This paper considers a problem that relates to the theories of covering
arrays, permutation patterns, Vapnik-Chervonenkis (VC) classes, and probability
thresholds. Specifically, we want to find the number of subsets of
[n]:={1,2,....,n} we need to randomly select, in a certain probability space,
so as to respectively "shatter" all t-subsets of [n]. Moving from subsets to
words, we ask for the number of n-letter words on a q-letter alphabet that are
needed to shatter all t-subwords of the q^n words of length n. Finally, we
explore the number of random permutations of [n] needed to shatter
(specializing to t=3), all length 3 permutation patterns in specified
positions. We uncover a very sharp zero-one probability threshold for the
emergence of such shattering; Talagrand's isoperimetric inequality in product
spaces is used as a key tool.Comment: 25 page