112 research outputs found

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Roadmap on all-optical processing

    Get PDF
    The ability to process optical signals without passing into the electrical domain has always attracted the attention of the research community. Processing photons by photons unfolds new scenarios, in principle allowing for unseen signal processing and computing capabilities. Optical computation can be seen as a large scientific field in which researchers operate, trying to find solutions to their specific needs by different approaches; although the challenges can be substantially different, they are typically addressed using knowledge and technological platforms that are shared across the whole field. This significant know-how can also benefit other scientific communities, providing lateral solutions to their problems, as well as leading to novel applications. The aim of this Roadmap is to provide a broad view of the state-of-the-art in this lively scientific research field and to discuss the advances required to tackle emerging challenges, thanks to contributions authored by experts affiliated to both academic institutions and high-tech industries. The Roadmap is organized so as to put side by side contributions on different aspects of optical processing, aiming to enhance the cross-contamination of ideas between scientists working in three different fields of photonics: optical gates and logical units, high bit-rate signal processing and optical quantum computing. The ultimate intent of this paper is to provide guidance for young scientists as well as providing research-funding institutions and stake holders with a comprehensive overview of perspectives and opportunities offered by this research field

    Transmissores-recetores de baixa complexidade para redes óticas

    Get PDF
    Traditional coherent (COH) transceivers allow encoding of information in both quadratures and the two orthogonal polarizations of the electric field. Nevertheless, such transceivers used today are based on the intradyne scheme, which requires two 90o optical hybrids and four pairs of balanced photodetectors for dual-polarization transmission systems, making its overall cost unattractive for short-reach applications. Therefore, SSB methods with DD reception, commonly referred to as self-coherent (SCOH) transceivers, can be employed as a cost-effective alternative to the traditional COH transceivers. Nevertheless, the performance of SSB systems is severely degraded. This work provides a novel SCOH transceiver architecture with improved performance for short-reach applications. In particular, the development of phase reconstruction digital signal processing (DSP) techniques, the development of other DSP subsystems that relax the hardware requirement, and their performance optimization are the main highlights of this research. The fundamental principle of the proposed transceiver is based on the reception of the signal that satisfies the minimum phase condition upon DD. To reconstruct the missing phase information imposed by DD, a novel DCValue method exploring the SSB and the DC-Value properties of the minimum phase signal is developed in this Ph.D. study. The DC-Value method facilitates the phase reconstruction process at the Nyquist sampling rate and requires a low intensity pilot signal. Also, the experimental validation of the DC-Value method was successfully carried out for short-reach optical networks. Additionally, an extensive study was performed on the DC-Value method to optimize the system performance. In the optimization process, it was found that the estimation of the CCF is an important parameter to exploit all advantages of the DC-Value method. A novel CCF estimation technique was proposed. Further, the performance of the DC-Value method is optimized employing the rate-adaptive probabilistic constellation shaping.Os sistemas de transcetores coerentes tradicionais permitem a codificação de informação em ambas quadraturas e em duas polarizações ortogonais do campo elétrico. Contudo, estes transcetores utilizados atualmente são baseados num esquema intradino, que requer dois híbridos óticos de 90o e quatro pares de foto detetores para sistemas de transmissão com polarização dupla, fazendo com que o custo destes sistemas seja pouco atrativo para aplicações de curto alcance. Por isso, métodos de banda lateral única com deteção direta, também referidos como transcetores coerentes simplificados, podem ser implementados como uma alternativa de baixo custo aos sistemas coerentes tradicionais. Contudo, o desempenho de sistemas de banda lateral única tradicionais é gravemente degradado pelo batimento sinal-sinal. Nesta tese foi desenvolvida uma nova arquitetura de transcetor coerente simplificada com um melhor desempenho para aplicações de curto alcance. Em particular, o desenvolvimento de técnicas de processamento digital de sinal para a reconstrução de fase, bem como de outros subsistemas de processamento digital de sinal que minimizem os requerimentos de hardware e a sua otimização de desempenho são o foco principal desta tese. O princípio fundamental do transcetor proposto é baseado na receção de um sinal que satisfaz a condição mínima de fase na deteção direta. Para reconstruir a informação de fase em falta causada pela deteção direta, um novo método de valor DC que explora sinais de banda lateral única e as propriedades DC da condição de fase mínima é desenvolvido nesta tese. O método de valor DC facilita a reconstrução da fase à frequência de amostragem de Nyquist e requer um sinal piloto de baixa intensidade. Além disso, a validação experimental do método de valor DC foi executada com sucesso em ligações óticas de curto alcance. Adicionalmente, foi realizado um estudo intensivo do método de valor DC para otimizar o desempenho do sistema. Neste processo de otimização, verificou-se que o fator de contribuição da portadora é um parâmetro importante para explorar todas as vantagens do método de valor DC. Neste contexto, é proposto um novo método para a sua estimativa. Por último, o desempenho do método de valor DC é otimizado recorrendo a mapeamento probabilístico de constelação com taxa adaptativa.Programa Doutoral em Engenharia Eletrotécnic

    Energy-Efficiency in Optical Networks

    Get PDF

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Dynamic Optical Networks for Data Centres and Media Production

    Get PDF
    This thesis explores all-optical networks for data centres, with a particular focus on network designs for live media production. A design for an all-optical data centre network is presented, with experimental verification of the feasibility of the network data plane. The design uses fast tunable (< 200 ns) lasers and coherent receivers across a passive optical star coupler core, forming a network capable of reaching over 1000 nodes. Experimental transmission of 25 Gb/s data across the network core, with combined wavelength switching and time division multiplexing (WS-TDM), is demonstrated. Enhancements to laser tuning time via current pre-emphasis are discussed, including experimental demonstration of fast wavelength switching (< 35 ns) of a single laser between all combinations of 96 wavelengths spaced at 50 GHz over a range wider than the optical C-band. Methods of increasing the overall network throughput by using a higher complexity modulation format are also described, along with designs for line codes to enable pulse amplitude modulation across the WS-TDM network core. The construction of an optical star coupler network core is investigated, by evaluating methods of constructing large star couplers from smaller optical coupler components. By using optical circuit switches to rearrange star coupler connectivity, the network can be partitioned, creating independent reserves of bandwidth and resulting in increased overall network throughput. Several topologies for constructing a star from optical couplers are compared, and algorithms for optimum construction methods are presented. All of the designs target strict criteria for the flexible and dynamic creation of multicast groups, which will enable future live media production workflows in data centres. The data throughput performance of the network designs is simulated under synthetic and practical media production traffic scenarios, showing improved throughput when reconfigurable star couplers are used compared to a single large star. An energy consumption evaluation shows reduced network power consumption compared to incumbent and other proposed data centre network technologies
    corecore