10,978 research outputs found

    A generalization of Hausdorff dimension applied to Hilbert cubes and Wasserstein spaces

    Full text link
    A Wasserstein spaces is a metric space of sufficiently concentrated probability measures over a general metric space. The main goal of this paper is to estimate the largeness of Wasserstein spaces, in a sense to be precised. In a first part, we generalize the Hausdorff dimension by defining a family of bi-Lipschitz invariants, called critical parameters, that measure largeness for infinite-dimensional metric spaces. Basic properties of these invariants are given, and they are estimated for a naturel set of spaces generalizing the usual Hilbert cube. In a second part, we estimate the value of these new invariants in the case of some Wasserstein spaces, as well as the dynamical complexity of push-forward maps. The lower bounds rely on several embedding results; for example we provide bi-Lipschitz embeddings of all powers of any space inside its Wasserstein space, with uniform bound and we prove that the Wasserstein space of a d-manifold has "power-exponential" critical parameter equal to d.Comment: v2 Largely expanded version, as reflected by the change of title; all part I on generalized Hausdorff dimension is new, as well as the embedding of Hilbert cubes into Wasserstein spaces. v3 modified according to the referee final remarks ; to appear in Journal of Topology and Analysi

    Indexability, concentration, and VC theory

    Get PDF
    Degrading performance of indexing schemes for exact similarity search in high dimensions has long since been linked to histograms of distributions of distances and other 1-Lipschitz functions getting concentrated. We discuss this observation in the framework of the phenomenon of concentration of measure on the structures of high dimension and the Vapnik-Chervonenkis theory of statistical learning.Comment: 17 pages, final submission to J. Discrete Algorithms (an expanded, improved and corrected version of the SISAP'2010 invited paper, this e-print, v3

    Poincar\'e profiles of groups and spaces

    Get PDF
    We introduce a spectrum of monotone coarse invariants for metric measure spaces called Poincar\'{e} profiles. The two extremes of this spectrum determine the growth of the space, and the separation profile as defined by Benjamini--Schramm--Tim\'{a}r. In this paper we focus on properties of the Poincar\'{e} profiles of groups with polynomial growth, and of hyperbolic spaces, where we deduce a connection between these profiles and conformal dimension. As applications, we use these invariants to show the non-existence of coarse embeddings in a variety of examples.Comment: 55 pages. To appear in Revista Matem\'atica Iberoamerican

    Impossibility of dimension reduction in the nuclear norm

    Full text link
    Let S1\mathsf{S}_1 (the Schatten--von Neumann trace class) denote the Banach space of all compact linear operators T:22T:\ell_2\to \ell_2 whose nuclear norm TS1=j=1σj(T)\|T\|_{\mathsf{S}_1}=\sum_{j=1}^\infty\sigma_j(T) is finite, where {σj(T)}j=1\{\sigma_j(T)\}_{j=1}^\infty are the singular values of TT. We prove that for arbitrarily large nNn\in \mathbb{N} there exists a subset CS1\mathcal{C}\subseteq \mathsf{S}_1 with C=n|\mathcal{C}|=n that cannot be embedded with bi-Lipschitz distortion O(1)O(1) into any no(1)n^{o(1)}-dimensional linear subspace of S1\mathsf{S}_1. C\mathcal{C} is not even a O(1)O(1)-Lipschitz quotient of any subset of any no(1)n^{o(1)}-dimensional linear subspace of S1\mathsf{S}_1. Thus, S1\mathsf{S}_1 does not admit a dimension reduction result \'a la Johnson and Lindenstrauss (1984), which complements the work of Harrow, Montanaro and Short (2011) on the limitations of quantum dimension reduction under the assumption that the embedding into low dimensions is a quantum channel. Such a statement was previously known with S1\mathsf{S}_1 replaced by the Banach space 1\ell_1 of absolutely summable sequences via the work of Brinkman and Charikar (2003). In fact, the above set C\mathcal{C} can be taken to be the same set as the one that Brinkman and Charikar considered, viewed as a collection of diagonal matrices in S1\mathsf{S}_1. The challenge is to demonstrate that C\mathcal{C} cannot be faithfully realized in an arbitrary low-dimensional subspace of S1\mathsf{S}_1, while Brinkman and Charikar obtained such an assertion only for subspaces of S1\mathsf{S}_1 that consist of diagonal operators (i.e., subspaces of 1\ell_1). We establish this by proving that the Markov 2-convexity constant of any finite dimensional linear subspace XX of S1\mathsf{S}_1 is at most a universal constant multiple of logdim(X)\sqrt{\log \mathrm{dim}(X)}

    Euclidean quotients of finite metric spaces

    Get PDF
    This paper is devoted to the study of quotients of finite metric spaces. The basic type of question we ask is: Given a finite metric space M, what is the largest quotient of (a subset of) M which well embeds into Hilbert space. We obtain asymptotically tight bounds for these questions, and prove that they exhibit phase transitions. We also study the analogous problem for embedings into l_p, and the particular case of the hypercube.Comment: 36 pages, 0 figures. To appear in Advances in Mathematic

    Shattering Thresholds for Random Systems of Sets, Words, and Permutations

    Full text link
    This paper considers a problem that relates to the theories of covering arrays, permutation patterns, Vapnik-Chervonenkis (VC) classes, and probability thresholds. Specifically, we want to find the number of subsets of [n]:={1,2,....,n} we need to randomly select, in a certain probability space, so as to respectively "shatter" all t-subsets of [n]. Moving from subsets to words, we ask for the number of n-letter words on a q-letter alphabet that are needed to shatter all t-subwords of the q^n words of length n. Finally, we explore the number of random permutations of [n] needed to shatter (specializing to t=3), all length 3 permutation patterns in specified positions. We uncover a very sharp zero-one probability threshold for the emergence of such shattering; Talagrand's isoperimetric inequality in product spaces is used as a key tool.Comment: 25 page

    Topological Conformal Dimension

    Full text link
    We investigate a quasisymmetrically invariant counterpart of the topological Hausdorff dimension of a metric space. This invariant, called the topological conformal dimension, gives a lower bound on the topological Hausdorff dimension of quasisymmetric images of the space. We obtain results concerning the behavior of this quantity under products and unions, and compute it for some classical fractals. The range of possible values of the topological conformal dimension is also considered, and we show that this quantity can be fractional.Comment: 16 pages, revised after referee's reports. To appear in Conformal Geometry and Dynamic
    corecore