368 research outputs found

    3D Printed Soft Robotic Hand

    Get PDF
    Soft robotics is an emerging industry, largely dominated by companies which hand mold their actuators. Our team set out to design an entirely 3D printed soft robotic hand, powered by a pneumatic control system which will prove both the capabilities of soft robots and those of 3D printing. Through research, computer aided design, finite element analysis, and experimental testing, a functioning actuator was created capable of a deflection of 2.17” at a maximum pressure input of 15 psi. The single actuator was expanded into a 4 finger gripper and the design was printed and assembled. The created prototype was ultimately able to lift both a 100-gram apple and a 4-gram pill, proving its functionality in two prominent industries: pharmaceutical and food packing

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    Design og styring av smarte robotsystemer for applikasjoner innen biovitenskap: biologisk prøvetaking og jordbærhøsting

    Get PDF
    This thesis aims to contribute knowledge to support fully automation in life-science applications, which includes design, development, control and integration of robotic systems for sample preparation and strawberry harvesting, and is divided into two parts. Part I shows the development of robotic systems for the preparation of fungal samples for Fourier transform infrared (FTIR) spectroscopy. The first step in this part developed a fully automated robot for homogenization of fungal samples using ultrasonication. The platform was constructed with a modified inexpensive 3D printer, equipped with a camera to distinguish sample wells and blank wells. Machine vision was also used to quantify the fungi homogenization process using model fitting, suggesting that homogeneity level to ultrasonication time can be well fitted with exponential decay equations. Moreover, a feedback control strategy was proposed that used the standard deviation of local homogeneity values to determine the ultrasonication termination time. The second step extended the first step to develop a fully automated robot for the whole process preparation of fungal samples for FTIR spectroscopy by adding a newly designed centrifuge and liquid-handling module for sample washing, concentration and spotting. The new system used machine vision with deep learning to identify the labware settings, which frees the users from inputting the labware information manually. Part II of the thesis deals with robotic strawberry harvesting. This part can be further divided into three stages. i) The first stage designed a novel cable-driven gripper with sensing capabilities, which has high tolerance to positional errors and can reduce picking time with a storage container. The gripper uses fingers to form a closed space that can open to capture a fruit and close to push the stem to the cutting area. Equipped with internal sensors, the gripper is able to control a robotic arm to correct for positional errors introduced by the vision system, improving the robustness. The gripper and a detection method based on color thresholding were integrated into a complete system for strawberry harvesting. ii) The second stage introduced the improvements and updates to the first stage where the main focus was to address the challenges in unstructured environment by introducing a light-adaptive color thresholding method for vision and a novel obstacle-separation algorithm for manipulation. At this stage, the new fully integrated strawberry-harvesting system with dual-manipulator was capable of picking strawberries continuously in polytunnels. The main scientific contribution of this stage is the novel obstacle-separation path-planning algorithm, which is fundamentally different from traditional path planning where obstacles are typically avoided. The algorithm uses the gripper to push aside surrounding obstacles from an entrance, thus clearing the way for it to swallow the target strawberry. Improvements were also made to the gripper, the arm, and the control. iii) The third stage improved the obstacle-separation method by introducing a zig-zag push for both horizontal and upward directions and a novel dragging operation to separate upper obstacles from the target. The zig-zag push can help the gripper capture a target since the generated shaking motion can break the static contact force between the target and obstacles. The dragging operation is able to address the issue of mis-capturing obstacles located above the target, in which the gripper drags the target to a place with fewer obstacles and then pushes back to move the obstacles aside for further detachment. The separation paths are determined by the number and distribution of obstacles based on the downsampled point cloud in the region of interest.Denne avhandlingen tar sikte på å bidra med kunnskap om automatisering og robotisering av applikasjoner innen livsvitenskap. Avhandlingen er todelt, og tar for seg design, utvikling, styring og integrering av robotsystemer for prøvetaking og jordbærhøsting. Del I omhandler utvikling av robotsystemer til bruk under forberedelse av sopprøver for Fourier-transform infrarød (FTIR) spektroskopi. I første stadium av denne delen ble det utviklet en helautomatisert robot for homogenisering av sopprøver ved bruk av ultralyd-sonikering. Plattformen ble konstruert ved å modifisere en billig 3D-printer og utstyre den med et kamera for å kunne skille prøvebrønner fra kontrollbrønner. Maskinsyn ble også tatt i bruk for å estimere soppens homogeniseringsprosess ved hjelp av matematisk modellering, noe som viste at homogenitetsnivået faller eksponensielt med tiden. Videre ble det foreslått en strategi for regulering i lukker sløyfe som brukte standardavviket for lokale homogenitetsverdier til å bestemme avslutningstidspunkt for sonikeringen. I neste stadium ble den første plattformen videreutviklet til en helautomatisert robot for hele prosessen som forbereder prøver av sopprøver for FTIR-spektroskopi. Dette ble gjort ved å legge til en nyutviklet sentrifuge- og væskehåndteringsmodul for vasking, konsentrering og spotting av prøver. Det nye systemet brukte maskinsyn med dyp læring for å identifisere innstillingene for laboratorieutstyr, noe som gjør at brukerne slipper å registrere innstillingene manuelt.Norwegian University of Life SciencespublishedVersio

    A proposal for automatic fruit harvesting by combining a low cost stereovision camera and a robotic arm

    Get PDF
    This paper proposes the development of an automatic fruit harvesting system by combining a low cost stereovision camera and a robotic arm placed in the gripper tool. The stereovision camera is used to estimate the size, distance and position of the fruits whereas the robotic arm is used to mechanically pickup the fruits. The low cost stereovision system has been tested in laboratory conditions with a reference small object, an apple and a pear at 10 different intermediate distances from the camera. The average distance error was from 4% to 5%, and the average diameter error was up to 30% in the case of a small object and in a range from 2% to 6% in the case of a pear and an apple. The stereovision system has been attached to the gripper tool in order to obtain relative distance, orientation and size of the fruit. The harvesting stage requires the initial fruit location, the computation of the inverse kinematics of the robotic arm in order to place the gripper tool in front of the fruit, and a final pickup approach by iteratively adjusting the vertical and horizontal position of the gripper tool in a closed visual loop. The complete system has been tested in controlled laboratory conditions with uniform illumination applied to the fruits. As a future work, this system will be tested and improved in conventional outdoor farming conditions

    Robotic Crop Interaction in Agriculture for Soft Fruit Harvesting

    Get PDF
    Autonomous tree crop harvesting has been a seemingly attainable, but elusive, robotics goal for the past several decades. Limiting grower reliance on uncertain seasonal labour is an economic driver of this, but the ability of robotic systems to treat each plant individually also has environmental benefits, such as reduced emissions and fertiliser use. Over the same time period, effective grasping and manipulation (G&M) solutions to warehouse product handling, and more general robotic interaction, have been demonstrated. Despite research progress in general robotic interaction and harvesting of some specific crop types, a commercially successful robotic harvester has yet to be demonstrated. Most crop varieties, including soft-skinned fruit, have not yet been addressed. Soft fruit, such as plums, present problems for many of the techniques employed for their more robust relatives and require special focus when developing autonomous harvesters. Adapting existing robotics tools and techniques to new fruit types, including soft skinned varieties, is not well explored. This thesis aims to bridge that gap by examining the challenges of autonomous crop interaction for the harvesting of soft fruit. Aspects which are known to be challenging include mixed obstacle planning with both hard and soft obstacles present, poor outdoor sensing conditions, and the lack of proven picking motion strategies. Positioning an actuator for harvesting requires solving these problems and others specific to soft skinned fruit. Doing so effectively means addressing these in the sensing, planning and actuation areas of a robotic system. Such areas are also highly interdependent for grasping and manipulation tasks, so solutions need to be developed at the system level. In this thesis, soft robotics actuators, with simplifying assumptions about hard obstacle planes, are used to solve mixed obstacle planning. Persistent target tracking and filtering is used to overcome challenging object detection conditions, while multiple stages of object detection are applied to refine these initial position estimates. Several picking motions are developed and tested for plums, with varying degrees of effectiveness. These various techniques are integrated into a prototype system which is validated in lab testing and extensive field trials on a commercial plum crop. Key contributions of this thesis include I. The examination of grasping & manipulation tools, algorithms, techniques and challenges for harvesting soft skinned fruit II. Design, development and field-trial evaluation of a harvester prototype to validate these concepts in practice, with specific design studies of the gripper type, object detector architecture and picking motion for this III. Investigation of specific G&M module improvements including: o Application of the autocovariance least squares (ALS) method to noise covariance matrix estimation for visual servoing tasks, where both simulated and real experiments demonstrated a 30% improvement in state estimation error using this technique. o Theory and experimentation showing that a single range measurement is sufficient for disambiguating scene scale in monocular depth estimation for some datasets. o Preliminary investigations of stochastic object completion and sampling for grasping, active perception for visual servoing based harvesting, and multi-stage fruit localisation from RGB-Depth data. Several field trials were carried out with the plum harvesting prototype. Testing on an unmodified commercial plum crop, in all weather conditions, showed promising results with a harvest success rate of 42%. While a significant gap between prototype performance and commercial viability remains, the use of soft robotics with carefully chosen sensing and planning approaches allows for robust grasping & manipulation under challenging conditions, with both hard and soft obstacles
    • …
    corecore