14,803 research outputs found

    RECOMAC: a cross-layer cooperative network protocol for wireless ad hoc networks

    Get PDF
    A novel decentralized cross-layer multi-hop cooperative protocol, namely, Routing Enabled Cooperative Medium Access Control (RECOMAC) is proposed for wireless ad hoc networks. The protocol architecture makes use of cooperative forwarding methods, in which coded packets are forwarded via opportunistically formed cooperative sets within a region, as RECOMAC spans the physical, medium access control (MAC) and routing layers. Randomized coding is exploited at the physical layer to realize cooperative transmissions, and cooperative forwarding is implemented for routing functionality, which is submerged into the MAC layer, while the overhead for MAC and route set up is minimized. RECOMAC is shown to provide dramatic performance improvements of eight times higher throughput and one tenth of end-to-end delay than that of the conventional architecture in practical wireless mesh networks

    Performance Evaluation of a Helper Initiated Distributed Cooperative Medium Access Control Protocol for Wireless Networks

    Get PDF
    Cross layer cooperative protocol which exploits the benefits of physical layer cooperative communication, is one of the widely recognized MAC layer protocol design strategies for future wireless networks. This paper presents performance analysis of a cooperative mac and these performance parameters are compared those of the legacy IEEE 802.11 DCF MAC. Appropriate relay station selection is the main hurdle in designing efficient cooperative MAC protocol for wireless networks.  This cooperative mac demonstrated that intermediate relay nodes themselves can initiate cooperation for relaying data frame to the receiver on behalf of the sender. This procedure makes the selection process of a “helper node” more distributed in nature as well as it contributes to increase throughput of a wireless network by reducing the overheads that are usually incurred in the helper selection process. It has been shown by thorough analytical analysis that the proposed cooperative MAC protocol offers higher throughput and lower frame transmission delay in both ideal and error prone wireless environment. These performance metrics are also evaluated while the wireless nodes are mobile as well

    Performance Evaluation of a Helper Initiated Distributed Cooperative Medium Access Control Protocol for Wireless Networks

    Get PDF
    Cross layer cooperative protocol which exploits the benefits of physical layer cooperative communication, is one of the widely recognized MAC layer protocol design strategies for future wireless networks. This paper presents performance analysis of a cooperative mac and these performance parameters are compared those of the legacy IEEE 802.11 DCF MAC. Appropriate relay station selection is the main hurdle in designing efficient cooperative MAC protocol for wireless networks.  This cooperative mac demonstrated that intermediate relay nodes themselves can initiate cooperation for relaying data frame to the receiver on behalf of the sender. This procedure makes the selection process of a “helper node” more distributed in nature as well as it contributes to increase throughput of a wireless network by reducing the overheads that are usually incurred in the helper selection process. It has been shown by thorough analytical analysis that the proposed cooperative MAC protocol offers higher throughput and lower frame transmission delay in both ideal and error prone wireless environment. These performance metrics are also evaluated while the wireless nodes are mobile as well

    Resilient Misbehaviour Detection MAC Protocol (MD-MAC) for Distributed Wireless Networks

    Get PDF
    Chaminda Alocious, Hannan Xiao, B. Christianson, 'Resilient Misbehaviour Detection MAC Protocol (MD-MAC) for Distributed Wireless Networks' paper presented at the 2016 IEEE Wireless Communications and Networking Conference (IEEE WCNC). Doha, Qatar. 3-6 April 2016Wireless network security requirements are becoming more important and critical. The modern network security architectures require more attention to provide security in each network layer. This will require understanding of protocol vulnerabilities in existing protocol architectures. However, providing security requirements are not just limited to confidentiality and integrity, also availability and fairness are important security elements. IEEE 802.11 MAC protocol is one of the most common standard in modern day networks and has been designed without a consideration for providing security protection at MAC layer. IEEE 802.11 assumes all the nodes in the network are cooperative. However, nodes may purposefully misbehave in order to obtain extra bandwidth, conserve resources and disrupt network performance. This research proposes a Misbehaviour Detection MAC protocol (MD-MAC) to address the problematic scenarios of MAC layer misbehaviours, which takes a novel approach to detect misbehaviours in Mobile Adhoc Networks (MANETs). The MD-MAC modifies the CSMA/CA protocol message exchange and uses verifiable backoff value generation mechanism with an incorporated trust model which is suitable for distributed networks. The MD-MAC protocol has been implemented and evaluated in ns2, simulation results suggest that the protocol is able to detect misbehaving wireless nodes in a distributed network environment

    COSMIC: A Cooperative MAC Protocol for WSN with Minimal Control Messages

    Get PDF
    International audienceOver the last decade cooperative communication in wireless sensor networks (WSN) received much attention. A lot of works have been done to propose a MAC layer that supports cooperative relaying. The majority of these works tried to adapt the IEEE 802.11 MAC protocol to sensor networks. The adapted protocols use a lot of overhead (such as the use of RTS/CTS as well as other messages used to allow cooperation) that consumes energy. In this paper we propose a CSMA/CA based MAC protocol that supports cooperative communication with a minimum overhead: COSMIC (A Cooperative MAC Protocol for WSN with Minimal Control Messages). Relay selection in this new protocol is performed using both the channel state information (CSI) and the remaining energy. Simulation results show that COSMIC is able to increase the network lifetime by 25%

    Cooperative Medium Access Mechanisms and Service-oriented Routing in Multi-hop Wireless Networks

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 2011Multi-hop wireless networks have been regarded as a promising path towards future wireless communication landscape. In the past decade, most related work has been performed in the context of mobile ad hoc networks. In very recent years, however, much effort has been shifted to more static networks such as wireless mesh networks and wireless sensor networks. While significant progress has been achieved through these years, both theoretically and experimentally, challenges still exist in various aspects of these networks. For instance, how to use multi-hop networks as a means for providing broadband Internet services with reliability and balanced load remains as a challenging task. As the number of end-users is increasing rapidly and more and more users are enjoying multimedia services, how to provide Quality of Service (QoS) with user satisfaction in such networks remains also as a hot topic. Meanwhile, another direction which has recently attracted lots of efforts in the international research community is the introduction of cooperative communications. Cooperative communications based on relaying nodes are capable of improving network performance in terms of increased spectral and power efficiency, extended network coverage, balanced QoS, infrastructure-less deployment, etc. Cooperation may happen at different communication layers, at the physical layer where the received signal is retransmitted and at the MAC and routing layers where a packet is forwarded to the next hop in a coordinated manner towards the destination, respectively. However, without joint consideration and design of physical layer, MAC layer and network layer, the benefit of cooperative communication cannot be exploited to the maximum extent. In addition, how to extend one-hop cooperative communication into multi-hop wireless network scenarios remains as an almost un-chartered research frontier. In this dissertation, we enhance the state of the art technologies in the field of multi-hop wireless networks from a layered perspective. While efficient scheduling mechanisms are proposed at the MAC layer, elaborate routing protocols are devised at the network layer. More specifically, by taking into account of cross layer design we cope with network congestion problems in wireless mesh networks mainly at the network layer. In order to further improve the performance of cooperative wireless networks, we propose a contention-based cooperative MAC protocol in the presence of multiple relay nodes. Since a large majority of existing cooperative MAC protocols are designed based on widely-used IEEE 802.11 MAC protocol which exhibits inherent design constraint when applied in multi-hop wireless networks, it is imperative to develop a novel cooperative MAC protocol which is appropriate for multi-hop network scenarios. Next, we propose a TDMA-based MAC protocol supporting cooperative communications in static multi-hop wireless networks. Furthermore, a cooperative lifetime maximization MAC protocol is proposed to cope with the energy hole problem in wireless sensor networks

    Persistent RCSMA: a MAC protocol for a distributed cooperative ARQ scheme in wireless networks

    Get PDF
    EURASIP Best Paper Award for the "Jounal on Advances in Signal Processing"The persistent relay carrier sensing multiple access (PRCSMA) protocol is presented in this paper as a novel medium access control (MAC) protocol that allows for the execution of a distributed cooperative automatic retransmission request (ARQ) scheme in IEEE 802.11 wireless networks. The underlying idea of the PRCSMA protocol is to modify the basic rules of the IEEE 802.11 MAC protocol to execute a distributed cooperative ARQ scheme in wireless networks in order to enhance their performance and to extend coverage. A closed formulation of the distributed cooperative ARQ average packet transmission delay in a saturated network is derived in the paper. The analytical equations are then used to evaluate the performance of the protocol under different network configurations. Both the accuracy of the analysis and the performance evaluation of the protocol are supported and validated through computer simulations.Peer ReviewedAward-winningPostprint (published version

    MAC protocol for cooperative MIMO transmissions in asynchronous wireless sensor networks

    Get PDF
    Cooperative MIMO schemes can reduce both transmission energy and latency in distributed wireless sensor networks (WSNs). In this paper we develop a new Cooperative low power listening (LPL) Medium Access Control (MAC) protocol for two cooperative MIMO schemes: Optimal Beamforming (BF) and Spatial Multiplexing (SM). We develop analytical models for the total energy consumption and packet latency for both schemes and analyse the proposed MAC protocol in term of the total energy consumption and packet latency with imperfect synchronisation due to clock jitter. The impact of the clock jitter, the check interval and the number of cooperative nodes on the total energy consumption and latency are investigated. We observe that the Cooperative LPL MAC with Optimal BF is the most promising configuration and it is optimal when then number of co-operating nodes M=2 and jitter difference is below 0.6Tb

    An automatic cooperative retransmission MAC protocol in wireless local area networks

    Get PDF
    Existing solutions for cooperation in wireless networks either require simultaneous transmission of source and relay nodes or impose major modifications to original MAC protocols. In this paper, a new efficient retransmission MAC protocol is proposed for IEEE 802.11 based cooperation communications, with minimum modifications to the DCF scheme. Throughput and access delay performance of the proposed protocols is analyzed in error-prone and highly temporally correlated channels. Numerical results show that significant benefits can be achieved with our cooperative protocol, compared with the legacy schemes

    Further simulation testing in CoopMAC-U for underwater acoustic sensor networks

    Get PDF
    In order for underwater wireless sensor networks to communicate more efficiently, MAC protocols are needed to control the use of acoustic channels. With the high propagation delay and the limited bandwidth available on the acoustic channel, a specially designed MAC protocol is needed for UWASN (Underwater Acoustic Sensor Networks). In this research, the adaptation of Cooperative MAC for underwater (CoopMAC-U) will be further studied to test the protocol performance. In the previous research, CoopMAC-U was simulated yet the fairness of the transmission was not simulated and tested. In this research, CoopMAC-U will be studied further and improved. The simulation result shows that the Improved CoopMAC-U protocol produces better-normalized throughput than the initial version of CoopMAC-U. The protocol is also proven that it is backward compatible between conventional mode and cooperative mode. For offered load greater than 0.2, both the initial version of CoopMAC-U and the Improved CoopMAC-U result in stagnant normalized throughputs but the improved ones double the value of the initial version
    • 

    corecore