1,465 research outputs found

    Are inductive current transformers performance really affected by actual distorted network conditions? An experimental case study

    Get PDF
    The aim of this work is to assess whether actual distorted conditions of the network are really affecting the accuracy of inductive current transformers. The study started from the need to evaluate the accuracy performance of inductive current transformers in off-nominal conditions, and to improve the related standards. In fact, standards do not provide a uniform set of distorted waveforms to be applied on inductive or low-power instrument transformers. Moreover, there is no agreement yet, among the experts, about how to evaluate the uncertainty of the instrument transformer when the operating conditions are different from the rated ones. To this purpose, the authors collected currents from the power network and injected them into two off-the-shelf current transformers. Then, their accuracy performances have been evaluated by means of the well-known composite error index and an approximated version of it. The obtained results show that under realistic non-rated conditions of the network, the tested transformers show a very good behavior considering their nonlinear nature, arising the question in the title. A secondary result is that the use of the composite error should be more and more supported by the standards, considering its effectiveness in the accuracy evaluation of instrument transformers for measuring purposes

    UHF diagnostic monitoring techniques for power transformers

    Get PDF
    This paper initially gives an introduction to ultra-high frequency (UHF) partial discharge monitoring techniques and their application to gas insulated substations. Recent advances in the technique, covering its application to power transformers, are then discussed and illustrated by means of four site trials. Mounting and installation of the UHF sensors is described and measurements of electrical discharges inside transformers are presented in a range of formats, demonstrating the potential of the UHF method. A procedure for locating sources of electrical discharge is described and demonstrated by means of a practical example where a source of sparking on a tap changer lead was located to within 15 cm. Progress with the development of a prototype on-line monitoring and diagnostic system is reviewed and possible approaches to its utilization are discussed. New concepts for enhancing the capabilities of the UHF technique are presented, including the possibility of monitoring the internal mechanical integrity of plant. The research presented provides sufficient evidence to justify the installation of robust UHF sensors on transformer tanks to facilitate their monitoring if and when required during the service lifetime

    Architecture of a network-in-the-Loop environment for characterizing AC power system behavior

    Get PDF
    This paper describes the method by which a large hardware-in-the-loop environment has been realized for three-phase ac power systems. The environment allows an entire laboratory power-network topology (generators, loads, controls, protection devices, and switches) to be placed in the loop of a large power-network simulation. The system is realized by using a realtime power-network simulator, which interacts with the hardware via the indirect control of a large synchronous generator and by measuring currents flowing from its terminals. These measured currents are injected into the simulation via current sources to close the loop. This paper describes the system architecture and, most importantly, the calibration methodologies which have been developed to overcome measurement and loop latencies. In particular, a new "phase advance" calibration removes the requirement to add unwanted components into the simulated network to compensate for loop delay. The results of early commissioning experiments are demonstrated. The present system performance limits under transient conditions (approximately 0.25 Hz/s and 30 V/s to contain peak phase-and voltage-tracking errors within 5. and 1%) are defined mainly by the controllability of the synchronous generator

    Compensation of Nonlinearity of Voltage and Current Instrument Transformers

    Get PDF
    partially_open11This paper aims at characterizing and improving the metrological performances of current and voltage instrument transformers (CTs and VTs) in harmonic measurements in the power system. A theoretical analysis is carried out to demonstrate that, due to the iron core nonlinearity, CT and VT output signal is distorted even when the input signal is a pure sine wave. Starting from this analysis, a new method for CT and VT characterization and compensation is proposed. In a first step, they are characterized in sinusoidal conditions and the harmonic phasors of the distorted output are measured; in the second step, these phasors are used to compensate the harmonic phasors measured in normal operating conditions, which are typically distorted. The proposed characterization and compensation techniques are called SINusoidal characterization for DIstortion COMPensation (SINDICOMP). Several experimental tests, using high-accuracy calibration setups, have been performed to verify the proposed methods. The experimental results showed that the SINDICOMP technique assures a significant improvement of CT and VT metrological performances in harmonic measurements.restrictedopenCataliotti, Antonio; Cosentino, Valentina; Crotti, Gabriella; Femine, Antonio Delle; Cara, Dario Di; Gallo, Daniele; Giordano, Domenico; Landi, Carmine; Luiso, Mario; Modarres, Mohammad; Tine, GiovanniCataliotti, Antonio; Cosentino, Valentina; Crotti, Gabriella; Femine, Antonio Delle; Cara, Dario Di; Gallo, Daniele; Giordano, Domenico; Landi, Carmine; Luiso, Mario; Modarres, Mohammad; Tine, Giovann

    Model Parameter Calibration in Power Systems

    Get PDF
    In power systems, accurate device modeling is crucial for grid reliability, availability, and resiliency. Many critical tasks such as planning or even realtime operation decisions rely on accurate modeling. This research presents an approach for model parameter calibration in power system models using deep learning. Existing calibration methods are based on mathematical approaches that suffer from being ill-posed and thus may have multiple solutions. We are trying to solve this problem by applying a deep learning architecture that is trained to estimate model parameters from simulated Phasor Measurement Unit (PMU) data. The data recorded after system disturbances proved to have valuable information to verify power system devices. A quantitative evaluation of the system results is provided. Results showed high accuracy in estimating model parameters of 0.017 MSE on the testing dataset. We also provide that the proposed system has scalability under the same topology. We consider these promising results to be the basis for further exploration and development of additional tools for parameter calibration

    A Tesla-Blumlein PFL-Bipolar pulsed power generator

    Get PDF
    A Tesla-Blumlein PFL-Bipolar pulsed power generator, has been successfully designed, manufactured and demonstrated. The compact Tesla transformer that it employs has successfully charged capacitive loads to peak voltages up to 0.6 MV with an overall energy efficiency in excess of 90%. The Tesla driven Blumlein PFL generator is capable of producing a voltage impulse approaching 0.6 MV with a rise time close to 2 ns, generating a peak electrical power of up to 10 GW for 5 ns when connected to a 30 Ω resistive load. Potentially for medical application, a bipolar former has been designed and successfully implemented as an extension to the system and to enable the generation of a sinusoid-like voltage impulse with a peak-to-peak value reaching 650 kV and having a frequency bandwidth beyond 1 GHz. This thesis describes the application of various numerical techniques used to design a successful generator, such as filamentary modelling, electrostatic and transient (PSpice) circuit analysis, and Computer Simulation Technology (CST) simulation. All the major parameters of both the Tesla transformer, the Blumlein pulse forming line and the bipolar former were determined, enabling accurate modelling of the overall unit to be performed. The wide bandwidth and ultrafast embedded sensors used to monitor the dynamic characteristics of the overall system are also presented. Experimental results obtained during this major experimental programme are compared with theoretical predictions and the way ahead towards connecting to an antenna for medical application is considered

    Adaptive Polynomial Harmonic Distortion Compensation in Current and Voltage Transformers Through Iteratively Updated QR Factorization

    Get PDF
    Measuring current and voltage harmonics has paramount importance for improving the power quality of distribution grids. However, the achieved accuracy strongly depends on the adopted instrument transformer (IT). This article proposes an adaptive technique that enables an effective compensation of both the filtering behavior and the harmonic distortion (HD) introduced by current and voltage transformers (VTs), namely the strongest nonlinear effect at low-order harmonics. The approach is based on a flexible, linear in the parameters polynomial modeling of HD in the frequency domain. Model complexity can be different from one harmonic to the other, and it is selected through an automatic iterative process to suit the nonlinear behavior at each specific harmonic order, while avoiding overfitting. In particular, the number of parameters is increased by progressively updating the QR factorization of the regressor matrix trough Householder reflections until a convergence condition is reached. Experimental tests performed on an inductive VT and current transformer (CT) highlight the effectiveness of the approach

    Current Step Generation and Measurement with Rise-time in the Range of Nanoseconds

    Get PDF
    A current step generator based on a charged coaxial cable is designed and tested for characterizing impulse current shunts. This thesis has developed a traceable calibration infrastructure for fast shunts and other current sensors, defined measurement techniques for a current step and improved the test procedure and measurement capabilities. For calibration of shunts, current coil sensors are used in the measurement circuits. Since no calibration services are currently available for impulse current measuring systems, a best circuit combination is proposed for current step generation with a rise time of less than 5 ns, along with a proposed reference shunt that aims to provide the best and most stable measurement results with negligible noise, oscillations, and droop in the measured current step. Based on techniques found in the literature, current steps are generated, and different sensors were used to measure the generated steep front current steps. The generation system consists of a 110-m long, 50-Ω coaxial cable and a spark gap. Various spark gap switches, including the SF6 spark gap, are used for generating current steps. With the coaxial cable charged from one end, a current step is generated after reflecting back from the open end with a step length of twice the cable transmission delay. The cable is than discharged to the shunt (or coil) through the spark gap. The measurement system consists of shunts and coil current sensors, 5:1 and 6.6:1 attenuators based on the requirement of the sensors. The recording instrument is a 1-GHz, 8-bit, 1-GS/s digitizer. The proposed step generator can produce current steps with a stable current of up to 100 A. The rise time of the step varies from 1.6 ns to 15 ns, depending on the spark gap used for switching. The produced current is constant within 0.5% for a step length of 960 ns generated with a coaxial cable 110 m in length. To improve the test procedure and measurement capabilities, the thesis also analyzed factors affecting current step measurement, such as the type of coaxial cable, type of connection, extra shielding, clearances, interference sources, media of the spark gap, and the spark gap electrode distance (arc length). It is found that the measurement system and the rise time of current step is affected by many factors, including the coaxiality of the connection, impedance mismatch, interference, clearances, stray capacitances, and stray inductances. These results will enable future standardization of impulse current sensors

    Rural Facility Electric Power Quality Enhancement

    Get PDF
    Electric power disturbances are known to be more prevalent in small, isolated power systems than in larger interconnected grids which service most of the United States. This fact has given rise to a growing concern about the relative merits of different types of power conditioning equipment and their effectiveness in protecting sensitive electronics and essential loads in rural Alaska. A study has been conducted which compares isolation transformers, voltage regulators, power conditioners, uninterruptible power supplies and indoor computer surge suppressors in their ability to suppress the various disturbances which have been measured in several Alaskan communities. These include voltage sags and surges, impulses, blackouts, frequency variations and long-term voltage abnormalities. In addition, the devices were also subjected to fast, high-magnitude impulses such as might be expected in the event of a lightning strike to or near utility distribution equipment. The solutions for power line problems will vary for different load applications and for different rural electrical environments. The information presented in this report should prove to be valuable in making the analysis.List of Figures - viii List of Tables - xiv Acknowledgements - xv Chapter 1: Electric Disturbances in Power Systems Introduction - 16 Categorizing Electrical Disturbances - 17 Voltage Disturbances and Transients - 19 Frequency Disturbances - 22 Sources of Transients - 22 Lightning and EMP - 23 Switching - 24 Power System Noise - 25 Common Mode and Normal Mode Noise Signals - 26 Chapter 2: Power Quality in Rural Alaska Characterizing the Village Power System - 28 The Village Electric Load - 29 Power Quality Site Surveys - 30 Rural Power Quality in Alaska - 31 Power Conditioning Requirements for Village Loads - 37 Chapter 3: Isolation, Voltage Regulation and Power Conditioning Introduction - 39 Slow Voltage Fluctuations - 39 Voltage Regulation and Power Conditioning - 40 Ferroresonant Transformers - 40 Electronic Tap-Changing Regulators - 44 Isolation Transformers - 47 Dedicated Lines - 51 Chapter 4: Impulse Suppression Introduction - 52 Surge Suppressors - 52 Surge Suppressor Components - 55 Component Configuration - 58 EMI/RFI Filters - 58 Standard Tests for Evaluating Surge Suppressor Performance - 60 Scope of Impulse Testing for Rural Alaska - 60 Impulse Test Equipment - 62 Test Procedure - 62 Impulse Testing Measurements - 63 Test Results - 64 Chapter 5: Uninterruptible Power Supplies The True UPS - 68 Standby Power Systems and a New Generation of UPS - 69 UPS Backup Time - 74 UPS Testing - 74 Chapter 6: Computers and Power Problems Introduction - 78 The Computer Tolerance Envelope - 78 Ridethrough - 80 Component Degradation and Equipment Failure - 82 Computer Power Supplies - 82 Linear Power Supplies - 83 Switching Power Supplies - 84 PC Tolerance of Powerline Disturbances - 84 Chapter 7: Comparing Power Conditioning Alternatives Voltage Regulation - 89 Isolation - 93 Uninterruptible Power Systems - 94 Computer Surge Suppressors - 98 Summary - 98 Appendices Appendix A: Voltage Clamping Levels of Surge Suppressors - 101 Appendix B: Voltage Clamping Levels of Power Conditioners and Uninterruptible Power Systems - 115 Appendix C: Noise Suppression of Surge Suppressors and Power Conditioners - 129 Appendix D: Waveforms and Regulating Characteristics of Power Conditioners and Uninterruptible Power Systems - 135 Appendix E: Comparison of Voltage Clamping Levels of Surge Suppressors Power Conditioners, Isolation Transformers and Uninterruptible Power Systems to High-Magnitude Impulse Voltages - 151 References - 16
    • …
    corecore