where s = L(n − k + 1, n), the current context, and

s′ = L(n − k + 2, n)a, the next context. In that case, knowing M would immediately

provide the probability for each possible next symbol of L.

Since we do not know M , we can generate an estimate P̂ from the current history L,

the current context c of length k. The probability for the next symbol to be a is

Pk(a) = P̂ (Xn+1 = a | L) =
N(ca, L)

N(c, L)
(3.1)

where N(s′, s) denotes the number of times the substring s′ occurs in the string s.

Given this estimate, we can easily define the behavior of the O(k) Markov predictor. It

predicts the symbol a ∈ A with the maximum probability P̂ (Xn+1 = a | L), that is, the

symbol that most frequently follows the current context c in prior occurrences in the history.

Notice that if c has never occurred before (the only occurrence is the current context), the

above equation evaluates to 0/1 = 0 for all a, and the O(k) Markov predictor makes no

prediction.

If the location history is not generated by an O(k) Markov source, then this predictor

is, of course, only an approximation.

Fortunately, O(k) Markov predictors are easy to implement. Our implementation main-

tains an estimate of the (sparse) matrix M , using Equation 3.1. For simplicity, we used the

occurrence frequency as the value for each entry in the matrix M : we store N(ca, L) in

each entry of row c, rather than N(ca, L)/N(c, L). To make a prediction, the predictor

scans the row of M corresponding to the current context c, choosing the entry with the
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highest probability for its prediction. After the next handoff occurs, the predictor updates

the appropriate entry in that row of M , and updates c, in preparation for the next prediction.

Our locations are symbols, and the histories or contexts are strings of symbols. We

operate on a string using a procedure SUBSTR(s, i, n). This procedure returns a substring,

which starts at index i (the index of the first symbol is 0) of the string s, and continues up

to n symbols. Thus, when LENGTH(s) − i ≥ n, the substring is of length n; otherwise, it

is of length LENGTH(s)− i.

Here, we list the procedure MARKOV-PREDICTION that predicts the next symbol using

a length-k context string c and the Markov transition matrix M after it arrives at a new

symbol p. Each row of the matrix M is a list of symbol and value pairs (p, v).

MARKOV-PREDICTION(M, c, p, k)

1 if LENGTH(c) < k

2 then

3 c← c + p � append p to c

4 return NIL

5 Q←Mc � find a reference to the row of c in Matrix M

6 Qp ← Qp + 1 � update the entry (c, p) of matrix M

7 c← c + p � append p to c

8 c← SUBSTR(c, 1, k) � update the context c

9 Q←Mc � find the row of new c in matrix M

10 return FINDMAX(Q)

When there is no such row of c in matrix M , the row Q is empty. When a pair (p, v)

does not exist in a row Q, the default value of Qp is 0. Now, we present the procedure

FINDMAX, which finds the symbol p such that v has the maximum value, for a given list

Q of pairs (p, v).
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FINDMAX(Q)

1 vx ← 0 � initialize the maximum value

2 px ← NIL � initialize the symbol with maximum value

3 foreach pair (p, v) in Q

4 do if v > vx � check the maximum value

5 then vx ← v � update the maximum value

6 px ← p � update the symbol with maximum value

7 return px

3.2.2 Fallback

Notice the above procedure may fail to find an exact match for the order-k context c, so

the predictor predicts NIL. We introduce a meta-predictor based on the Markov predictor

family, using a technique we call fallback. The fallback mechanism works this way: when

an O(k) Markov predictor fails to make a prediction, we use an O(k−1) Markov predictor

to predict the next location. In general, the O(k) fallback predictor recursively uses the

result of the O(k − 1) predictor (with k = 0 as the base of the recursion) whenever it

encounters an unknown context. We define the O(0) Markov predictor as one that ignores

the current context and returns the most frequently visited location as a prediction.

3.2.3 LZ-based predictors

LZ-based predictors are based on a popular incremental parsing algorithm by Ziv and

Lempel [ZL78] often used for text compression. This approach seems promising because

(a) most good text compressors are good predictors [VK96] and (b) LZ-based predictors

are similar to the O(k) Markov predictor except that k is a variable allowed to grow to

infinity [BD02]. We briefly discuss how the LZ algorithm works.
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Let γ be the empty string. Given an input string s, the LZ parsing algorithm partitions

the string into distinct substrings s0, s1, . . . , sm such that s0 = γ, and for all j > 0 substring

sj without its last character is equal to some si, 0 ≤ i < j, and s0s1 . . . sm = s. Observe

that the partitioning is done sequentially, i.e., after determining each si the algorithm only

considers the remainder of the input string. For example, the string s = gbdcbgcefbdbde is

parsed to γ, g, b, d, c, bg, ce, f, bd, bde.

Associated with the algorithm is a tree, the LZ tree, that is grown dynamically during

the parsing process. Each node of the tree represents one substring si. The root is labeled

γ and the other nodes are labeled with a symbol from A so that the sequence of symbols

encountered on the path from the root to that node forms the substring associated with that

node. Since this LZ tree is to be used for prediction, it is necessary to store some statistics

at each node. The tree resulting from parsing the above example is shown in Figure 3.2;

each node is labeled with its location symbol and the value of its statistic, a counter, after

parsing.

To parse a (sub)string s we trace a path through the LZ tree. If any child of the current

node (initially the root) matches the first symbol of s, remove that symbol from s and step

down to that child, incrementing its counter; continue from that node, examining the next

symbol from s. If the symbol did not match any child of the current node, then remove

that symbol from s and add a new child to the current node, labeled with that symbol and

counter=1; resume parsing at the root, with the now shorter string s.

Vitter and Krishnan [VK96] considered the case when the generator of L is a finite-state

Markov source, which produces sequences where the next symbol is dependent on only its

current state. (We note that a finite-state Markov source is different from the O(k) Markov

source in that the states do not have to correspond to strings of a fixed length fromA.) The
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s = gbdcbgcefbdbde
si = γ, g, b, d, c, bg, ce, f, bd, bde

d:2
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Figure 3.2: Example LZ parsing tree
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probability, for each a ∈ A, can be estimated as

P̂ (Xn+1 = a | L) =
NLZ(sma, L)

NLZ(sm, L)
(3.2)

where NLZ(s′, s) denotes the number of times s′ occurs as a prefix among the substrings

s0, . . . , sm which were obtained by parsing s using the LZ algorithm.

It is worthwhile comparing Equation (3.1) with Equation (3.2). While the former con-

siders how often the string of interest occurs in the entire input string, the latter considers

how often it occurs in the partitions si created by LZ. Thus, in the example of Figure 3.2,

while dc occurs in L it does not occur in any si.

The LZ predictor chooses the symbol a in A that has the highest probability estimate,

that is, the highest value of P̂ (Xn+1 = a | L). An on-line implementation needs only build

the LZ tree as it parses the string, maintaining node counters as described above. After

parsing the current symbol the algorithm rests at a node in the tree. It examines the children

of the current node, if any, and predicts the symbol labeling the child with the highest

counter, which indicates the highest frequency of past occurrence. If the current node is a

leaf, the LZ predictor makes no prediction.

Each LZ-based predictor maintains an LZ-tree T and the current tree node n, which

corresponds to the current string s. Each node n has two properties: the symbol np and

the value nv. After a user arrives at a location (symbol) p, it predicts the next symbol. We

present the algorithm LZ-PREDICTION below.
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LZ-PREDICTION(n, p)

1 Q← all children of node n

2 foreach node q in Q

3 do if qp = p

4 then qv ← qv + 1 � update the value of the matching node

5 n← q � move the current node to q

6 return FINDMAXCHILD(q)

7 add a new child q to node n

8 qp ← p � set the symbol of node q to p

9 qv ← 1 � set the value of q to 1

10 n← γ � set the current node to the root

11 return NIL

The procedure FINDMAXCHILD finds the symbol of a node n’s child that has the max-

imum value.

FINDMAXCHILD(n)

1 Q← (p, v) pairs of node n’s children

2 return FINDMAX(Q)

3.2.4 LZ+Prefix+PPM

Bhattacharya and Das propose a heuristic modification to the construction of the LZ tree [BD02],

as well as a way of using the modified tree to predict the most likely cells that contain the

user so as to minimize paging costs to locate that user.

As we mention above, not every substring in L forms a node si in the LZ parsing tree. In

particular, substrings that cross boundaries of the si, 0 < i ≤ m, are missed. Further, previ-

ous LZ-based predictors take into account only the occurrence statistics for the prefixes of
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the leaves. To overcome this limitation, they proposed the following modification. When

a new leaf is created for si, all the proper suffixes of si (i.e., all the suffixes not including

si itself) are also inserted into the tree. If a node representing a suffix does not exist, it is

created, and the occurrence counter for every prefix of every suffix is incremented.

Example. Suppose the current leaf is sm = bde and the string de is one that crosses

boundaries of existing si for 1 ≤ i < m. Thus de has not occurred as a prefix or a suffix

of any si, 0 < i < m. The set of proper suffixes of sm is Sm = {γ, e, de}, and since there

is no node representing the substring for de, it is created. Then the occurrence frequency is

incremented for the first-level children b and d, and the new leaf node de. Figure 3.3 shows

the tree after this transformation, which we call “LZ+prefix” or “LZP” for short.

We observe that this heuristic only discovers substrings that lie within a leaf string.

Nonetheless, at this point it is possible to use the modified LZ tree and apply one of the

existing prediction heuristics, e.g., use Eq. 3.2 and the Vitter-Krishnan method. Indeed, we

include the LZP predictor in our comparison.

Similar to the LZ predictor, the LZP predictor maintains a LZP-tree T and the current

tree node n, which corresponds to the current string s, that is, if we traverse the tree from

node n up to the root of T , we get the inverse of the string s. Each node n has two

properties: the location np and the value nv. After a user arrives to a location p, it predicts

the next location. We present the algorithm LZP-PREDICTION below.
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Figure 3.3: Example LZP parsing tree
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LZP-PREDICTION(n, s, p)

1 Q← all children of node n

2 foreach node q in Q

3 do if qp = p

4 then qv ← qv + 1 � update the value of the matching node

5 n← q � move the current node to q

6 s← s + p � update the corresponding string s

7 return FINDMAXCHILD(q)

8 add a new child q to node n

9 qp ← p � set the symbol of node q to p

10 qv ← 1 � set the value of q to 1

11 s← s + p � update the corresponding string s

12 SUFFIX-UPDATE(s) � Update the tree with all suffixes

13 n← γ � set the current node to the root

14 return NIL

We show how to update the LZP-tree T using all suffixes of string s in SUFFIX-UPDATE.
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SUFFIX-UPDATE(s)

1 k ← LENGTH(s)

2 if k = 0 � check recursion stop condition

3 then return

4 q ← SUBSTR(s, 1, k − 1)

5 n← γ � the root of T

6 while LENGTH(q) 6= 0

7 do o← SUBSTR(q, 0, 1)

8 if o matches a child c of n

9 then cv ← cv + 1 � update the value of the child node c

10 else

11 add a new child c of n

12 cp ← o � set the symbol

13 cv ← 1 � set the value

14 m← LENGTH(q)

15 q ← SUBSTR(s, 1, m− 1)

16 n← c � set n to be its child

17 s← SUBSTR(s, 1, k − 1)

18 SUFFIX-UPDATE(s) update recursively

Bhattacharya and Das [BD02] propose a further heuristic that uses the LZP tree for

prediction. This second heuristic is based on the Prediction by Partial Match (PPM) algo-

rithm for text compression [BCW90]. (The PPM algorithm essentially attempts to “blend”

the predictions of several O(k) Markov predictors using “escape” probability; we describe

it briefly below.) Note here, we use the PPM algorithm to work on the LZP tree, which

is different from the PPM tree. Given a leaf string sm, construct its set of proper suffixes

Sm and update the LZP tree as described above. Then, for each such suffix, the heuristic
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considers the subtree rooted at the suffix and finds all the paths in this subtree originating

from this subtree root. (Thus these paths would be of length l for l = 1, 2, . . . t, where t is

the depth of the suffix from the root to the node in the LZ tree.) The PPM algorithm is then

applied to this set of paths. PPM first computes the predicted probability of each path, and

then uses these probabilities to compute the most probable next symbol(s) based on their

weights (number of occurrences) in the path. We include the “LZ+prefix+PPM” predictor,

nicknamed “LeZi” [BD02], in our comparison.

As in the other LZ-family predictors, the LeZi predictor LEZI-PREDICTION takes the

LZP-tree T , the current node n, and the current new location p to predict the next location.

LEZI-PREDICTION(n, s, p)

1 Q← all children of node n

2 foreach node q in Q

3 do if qp = p

4 then qv ← qv + 1 � update the value of the matching node

5 n← q � move the current node to q

6 s← s + p � update the corresponding string s

7 return FINDMAXPPM(s)

8 add a new child q to node n

9 qp ← p � set the symbol of node q to p

10 qv ← 1 � set the value of q to 1

11 s← s + p � update the corresponding string s

12 SUFFIX-UPDATE(s) � Update the tree with all suffixes

13 n← γ � set the current node to the root

14 return NIL
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Finding the location of the child of node n with maximum probability from LZP tree

T :

FINDMAXPPM(s)

1 Q← NIL � list of (symbol, probability) pairs

2 w ← 1.0 � escape probability

3 n← LENGTH(s)

4 for i← 0 to n

5 do l← SUBSTR(s, i, n− i) � prefix string

6 w ← PPM-PROBABILITY(Q, l, w)

7 return FINDMAX(Q)

We list the PPM algorithm used by FINDMAXPPM below.

45



PPM-PROBABILITY(Q, s, w)

1 k ← LENGTH(s)

2 n← γ � the root of the tree

3 for i← 0 to k − 1 � walk to the node corresponding to s

4 do o← SUBSTR(s, i, 1)

5 if o matches a child c of n

6 then n← c

7 else return 0.0 � no corresponding node

8 m← nv

9 e← m

10 Y ← all children of node n

11 foreach node y in Y � sum up the node and all its children’s values

12 do m← m + yv

13 foreach node y in Y

14 do u← w ∗ yv/m � the probability of y with escape probability

15 if find (yp, v) in Q

16 then v = v + u

17 else v = u

18 put (yp, v) into Q � update the pair in Q

19 if k = 0

20 then return 0.0 � Q is built

21 else return w ∗ e/m � return the escape probability

46



3.2.5 PPM predictors

Prediction by Partial Matching (PPM) is a data compression scheme, often used in text

compression [CW84]. As with Markov predictors, the basic idea of PPM is to use the

last few symbols in the input stream to predict the next one. Order-k (or O(k)) PPM uses

the k immediately preceding symbols to update the model for prediction. An O(k) PPM

predictor blends a set of different-order context models, from 0 to k. Each fixed-order con-

text model is built as an O(k) Markov model. The combination of the different models is

achieved through the use of “escape” probabilities, which are the probabilities of encoun-

tering previously unseen symbols. There are three major methods to determine the escape

probabilities [BCW90]. The method used in our implementation is called “Method C”

in [BCW90]. The number of escape events is equal to the number of different symbols that

have been seen in the context so far. The total number of events is the number of all sym-

bols that have been seen in the context so far. Thus the escape probability is the number of

escape events divided by the total number of events. Let Ek be the escape probability,

Ek =
Ne

N
, (3.3)

where Ne is the number of escape events, N is the total number of all events.

Then for all a ∈ A, the O(k) PPM probability is

P (xn+1 = a | L) = Pk(a) +
k∑

i=1

Pi−1(a)Ei, (3.4)

where Pk(a) is the probability computed using the O(k) Markov model (see Equation 3.1).

The O(k) PPM predictor maintains a full height-k tree. It takes the current context

string s and the new location p, then predicts the next location.
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PPM-PREDICTION(s, p, k)

1 s← s + p � append p to s

2 SUFFIX-UPDATE(s) � Update the tree with all suffixes

3 s← SUBSTR(s, 1, k) � update the current sequence s

4 return FINDMAXPPM(s)

3.2.6 SPM predictors

Jacquet, Szpankowski and Apostol [JSA00] proposed a predictor called the Sampled Pat-

tern Matching (SPM) algorithm. This algorithm is of interest as it considers much larger

classes of sources (in our case, handoff traces) than O(k) Markov predictors. In particular,

it addresses what are called strongly mixing sources, which contain fixed-order Markov

sources as a special case. SPM was shown theoretically to be asymptotically optimal, that

is, to have a fault rate the same as the best possible predictor, for this class of sources. SPM

is similar to O(k) Markov except instead of using a fixed value of context length k, the

length is determined by a fixed fraction (α) of the longest context that has been previously

seen, as described below.

Start by finding the longest suffix of X1, X2, . . . , Xt that has occurred previously in

the sequence; this is called the maximal suffix, and t is the length of the suffix. Instead

of considering the entire maximal suffix, however, the algorithm considers only a fraction

of the suffix. Choose a fixed constant α, where 0 < α < 1. The suffix of interest is now

c = Xt−k+1, Xt−k+2, . . . , Xt where k = dαte. The next predicted character is

argmaxa∈AN(ca, L),

where N(s, L) is the number of times the string s occurred in the history L.

Example: Consider the sequence of length 40 below. The maximal suffix is YGSJSLJZ; if
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we set α = 0.5 then the fractional suffix is SLJZ. Its occurrences are shown below marked

by a box:

SLJZ GGDLYGSJ SLJZ KGS SLJZ ID SLJZ GGZYGSJ SLJZ .

The symbols that followed the fractional suffix SLJZ in the sequence are G, K, I, G,

respectively. SPM will predict G.

The SPM predictor takes the full location history L, and the current location p to predict

the next location. We list the procedure below.
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SPM-PREDICTION(p)

1 L← L + p � append p to the history L

2 s← FINDMAXSUFFIX(L) � find the max suffix of the history

3 if s = NIL

4 then return NIL � no prediction

5 t← LENGTH(s)

6 m← dαte

7 s← SUBSTR(s, t−m, m) � get the fractional suffix

8 n← LENGTH(L)

9 Q← NIL

10 for i← 0 to n−m− 1

11 do l← SUBSTR(L, i, m)

12 if l = s � find the occurrence of s

13 then o← SUBSTR(L, i + m, 1)

14 if find (o, v) in Q � count the symbols following s

15 then v = v + 1

16 else v = 1

17 put (o, v) into Q

18 return FINDMAX(Q)

We use the brute force method to find the max suffix of the history. We examine the

length-k suffix. If it exists in the previous history, we examine the length-(k + 1) suffix,

for k = 1, 2, . . . , n − 1. We repeat this process until we found no length-k suffix in the

previous history, then we return the length-(k − 1) suffix as the longest suffix.
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FINDMAXSUFFIX(L)

1 n← LENGTH(L)

2 a← SUBSTR(L, 0, n− 1) � history except the last symbol

3 for k ← 1 to n− 1

4 do b← SUBSTR(L, n− k, k) � last k symbols of L

5 if b is not a substring of a

6 then return SUBSTR(b, 1, k − 1)

7 return NIL

3.2.7 CDF predictor

Rather than attempting to predict the next symbol or value in a sequence, this predictor

works only with values and makes prediction about inequalities. Specifically, it produces

the probability that the next value is less than (or greater than) a given value. It does so by

computing the observed cumulative distribution function (CDF) of the historic values, and

using the CDF to measure the probability of a given value appearing in the distribution.

Consider a history H of values v1, v2, . . . , vn. Suppose V is the random variable, which

outputs the actual values in H , and P is its distribution. The CDF predictor computes the

observed CDF function of V from the histogram, that is,

CDF(V < v) =
1

n

n∑
i=1

I(vi < v), (3.5)

where I is the indicator function. In a similar fashion, we can compute the probability of

values occurring in range a ≤ V < b, by simply computing

P (a ≤ V < b) = (CDF(V < b)− CDF(V < a)). (3.6)
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We present our CDF duration predictor’s algorithm as a procedure CDF-PREDICTION

that takes a sequence of durations H , and the value v. It computes the probability of that

next duration is less than v.

CDF-PREDICTION(H, v)

1 n← LENGTH(H)

2 c← 0

3 foreach vi in H

4 do if vi < v

5 then c← c + 1

6 return c/n � the probability

3.2.8 Moving average predictors

Moving averages are commonly used to predict a trend in a sequence of values. The order-

k (or “O(k)”) moving-average (MA) predictor takes a sequence of values and predicts that

the next value of the sequence is the average of the last k values in the sequence.

Consider a history H of values v1, v2, . . . , vn. The order-k moving-average predictor

estimates the next value using the following equation. Let k′ = min{k, n}, then

vn+1 =
1

k′

k′∑
i=1

vn−i+1. (3.7)

We present the moving-average predictor as follows.

52



MA-PREDICTION(H, k)

1 n← LENGTH(H)

2 c← 0

3 if k > n

4 then i← n− k + 1

5 else i← 1

6 k ← n

7 while i ≤ n

8 do c← c + vi

9 i← i + 1

10 return c/k � the average duration

3.2.9 Combining location and time prediction

Many applications need to predict both the time and destination of the next handoff. The

goal is to predict, for every possible destination, the probability that a handoff will occur

within the next ∆t period, conditioned on the current location and the duration of the

visit so far. Our approach is to combine the Markov location predictor and the CDF time

predictor.

Consider a user’s handoff history H = (t1, a1), (t2, a2), . . . , (tn, an), in which ti is

the time that the user arrived at location ai. From H we extract the location history

L = a1, a2, . . . , an, and from L the order-k location context c = L(n − k + 1, n) =

an−k+1, . . . , an−1, an. We then search the history L for instances of the context c. We need

to examine the destinations that follow each such instance, and in particular to examine

the duration of the visit preceding each of those destinations, to be able to predict the du-

ration in the current context. So, we need to extract the set of durations for each possible
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destination x:

Dx = {di | di = ti+1 − ti where L(i− k + 1, i + 1) = cx} (3.8)

.

From each duration set Dx, we use the CDF predictor to compute the conditional prob-

ability Px(0 ≤ d < d0 +∆t | c, d0) that the user will move to location x within ∆t seconds

after the user has stayed d0 seconds. We can also use the O(k) Markov predictor to compute

the probability P (x) of every possible next location x with Equation (3.1).

Therefore, the probability of the user moving to each of the possible locations x within

the next ∆t seconds after spending d0 seconds at the current location, given the current

context c.

P (x, d0 | c) = P (x) · Px(0 ≤ d < d0 + ∆t | c, d0) (3.9)

We name this predictor MarkovCDF.

This predictor is always conditioned on the current location context. As described

above, the predictor builds per-user tables, but it is equally possible to build aggregate

tables from all users’ handoff histories. In the latter case, all users share the same Markov

transition matrix, and update the matrix whenever they move.

We present the predictor’s procedure MARKOVCDF-PREDICTION as follows. The

procedure takes the Markov matrix M , duration histories at each location H = Hi, Hj, . . .,

and the context string c. The user moved to the current location at t0. At time t, the

predictor computes a list of location and probability pairs; the user may move to each of

the locations with the corresponding probability within duration d.
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MARKOVCDF-PREDICTION(M, H, c, t0, t, d)

1 Q←Mc � symbols from the row c of M

2 X ← NIL

3 m← 0

4 foreach pair (p, v) in Q � sum of all values

5 do m← m + v

6 foreach pair (p, v) in Q

7 do Hp ← the duration of H at p

8 u← CDF-PREDICTION(Hp, t− t0 + d)− CDF-PREDICTION(Hp, t− t0)

9 u← uv/m

10 add pair (p, u) into X

11 return X

Note that this predictor is unlike the others above in that it returns a set of probable

destinations, rather than the most probable destination.

3.2.10 Neighbor Graph predictor

Using users’ current neighbor locations as the prediction is an obvious way to predict fu-

ture locations. The predictor is called Neighbor Graph (NG) predictor. The NG predictor

outputs a vector of probabilities, one for each AP that is the neighbor of the current AP.

The probabilities depend only on the locations that the user visited in the history. Mishra

et al. [MSA04] present an algorithm to dynamically build a user’s neighbor graph to cache

context for fast handoffs. In fact, the NG predictor behaves just like the O(1) Markov

predictor except it outputs a list of location and probability pairs, but the O(1) Markov

handoff-location predictor predicts only the most likely location. We compared the per-

formance of our predictors to this simple predictor in the studies of over-provisioning and
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under-provisioning (Section 4.2.3), and bandwidth-reservation schemes of VoIP applica-

tions (Section 5.4).

3.3 Prediction metrics

To evaluate the performance of predictors, we define a set of metrics that measures the

performance of location prediction, time prediction, and joint time and location prediction.

3.3.1 Next-location prediction

During an on-line scan of the location history, the predictor is given a chance to predict

each location. There are three possible outcomes for this prediction, when compared to the

actual location:

• The predictor correctly identified the next location.

• The predictor incorrectly identified the next location.

• The predictor returned “no prediction.”

All predictors encounter situations in which they are unable to make a prediction; in partic-

ular, all history-based predictors will have no prediction for the first location of each user

trace.

We define the accuracy of a predictor for a particular user to be the fraction of moves

for which the predictor correctly identified the next location. Thus, “no prediction” is

counted as an incorrect prediction. In the future we plan to examine other metrics that can

better distinguish the two forms of incorrect prediction (there may be some applications

that may prefer no prediction to a wild guess). For now, this metric best reflects the design

of predictors common in the literature.
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If the location has geographical coordinates, other accuracy metrics could be measured.

For example, the distance between the actual location and the predicted location, or the

angle between the direction to the actual location and the direction to the predicted location,

are two non-binary accuracy metrics. Since our data are symbolic, these geographic metrics

do not apply to our predictors.

3.3.2 Time prediction

Time is a continuous value. It is impossible to predict the exact time of an event, so we

must predict the handoff time as a period. We can also quantize the actual handoff time

using this period and compare them. The period can be seconds, minutes, or even hours.

Then we can again use the ratio of the number of correct predictions to the number of all

handoffs to define accuracy. However, this definition may be misleading, because large

periods are inherently easy to predict. One can use an arbitrary large period to get 100%

accuracy.

Instead, we measure how much the predicted handoff time differs from the actual hand-

off time. In most applications, overshooting or undershooting the actual time of handoff

will have different implications; for example, a late request to reserve bandwidth for a

roaming voice call will be useless, whereas an overly early request will consume excess

resources.

Hence, we define separate metrics; when a handoff occurs at time th, and the handoff

was predicted to occur at time tp, the prediction earliness is th − tp if th ≥ tp, and lateness

is tp− th if th < tp. We compute each user’s average earliness across all handoffs in which

the prediction was early, and each user’s average lateness across all handoffs in which the

prediction was late.
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3.3.3 Joint time and location prediction

We use over-provision and under-provision to measure the joint time and location pre-

diction. Over-provision and under-provision are metrics that relate to the application of

resource allocation. When a predictor is used for advance resource allocation, an incorrect

prediction can lead the system to reserve too many, or too few, resources. We consider

predictors, such as the CDF predictors defined in the preceding section, that provide the

probability of handoff for each possible destination, and imagine a system that provisions

resources at each destination in proportion to these probabilities. When the handoff occurs,

we can determine the amount that resources were under-provisioned at the actual destina-

tion and over-provisioned at all other locations.

Under-provisioning: At any time t that the predictor indicates that the user u may move

from location i to location j with probability P (j | u, i, t), and the handoff occurs, we

measure the amount of under-provisioning for this handoff as

E(u, i, j, t) = 1− P (j | u, i, t).

In effect, under-provisioning is equivalent to computing the error with respect to an “ideal

predictor” that always returns the correct prediction: probability 1 for the correct destina-

tion just before the handoff is to occur, and probability 0 for other destinations or other

times. Thus, a lower value of E represents better prediction quality. When a predictor

is used periodically, as might the CDF predictors defined in the preceding section, under-

provisioning applies only to the last prediction before the handoff.

Over-provisioning: Any time t that the predictor indicates that the user u may move

from location i to location j with probability P (j | u, i, t), and a system provisions re-

sources in accordance with that probability, the resources are wasted if the handoff does
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not occur as predicted. We define the amount of over-provision as

F (u, i, j, t) = P (j | u, i, t),

because an ideal predictor would have produced probability zero. Thus, a lower value of F

represents better prediction quality. When a predictor is used periodically, we can compute

the over-provision metric for each such prediction, under the rationale that a system using

such a predictor would waste resources at predicted destinations whenever a handoff does

not occur, or at all locations other than the actual destination whenever a handoff does

occur, within that prediction interval.

As a more comprehensive representation of these metrics, we can compute per-user

and per-location averages; a non-uniform distribution would mean that some users or some

locations were more amenable to prediction than the rest. We define the average under-

provision per user as

E(u) =

∑
i,j,t E(u, i, j, t)∑

i,j,t 1
,

and the average under-provision per access point as

E(j) =

∑
u,i,t E(u, i, j, t)∑

u,i,t 1
.

In the last three sections, we describe the predictors that we evaluated, the metrics

that we used, and the predictors’ uses. We show the evaluation results of the predictors

according to these uses in the next chapter.
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3.4 Correlation of prediction accuracy and entropy

We need one more set of definitions before we can explore the results in the next chapter.

We expect that some correlation exists between prediction accuracy and the entropy of

user’s handoffs. Before we show the simulation results, we first define the entropy of

users’ handoffs.

3.4.1 Definition of the Entropy

The standard definitions relating to entropy are as follows:

Definition 1: The entropy H(X) of a discrete random variable X is defined as

H(X) = −
∑
x∈X

P (x) log P (x),

where X is the set of all possible values of X , and P (x) is the probability of X = x.

The entropy is used to describe the uncertainty of a random variable. In other words,

how much information on average is needed if we want to determine the value of X. The

more uncertain a random variable is, the higher the entropy.

Definition 2: The joint entropy H(X,Y) of a pair of discrete random variables (X,Y) is

defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

P (x, y) log P (x, y),

where P (x, y) is the probability of the pair (x, y).

Similarly, the joint entropy describes how much information on average is needed if we

want to determine both values of X and Y .
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Definition 3: The conditional entropy H(X | Y ) is defined as

H(X | Y ) = −
∑
y∈Y

P (y)
∑
x∈X

P (x | y) log P (x | y),

Conditional entropy describes how much more information on average is needed if we

want to determine the value of X when the value of Y is known.

3.4.2 Entropy of an O(k) Markov predictor

For an O(k) Markov predictor, the prediction conditions on the most recent k symbols. The

probability that the next symbol is a is

Pk(a) = P̂ (Xn+1 = a | L) = P̂ (Xn+1 = a | c) =
N(ca, L)

N(c, L)
,

where c is the most recent k symbols, L is all the sequence of symbols in the history, and

N(s′, s) denotes the number of times the substring s′ occurs in the string s. The predictor

always chooses X = a that leads to maximum P̂k(X) as the prediction.

The conditional entropy is then calculated as

H(A | C) = −
∑
c∈C

P (c)
∑
a∈A

P (a | c) log P (a | c), (3.10)

where A is a discrete variable choosing from the all possible symbols in set A, and C is a

discrete variable choosing from the possible k-symbol context set C. P (c) is the estimation

of the probability of a given k-symbol context in the whole history:

P (c) =
N(c, L)∑

y∈C
N(y, L)

.
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3.4.3 Example

In our prediction research, the input to a predictor is a random variable. Entropy is used

to describe the characteristic of a random variable. As a result, it is independent of the

prediction algorithm. The conditional entropy, however, depends on the “condition” that we

use. As a result, we have different conditional entropy calculations for different predictors

that use different length contexts.

For example, consider a history L = abacaba from an alphabet A = {a, b, c}.

For an O(1) Markov predictor, the length-1 context variable, C, has 3 possible values,

{a, b, c}, and has 6 length-1 context occurrences (the last symbol is not counted, because

we do not know the following symbol yet). We get P (C = a) = 3/6, P (C = b) = 2/6,

and P (C = c) = 1/6 in this example. We also get P (b | a) = 2/3, P (c | a) = 1/3,

P (a | b) = 1, and P (a | c) = 1. To compute the entropy, we use the log base to be 2 for

simplicity. Because we care only about the relative entropy, which log base we use does

not matter in our correlation study. The conditional entropy considering length-1 context

for this example is H(A | C) = [3
6
(2

3
log 3

2
+ 1

3
log 3) + 2

6
(1 log 1) + 1

6
(1 log 1) ≈ 0.46].

For an O(2) Markov predictor however, the length-2 context set is C = {ab, ba, ac, ca},

and has 5 length-2 context occurrences (the last length-2 context is not counted, because

we do not know the following symbol yet). We get P (C = ab) = 2/5, P (C = ba) = 1/5,

P (C = ac) = 1/5, and P (C = ca) = 1/5. We also get the conditional probabilities:

P (a | ab) = 1, P (c | ba) = 1, P (a | ac) = 1, and P (b | ca) = 1. The conditional entropy,

considering the length-2 context in this example, is H(A | C) = [2
5
(1 log 1) + 1

5
(1 log 1) +

1
5
(1 log 1) + 1

5
(1 log 1) = 0].
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3.5 Related work

Many handoff prediction techniques have been proposed in many areas of wireless cel-

lular networks as a means of enhancing performance, including better mobility manage-

ment [LM96], improved assignment of cells to location areas [DS99], more efficient pag-

ing [BD02, KT04], call admission control [YL02], and location-based services [KL03].

Cheng, Jain and van den Berg surveyed a set of location-prediction techniques [CJv03].

Relatively less prediction study has specifically been done for WLANs. Here we just briefly

survey some of related work on handoff prediction.

3.5.1 Prediction for fast handoff

Mishra et al. [MSA04] propose to push the “context” of a mobile device from one AP to

another using the inter-access point protocol (IAPP). The context includes various types

of information such as accounting and authentication information, IP flow information,

QoS information, and header compression information. The goal was to reduce handoff

latency and they achieved a factor of 10 improvement in their experiments. The solution

was simple: each AP remembers the set of other APs from which clients roam, and thus

builds an adjacency list representation of its portion of the “neighbor graph.” They did

not address the timing of the context push: it would appear that the APs push contexts as

soon as the client arrives, which begs the following question: when should the context be

pushed again for any kind of context that changes while the client remains at the AP? The

authors did not make any effort to select a subset of neighbors to push the context: they

assume that the number is small, and they push context to all neighbors observed recently.

Similarly, Pack and Choi [PC04] propose a key-distribution algorithm that distributes keys

to previously observed neighboring APs to reduce the authentication time.

Gown et al. [GKDJ05] show experimentally that IP header compression can be used to
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reduce wireless bandwidth usage for Voice over IP (VoIP) applications running over Wi-Fi.

In such a scenario, the system could place the context required for header compression at

the next AP(s) where the user is predicted to move, to start header compression sooner and

make the handoff smoother.

3.5.2 Bandwidth reservation

In wireless networks, the SC (Shadow Cluster) scheme can provide consistent QoS support

before and after a handoff [LAN95]. In the SC scheme, all cells neighboring a mobile

node’s current cell are requested to reserve resources for that node, in case it moves to that

cell next. Clearly, this approach ties up more resources than necessary. Several proposed

SC variations [SG98] attempt to predict the device’s handoff so the network can reserve

resources in only certain neighboring cells.

Prihandoko et al. [PHA04] propose a prediction algorithm named UMP. Their UMPx

model is the same as our order-k Markov with fallback model (Section 3.2.2), where

k = x − 1. In this paper, the authors used the hexagon cell model to simulate a mo-

bile environment. The call arrival rate was Poisson distributed and the call duration was

exponentially distributed. The bandwidth required was in a geometrical distribution be-

tween the minimum and the maximum. The authors did not mention what mobility model

they used in the simulation. They compared the simulation results of UMP5 and UMP2,

and found that UMP5 was better in terms of handoff call-dropping probability. However,

in terms of call blocking probability and bandwidth utilization, UMP5 produced similar

results to UMP2. They did not compare other order models. In our results (Chapter 4), the

order-2 Markov with fallback was the best, which would correspond to their UMP3 model.

They did not compare UMP3 to the other models, however.
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3.5.3 Other

Samaan and Karmouch [SK05] use a user’s context, such as interests, activity, or tasks,

to predict the user’s next destination. A destination is a landmark object, e.g., computer

science department or library. Then it uses a map to find the shortest path, as predicted tra-

jectory, for the user to reach the destination. This paper assumes that location information

is an existing context, and it assumes that knowledge about a user’s schedule can be ob-

tained through class registration, that tasks can be extracted from the user’s electronic diary,

and that interests can be collected through a questionnaire list. This prediction approach

does not use historical mobility information of a user, thus avoiding the non-prediction

problems when the user goes to a new location. Instead, this paper defines the predictabil-

ity of a future location as the probability that their prediction algorithm believes the move.

The total degree of predictability of a user’s trajectory is the average of all visited loca-

tion predictabilities. The authors derived prediction accuracy from the user’s trajectory

predictability. They measure the trajectory accuracy by determining the distance between

predicted trajectory and the actual trajectory. Gathering more contextual information about

users, other than location and handoff time, may not be easy, because of privacy concerns.

It may only be possible for a group of controlled users, who may be asked to volunteer

information.

In this chapter, we discuss predictors that use a history of handoffs between symbolic

locations handoffs to predict a user’s next location and to estimate the probability of hand-

off within a given time period. We also introduce the metrics that we used to evaluate these

predictors and we define the entropy that we used to measure the correlation between pre-

dictor accuracy and the inherent predictability of a sequence. In the next chapter, we show

our evaluation results.
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Chapter 4

Predictor Evaluation

In this chapter we examine the simulation results of the handoff-location predictors, handoff-

time predictors, and joint-time-and-location handoff predictor using our Wi-Fi handoff

data.

4.1 Location Prediction

To drive our simulations, we used the traces that were collected between April 2001 and

March 2003. During this period, there were a total of 6,202 users and 592 APs.

Before we discuss the details of the simulation results, we first discuss an inherent

problem in prediction algorithms: how to handle ties.

4.1.1 Breaking ties

In our descriptions of the predictors (Chapter 3), we indicate that each predictor predicts

the symbol with the highest probability of occurring next, given the current state of its data

structure (Markov matrix or LZ tree, for example). It is quite possible, though, for there

to be a tie for first place, that is, several symbols with equal probability and none with
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higher probability. We have not found any discussion of this issue in the literature, yet our

implementations must make a specific choice. We implemented three different tie-breaking

methods:

• First added: among the symbols that tie, we predict the first one added to the data

structure, that is, the first one seen in the location history.

• Most recently added: among the symbols that tie, we predict the one that was most

recently added to the data structure.

• Most recent: among the symbols that tie, we predict the one most recently seen in

the history.

In Figure 4.1, we show the ratio of the number of ties to the number of predictions,

using a cumulative distribution function (CDF) across all users having more than 1000

movements for different predictors. Figure 4.1 shows that most of the users had few ties:

ties occurred in fewer than 10% of all their individual predictions. Our experiments show

that the results were not significantly affected by the choice of a tie-breaking method. Fig-

ure 4.2 shows the prediction accuracy for O(1) Markov predictors with three different

tie-breaking methods. The results of the three tie-breaking methods are almost indistin-

guishable. Therefore, we decided to use the “first added” method throughout the results

below, and we did not consider tie-breakers any further.

4.1.2 Markov

Recall that accuracy is defined as the number of correct predictions divided by the number

of attempts (moves). As we step through the locations in a single trace, attempting to

predict each location in sequence, we can examine the accuracy up to that point in the trace.

Figure 4.3 shows how the accuracy metric varies over the course of one user’s history, using

67



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fr
ac

tio
n 

of
 u

se
rs

Ratio of number of ties to number of predictions

O(1) Markov
O(2) Markov fallback

LZ
LZP

Figure 4.1: Ratio of number of ties to the number of predictions

68



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
ra

ct
io

n 
of

 U
se

rs

Accuracy

O(1) Markov (tie-break first)
O(1) Markov (tie-break recent)

O(1) Markov (tie-break last))

Figure 4.2: Compare different tie-breaking methods

69



the O(1) Markov predictor. Ultimately, for comparison purposes, we record the accuracy

over the entire trace, the rightmost value in this plot. In subsequent graphs we use this

overall accuracy as the performance metric.

Of course, we have several thousand users, and the predictor was more successful on

some traces than on others. In Figure 4.4 we display the accuracy of the O(1) Markov

predictor in CDF curves, one for each of three groups of traces: short, medium, and long

traces, defined respectively as those with 100 or fewer moves, 101–1000 moves, and over

1000 moves. The predictor was clearly unsuccessful on most short traces, because its

curve is far to the left. Ultimately, we found that all predictors fared very poorly on short

traces and somewhat poorly on medium traces. For the sake of completeness, we generally

consider all 6,202 traces. In some cases we do only consider long traces, when doing so

makes trends clearer; in that case we note so explicitly.

Intuitively, it should help to use more context in each attempt to predict the next loca-

tion. In Figure 4.5 we compare the accuracy of O(1) Markov with that of O(2), O(3), and

O(4) Markov predictors. As an aside, we include an order-0 Markov predictor, in which

no context is used in the prediction of each move. This predictor simply predicts the most

frequent location seen so far in that user’s history. Although it represents a degenerate form

of Markov prediction, it helps to show the benefit of context in the O(1) predictor.

Surprisingly, the O(2) Markov predictor had similar median accuracy to the O(1)

Markov predictor, though with a wider spread in its accuracy. In fact, when consider-

ing only long traces (Figure 4.6), O(2) generally outpredicted O(1). The high-order O(3)

and O(4) predictors were, however, worse than O(2). Although these predictors use more

information in the prediction process, they are also more likely to encounter a context (a

three- or four-location string) that has not been seen before, in which case they are unable to

make a prediction. A missing prediction is not a correct prediction, and these unpredicted

moves bring down the accuracy of the higher-order predictors. In Figure 4.7 we display the
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conditional accuracy of these same predictors: the number of correct predictions divided

by the number of predictions. In this metric, we ignore unpredicted moves, and it becomes

clear that longer context strings did lead to better prediction, where possible, although with

diminishing returns. Notice that, in Figure 4.7, 10–20% of the users had an accuracy of 0.

The very short trace length is the reason for those 0 accuracies. This point becomes clear

when we consider only long traces in Figure 4.8.

Returning to our original accuracy metric, we now consider our fallback mechanism

for Markov predictors (Section 3.2.2). Figure 4.9 displays the performance of the O(2)

Markov predictor with fallback, which uses the results of the O(2) predictor when it makes

a prediction, or the O(1) predictor if the O(2) predictor has no prediction, or the O(0)

predictor if neither have a prediction. Fallback indeed helped to improve the O(2) Markov

predictor’s performance. The O(3) and O(4) Markov predictor also improved with fall-

back, but the curve of O(4) with fallback is nearly identical to the curve of O(3) with

fallback.

Markov predictors with fallback gain the advantage of the deeper context but without

losing accuracy by failing to predict in unknown situations. The intuition is that a higher-

order Markov predictor should perform better than a lower-order one. In fact, this is not

always correct. A higher-order Markov predictor uses more context information, but it has

fewer samples than a lower-order one with the same movement history. For example, in

our experiments, we found that the O(3) Markov with fallback predictor performed worse

than the O(2) Markov with fallback predictor (Figure 4.9). In the cases where the O(3)

predictor made an incorrect prediction but the O(2) did not, we found that the O(3) Markov

predictor had an average of 8.23 samples, with a median number of 1.96, while the O(2)

Markov predictor had an average of 45.5 samples, with a median number of 12.2.

In the plots so far, we have examined the performance of O(k) Markov predictors that

used the most recent k locations in making a prediction, weighting the potential next loca-
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Figure 4.7: Conditional accuracy metric for all traces

76



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fr
ac

tio
n 

of
 u

se
rs

Conditional Accuracy

O(1) Markov conditional
O(2) Markov conditional
O(3) Markov conditional
O(4) Markov conditional

Figure 4.8: Conditional accuracy metric for long traces

77



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ra

ct
io

n 
of

 u
se

rs

Accuracy

O(1) Markov
O(2) Markov

O(2) Markov fallback
O(3) Markov fallback
O(4) Markov fallback
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tions by their frequency of occurrence in the past. An alternative approach assigns weights

according to the recency: how recently the location occurred. Thus, one transition (the

most recent seen for this context) has weight 1 and the others have weight 0. We can keep

only the most recent transition of each context, instead of all possible transitions. Observe

that the O(k) Markov prediction using the most frequent location in general takes order

nk+1 space for an n-location environment, while using the most recent location it takes

only order nk space, a potentially significant decrease in storage. Figure 4.10 shows the

quality of Markov predictors based on this approach. Curiously, here O(2) did worse than

O(1), although fallback made up some of the difference.

In Figure 4.11 we compare the recency-weighted approach with the original frequency-

weighted approach. The best recency-weighted Markov predictor, O(1), was better than

the corresponding frequency-weighted predictor. This result implies that recent history

was a better predictor of the immediate future than was an accumulated probability model,

when considering only the current location. On the other hand, recall from Figure 4.10 that

among the recency-weighted predictors the extra context of O(2) lowered prediction accu-

racy. Thus, among O(2) predictors, the frequency-weighted approach beats the recency-

weighted approach (not shown in Figure 4.11). Ultimately, the O(2) frequency-weighted

Markov predictor with fallback had the best outcome.

Some of our user traces span a period of hours or days, but some span weeks or months.

Clearly it is possible for a user’s handoff patterns to change over time; for example, a

student may move to a new dormitory, or attend different classes. The transition weights

constructed by the frequency-weighted Markov model may become ineffective after such a

change; for users with a long history, these weights will adapt too slowly. In another series

of experiments (Figure 4.12), we added an exponential decay to the frequency weights so

that more recent locations have a larger impact, but we saw little improvement in the quality

of the predictors.
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4.1.3 LZ-based

We first consider the LZ predictor, shown in Figure 4.13. Since LZ makes no prediction

whenever the current context string leads to a leaf in the tree, the plot includes two LZ

variants. As an alternative to no prediction (the first curve), we can use the statistics at

the root (second curve) to make a prediction based on the probability of each location.

That is, when the predictor encounters a leaf, it behaves as if it is at the root and simply

predicts the most frequently seen child of the root. Given our accuracy metric, it is always

better to make some prediction than no prediction, and indeed in this case the accuracy

improved significantly. An even better approach (third curve) is to fallback to progressively

shorter substrings of the current context, much as we did with the Markov predictors, until

a substring leads to a non-leaf node from which we can make a prediction. This fallback

ability is critical to allow prediction to occur while the tree grows, since the trace often

leads to a leaf just before adding a new leaf.

Bhattacharya and Das [BD02] proposed two extensions to the LZ predictor. Figure 4.14

displays the performance of the first extension, LZP. Once again, this predictor (as defined

in [BD02]) makes no prediction when the context leads to a leaf. We modified LZP to use

statistics at the root, which helps, and (better) to try fallback.

The second extension produces a LZ+prefix+PPM predictor nicknamed “LeZi.” Fig-

ure 4.15 compares the performance of LZ with LZP and LeZi, showing that each extension

did improve the accuracy of the LZ predictor substantially.

When we compare the best variant of each LZ form, in Figure 4.16, it becomes clear

that the simple addition of our fallback technique to the LZ predictor did just as well as

the prefix and PPM extensions combined. (LeZi automatically includes fallback by adding

suffix substrings into the tree, so there is no fallback variant.) LZ with fallback is a much

simpler predictor than LZP or LeZi, and since the accuracy was similar (and as we show
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Figure 4.13: LZ predictors

84



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fr
ac

tio
n 

of
 u

se
rs

Accuracy

LZP
LZP root stat.

LZP fallback at leaf

Figure 4.14: LZP predictors
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below, the LZ data structure was smaller), among the LZ predictors we recommend LZ

with our fallback technique.

4.1.4 PPM and SPM

Prediction by Partial Matching (PPM), like Markov predictors, uses a finite context but

blends together several fixed-order context models to predict the next symbol [CT97]. Fig-

ure 4.17 shows that the amount of context did not matter much when the order was 2 or

above. The higher-order PPM predictors did not have better prediction accuracy.

The SPM predictor [JSA00] is, in a sense, a PPM predictor in which there is no limit on

order. Theoretically, the SPM predictor should outperform any finite-order PPM predictor.

However, Figure 4.18 shows that both PPM and SPM had an accuracy only slightly better

than the O(2) Markov predictor with fallback. For long traces, we found the difference to

be negligible. Here we choose α = 0.5. We also tried to set α = 0.25 and α = 0.75; both

of the results are worse than α = 0.5 as shown in Figure 4.19. The reason may lie here:

when we use a smaller α value, we are using a short context with more samples. If we use

a larger α value, the number of samples will be smaller. There is a balance between the

length of context to be used and the number of samples at that context.

4.1.5 AP prediction overall

We compare the best Markov predictors with the best LZ predictors in Figure 4.20. It is

difficult to distinguish the LZ family from the recency-based O(1) Markov, which all seem

to have performed equally well. In general, the O(2) Markov predictor with fallback was

the best overall. For long traces (Figure 4.21) the median accuracy with this predictor was

72%. It is striking that the extra complexity, and the theoretical aesthetics, of the LZ, PPM,

and SPM predictors apparently gave them no advantage.
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Figure 4.17: PPM predictors
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Figure 4.18: SPM predictors with α = 0.5
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Figure 4.19: SPM predictors with different fractional contexts
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Figure 4.20: The best predictors, compared
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Figure 4.21: The best predictors, compared (long traces only)
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We include an “Optimal” curve in Figure 4.20 and 4.21, as a simple upper bound on the

performance of history-based location predictors. In our definition, the “optimal” predictor

can accurately predict the next location, except when the current location has never been

seen before. Although it should be possible to define a tighter, more meaningful upper

bound for domain-independent predictors like those we consider here, it seems clear that

there is room for better location-prediction algorithms in the future.

4.1.6 Building prediction

In some applications, we may need only a coarser sense of the user’s location. We ex-

tracted building-level traces from the AP-level traces; a building trace shows the sequence

of buildings visited by the user and is necessarily shorter than the original sequence of

APs visited. Then we used our predictors to predict the next building in each user’s trace.

Figure 4.22 shows that the building prediction was more accurate than AP prediction. Fig-

ure 4.22 shows only long traces, and shows that the best predictor can approach a median

accuracy of 80%. One reason is that there was a smaller number of choices in the building

trace than in the AP trace. Note that the sets of users of the two different forms of predic-

tion were not the same; there were 2,190 users who had more than 1000 transitions in the

AP-level trace history, while there were only 1,501 users with more than 1000 transitions

in their building-level trace. Figure 4.23 shows the results of building prediction for all

users. The best predictor had a median accuracy about 70% across all users.

In the building-level prediction, the O(2) Markov with fallback predictor also outper-

formed the O(1) Markov predictor, by about the same amount as in the AP-level prediction.
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Figure 4.22: Building Prediction (long traces only)
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Figure 4.23: Building Prediction (all traces)
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4.1.7 Correlation with entropy

It may be that some user traces are simply less predictable than others. Some intrinsic

characteristics of a trace may determine its predictability. We explored several such char-

acteristics.

Conditional entropy, as defined in section 3.4.1, seems like a good indicator of pre-

dictability. We computed the conditional entropy for each user on their entire trace using

Equation 3.10. In Figure 4.24 we compare the entropy of each user, based on the proba-

bility table built by the O(1) Markov predictor, with the accuracy of the O(1) predictor for

long traces. The correlation is striking, and indeed the correlation coefficient is -0.95 (a

coefficient of 1.0 or -1.0 represents perfect correlation). This strong correlation indicates

that some users with high entropy are doomed to poor predictability. On the other hand, the

correlation is not surprising because the entropy was computed from the same tables used

for prediction.

Figure 4.25 shows the correlation of the conditional entropy and the prediction accuracy

for all traces. This correlation is not as striking as for long traces. For short traces, the

entropy can be low since the amount of information is small and the accuracy can also be

low (see below for our comparison of accuracy with trace length).

Figure 4.26 shows the correlation between entropy and the accuracy of the O(2) Markov

predictor for all traces; the correlation is visually similar to the O(1) Markov correlation.

4.1.8 Prediction accuracy and trace length

As indicated earlier, trace length has an impact on the accuracy of all the predictors. So

far we have regarded accuracy for a given trace as simply the final average accuracy at the

end of the trace. At each step i, for each trace that has length at least i, the running average

accuracy up to step i is found. There are generally several traces that have length at least i;
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Figure 4.24: Correlating O(1) Markov prediction accuracy with entropy (long traces only)
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Figure 4.25: Correlating O(1) Markov prediction accuracy with entropy (all traces)
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we find the median accuracy at step i among all such traces. This metric, called the median

running accuracy, enables us to consider how, over all traces, accuracy changes as trace

length increases.

Figure 4.27 shows how the median running accuracy increases with trace length for

O(1) Markov as well as O(2) Markov with fallback. Clearly the median running accuracy

increases rapidly with trace length up to short traces, and then increases only relatively

slowly. Note that for this metric O(2) Markov with fallback outpredicts O(1) for all trace

lengths.

We tried several equations to fit the experimental data, such as power functions and log

functions. We found that the log functions fit best. These curves can be fit to the equations:

for O(1) Markov,

a(i) = 0.036 log(i) + 0.4176 , (4.1)

for O(2) Markov with fallback,

a(i) = 0.0367 log(i) + 0.4647 . (4.2)

The R2 of the O(1) Markov fit is 0.8717, and the R2 for the O(2) Markov fallback is

0.8956. The fits are good for long traces (i > 100), but have larger errors for short traces

(i < 100).

We also investigated the correlation of accuracy and trace length in another way. We

had 6,202 users, and each user had a different trace length. Let u(i) be the number of

users whose trace had at least i moves. At each step, some users were predicted correctly,

while the other users were predicted incorrectly. Let A(i) be the number of users whose

prediction at move i was correct. The ratio of correct predictions at move i is A(i)/u(i).

Figure 4.28 shows the ratio for O(1) Markov and O(2) Markov with fallback. Actually, this
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Figure 4.27: Correlating accuracy with trace length

102



plot smoothes each curve by plotting the median ratio within each bucket of 20 moves. The

resulting curves look similar to those in Figure 4.27. Again, the ratio of correct prediction

increased rapidly for short traces, then increased slightly for longer traces.

In general, prediction accuracy was quite good for traces with at least several hundred

moves, with minimal improvement after that.

4.1.9 Other metrics

Of course, prediction accuracy is not the only metric we could use to compare location

predictors. In Figure 4.29 we show the size of the predictors’ data structures, at the end of

processing each user trace and making predictions.1 As with the accuracy metric, we plot

the table size for each predictor as a distribution across all users. For Markov predictors,

we define the size to be the number of entries in the (sparse) transition matrix, except for

the recency-based O(1) Markov, which simply needs to record the location of the latest

transition for each location ever visited. For LZ predictors, we define the size to be the

number of tree nodes. (Since the size of each table entry or tree node is implementation

dependent, we do not measure table sizes in bytes. Note that the hidden constant factors of

each of the data structures could make a big difference.)

Clearly the recency-based O(1) Markov had the simplest and smallest table, by far. In

second place are the O(2) Markov and LZ predictors. PPM used more space, and the LZP

and LeZi predictors used by far the most space.

Although the medians of O(2) Markov and LZ predictors appear to be similar, on a

closer examination it is clear that the LZ predictor had a much higher maximum. Indeed,

this plot is truncated at the right side; for one user, LZ used 17,374 nodes. LeZi used as

1The table size of SPM predictor is not shown in the plot. To reduce the software development time, we
used an inefficient data structure to represent the user trace. It is not fair to compare this structure with the
table size of other predictors. A more efficient data structure can be found in the literature [JSA00].
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Figure 4.28: Correlating ratio of correct prediction with step
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Table 4.1: Running time per prediction

predictor time† (millisecond/prediction)
O(1) Markov 0.055
O(2) Markov 0.055

O(2) Markov with fallback 0.056
O(1) Markov Recent 0.054
O(2) Markov Recent 0.054

O(2) Markov Recent with fallback 0.055
LZ 0.055

LZ with fallback 0.056
LeZi 0.058

O(2) PPM 0.086
O(5) PPM 0.099

SPM with α=0.5 3.37
SPM with α=0.25 3.65

† The values are the average of 20 runs.

many as 23,361 nodes! The Markov predictor, on the other hand, never used more than

5,000 table entries.

Computational complexity is another important metric, in some applications; we leave

the asymptotic analysis to the theoretical literature. Here, we present our experimental

running time for each of the predictors in Table 4.1. The values shown in Table 4.1 were

the average of 20 runs, on a Linux computer with 2 2.80GHz Pentium-4 CPUs and 2 GB

memory. Note that we evaluated the running time of these predictors on our data (e.g., aver-

age milliseconds per prediction), but we have not yet tuned our implementations (we used

a slow string-matching algorithm for SPM). The simpler Markov predictors had running

time similar to the LZ predictors, and both were faster than PPM and SPM predictors.
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4.2 Joint Time and Location Prediction

In this section, we examine the time predictors and the joint-time-and-location predictors.

In evaluating these predictors, we used a two-month trace that was collected from October

2003 to November 2003.

Note that, in these experiments, we did not count the metrics for moves from and to

OFF. There were many stationary users in the network. They just got on and off the

network, and did not change APs when they were on. We trained our predictor with the

October trace data and counted the metrics only for November. A few users appeared in

October, but never showed up in November, so it is possible that training our predictors on

the history of handoffs of these users may contribute negatively to the aggregated profile.

4.2.1 Time of day prediction

We first used the O(k) Markov predictor to predict the time of day, e.g., the hour of the

day, for the next handoff; each quantized time value represents a symbol in the history. The

interval size (e.g., one hour) determines the number of states, hence the complexity of the

Markov model. Figure 4.30 shows the handoff-time prediction results using this Markov

time of day predictor. We also implemented a fallback mechanism that uses lower-order

Markov predictions whenever a higher-order predictor did not have enough history for the

computation. The results show that the fallback helped the predictor.

There are two sets of curves in Figure 4.30. The upper set of curves are the location-

dependent predictions, which means the predictor used only the history from the user’s

current location. These curves show low accuracy for both O(1) and O(2) Markov pre-

dictors, even with the fallback mechanism. The median accuracy of the O(2) Markov

predictor with fallback was about 15% higher than the O(2) Markov predictor without fall-

back. Figure 4.30 shows that all the location-dependent Markov predictors predicted the
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Figure 4.30: Accuracy of time of day prediction using O(k) Markov predictors. The time
of the day is quantized into one-hour intervals. The key “LD” means location dependent
and “LI” means location independent. The notation O(2f) means O(2) Markov with fall-
back.
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user’s moving time with median accuracies less than 40%. The higher-order Markov pre-

dictor without fallback did not perform as well as lower-order Markov predictors. The O(1)

Markov predictor performed almost as same as the O(2) Markov predictor with fallback.

The lower set of curves are location independent. These predictors used the history

without regard to location. The location-independent Markov predictors had higher predic-

tion accuracies than the location-dependent ones. There was not much difference between

O(1) and O(2) Markov predictors. The median accuracies of both predictors were near

80% for the one-hour interval.

When we used a smaller interval, say 10 minutes, the accuracies were lower. The me-

dian accuracies for location-independent prediction, as shown in Figure 4.31, were about

60%. The O(1) Markov predictor beat the O(2) Markov predictors, even with fallback.

This indicates that using longer history of handoff times does not help handoff-time pre-

diction.

Large intervals improve accuracy but degrade the precision to a point that may not be

useful for some applications. Although it may be useful to predict the time of day for the

next handoff, the one-hour interval may seem too large. Even a precision of 10 minutes is

not acceptable for some applications. In summary, the Markov time of day predictor is not

able to predict the time precisely.

4.2.2 Duration prediction

The user’s movement time is hard to predict. It may be easier to predict how long a user

will stay in his current location. Intuition suggests that people tend to stay at APs in specific

patterns. One specific behavior we expected was a similarity in the residence times. We first

experimented with Markov predictors to search for stationary patterns in the user history.

Note that, to conduct Markov predictions, we needed to quantize the durations as symbols.
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Figure 4.31: Accuracy of time of day prediction using O(k) Markov predictors. The time
of the day is quantized into 10-minute interval. The key “LD” means location dependent
and “LI” means location independent. The notation O(2f) means O(2) Markov with fall-
back.

110



Figure 4.32 explores the performance sensitivity against different orders of dependency

on the previous durations as well as the sensitivity to the quantization interval. In this

figure the accuracy metric is the ratio of the number of correct predictions to the number

of all attempted predictions. Similar to location prediction, a prediction is correct if the

predicted value was in the same interval as the actual duration; otherwise, it is incorrect.

The results demonstrate that a 10-minute interval was about 20% less accurate than a one-

hour interval for the same order Markov predictor. The rightmost curve, i.e., the O(2)

Markov predictor with fallback using an one-hour interval, is the best with a median value

of 0.88. The worst is the O(2) Markov predictor without fallback using 10-minute interval,

with a median of 0.53. It is not surprising that the bigger interval led to higher accuracy,

because there was a higher probability that the actual duration falls within the interval.

Moreover, with a bigger interval the predictor had fewer states, reducing the chance of

choosing the wrong state. The lagging performance of O(2) with no fallback is because

we count the cases where predictor cannot find a similar previous context as unsuccessful

predictions. Yet, the fallback results suggest that whenever there is sufficient context, O(2)

provides better accuracy than O(1). The location-dependent Markov duration predictors

were less accurate than the location-independent Markov predictors. Overall, the Markov

predictor fared poorly at predicting duration.

Now consider the moving-average predictor. Since this predictor can operate on contin-

uous variables, we do not need to quantize the input to the predictor. However, the accuracy

metric itself requires that we quantize the output of the predictor. With a quantization inter-

val of one hour, we found that the median accuracy varied from 85% to 90% for the exper-

imented prediction orders and dependencies, which is higher than the location independent

Markov time of day predictor with the same one-hour interval. Figure 4.33 explores dif-

ferent orders of moving-average predictors as well as the location dependence. Although

the curves are close to each other, the accuracies of the location-dependent moving-average

111



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fr
ac

tio
n 

of
 u

se
rs

accuracy

interval=10min O(1) LI
interval=10min O(2) LI

interval=10min O(2f) LI
interval=60min O(1) LI
interval=60min O(2) LI

interval=60min O(2f) LI
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predictors were slightly worse than the results of the location-independent predictors. For

both cases, using a one-hour interval, the curves of the results cross over and are close.

However, when using a 10-minute interval (Figure 4.34), the higher-order predictors per-

formed better than lower-order ones; whereas, the location-independent predictors still are

better than location-dependent ones. Better performance of the location-independent model

suggests that a user spent similar amounts of time at different APs in her subsequent moves,

while the residence time at the same AP exhibited larger deviations.

Although accuracy is a sensible measure for discrete input/output predictors such as

the Markov predictor, it is not as suitable for continuous input/output predictors. Many

applications want to know how predictions deviated from the actual value. Therefore, we

used the earliness and lateness metrics to measure the error of the duration prediction.

Figure 4.35 compares three predictors in terms of the earliness using each of their

best observed results within a set of parameters that we explored. Clearly, the Markov

duration predictor was superior. The CDF duration predictor was slightly less accurate

than the moving average duration predictor. Nonetheless, all of these predictors failed

to predict duration accurately for many users. The median user experienced an average

earliness of 604, 1156, and 1218 seconds, for location-dependent O(2) Markov duration

predictor using 10 minutes interval, O(1) location-independent moving average predictor,

and CDF duration predictor using probability 0.1, respectively. The 80% percentile user

had an average earliness of 1662, 1690, and 4479 seconds, for the above three predictors,

respectively. Although these average earliness values may be skewed by exceptionally

early predictions, many users had higher averages and the range was quite broad. Still, for

some applications it may be possible to use these predictions.

We also explored the lateness metrics for all the above four predictors. We found similar

broad distribution and extremely high mean lateness. The median user had mean lateness

of 1000 to 10,000 seconds. Figure 4.36 shows the best observed curves of each of their
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Figure 4.33: Duration prediction using moving average predictors. The prediction output
is quantized into one-hour intervals to compare with the actual duration.
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Figure 4.34: Duration prediction using moving average predictors. The prediction output
is quantized into 10-minutes intervals to compare with the actual duration.
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Figure 4.35: Comparison of earliness measurement of predictions: Markov duration pre-
diction, CDF duration prediction, and moving average duration prediction. The curves in
the plot are the best observed curves of each of their predictors, across a set of parameters
we explored. We truncated at 20,000 seconds. Here, curves toward the left are better. That
differs from the previous cumulative plot.
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predictors, across the set of parameters we explored. The lateness numbers were even

larger than the earliness numbers.

The accuracy, earliness, and lateness metrics indicated that a precise time prediction

is not a realistic goal over our real WLAN traces. This fact motivated us to investigate

predictors with “soft” outputs that represent the likelihood of the events rather than their

exact values, e.g., what is the likelihood of leaving the current location within 5 minutes?

Such likelihoods in time prediction may depend on how long the user has stayed in his cur-

rent location as well as the past history and predicted future location. Since the accuracy,

earliness, and lateness metrics are not suitable to measure the quality of such predictions,

we use the under-provision and over-provision metrics to quantify the errors in probabil-

ities. In what follows, we present our results for joint time and location prediction, i.e.,

MarkovCDF predictor, using under/over-provision metrics.

4.2.3 Joint Time and Location Prediction

For joint time and location prediction, we combine the Markov location and the CDF du-

ration predictors. This joint predictor returns a list of possible next locations with the

probability for each location, to which the user may move within a specified time.

In Figures 4.37–4.40, we show the under-provisioning and over-provisioning per user

and per AP, where the latter helps us to understand whether the predictability is an attribute

of the location or of the user. Results reflect the performance differences for different

prediction orders and for the cases when individual or aggregate histories are used. The

individual predictor used only this user’s prior handoff history, while the aggregate pre-

dictor used the combination of all users’ prior handoff histories. In these experiments, the

predictions are updated at the end of every 60-second time slot, computing the handoff

probability for the next 60-second interval. As a comparison, we also show the results of
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Figure 4.36: Comparison of lateness measurement of predictions: Markov duration pre-
diction, CDF duration prediction, and moving average duration prediction. The curves in
the plot are the best observed curves of each of their predictors, across a set of parameters
we explored. We truncated at 20,000 seconds. Here, curves toward the left are better.
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the NG predictor in these plots. We use one month’s traces to construct a directed graph

representing transition history and then use the graph for the NG predictor to predict the

probabilities on the second month’s traces.

For both under-provision and over-provision, lower values (upper curves) represent bet-

ter performance. Figure 4.37 shows the CDF plots of average under-provision for users and

Figure 4.38 shows the CDF plots of average under-provision for APs. The aggregate-profile

predictors used all users’ history information so that if a particular user did not visit an AP

before, the predictor could still make a prediction based on the movements of other users at

that AP. The probabilities spread out over many locations, perhaps far more than a single

user usually visited. Furthermore, the probabilities depended on how long the user had

stayed at the current location. Thus, on one hand, for a given time, the predictor might pre-

dict the user would move with a low probability. On the other hand, the probabilities might

also be skewed by some extreme users who bounce back and forth among several APs.

Therefore, the provision by the aggregated predictor at the location where the user actually

moved was too little. In contrast, the individual-profile predictor returned probabilities that

reflected the user’s personal handoff pattern, so the user was usually better provisioned.

The NG predictor can predict a location that the user had not visited before, but it did not

consider how long the user had stayed in the location. It always expected the user to move

within the given period. As a result the NG predictor made higher under-provision than the

individual-profile MarkovCDF predictors. Although the NG predictor beats the aggregate-

profile MarkovCDF predictors for most users, the O(2) aggregate-profile MarkovCDF pre-

dictors made lower under-provision for most APs than the NG predictor.

Within each group of individual or aggregate profile MarkovCDF predictors, the higher-

order predictors made lower under-provisions because they made more accurate predic-

tions.

Figure 4.39 and Figure 4.40 show the over-provision metrics. Clearly, the NG predictor

119



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ra

ct
io

n 
of

 u
se

rs

under provision

NG
aggregate MarkovCDF O(1)
aggregate MarkovCDF O(2)
individual MarkovCDF O(1)
individual MarkovCDF O(2)

Figure 4.37: Average under-provision for users. Aggregate table and per-user table are
compared. Lower under-provision numbers are better.
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Figure 4.38: Average under-provision for APs. Aggregate table and per-user table are
compared. Lower under-provision numbers are better.
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far over-provided due to its assumption that the user will always leave within the period.

The individual-profile MarkovCDF predictors still fared better than the aggregate profile

predictors.

Both the under-provision and the over-provision were computed by accumulating the

absolute errors of each individual user’s predictions. For our data set, however, there were

more than 2000 users during each day. With some reservation policies, an individual user’s

over-provision may benefit other users who are under-provided by their own prediction. To

explore the overall performance of the integrated location and time predictors, we describe

our VoIP case study in the next chapter.

In all four provisioning plots, for a given fraction of users, a low provision number is

better. The O(2) prediction was slightly better than others with the same profile. The order

of predictors did not make much difference, but the use of individual versus aggregate tables

made a difference. It is similar for the over-provision case in Figure 4.39 and Figure 4.40.

Aggregate profile prediction made more errors in terms of the under/over-provision, be-

cause the profiles were averaged and may not reflect an individual user’s mobility pattern.

In Figure 4.37, half of the users had average under-provision greater than 92% for the per-

user based predictors, while it was above 97% for the aggregate profile predictors. The

median under-provision for APs, in Figure 4.38, was 85% and 95% for per-user based and

aggregate profile predictors, respectively.

For all the predictors, when using the same order and fallback, the individual predictor

beat the aggregated predictor, indicating substantial variation across users.

We include a curve for the results of the NG predictor, which did not make large under-

provision errors, but it made huge over-provision errors. The NG predictor was not de-

signed to predict the time of handoff and was thus overly aggressive at provisioning.
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Figure 4.39: Average over provision for users. Aggregate table and per-user table are
compared. Lower “over provision” numbers are better. We truncated the graph at 0.004.
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Figure 4.40: Average over provision for APs. Aggregate table and per-user table are
compared. Lower “over provision” numbers are better. We truncated the graph at 0.004.
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4.3 Conclusions

In this section, we summarize our evaluation of handoff prediction experiments.

4.3.1 Handoff location predictors

We conducted the first comprehensive, empirical comparison of four important classes of

handoff-location predictors, to gauge which most accurately predict the next cell for a

mobile wireless-network user. Specifically, we compared four major families of domain-

independent on-line location predictors (Markov, LZ, PPM, and SPM) by measuring their

accuracy when applied to two years of handoff traces we collected from 6,202 users of

Dartmouth College’s wireless network. We found, surprisingly, that the complex predic-

tors were at best only negligibly better than the simple Markov predictor, a result that has

important implications for anyone developing or using such predictors in real applications.

Many of the traces in our collection were short, fewer than 100 movements (cell changes),

and all predictors fared poorly on most of those users. These predictors typically required

a fair amount of history to initialize their probability tables to a useful state. In general

we found that accuracy increased sharply with trace length for short traces (fewer than

100 moves), gradually for medium traces (101–1000 moves), and barely increased for long

traces (over 1000 moves). Nonetheless, in this chapter we show results over all traces,

sometimes focusing on long traces to highlight trends.

In general, the simple low-order Markov predictors worked as well or better than the

more complex compression-based predictors, and better than high-order Markov predic-

tors. In particular, O(3) (or above) Markov predictors did not improve over O(2) Markov

predictors, and indeed reduced accuracy by failing to make predictions much of the time.

Most of the predictors, as defined in the literature, fail to make a prediction when faced

with a context (recent history) that has never been encountered in the user’s full history.
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We found it was simple to add “fallback” to most predictors, allowing the predictor to use

shorter and shorter context until it was able to make a prediction, and that this fallback

often improved the predictor’s accuracy substantially.

In particular, O(2) Markov with fallback beat or equaled all of the other predictors,

even though the others have better asymptotic behavior [CJv03]. We found O(2) Markov

with fallback to be the best overall predictor. It was simple to implement, had relatively

small table size, and had the best overall accuracy.

We introduced and evaluated a simple alternative to the frequency-based approach to

Markov predictors, using recency (probability 1 for the most recent transition, 0 for all oth-

ers) to define the transition matrix. Although this recency approach was the best approach

among O(1) Markov predictors, it was the worst among O(2) Markov predictors.

We found most of the literature defining these predictors to be remarkably insufficient

at defining the predictors for implementation. In particular, few defined how the predictor

should behave in the case of a tie, that is, when there was more than one location with the

same most-likely probability. We investigated a variety of tie-breaking schemes within the

Markov predictors, but found that the accuracy distribution was not sensitive to the choice.

Since some of our user traces extend over weeks or months, it is possible that the user’s

handoff patterns do change over time. All of our predictors assumed that the probability

distributions were stable. We briefly experimented with extensions to the Markov predic-

tors that “age” the probability tables so that more recent movements have more weight in

computing probability, but the accuracy distributions did not seem significantly affected.

We examined the original LZ predictor as well as two extensions, prefix and PPM. LZ

with both extensions is known as “LeZi.” We found that both extensions did improve the

LZ predictor’s accuracy, but that the simple addition of fallback to LZ did just as well, was

much simpler, and had a much smaller data structure. To be fair, LeZi tries to do more than

we require, to predict the future path (not just the next move). We also examined the PPM
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and SPM predictors, but found that they had little or no improvement compared to O(2)

Markov with fallback. We found this result to be surprising, since the LZ-based predictors

and SPM have better theoretical behavior (they are asymptotically optimal for a larger class

of sources). However, for our real data, with its large number of short and medium traces

(as well as other phenomena that are hard to capture theoretically), we found that O(2)

Markov with fallback performed better in practice.

We stress that all of our conclusions are based on our observations of the predictors

operating on over 6000 users, and in particular on whether a given predictor’s accuracy

distribution seems better than another predictor’s accuracy distribution. An individual user

may experience an outcome quite different from those in our conclusion. We studied the

correlation between the entropy of a user’s movements and the prediction accuracy. The

correlation was striking, and indeed the correlation coefficient is -0.95 (a coefficient of 1.0

or -1.0 represents perfect correlation). This strong correlation indicates that some users

with high entropy are doomed to poor predictability.

There was a large gap between the predictor’s accuracy distribution and the “optimal”

accuracy bound (a rather coarse upper bound), indicating that there is substantial room for

improvement in location predictors. Our optimal bound, however, may be overly optimistic

for realistic predictors, since it assumes that a predictor will predict accurately whenever

the device is at a location it has visited before. We suspect that domain-specific predictors

will be necessary to come anywhere close to this bound.

Overall, the best handoff-location predictors had an accuracy of about 65–72% for the

median user. On the other hand, the accuracy varied widely around that median. Some

applications may work well with such performance, but many applications will need more

accurate predictors; we encourage further research into better predictors, as long as they

are experimentally verified.
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4.3.2 Joint time and location predictors

We extended our experiments of handoff-location prediction to handoff-time prediction.

We explored several ways to predict of handoff time: predicting a time bucket during

which the handoff would happen; predicting how long that a user would stay at the cur-

rent location; and predicting the probability that a user would move to another location

within a certain time period. We also defined two metrics to measure the prediction perfor-

mance: one was the simple correctness measurement, the other was the earliness/lateness

measurement.

We explored the predictors’ dependencies across location and time. We further inves-

tigated whether group handoff or individual handoff models are more realistic. We found

that the prediction quality varied widely from user to user and from access point to access

point. In the over- and under-provisioning results, for example, we found the distributions

to be highly skewed.

Our results show that predicting the precise time of a handoff with a granularity in the

order of seconds and minutes is generally not possible by using only the handoff history

of the mobile devices. Therefore, we explored predictors that can return a range of values,

can express confidence in their prediction (a probability), and can express inequalities (the

probability that the visit will last at least t seconds, rather than predicting departure after

precisely t seconds). We observe that predictions for individual events still tend to be highly

skewed even for such soft prediction outputs.

In summary, the contribution of this chapter is that we used extensive empirical lo-

cation data collected from real users in a real network to quantitatively evaluate several

handoff-location predictors, hand-off time predictors, and joint-time-and-location handoff

predictors. We discovered that the more complex predictors do not necessarily perform

better than the simpler Markov predictors. We further investigated the behavior of the pre-
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dictors by exploring tie-breakers, alternatives such as recency versus frequency, and aging.

We examined how trace length affects accuracy, and we explored how the entropy of a

user’s history is related to the prediction accuracy for that user. Our results bring impor-

tant insights to the design of handoff predictors, and we provide valuable advice to anyone

wanting to use domain-independent location predictors: keep it simple.
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Chapter 5

Case Study: Bandwidth Reservation

The results of the previous section indicate that it is in general difficult to obtain accurate

predictions for handoff times by relying only on the handoff history of WLAN clients.

Nonetheless, even a modest prediction accuracy may help some applications that require

advance information of handoffs. In this chapter, we demonstrate this point by working

with a VoIP application. This application is a natural choice, considering the increasing

popularity of VoIP and related multimedia applications on WLANs. Furthermore, voice has

been extensively studied in the context of cellular networks, and this chapter complements

those studies. Our evaluation framework can be generalized to other applications that have

a notion of a session and that are also bandwidth-constrained.

Our goal is to study the effectiveness of handoff prediction on voice applications with

realistic mobility traces, rather than to outperform all the prior work in cellular networks.

Our evaluation simulator used the dataset [KHA04], which contains both laptops and VoIP

handsets. Although most laptops were not used for voice applications, their wireless net-

working behavior experienced similar patterns as voice specific devices (Cisco phones and

Vocera devices in our dataset), as shown in Section 2.3.

Since our prediction algorithms use historical handoffs, we assume that there is a cen-
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tralized or distributed mechanism in place for (i) collecting the history, (ii) performing

online predictions, and (iii) distributing prediction results to relevant application agents.

The challenge of designing scalable yet optimal resource allocation that relies on online

measurements is inherent to all distributed systems and is beyond the scope of this disser-

tation.

Although the current specification of 802.11 WLAN does not provide bandwidth reser-

vation mechanisms, there has been much research on this issue. For example, Shankar and

Choi [SC02] present a MAC-level QoS signaling protocol for IEEE 802.11e WLAN and its

interaction with higher layer signaling protocols including Resource ReSerVation Protocol

(RSVP) [BZB+97] and Subnet Bandwidth Manager (SBM) [GPS+00].

We assume that the wireless network is capable of supporting roaming telephone users,

and that it is able to reserve bandwidth for users. When a user has an ongoing call and

moves from one access point (AP) to another, we refer to that call as a handoff call. When

a user initiates a call while associated with an AP, we refer to that call as a new call. All calls

require a minimum dedicated bandwidth at their current AP. If the AP lacks the bandwidth

for a new or handoff call, the call fails: a failed handoff call is a “call drop” and a failed new

call is a “call block.” The literature often assumes that call drops are much more frustrating

to users than call blocks, so the goal of handoff prediction in this particular application is

to reserve bandwidth, in advance of handoffs, to reduce call drops at the expense of a small

increase in call blocks. Specifically, we define the drop rate

rd =
Nd

Nh

, (5.1)

where Nd is the number of dropped handoff calls, and Nh is the number of attempted

handoffs.
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We define the block rate

rb =
Nb

Nc

(5.2)

where Nb is the number of blocked calls, and Nc is the number of attempted calls.

Note the difference in the denominator of each equation. The drop rate rd is not nor-

malized by the total number of calls, or even attempted calls, but by the actual number of

call handoffs, because every call handoff is an opportunity for a call drop, whereas only

call attempts are opportunities for call blocks.

Our simulator was driven by the same two-month dataset we used to evaluate joint time

and prediction in Section 4.2. The data were collected during October and November 2003,

with 545 access points and 6,181 users. Because of the difficulty of obtaining real handoff

data from wireless phone service providers, this data set is the best available data that we

know to approximate wireless phone users’ handoffs. Same difficulty for calling patterns,

so we generated a synthetic calling pattern to model the hypothetical telephony behavior of

these users.

We make the following assumptions about users and calls:

1. All calls require the same, fixed amount of bandwidth B.

2. The bandwidth of an AP is fixed and the entire capacity C of every AP is used for

VoIP calls. (Or, a fixed capacity C is reserved for VoIP calls.)

3. The duration of a call is exponentially distributed with mean λd.

4. The length of each user’s inter-call time (between the end of one call and the begin-

ning of the next call) is exponentially distributed with mean λi.

5. The calling behavior of every user on the campus shares the same model and param-

eters.
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Below, we provide the details of our bandwidth reservation policies and call admission

control mechanisms.

5.1 Bandwidth reservation and admission control policies

Our predictor evaluations in Section 4.2 show that when predictors returned an handoff time

as the output, the results were highly skewed, and making distinct reservations for each user

became impractical. Thus, we turned our attention to predictors that can return soft values,

i.e., handoff probabilities, and designed reservation mechanisms that dynamically allocate

bandwidth for all handoff calls using these soft values.

We compared the simulation results when the MarkovCDF predictor was used for pre-

dictions, to the simulation results without prediction, and to the results of using all neigh-

boring nodes as predictions, namely, the NG predictor.

We experimented with four bandwidth-reservation strategies that install bandwidth reser-

vations on behalf of all calls in progress, using the predictors to anticipate next handoff

location and time:

• Using all proportional probabilities non-normalized. For some users, for instance,

when the predictor outputs a vector:

〈(A, 0.4), (B, 0.3), (C, 0.2)〉,

we reserve 0.4B at access point A, 0.3B at access point B, and 0.2B at access point

C, where B is the bandwidth required for a single voice call.

• Using normalized proportional probabilities. When, the predictor outputs a vector

such as

〈(A, 0.4), (B, 0.3), (C, 0.2)〉,
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we reserve 0.4
0.4+0.3+0.2

B at access point A, 0.3
0.4+0.3+0.2

B at access point B, and 0.2
0.4+0.3+0.2

B

at access point C, where B is the bandwidth required for a single voice call.

• Using top-3 normalized probabilities. When, the predictor outputs a vector such as

〈(A, 0.3), (B, 0.3), (C, 0.2), (D, 0.1), (E, 0.1)〉,

we ignore all but the top three and normalize; that is, we reserve 0.3
0.3+0.3+0.2

B at

access point A, 0.3
0.3+0.3+0.2

B at access point B, and 0.2
0.3+0.3+0.2

B at access point C. We

do not reserve any bandwidth at access point D or E. This method ignores the tiny

probabilities (often numerous) in the prediction vector of the static neighbor predictor

or aggregate CDF predictor.

• One B reservation at top 3 APs. When, the predictor returns a vector such as

〈(A, 0.3), (B, 0.3), (C, 0.2), (D, 0.1), (E, 0.1)〉,

we reserve 1B each at access points A, B and C. As with the previous case, we

ignore APs with small probabilities. This policy reserves up to 3B, whereas the

above policies reserve at most 1B. The purpose is to compare with prior literature

using this policy and to avoid under-provisioning.

For the CDF-based predictors, all these strategies update the reservations whenever a

user starts a call successfully, every T seconds thereafter (where T is a design parameter)

until the call ends, and whenever the call is handed off to another AP. For the static neigh-

bor predictor, these reservations are placed as soon as a user starts a call successfully and

whenever the call is handed off to another AP; the reservations are never updated as the

predictions do not change over time.
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A given AP may hold reservations for many callers, and it allows itself to be over-

booked (that is, the total reservations may exceed the capacity of the AP). Any incoming

handoff call will be accepted (not be dropped) whenever there is sufficient unused band-

width regardless of how much bandwidth is reserved by this or any other caller; otherwise

it is dropped. If the arriving caller had a reservation, its reservation is also removed. A new

call will be accepted whenever there is sufficient unused and unreserved capacity; other-

wise it is blocked. Thus, handoff calls have priority over new calls, and reservations may

reduce call drops but may increase call blocks.

We summarize our admission-control procedure with pseudo-code. For each AP, let

C denote the total capacity, U denote the bandwidth used by current calls, R denote the

bandwidth reserved, and let Ru denote the reservation of user u at this AP, according to one

of the above policies. For any AP, the reservation algorithm is as follows:

• Whenever reservations Ru are updated,

R =
∑

u Ru;

• When a new call begins,

if (U + B ≤ C −R) // unreserved bandwidth available

then U = U + B; // call allowed to begin

else call is blocked;

• When user u with an active call hands off to this AP,

if (U + B ≤ C) // any bandwidth available

then U = U + B; // call allowed to continue

else call is dropped;

R = R−Ru;

• When a call ends or leaves the AP,
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U = U −B;

Reservations are cancelled (R = R−Ru at all reserved APs).

5.2 Call generation

As mentioned above, we generate a synthetic calling pattern for each of our users. The

duration of a call is exponentially distributed with mean λd. The length of each user’s

inter-call time (between the end of one call and the beginning of the next call for the same

user) is exponentially distributed with mean λi.

The Dartmouth network is not yet heavily loaded. To increase congestion, we set both

the mean duration λd and the mean inter-call time λi to 15 minutes (900 seconds).

5.3 Training

The quality of predictions in the CDF predictors depends on whether, in the past, there have

been enough observations at the APs where the user will be associated. To prevent such

lack of observation, we train the predictor with the handoff traces of the first month without

making calls or reservations, and start measurements in the second month. Thus, when

training is applied, we measure the application performance during the second month only.

For the sake of completeness, we also provide the performance results with no predictor

training.
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Table 5.1: Predictor usage
predictor Markov MA CDF MarkovCDF NG

usage location yes no no no no
time of day yes no no no no
duration yes yes yes no no
integrated no no no yes no

metrics accuracy yes yes yes no no
earliness/lateness yes yes yes no no
under/over provision no no no yes yes

dependency location† yes/no yes/no yes yes yes
time‡ no no yes yes no

profile individual yes yes yes yes no
aggregate yes no yes yes yes

† The prediction depends on current and/or more previous visited locations.
‡ The prediction depends on how long a user has been at the current location.

5.4 Results

We developed a simulator1 that was driven by the handoff traces collected at Dartmouth

and the calls generated using the pattern described in Section 5.2.

In Chapter 3, we present a set of predictors. Now we choose the applicable predictors

for our simulator. Table 5.1 provides a summary of the usage, metric, dependency, and

profile for those predictors.

Since MarkovCDF and NG can be measured in under/over provision, they are suitable

for bandwidth reservations. We ran our simulation using the following predictors:

• MarkovCDF individual predictor O(2) with fallback,

• MarkovCDF aggregate predictor O(2) with fallback,

• NG predictor trained on the October 2003 data.

The two MarkovCDF predictors were run with and without training. All three predic-

tors were run with the four reservation strategies described above.
1Thanks to Udayan Deshpande for implementing and experimenting with the simulation.
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We ran each case 10 times, each time with a different seed for the traffic-generation

module. Unless otherwise mentioned, the AP capacity C = 5B and T is 300 seconds.

We plot the relative improvement in the drop rate (Figure 5.1) and relative worsening of

the block rate (Figure 5.2) as compared with a system without prediction-based bandwidth

reservation. Note that these plots show the means of the ratios, with mean computed across

the many seeds; that is, we compute for each predictor

mean
(

r′d
rd

)

and

mean
(

rb

r′b

)
,

where r′d is the base drop rate, i.e., when no predictor was used, and rd is the drop rate after

using a given predictor. Similarly, r′b is the block rate of using no predictor and rb is the

block rate after using a predictor.

The reason we use improvements and worsenings in the plots rather than the nominal

values is that the drop rates and the block rates vary greatly over the different seeds to the

call generation module. Hence it makes more sense to summarize the improvements in

drop rates and the worsenings in block rates. To read the plots, if the value for the “Base

DR/Reserved DR” ratio was 2, we say that the drop rate without prediction was double the

drop rate with prediction. Similarly, if the value for the “Reserved BR/Base BR” ratio was

1.5, we say that the block rate with prediction was 50% higher than the block rate without

prediction.

In Figures 5.1 and 5.3 we observe that the Base DR/Reserved DR ratio lies between 1.4

and 22.4. From Table 5.2 we can see that the average DR with no prediction was 13.8%;
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Figure 5.1: The ratio (Base DR/Reserved DR) for all the predictors with training. The error
bars show the standard deviation σ among the various seeds of the simulation. A higher
ratio is better.
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Figure 5.2: The ratio (Reserved BR/Base BR) for all the predictors with training. The error
bars show the standard deviation σ among the various seeds of the simulation. A higher
ratio is worse.
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Figure 5.3: The ratio (Base DR/Reserved DR) for all the predictors without training. The
error bars show the standard deviation σ among the various seeds of the simulation. A
higher ratio is better.
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Figure 5.4: The ratio (Reserved BR/Base BR) for all the predictors without training. The
error bars show the standard deviation σ among the various seeds of the simulation. A
higher ratio is worse.
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prediction-based bandwidth reservation reduced drop rate to between 0.7% and 10%. We

see that the individual predictors tended to perform better than the aggregate predictors in

terms of drop rate and block rate. This implies that an individual user was more likely to

repeat her own patterns than to follow others’ patterns at the same AP.

Intuitively, if the drop rate improves, the block rate should worsen and vice versa. See

Figure 5.2 and 5.4 for plots of the lock rate changes. In an extreme case, the entire band-

width would be reserved for handoff calls and all new calls would be blocked. We expect

that the choice of predictor depends on what block rate one wishes to tolerate. From Ta-

ble 5.2, we see that on average the block rate with no prediction was 11.7%. With reserva-

tion, the block rate increases to between 13% and 41%. The 40% block rate was observed

in the case of the NG predictor. It is clearly important to reserve bandwidth, but not too

much. The ideal ratio may be achieved by the right choice of predictor and by tuning

parameters such as T .

The expectation that improvements in drop rate are correlated to the worsening in the

block rate turn out to be false in some predictors. For example, in case of the MarkovCDF

individual predictor, when compared to the MarkovCDF aggregate predictor (Figure 5.1),

we expect the block rate for the former to worsen more than that for the latter predictor;

however, the opposite is true (Figure 5.2). We attribute this effect to higher probabilities

being returned by the MarkovCDF individual predictor for the more likely APs than the

MarkovCDF aggregate predictor. In effect, the predictions for the MarkovCDF individual

are better. Clearly, if smart predictions are made, we should be able to maintain a lower

block rate in spite of improvements in the drop rate.

Note that the standard deviation in the worsening of the block rate is very high. How-

ever, the standard deviation for the improvement in drop rate is quite low. Hence we submit

that, although the drop rate was controllable using the reservations, it was not tightly cou-

pled with the block rate.
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In the trained data set (Figure 5.1 and Figure 5.2), we note that the MarkovCDF indi-

vidual predictor improved the drop rate more than the MarkovCDF aggregate predictor. At

the same time they worsen the block rate to a lesser extent. This difference occurred be-

cause users on the campus network had individual patterns that show up in handoff traces

that are sufficiently long, but every user may not have behaved the same way and hence the

aggregate predictors predicted less accurately.

As expected, the improvement in drop rate is higher in the results of the simulations

that used predictors with one month of training data (Figure 5.1) than in the results of the

simulations without training (Figure 5.3). In the case of the static neighbor predictor, we

used training data from the month of October 2003. The NG predictor, however, does not

learn while it is used for predictions during simulation. Hence we use the same figures for

the NG in both figures.

The worsening in block rate is also higher in the results of the simulations that used

predictors with one month of training data (Figure 5.2) than in the results of the simulations

without training (Figure 5.4). The reason for this result is because, upon learning for the

extra month, the predictor predicts a wider range of future APs where reservations are

made, hence blocking other calls that may arrive at these APs.

5.5 Conclusion

In this chapter, we focus on quantifying the quality of mobile handoff predictions for VoIP

applications in a real large-scale WLAN environment.

We evaluated our MarkovCDF predictors (individual and aggregated) using two months’

handoff traces for a VoIP application with four bandwidth reservation schemes: top-3 prob-

abilities normalized, top-3 probability 1 bandwidth unit, all probabilities normalized, and

all probabilities non-normalized.
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The “top-3 probabilities normalized” reservation scheme did not provide much benefit

for the MarkovCDF individual predictor in terms of block rate. The reason is that there

were often not many more than 3 APs in the prediction vector of the MarkovCDF individ-

ual predictor anyway. So the limit of 3 that the “top-3 probabilities” scheme imposed is

superfluous.

The MarkovCDF aggregate predictors benefited from the “top-3 probabilities normal-

ized” scheme in terms of drop rate, because concentrating of reservations at fewer APs

provided more resources for users on the network that have similar behavior. Due to these

large reservations, however, there was more blocking and hence a higher block rate.

The neighbor graph predictor performed worse using the “top-3 probabilities normal-

ized” reservation scheme in both metrics. The drop rate did not improve as much as

the “all probabilities” scheme because the “top-3” scheme made fewer reservations. The

block rate worsened slightly more because of the concentrated reservations, similar to the

MarkovCDF aggregate predictor.

Hence it is a good idea to use the “top-3 probabilities normalized” reservation scheme,

as it cut down on the operations to be performed (such as reservations, notification of the

APs). Even in the NG predictor, it was beneficial to use this scheme; despite the higher

drop rate, the increase in block rate was far too large when there were many neighbors.

There is a tradeoff between the number of reservations, and the drop rate and the block

rate.

In our simulation, the “top-3 probabilities 1B” scheme provides only slight benefit in

drop rate over the others and worsens the block rate considerably more. The reason is

that it reserves 3B per prediction rather than 1B, system wide. Hence any scheme with

proportional probabilities is recommended.

For the two MarkovCDF predictors, the normalized version of the “all probabilities”

reservation scheme improved the drop rate more than the non-normalized version at the
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cost of higher block rate. Clearly the reason is that larger reservations were made on behalf

of the user.

When comparing the simulations with the trained predictors against the simulations

with the untrained predictors, we recall that the neighbor predictor is trained with the first

month’s data regardless, but it did not learn during the second month like the MarkovCDF

predictors do. As expected, the training in the MarkovCDF predictors generally benefits

the drop rate while worsening the block rate to a lesser extent.

These results show that even with moderate prediction accuracy, we can improve the

drop rate, while not worsening the block rate as much. We see that the simplistic neighbor

graph predictor will block considerably more calls than is acceptable in most systems,

because it does not predict time at all, neither does it focus on location prediction. Using

the predictors that we have presented helps us to be more discriminating in our reservations.

Ultimately, the choice of the reservation schemes with the predictors is important, and the

selection of a particular policy hinges on an operator’s relative importance of reducing

dropped calls versus avoiding more blocked calls.
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Chapter 6

Routing in Mobile Opportunistic

Networks

So far we have studied the handoff-prediction techniques and their applications in wireless

infrastructure networks. We now consider a different sort of network.

Routing in mobile ad hoc networks have been studied extensively. Most of these stud-

ies assume that a contemporaneous end-to-end path exists for the network nodes. Some

mobile ad hoc networks, however, may not satisfy this assumption. In mobile sensor

networks [WW06], sensor nodes may turn off to preserve power. In wild-animal track-

ing networks [JOW+02], animals may roam far away from each other. Other networks,

such as “pocket-switched” networks [HCS+05], battlefield networks [LR03, HA06] and

transportation networks [BGJL06, LCGZ05], may experience similar disconnections due

to mobility, node failure, or power-saving efforts.

One solution for message delivery in such networks is that the source passively waits for

the destination to be in the communication range and then delivers the message. Another

active solution is to flood the message to any nodes in communication range. The receiving

nodes carry the message and repeatedly flood the network with the message. Both solutions
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have obvious advantages and disadvantages: the first may have low delivery ratio while

using few resources; the second may have high delivery ratio while using many resources.

Many other opportunistic routing protocols have been proposed in the literature. Few

of them, however, were evaluated in realistic network settings, or even in realistic simu-

lations, due to the lack of any realistic people mobility model. Random walk or random

way-point mobility models are often used to evaluate the performance of those routing

protocols. Although these synthetic mobility models have received extensive interest by

mobile ad hoc network researchers [CBD02], they do not reflect people’s mobility pat-

terns [JLB05]. Realising the limitations of using random mobility models in simulations,

a few researchers have studied routing protocols in mobile opportunistic networks with

realistic mobility traces. In the Haggle project, Chaintreau et al. [CHC+06] theoretically

analyzed the impact of routing algorithms over a model derived from a realistic mobility

data set. Su et al. [SGdL06] simulated a set of routing protocols in a small experimental

network. Those studies help researchers better understand the theoretical limits of oppor-

tunistic networks, and the routing protocol performance in a small network (20–30 nodes).

Deploying and experimenting large-scale mobile opportunistic networks is difficult, so

we, too, resort to simulation. Instead of using a complex mobility model to mimic people’s

mobility patterns, we used mobility traces collected in a production wireless network at

Dartmouth College to drive our simulation. Our message-generation model, however, was

synthetic.

We study protocols for routing messages between wireless networking devices carried

by people. We assume that people send messages to other people occasionally, using their

devices; when no direct link exists between the source and the destination of the message,

other nodes may relay the message to the destination. Each device represents a unique

person (it is out of the scope of our work when a device maybe carried by multiple people).

Each message is destined for a specific person and thus for a specific node carried by that
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person. Although one person may carry multiple devices, we assume that the sender knows

which device is the best to receive the message. We do not consider multicast or geocast in

this dissertation.

Using realistic contact traces, which were derived from Dartmouth College’s dataset

as described in Section 2.1, we evaluated the performance of three “naive” routing proto-

cols (direct-delivery, epidemic, and random) and two prediction-based routing protocols,

PRoPHET [LDS04] and Link-State [SGdL06]. We also propose a new prediction-based

routing protocol, and compare it to the above in our evaluation.

6.1 Routing Protocol

A routing protocol is designed for forwarding messages from one node (source) to another

node (destination). Any node may generate messages for any other node, and may carry

messages destined for other nodes. We consider only messages that are unicast (single

destination).

DTN routing protocols can be described in part by their transfer probability and repli-

cation probability; that is, when one node meets another node, what is the probability that

a message should be transfered and if so, whether the sender should retain its copy. Two

extremes are the direct-delivery protocol and the epidemic protocol. The former transfers

with probability 1 when the node meets the destination, 0 for others, and no replication.

The latter uses transfer probability 1 for all nodes and unlimited replication. Both these

protocols have their advantages and disadvantages. All other protocols are between the

two extremes.

First, we define the notion of contact between two nodes. Then we describe five existing

protocols before presenting our own proposal.

A contact is defined as a period of time during which two nodes have the opportunity
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to communicate. Although we are aware that wireless technologies differ, we assume that

a node can reliably detect the beginning and end time of a contact with nearby nodes. A

node may be in contact with several other nodes at the same time.

The contact history of a node is a sequence of contacts with other nodes. Node i has a

contact history Hij , for each other node j, which denotes the historical contacts between

node i and node j. We record the start and end time for each contact; however, the last

contacts in the node’s contact history may not have ended.

6.1.1 Direct Delivery Protocol

In this simple protocol, a message is transmitted only when the source node can directly

communicate with the destination node of the message. In mobile opportunistic networks,

however, the probability for the sender to meet the destination may be low, or even zero.

6.1.2 Epidemic Routing Protocol

The epidemic routing protocol [VB00] floods messages into the network. The source node

sends a copy of the message to every node that it meets. The nodes that receive a copy of

the message also send a copy of the message to every node that they meet. Eventually, a

copy of the message arrives at the destination of the message.

This protocol is simple, but may use significant resources; excessive communication

may drain each node’s battery quickly. Moreover, since each node keeps a copy of each

message, storage is not used efficiently, and the capacity of the network is limited.

At a minimum, each node must expire messages after some amount of time or stop

forwarding them after a certain number of hops. After a message expires, the message will

not be transmitted and will be deleted from the storage of any node that holds the message.

An optimization to reduce the communication cost is to transfer index messages before
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transferring any data message. The index messages contain IDs of messages that a node

currently holds. Thus, by examining the index messages, a node only transfers messages

that are not yet contained on the other nodes.

6.1.3 Random Routing

An obvious approach between the above two extremes is to select a transfer probability

between 0 and 1 to forward messages at each contact. The replication factor can also be a

number between 0 (none) and 1 (all). We use a simple replication strategy that makes no

replicas. The message is transfered every time the transfer probability is greater than the

threshold. The message has some chance of being transferred to a highly mobile node, and

thus may have a better chance to reach its destination before message expires.

6.1.4 PRoPHET Protocol

PRoPHET [LDS04] is a Probabilistic Routing Protocol using History of past Encounters

and Transitivity to estimate each node’s delivery probability for each other node. When

node i meets node j, the delivery probability of node i for j is updated by

p′ij = (1− pij)p0 + pij, (6.1)

where p0 is an initial probability, a design parameter for a given network. Lindgren et al. [LDS04]

chose 0.75, as did we in our evaluation. When node i does not meet j for some time, the

delivery probability decreases by

p′ij = αkpij, (6.2)

where α is the aging factor (α < 1), and k is the number of time units since the last update.
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The PRoPHET protocol exchanges index messages as well as delivery probabilities.

When node i receives node j’s delivery probabilities, node i may compute the transitive

delivery probability through j to z with

p′iz = piz + (1− piz)pijpjzβ, (6.3)

where β is a design parameter for the impact of transitivity; we use β = 0.25 (as in [LDS04]).

ZebraNet [JOW+02] used a simple history-based routing protocol, which uses a similar

equation as 6.2 to estimate the probability that a node can communicate with the destina-

tion, the base station. Only one base station exists in ZebraNet.

6.1.5 Link-State Protocol

Su et al. [SGdL06] use a link-state approach to estimate the weight of each path from

the source of a message to the destination. They use the median inter-contact duration or

exponentially aged inter-contact duration as the weight on links. The exponentially aged

inter-contact duration of node i and j is computed by

w′
ij = αwij + (1− α)(t− tij), (6.4)

where t is the current time, tij is the time of last contact, and α is the aging factor. At the

first contact, we just record the contact time.

Nodes share their link-state weights when they can communicate with each other, and

messages are forwarded to the node that have the path with the lowest link-state weight.
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6.2 Timely-Contact Probability

We, too, use historical contact information to estimate the probability of meeting other

nodes in the future. But our method differs in that we estimate the contact probability

within a period of time. For example, what is the contact probability in the next hour?

Neither PRoPHET nor Link-State considers time in this way.

One way to estimate the “timely-contact probability” is to use the ratio of the total

contact duration to the total time. However, this approach does not capture the frequency of

contacts. For example, one node may have a long contact with another node, followed by a

long non-contact period. A third node may have a short contact with the first node, followed

by a short non-contact period. Using the above estimation approach, both examples would

have similar contact probability. In the second example, however, the two nodes have more

frequent contacts.

We design a method to capture the contact frequency of mobile nodes. For this purpose,

we assume that even short contacts are sufficient to exchange messages.1

The probability for node i to meet node j is computed by the following procedure. We

divide the contact history Hij into a sequence of n periods of ∆T starting from the start

time (t0) of the first contact in history Hij to the current time. We number each of the n

periods from 0 to n − 1, then check each period. If node i had any contact with node j

during a given period m, which is [t0 + m∆T, t0 + (m + 1)∆T ), we set the contact status

Im to be 1; otherwise, the contact status Im is 0. The probability p
(0)
ij that node i meets node

j in the next ∆T can be estimated as the average of the contact status in prior intervals:

p
(0)
ij =

1

n

n−1∑
m=0

Im. (6.5)

1 In our simulation, however, we accurately model the communication costs and some short contacts will
not succeed in transfer of all messages.
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To adapt to the change of contact patterns, and reduce the storage space for contact

histories, a node may discard old history contacts; in this situation, the estimate would be

based on only the retained history.

The above probability is the direct contact probability of two nodes. When considering

only one-node forwarding, we chose the node that has the highest contact probability to

forward to. This method is like the O(0) Markov predictor, which picks the most frequent

symbol. We are also interested in the probability that we may be able to pass a message

through a sequence of k nodes. Therefore, we need not only the node with highest contact

probability, but also all other nodes. With all nodes’ contact probability, we can compute

the k-order probability. Assuming nodes’ contact events are independent, we define the

k-order probability inductively,

p
(k)
ij = p

(0)
ij +

∑
r

p
(0)
ir p

(k−1)
rj , (6.6)

where r is any node other than i or j. Since node contact events may not be entirely inde-

pendent, we recognize that the above equation only estimates an approximate probability.

Indeed, all of the prediction-based methods use heuristic approximations and incomplete

data, given the nature of this routing problem.

6.3 Our Routing Protocol

We first consider the case of a two-hop path, that is, with only one relay node. We consider

two approaches: either the receiving neighbor decides whether to act as a relay, or the

source decides which neighbors to use as relay.
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6.3.1 Receiver Decision

Whenever a node meets other nodes, they exchange all their messages (or as above, index

messages). If the destination of a message is the receiver itself, the message is delivered.

Otherwise, if the probability of delivering the message to its destination through this re-

ceiver node within ∆T is greater than or equal to a certain threshold, the message is stored

in the receiver’s storage to forward to the destination. If the probability is less than the

threshold, the receiver discards the message. Notice that our protocol replicates the mes-

sage whenever a good relay comes along.

6.3.2 Sender Decision

To make decisions, a sender must have the information about its neighbors’ contact proba-

bility with a message’s destination. Therefore, meta-data exchange is necessary.

When two nodes meet, they exchange a meta-message, containing an unordered list of

node IDs for which the sender of the meta-message has a contact probability greater than

the threshold.

After receiving a meta-message, a node checks whether it has any message that is des-

tined to its neighbor or to a node in the node list of the neighbor’s meta-message. If it has,

it sends a copy of the message.

When a node receives a message, if the destination of the message is the receiver itself,

the message is delivered. Otherwise, the message is stored in the receiver’s storage for

forwarding to the destination.

6.3.3 Multi-node Relay

When we use more than two hops to relay a message, each node needs to know the contact

probabilities along all possible paths to the message destination.
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Every node keeps a contact probability matrix, in which each cell pij is a contact proba-

bility between to nodes i and j. Each node i computes its own contact probabilities (row i)

with other nodes using Equation (6.5) whenever the node ends a contact with other nodes.

Each row of the contact probability matrix has a version number; the version number for

row i is increased only when node i updates the matrix entries in row i. Other matrix entries

are updated through exchange with other nodes when they meet.

When two nodes i and j meet, they first exchange their contact probability matrices.

Node i compares its own contact matrix with node j’s matrix. If node j’s matrix has a row

l with a higher version number, then node i replaces its own row l with node j’s row l.

Likewise node j updates its matrix. After the exchange, the two nodes will have identical

contact probability matrices.

Next, if a node has a message to forward, the node estimates its neighboring node’s

order-k contact probability to contact the destination of the message using Equation (6.6).

The order k is a design factor for the multi-node relay protocols. If p
(k)
ij is above a threshold,

or if j is the destination of the message, node i will send a copy of the message to node j.

All the above effort serves to determine the transfer probability when two nodes meet.

The replication decision is orthogonal to the transfer decision. In our implementation, we

always replicate. Although PRoPHET [LDS04] and Link-State [SGdL06] do no replica-

tion, as described, we added replication to both protocols for better comparison to our

protocol.

6.4 Evaluation Results

We evaluate and compare the results of direct delivery, epidemic, random, PRoPHET, Link-

State, and timely-contact routing protocols.
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6.4.1 Mobility traces

We use real mobility data collected at Dartmouth College. Dartmouth College has collected

association and disassociation messages from devices on its wireless network since spring

2001 [KHA04]. Each message records the wireless card MAC address, the time of associ-

ation/disassociation, and the name of the access point. We treat each unique MAC address

as a node. For more information about Dartmouth’s network and the data collection, see

previous studies [HKA04, KE05].

Our data are not contacts in a mobile ad hoc network. We can approximate contact

traces by assuming that two users can communicate with each other whenever they are

associated with the same access point. Chaintreau et al. [CHC+06] used Dartmouth data

traces and made the same assumption to theoretically analyze the impact of human mobility

on opportunistic forwarding algorithms. This assumption may not be accurate,2 but it is a

good first approximation. In our simulation, we imagine the same clients and same mobility

in a network with no access points. Since our campus has full Wi-Fi coverage, we assume

that the location of access points had little impact on users’ mobility.

We simulated one full month of trace data (November 2003), with 5,142 users. Al-

though prediction-based protocols require prior contact history to estimate each node’s

delivery probability, our preliminary results show that the performance improvement of

warming-up over one month of trace was marginal. Therefore, for simplicity, we show the

results of all protocols without warmup.

2Two nodes may not have been able to directly communicate while they were at far sides of an access
point, or two nodes may have been able to directly communicate if they were between two adjacent access
points.
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6.4.2 Simulator

We developed a custom simulator.3 Since we used contact traces derived from real mobility

data, we did not need a mobility model and omitted physical and link-layer details for

node discovery. We were aware that the time for neighbor discovery in different wireless

technologies varies from less than one second to several seconds. Furthermore, connection

establishment also takes time, such as DHCP. In our simulation, we assumed that the nodes

could discover and connect to each other instantly when they were associated with the same

AP. To accurately model communication costs, however, we simulated some MAC-layer

behaviors, such as collision.

The default settings of the network of our simulator are listed in Table 6.1, using the

values recommended by other papers [SGdL06, LDS04]. The message probability was

the probability of generating messages, as described below in Section 6.4.3. The default

transmission bandwidth was 11 Mb/s. When one node tried to transmit a message, it first

checked whether another node was transmitting. If it was, the node backed off for a random

number of slots. Each slot was 1 millisecond, and the maximum number of backoff slots

was 30. The size of messages was uniformly distributed between 80 bytes and 1024 bytes.

The hop count limit (HCL) was the maximum number of hops before a message should

stop forwarding. The time to live (TTL) was the maximum duration that a message may

exist before expiring. The storage capacity was the maximum space that a node can use

for storing messages. For our routing method, we used a default prediction window ∆T of

10 hours and a probability threshold of 0.01. The replication factor r was not limited by

default, so the source of a message transferred the messages to any other node that had a

contact probability with the message destination higher than the probability threshold.

3We tried to use a general network simulator (ns2), which was extremely slow when simulating a large
number of mobile nodes (in our case, more than 5000 nodes), and provided unnecessary detail in modeling
lower-level network protocols.
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Table 6.1: Default settings of the opportunistic network simulation

Parameter Default value
message probability 0.001
bandwidth 11 Mb/s
transmission slot 1 millisecond
max backoff slots 30
message size 80–1024 bytes
hop count limit (HCL) unlimited
time to live (TTL) unlimited
storage capacity unlimited
prediction window ∆T 10 hours
probability threshold 0.01
contact history length 20
replication always
aging factor α 0.9 (0.98 PRoPHET)
initial probability p0 0.75 (PRoPHET)
transitivity impact β 0.25 (PRoPHET)

6.4.3 Message generation

After each contact event in the contact trace, we generated a message with a given probabil-

ity; we chose a source node and a destination node randomly using a uniform distribution

across nodes seen in the contact trace up to the current time. When there were more contacts

during a certain period, there was a higher likelihood that a new message was generated

in that period. This correlation is not unreasonable, since there were more movements and

contacts during the day than during the night. Figure 6.1 shows the statistics of the numbers

of movements and the numbers of contacts during each hour. These statistics were accu-

mulated across all users through the whole month. The plot shows a clear diurnal activity

pattern; the activities were lowest around 5am and peaked between 4pm and 5pm. We

assume that in some applications, network traffic exhibits similar patterns; that is, people

send more messages during the day, too.
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Figure 6.1: Movements and contacts during each hour
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6.4.4 Metrics

We define a set of metrics that we use in evaluating routing protocols in opportunistic

networks:

• delivery ratio, the ratio of the number of messages delivered to the number of total

messages generated.

• delay, the duration between a message’s generation time and the message’s delivery

time.

• message transmissions, the total number of messages transmitted during the simula-

tion across all nodes.

• meta-data transmissions, the total number of meta-data units transmitted during the

simulation across all nodes.

• message duplications, the number of times a message copy occurred.

• storage usage, the max and mean of maximum storage (bytes) used across all nodes.

6.4.5 Results

Here we compare our simulation results of the six routing protocols.

Figure 6.2 shows the delivery ratio of all the protocols, with different TTLs. (In all the

plots in this section, “prediction” stands for our method, “state” stands for the Link-State

protocol, and “prophet” represents PRoPHET.) Although we had 5,142 users in the net-

work, the direct-delivery and random protocols had low delivery ratios (note the log scale).

Even for messages with an unlimited lifetime, only 59 out of 2077 messages were delivered

during this one-month simulation. The delivery ratio of epidemic routing was the best. The

three prediction-based routing schemes had low delivery ratios, compared with epidemic
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routing. Although our method was slightly better than the other two, the advantage was

marginal. Note that with a 10-hour TTL, the three prediction-based routing protocols had

only about 4% messages delivered. This low delivery ratio limits the applicability of these

routing protocols in practice.

The high delivery ratio of epidemic routing came with a price: excessive transmissions.

Figure 6.3 shows the number of message data transmissions. The number of message trans-

missions in epidemic routing was more than 10 times higher than for the prediction-based

routing protocols. Obviously, the direct delivery protocol had the lowest number of mes-

sage transmissions — the number of messages delivered. Among the three prediction-based

methods, PRoPHET transmitted fewer messages, but all three had comparable delivery ra-

tios as seen in Figure 6.2.

Figure 6.4 shows that epidemic and all prediction-based methods had substantial meta-

data transmissions, though epidemic routing had relatively more (at least for shorter TTLs).

Because the epidemic protocol transmitted messages at every contact, in turn, more nodes

had messages that required meta-data transmission during contact. The direct-delivery and

random protocols had no meta-data transmissions.

In addition to its message transmissions and meta-data transmissions, the epidemic

routing protocol also had excessive message duplications, spreading replicas of messages

over the network. Figure 6.5 shows that epidemic routing had one or two orders more

duplication than the prediction-based protocols. Recall that the direct-delivery and random

protocols did not replicate, thus had no data duplications.

Figure 6.6 shows the median delivery delays, and Figure 6.7 shows the mean delivery

delays. All protocols show similar delivery delays in both mean and median measures for

medium TTLs, but differ for long and short TTLs. With a 100-hour TTL, or unlimited

TTL, epidemic routing had the shortest delays. Direct delivery had the longest delay for

unlimited TTL, but it had the shortest delay for the one-hour TTL.
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Figure 6.2: Delivery ratio (log scale). The direct and random protocols for one-hour TTL
had delivery ratios that were too low to be shown in the plot.
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Figure 6.3: Message transmissions (log scale)
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Figure 6.4: Meta-data transmissions (log scale). Direct and random protocols had no
meta-data transmissions.
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Figure 6.5: Message duplications (log scale). Direct and random protocols had no message
duplications.
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Figure 6.6: Median delivery delay (log scale)
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Figure 6.7: Mean delivery delay (log scale)

169



The results seem contrary to our intuition: the epidemic routing protocol should be

the fastest routing protocol since it spreads messages all over the network. Indeed, the

figures show only the delay time for delivered messages. For direct delivery, random, and

the probability-based routing protocols, relatively few messages were delivered for short

TTLs, so many messages expired before they could reach their destination; those messages

had infinite delivery delay and were not included in the median or mean measurements.

For longer TTLs, more messages were delivered even for the direct-delivery protocol. The

statistics of longer TTLs for comparison are more meaningful than those of short TTLs.

Since our message generation rate was low, the storage usage was also low in our sim-

ulation. Figure 6.8 and Figure 6.9 show the maximum and average of maximum volume

(in kbytes) of messages stored in each node. The epidemic routing had the most storage

usage. The message time-to-live parameter was the big factor affecting the storage usage

for epidemic and prediction-based routing protocols.

We studied the impact of different parameters of our prediction-based routing protocol.

Our prediction-based protocol was sensitive to several parameters, such as the probability

threshold. Figure 6.10 shows the delivery ratios when we used different probability thresh-

olds. (The leftmost value 0.01 is the value used for the other plots.) A higher probability

threshold limited the transfer probability, so fewer messages were delivered. We also had

fewer transmissions, as shown in Figure 6.11. With a larger prediction window ∆T , we

got higher contact probability. Thus, for a same probability threshold, we had higher a

delivery ratio (Figure 6.12), and more transmissions (Figure 6.13). Our protocol was not

so sensitive to the prediction window as it was to probability threshold. When the predic-

tion window increased to one hour or longer, the delivery ratio and the number of message

transmitted increased only slightly. Therefore, the contact probability within one hour or

longer did not change much.
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Figure 6.8: Max of maximum storage usage across all nodes (log scale).
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Figure 6.9: Mean of maximum storage usage across all nodes (log scale).
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Figure 6.10: Probability threshold impact on delivery ratio of timely-contact routing. We
used threshold 0.01 for other plots.
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Figure 6.11: Probability threshold impact on message transmission of timely-contact rout-
ing. We used threshold 0.01 for other plots.
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Figure 6.12: Prediction window impact on delivery ratio of timely-contact routing (semi-
log scale). We used prediction window ∆T = 10 hours for other plots.
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Figure 6.13: Prediction window impact on message transmission of timely-contact routing.
We used prediction window ∆T = 10 hours for other plots.
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6.5 Related work

Fall [Fal03] presents an overview of DTNs. It gives examples of delay-tolerant networks:

terrestrial mobile networks, exotic media networks (e.g., satellite, deep space), military

ad-hoc networks, and sensor networks. The challenges of those networks are high latency,

disconnection, and long queuing time. Fall focuses on the interoperability of heterogeneous

networks (e.g., Internet, satellite networks, intranet, or ad-hoc networks). The author pro-

poses to use a DTN gateway to connect different networks, and defines naming of network

entities.

Chuah et al. [CCD05] extends the naming convention in Fall’s DTN architecture frame-

work [Fal03] to further divide a network region into groups. It also discusses details of

neighbor discovery, gateway selection, mobility management, and route discovery.

Jain and Fall [JFP04] extend the DTN framework [Fal03]. They propose and evaluate

several routing algorithms in two example scenarios: remote village and city bus. Both

scenarios have predictable connectivity. The remote village has dial-up connection late at

night, satellite connection every few hours, and a motorbike message courier every 4 hours.

The city buses follow bus routes. Five routing algorithms are evaluated in the paper:

• First Contact (FC): a message is forwarded to one random current contact or to the

first available contact;

• Minimum Expected Delay (MED): use Dijkstra’s algorithm to compute the cost (de-

lay) of each path and choose an edge that leads the path that has the least sum of the

average waiting time, propagation delay and transmission delay;

• Earliest Delivery (ED): use modified Dijkstra with time varying cost, but without

queue waiting time;

• Earliest Delivery with Local Queue (EDLQ): ED with the cost function incorporating
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local queuing;

• Earliest Delivery with All Queue (EDAQ): ED with the cost function incorporating

all nodes’ queuing info;

• Linear Program (LP): use all the contacts, queuing, and traffic information.

They conclude that in networks with limited resources, the smarter algorithms (ED,

EDLQ, and EDAQ) may provide a significant benefit. They also found that global knowl-

edge may not be required for good performance, since EDLQ performed as well as EDAQ

in many cases. The routing problem, however, when the contacts are predictable is rela-

tively simple, especially in the remote village scenario, where the village communicates

with only the city through three different routes. The LP algorithm provides only a theo-

retical analysis. In practice, the required information is not available.

Li and Rus [LR03] propose algorithms to guide mobile nodes’ movements for com-

munication in disconnected mobile ad hoc networks. Two algorithms were studied. The

first assumes that mobilities and locations are known to all nodes. The second one is more

generalized and does not assume this known information. Li and Rus describe a network

situation in which nodes are moving with their tasks and may move to other nodes for

message delivery. The proposed algorithms avoid traditional waiting and retry schemes.

The big disadvantage is that the algorithms require users to move based on the needs of

messages. This means that users (people) need to be aware of the messages and decide if

relay is necessary. The algorithms are tools to aid the user to make the move decision.

Wang and Wu [WW06] studied two basic routing approaches: direct delivery and flood-

ing. They propose a delivery probability based scheme. They found that their delivery-

probability scheme achieves a higher delivery ratio than both of the basic routing ap-

proaches. They also studied the average delay and transmission overhead for all the studied

delivery methods. Although the flooding approach has the lowest average delay, the deliv-
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ery ratio suffers because excessive message duplications exhaust storage buffers. The au-

thors discuss a mobile sensor network in which all sensor nodes transmit messages to sink

nodes. Messages can be delivered to any sink node. The limited number of destinations

enables the simple probability estimation of the proposed scheme.

LeBrun et al. [LCGZ05] propose a location-based, delay-tolerant network routing pro-

tocol. Their algorithm assumes that every node knows its own position, and the destination

is stationary at a known location. A node forwards data to a neighbor only if the neighbor

is closer to the destination than its own position. Our protocol does not require knowledge

of the nodes’ locations, and it learns their contact patterns.

Leguay et al. [LFC06] use a high-dimensional space to represent a mobility pattern,

then routes messages to nodes that are closer to the destination node in the mobility pattern

space. Node locations are required to construct mobility patterns.

Musolesi et al. [MHM05] propose an adaptive routing protocol for intermittently con-

nected mobile ad hoc networks. They use a Kalman filter to compute the probability that

a node delivers messages. This protocol assumes group mobility and cloud connectivity;

that is, nodes move as a group, and among this group of nodes a contemporaneous end-to-

end connection exists for every pair of nodes. When two nodes are in the same connected

cloud, DSDV [PB94] routing is used.

Erasure-coding [JDPF05, WJMF05] explores coding algorithms to reduce message

replicas. The source node replicates a message m times, then uses a coding scheme to

encode them in one big message. After replicas are encoded, the source divides the big

message into k blocks of the same size, and transmits a block to each of the first k encoun-

tered nodes. If m of the blocks are received at the destination, the message can be restored,

where m < k. In a uniformly distributed mobility scenario, the delivery probability in-

creases because the probability that the destination node meets m relays is greater than it

meets k relays, given m < k.
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We did not implement and evaluate these routing protocols, because either they re-

quire unrealistic future information [JFP04], controllable mobile nodes [LR03], domain-

specific information (location information) [LCGZ05, LFC06], assume certain mobility

patterns [MHM05], or present orthogonal approaches [JDPF05, WJMF05] to other routing

protocols.
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Chapter 7

Summary

In this chapter, we summarize our research on prediction techniques and their performance

on several applications. We also discuss future directions of the research in this field. First,

we summarize our conclusions.

We conducted the first comprehensive, empirical comparison of four important classes

of location predictors (namely Markov, LZ, PPM, and SPM), to gauge which could most

accurately predict the next cell for a mobile wireless-network user. The Markov predictors

are easier to implement, use less memory, and run faster than the other predictors. We also

found, surprisingly, that the complex predictors were only negligibly better than the simple

Markov predictor, a result that has important implications for anyone developing or using

such predictors in real applications.

In general, the simple low-order Markov predictors worked as well or better than the

more complex compression-based predictors, and better than high-order Markov predic-

tors. In particular, O(3) (or above) Markov predictors did not improve over O(2) Markov,

and indeed reduced accuracy by failing to make predictions much of the time.

Most of the predictors, as defined in the literature, fail to make a prediction when faced

with a context (recent history) that has never been encountered in the user’s full history.
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We found it was simple to add “fallback” to most predictors, allowing the predictor to use

shorter and shorter context until it was able to make a prediction, and that this fallback

often improved the predictor’s accuracy substantially.

Next, we experimented with a variety of time predictors, which predict the time of a

mobile user’s next handoff event, and some jointly predict the destination as well. We select

predictors such that their success would depend on certain dependencies across space and

time. We further investigated whether group handoff or individual handoff models better

represent the real situation. After evaluating these predictors with a suite of performance

metrics, we found that no single predictor feature performed uniformly well, i.e., the pre-

diction quality varies widely from user to user and from access point to access point. In the

over- and under-provisioning results, for example, we found the distributions to be highly

skewed.

Our results show that predicting the precise time of the handoff with a granularity in

the order of seconds and minutes is in general difficult by using only the association his-

tory of the mobile devices. These results drive us to explore predictors that can return a

range of values, can express confidence in their prediction (a probability), and can express

inequalities (the probability that the visit will last at least t seconds, rather than predicting

departure after precisely t seconds). We observe that predictions for individual events still

tend to be highly skewed even for such soft prediction outputs. This motivates us to look

into applications that could manage such skewness and benefit from soft values. Thus, we

looked at a popular application, i.e., VoIP over WLAN, that can use per-user predictions to

reserve resources for a group of users (in our case, the handoff users). Indeed, our results

demonstrate that when coupled with intelligent predictors, VoIP performance improved sig-

nificantly over the cases when only simple predictors are allowed or when no reservations

are made at all.

Overall, our results show that we can predict some users more accurately while we
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predict others less accurately. Even with only modest prediction accuracy, our simulation

of voice telephone bandwidth reservation shows that we can improve the call drop-rate

significantly without worsening the call block-rate much.

Finally, we simulated and evaluated several routing protocols in opportunistic networks.

We propose a prediction-based routing protocol for opportunistic networks. We eval-

uate the performance of our protocol using realistic contact traces, and compare to five

existing routing protocols: three simple protocols and two other prediction-based routing

protocols.

Our simulation results show that direct delivery had the lowest delivery ratio, the fewest

data transmissions, and no meta-data transmission or data duplication. Direct delivery is

suitable for devices that require extremely low power consumption. The random proto-

col increased the chance of delivery for messages otherwise stuck at some low-mobility

nodes. Epidemic routing delivered the most messages. The excessive transmissions, and

data duplication, however, consume more resources than portable devices may be able to

provide.

Direct-delivery, random and epidemic routing protocols are not practical for real de-

ployment of opportunistic networks, because they either had an extremely low delivery

ratio or had an extremely high resource consumption. The prediction-based routing proto-

cols had a delivery ratio more than 10 times better than that for direct-delivery and random

routing, and they had fewer transmissions and used less storage than epidemic routing.

They also had fewer data duplications than epidemic routing.

All the prediction-based routing protocols that we evaluated had similar performance.

Our method had a slightly higher delivery ratio, but more transmissions and higher storage

usage. There are many parameters for prediction-based routing protocols, however, and

different parameters may produce different results. Indeed, there is an opportunity for

some adaptation; for example, high-priority messages may be given higher transfer and
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replication probabilities to increase the chance of delivery and reduce the delay, or a node

with infrequent contact may choose to raise its transfer probability.

We must note that our evaluations were based solely on Dartmouth’s traces1. Our find-

ings and conclusions may or may not apply to other network environments, because users

in different network environments may have distinct mobility patterns, and thus distinct

handoff patterns. We also note that our traces were not motion records, our contact model

were based on association records, and messages were synthetically generated. We be-

lieve, however, that our traces are a good match for the evaluation of handoff predictions

and bandwidth reservations. The use of these traces for evaluating opportunistic network

routing protocols may be a stretch, but not unreasonable. A more precise evaluation may

need motion traces, that is, the physical location of users, and models to determine users’

connectivity.

7.1 Contributions

This dissertation makes three major contributions. As our first contribution, we evaluate a

series of handoff-location and handoff-time predictors that can take advantage of various

dependencies across time and space. This approach not only provides a sanity check for

widely used mobility and prediction models in the current state of the art, but also derives

insight about the predictor features that drive good performance in a real WLAN envi-

ronment. Note that our main concern here is not on the complexity of the predictors and

their implementation details; rather our goal is to understand the level of predictability for

the real handoff traces that we have. With this in mind, our study is an important report

on whether a campus WLAN environment is amenable to accurate prediction of handoff

events.
1Many of the traces we used are available from CRAWDAD [CRA].

184



As our second contribution, we present a case study that quantifies the possible gains

due to handoff prediction in an actual application. In our case study, we focus on VoIP

as the application of interest and we evaluate the use of handoff predictors for advance

bandwidth reservation to maintain VoIP service quality after handoffs. We measure the

performance using application-specific call drop rate and call block rate metrics. This

approach allows us to dissect the performance gains due to the quality of predictions and

the reservation policy. We focus on the influence on call drop rate and call block rate when

handoff prediction applies to a variety of call admission schemes.

Our third contribution is that we propose a routing protocol for opportunistic networks

and compared its performance to two other prediction-based routing protocols, as well as

to three other basic routing protocols. We found that the three basic routing protocols in

general were not practical for large opportunistic networks. The three prediction-based

protocols can trade-off the delivery ratio against resource usage, and performed well and

comparable to each other.

7.2 Future work

We have completed a comprehensive and empirical study that evaluated mobility predictors

in wireless networks for bandwidth reservation and opportunistic routing. There are many

opportunities for further research in this area.

• If we could obtain real calling records from a similar campus population, and map

those calling patterns onto the handoff data set, we could reevaluate the bandwidth-

reservation schemes with realistic calling patterns rather than the exponential distri-

butions that we used in Chapter 5.

• We could seek ways to explicitly treat the “OFF” state in the handoff patterns, to
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better predict exits from the network as distinct from normal cell-to-cell roams.

• Our interest has been limited to predicting inter-AP handoffs, but it is also of interest

to predict location changes at a coarser level, e.g., building or sub-net.

• We could repeat our analysis on the predictability of user handoff in a campus net-

work using location measurements that are collected at a finer granularity, e.g., using

RFID, sensors, or signal-strength measurements.

• We could use traces other than the Dartmouth data to drive all three simulations. This

effort may give more insight to the performance of prediction techniques and routing

protocols.

• We could use domain-specific information, such as APs geographical location for

handoff-prediction, or class registration information for DTN routing.

• We could theoretically analyze and compare the computational complexity of differ-

ent prediction algorithms.

• We left out the technical details for implementing different bandwidth-reservation

and call-admission systems. We could investigate whether centralized or distributed

systems are suitable.

• We could study alternative messaging schemes in opportunistic networks, other than

the unicast peer-to-peer messaging we assume here. For example, messages can

be sent to a location, so that every node at that location will receive a copy of the

message. Location prediction may be used to predict nodes’ mobility, and to choose

as relays those nodes moving toward the destined location.

• We could study the security and privacy issues in opportunistic networks. Many

routing protocols require nodes to exchange historical mobility information for better
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routing strategies. On one hand, users may be reluctant to expose their privacy, thus

limiting the benefit of some routing strategies. On the other hand, malicious nodes

may take advantage of some nodes, revealing too much information.
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