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Abstract 

 In power systems, accurate device modeling is crucial for grid reliability, 

availability, and resiliency. Many critical tasks such as planning or even realtime operation 

decisions rely on accurate modeling. This research presents an approach for model 

parameter calibration in power system models using deep learning. Existing calibration 

methods are based on mathematical approaches that suffer from being ill-posed and thus 

may have multiple solutions. We are trying to solve this problem by applying a deep 

learning architecture that is trained to estimate model parameters from simulated Phasor 

Measurement Unit (PMU) data. The data recorded after system disturbances proved to have 

valuable information to verify power system devices. A quantitative evaluation of the 

system results is provided. Results showed high accuracy in estimating model parameters 

of 0.017 MSE on the testing dataset. We also provide that the proposed system has 

scalability under the same topology. We consider these promising results to be the basis 

for further exploration and development of additional tools for parameter calibration. 
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Chapter 1 

Introduction 

 

 Power system models are used to represent the dynamic behavior of components of 

power systems, such as generators, transformers, and loads. In addition, these models 

promote the study of large power system networks and contribute to decisions affecting 

long-term planning, short-term planning and even in real-time operations. Inaccurate 

models that result in the power system being either overestimated or underestimated and 

the effects could be disastrous [1]. For example, the Western System Coordinating Council 

(WSCC) system can not avoid a blackout event in August 1996, because of the expected 

simulation forecast a stable situation, in fact, the system collapsed within minutes [2]. After 

this blackout event, North American Electric Reliability Corporation (NERC) and the 

Western Electricity Coordinating Council (WECC) in North America implemented a 

number of policies and standards to guide the power industry in periodic validation of 

power grid models and calibration of poor parameters with a view to building sufficient 

confidence in model quality [3]. The simulated models must therefore be verified to ensure 

that they can accurately estimate the actual network performance. 

 Through growing additions of renewable energy sources, smart loads, and mid-size 

generators, power generation is now facing substantial changes in its power grid. The 

current power grid is becoming more complex and stochastic, which could invalidate 

conventional studies and pose significant operational challenges. Recent criteria are 

therefore becoming more steady to certify precise modeling. Standards of the NERC 
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Reliability MOD include the provision of power flow and dynamic models for all operating 

systems. In particular, models with capacities greater than 20 MVA as a single unit and 75 

MVA as a plant facility are required to be validated every five years. Whereas the Western 

Electricity Coordinating Council (WECC) lowered the model validation threshold to 10 

MVA as an individual unit and 20 MVA as a plant facility to be validated every five years 

[4]. 

 Stage tests are the most commonly used methodology for validation and calibration 

of power plant models. The staged test takes the generator offline and applies a set of 

simple and well-defined producers. This approach is costly as during the testing process 

the measured generators are no longer able to produce the energy for the revenue. Also, 

with more renewable energy sources and mid-size generators added to the grid the staged 

test becomes an unpractical solution to meet NERC standards [5]. The 2016 WECC 

REMTF workshop showed that there are no dynamic models for 94 plants with a 

generating capacity of 5.2 GW and 54 plants with a generating capacity of 2.8 GW are 

modeled with inappropriate dynamic models. Power grids are therefore more than ever in 

need of accurate, reliable and scalable models/modeling tools. 

 Mathematical disturbance-based approaches were implemented in the last few 

years. These methods use dynamic disturbance recording data, such as Phasor 

Measurement Units (PMUs). The models can be tested by these methods without the need 

to take the system offline, thereby allowing for more regular testing than the 5- or 10-year 

duration needed by NERC and WECC standards. For example, Western Interconnection 
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has 10 to 15 disturbance events every year, allowing for more frequent identification of 

abnormal plant activity and model adjustments. 

 Disturbance-based tests are more cost-effective, timely, and scalable than staged 

tests. However, the current methods are ill-posed and may suffer from instability or lack a 

unique solution. According to the latest NERC guidelines on the validation of power plant 

models, the existing disturbance-based testing tools are imperfect, and grid operators 

should exercise engineering judgment when using numerical curve fitting methods. 

 In this research, and given the urgent need for reliable, scalable and less time-

consuming model validation and calibration methods, we are introducing a methodology 

for calibrating power systems based on disturbance data from PMUs using machine 

learning algorithms. Our main contribution in this thesis is to evaluate the usability of 

machine learning algorithms in power systems calibration from simulated data. 

 We estimate two types of generator model parameters: GENCLS and GENROU 

using a deep neural network trained offline from simulated disturbance events. The main 

advantage of the proposed approach is the ability to provide a well-posed solution that is 

trained with minimal pre-processing of data and therefore relies less on expert judgment. 

We validated the effectiveness of the proposed method by using IEEE 14-bus and using 

IEEE 39-bus. 
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Chapter 2 

Related Work 

 

2.1. Practice Methods 

 

 Several methods have been used to validate the power system model and perform 

parameter calibration, as summarized in Table I. Performing these methods may require 

taking out generators offline from normal operations and using sophisticated data 

acquisition/processing tools. These actions are not desirable because of its high 

implementation cost [3] and they are mandatory to prevent blackouts like the one that 

happened in 2003 in the USA [4]. Up to our knowledge, there is no existing solution to 

address this problem efficiently. 

 

Method On-line/off-line 

Time to do 

Advantage Disadvantage 

Staged test Off-line, 

Commission/scheduled 

test 

Very simple  

Time efficient 

Very expensive 

(it cost 15,000-

35,000 per 

generator per test 

in USA) 

Disturbance-based 

test 

On-line,  

Via disturbance 

Can provide high-

quality data Real-

time 

The collected data 

need to be 

processed 

effectively 

Table I. Existing Methods For Power System Validation And Calibration 

 

 The two most common methods are staged test and disturbance-based test. In the 

first method, the generator is required to be taken offline from the normal operation. As a 
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result, this method is costly since the tested generators are no longer able to produce 

electricity for the revenue. 

 The second method is the disturbance-based power plant model verification using 

dynamic disturbance recording data such as Phasor Measurement Units (PMUs). PMUs 

are one of the most important measuring devices in the future of power systems [6] that 

been recently deployed across many nation’s bulk power electric systems, providing more 

extensive grid-related measurements. PMUs perform continuous high-speed monitoring 

that records plant’s response to actual transmission levels grid disturbances, such as 

generator faults, losses or breaker operations. Using PMU data device model validation 

can be done without the need to take the device offline.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 6 
  

2.1.1. Staged Test 

 

 The most common method of validation and calibration of power plant models is 

the staged test. It requires the device to be taken offline for 2 or 3 days from normal 

operation. The testing equipment is connected to the offline generator and a series of 

required tests (generator test, exciter test, governor test, and reactive power test) are 

performed to determine the desired model parameters using mathematical techniques. The 

staged test validation method is well known, but it has a high upfront cost (e.g., $15,000-

$35,000 per generator per test in the U.S.) and time-consuming, making it an unpractical 

model testing method according to the requirements of the recent standard from NERC and 

WECC [3].  

 In the last two decades, PMUs have been established and implemented over North 

America. Researchers found the optimal position for installing PMUs for online model 

verification is at the interconnection point of a large power plant [7]. Disturbance-based 

methods have been proposed as a low-cost alternative to staged tests since they allow 

device models to be verified online without taking the generator offline. In addition, the 

data collected by PMU is realistic and describes the operating range for each element in a 

precise comparison with the stand-alone testing of individual machines. The key idea is to 

inject PMU measurements into the bus terminal of the power plant during dynamic 

simulation so that the response of the model can be compared to the actual PMU 

measurements [8]. As a result, disturbance-based methods are more scalable and reliable 

in comparison with staged test methods.  
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2.1.2. Disturbance-Based Test 

 

  The second method is the disturbance based on PMU. Disturbance in the power 

system is a sudden change or a sequence of changes in one or more of the parameters of 

the system, or in one or more of the operating quantities [9]. It has two types: small 

disturbance type where the dynamic power system could be linearized. And a large 

disturbance where the power system cannot be linearized for the purpose analysis.  

 PMUs typically measure grid conditions at least 30 times per second, 100 times 

faster than the 2 to 4 seconds reporting rate typically corresponding to Supervisory Control 

and Data Acquisition (SCADA) systems [10]. PMU is well synchronized with the global 

positioning system clock (GPS) and it can capture continuously the dynamic response of 

power system and abnormal condition then it can be used and applied as online validation 

tools. Meanwhile, a validating system based on this method is recommended by NASPI.

 Previous work showed the feasibility of estimating dynamic states using PMUs data. 

In [11], authors compared and examined the four commonly used algorithms for state 

estimation: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Ensemble 

Kalman Filter (ENKF), and Particle Filter (PF). The statistical performance for each 

algorithm is compared using a two-area-four-machine test system and Monte Carlo 

methods. Finally, the authors suggested some recommendations on how to select the state 

estimation algorithm based on the studied problem. 

 In [12], the authors investigated the estimation of synchronous generator states and 

parameters related to angular stability using PMU data. The proposed method uses the 
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finite difference technique and least-squares method to evaluate differential equations 

governing the synchronous machine using a time window of PMU measurements. 

 These validation techniques still have problems and gaps to represent the real-time 

performance of the power system based on the latest NERC guideline on power plant 

validation. The principal difficulty is related to (1) the fact that while the numerical model 

represents a well-defined mapping from input parameters to the outputs, the inverse 

problem often presents itself as an ill-posed problem that often yields multiple solutions 

for the same model performance. The solutions can be plagued with problems of non-

identifiability, non-uniqueness, and instability; (2) The accuracy and effectiveness of the 

process heavily rely on expert’s judgment about the system such as parameter sanity check 

and parameter sensitivity evaluation; (3) Manual search for the optimal solution via 

methods such as the least-squares method of all parameters when the number of parameter 

increases can become tedious and convergence becomes slow. Often, only one or two 

machines in the plant will go under such tests and the results will be assumed valid to 

represent all the machines in the plant! Hence, there is a strong need to develop and 

improve the model parameter tuning and model validation process to reduce cost and 

improve the reliability and robustness of the models. 

 The main issue that faces this approach and software tools is having multiple 

solutions that may exist for the same model performance after performing the calibration 

procedure, so identifying the true parameter set is somehow difficult. In addition, although 

such a method can provide a unique solution calculated by the least square method for a 

particular event, the derived set of parameters may not be the same for other events. So, it 
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is strongly recommended by NERC guidelines not to rely solely on numerical curve fitting 

methods without engineering judgment. 

Using PMU data to validate and calibrate a particular model on the power system 

network will improve the reliability of the power system. Its main benefits come from that 

the data collected by PMU are realistic and describes the operating range for each element 

accurately comparing to the stand-alone testing of the individual machine. As a result, this 

may enhance asset utilization once a good model has been developed. Based on modeling 

the PMU data, an equipment misoperation or failure could be expected, so a maintenance 

plan could be established to prevent the failure. 

 At the same time, the disturbance based model is more economical cost-effective, 

timely, and accurate than validation methods that take a generator offline for the 

performance of the staged test. Validation is done online without stopping operations to 

conduct testing, it also satisfies the requirements of NERC Reliability Standards MOD-26, 

MOD-27, MOD-32, and MOD-33 to verify generator responses during system 

disturbances. 

 Disturbance-based methods have been proposed to solve the non-uniqueness 

problems [13]. These methods mainly depend on more than one disturbance for model 

calibration. The idea is to find the optimum solution that fits the different disturbance 

events applied to the same model. Even though multiple events will help to reduce the 

number of multiple solutions, there is no guarantee that these methods will find an optimal 

solution. In addition, if the disturbance events happened in a long period of time, the 

characteristic of the power system model might change, which will lower the reliability of 
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the optimal solution. In fact, NERC is working now on developing a guideline on how to 

use and choose multiple events for model verification and calibration. 

 

2.1.3. Machine Learning-Based Methods 

 

 Disturbance based method has its challenges due to the limited number of 

measurement tools, as well as its security systems may be affected by the attacker who 

wants to disturb the power network. As a result, the data provided from PMUs need to be 

accurate since it may affect the stability assessment of the power system.  

 Recently, some of the machine learning techniques have been used to address many 

problems in power systems. Research presented in [14] and [15] uses ML for fault detection 

and power stability issues. In the last few years, many support vector machines (SVM) 

methods have been used to predict transient stability with success compared to other 

methods such as decision tree and rule-based methods [16]. All of these methods and 

classifiers rely on pre-processing and accurate instant disturbance information. In [17], the 

authors proposed a deep neural network, the input of which is a heatmap representation of 

PMU measurements, to predict the stability of the power system. There is no known 

machine learning-based approach for model calibration. In [18], the author uses 

disturbance information and a machine learning technique called Random Forest (RF) for 

model validation. Their research involves a single error classification and multiple error 

classification for model validation. However, the solution proposed in this research is 

applied only to the validation of the model without giving a precise correction. 
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2.2. Algorithms and Tools 

 

 PMUs have been developed and adopted across the world, using disturbance based 

model has become accepted due to its benefit compared to perform the offline staged test. 

Currently, a lot of research suggests optimum locations for PMUs to be installed at the 

point of interconnection at a large power plant to apply online model verification. In the 

industry. The model validation approach of using measured data by PMUs in time domain 

simulations has been widely adopted by software vendors, such as GE PSLF, SIEMENS 

PTI PSSE, PowerWorld Simulator and TSAT [3]. 

 Recently, phasor measurement units (PMUs) involved in many power systems 

applications, In [19], a tool that uses PMU data at the generator terminals to validate the 

models without taking them offline was presented, which consist of two main steps process, 

starting with deciding whether the model is valid and then calibrate the model parameters 

when it is required. In the validation process, simulation output waveforms are compared 

against the PMU measured data. If the simulation results indicate a reasonable match with 

measured waveforms then the model parameters used in dynamic simulations accurately 

represent the generator performance during the actual disturbance. 

 Several algorithms and tools are reported to provide calibration of power system 

models using PMU measurement data. Integrated methodology and software tool suites 

were presented to systematically validate the stability models. One of these is the advanced 

Kalman Filter Algorithm used to identify/calibrate problematic model parameters using 

online PMU measurements. This tool is introduced to validate as well as calibrate models 
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based on the Kalman Trajectory Sensitivity Analysis Method [20]. This developed 

prototype demonstrates excellent performance in identifying and calibrating bad 

parameters of a realistic hydropower plant against multiple system events. The PMU-based 

approach using online measurements without interfering with the operation of generators 

provides a low-cost alternative to meet NERC standards. This PMU-based approach can 

effectively reduce the frequency of costly staged generator tests.  

 Another calibration identification algorithm has been developed in [21], to calibrate 

parameters of individual components using PMU measurement data from staged tests. A 

model reduction that is used to reduce the complexity of a power system model and 

calibration approach using phasor measurement unit (PMU) data were presented. An on-

line parameter identification algorithm is developed to calibrate generator parameters in 

the reduced model using PMU measurements. Applying disturbance in the close area, the 

PMU measurements were observed to use. PMU implementation makes the on-line 

calibration possible. To make full use of dynamic data transmitted by PMU. This can also 

be applied for tuning the parameters by playing back equipment testing data.  

 Many studies have been done to estimate the generator parameters. A dynamic state 

estimation method for synchronous generator parameter estimation using PMU data as 

described in [22]. PMU phasor data with disturbance was converted to three-phase sampled 

data to feed into the dynamic state estimation. It was used for better estimation accuracy. 

So, the comparison between the calibrated parameters and actual parameters to prove the 

effectiveness of this method. 
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 Furthermore, PMU technologies and the Extended Kalman Filter (EKF) were 

introduced in [23], which have been used for sub-system model validation. It enables 

rigorous comparison of model simulation and recorded dynamics and facilitates 

identification of problematic model components. In this work, A four-machine modeled 

as classical models (GENCLS), and the two-area system is applied to illustrate the 

calibration process of the EKF-based model parameter. The EKF-based parameter 

calibration method is shown to have good convergence efficiency and to be robust in 

respect of significant initial parameter errors.  

 A Power Plant Parameter Derivation (PPPD) tool, developed by the Electric Power 

Research Institute (EPRI) [24]-[25], and a model calibration toolbox in MATLAB, 

developed by MathWorks [26]. Both of these two tools are developed based on linear or 

nonlinear curve fitting technique which has proved effective in the derivation of parameter 

sets corresponding to PMU measurements. It is reported, however, that for the same model 

performance, multiple solutions may exist, making it difficult to identify the true parameter 

set that works for different events. However, after starting the calibration procedure, 

multiple solutions may exist for the same model performance, which makes it difficult to 

identify the true parameter set. This is a common issue for all numerical curve fitting 

algorithms. Therefore, it was strongly recommended by NERC guidelines not to rely solely 

on numerical curve fitting methods without engineering expert judgment [3].  Although 

such methods can provide a unique solution for a certain system event calculated using the 

less square nonlinear method, the derived parameter sets may not be the optimum solution 

for other events.  
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 In this research, we propose a data-driven machine learning approach to model 

calibration of power planet models using Convolution Neural Networks (CNNs). Our 

method does not suffer from multiple solutions as it is trained in a large number of 

simulated disturbance events that do not include multiple solutions for the same event and 

therefore rely less on expert judgment. We have shown the effectiveness of our method by 

comparing it with the mathematical approaches implemented in the PPPD tool. 
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2.3. Power System Model Validation vs Calibration Process 

 

 With the ever-increasing penetration of renewable energy, smart loads, energy 

storage and new consumer behavior, today's power grid is more dynamic and stochastic, 

which can invalidate conventional study assumptions and present significant operational 

challenges [13]. The key to maintaining stability and reliability of the power system is 

model validation and parameter calibration. 

 Models are the foundation of virtually all power system studies,  validation of the 

power system model is an important procedure for maintaining system protection and 

reliability. validation and calibration will be used in the calculation of operating limits, 

planning studies for assessment of new generation and load growth, performance 

assessments of system integrity protection schemes [27]. If a particular model does not 

reflect the observed phenomena on the power system with fair accuracy, how can one 

have confidence in the studies derived from that model? The answer to this question is 

validation.  

 The eventual goal is to have a generator model that can reasonably predict the 

outcome of an event i.e. disturbance. In modeling a large power system, such as the 

eastern interconnection in North America, there are several categories of models that 

need to be developed: transmission system, generating units and loads. 

 Deploying PMU makes model validation can be applied in on-line models. The 

model validation procedure injects PMU measurements into the power plant terminal bus 

during the dynamic simulation so that the response of a model to real PMU 
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measurements can be compared [8]–[28]. When model variations are detected, the 

incorrect parameters must be defined and calibrated. Several algorithms and tools 

currently used are reported to provide calibration functions in Section 2.2.  

 Our proposed approach, used in the estimation of generator model parameters, 

applies deep learning techniques to predict model parameters. In order to calibrate the 

power system model, it is only necessary to provide the disturbance event data to the trained 

convolutional neural networks for obtaining the accurately calibrated parameters. In 

general, model calibration is more complicated than model validation. In this thesis, we 

have shown that CNN can achieve a good model calibration performance. 

 After the prediction of the model parameters, the proposed approach enables the 

comparison of model simulation measurements and recorded real PMU measurements 

from previous events. When discrepancies are established between the measurements and 

simulation results, then we can tell the model is accurate or not. 

 There are some challenges in the validation and calibration process. Data 

availability, it is due to many factors that there is a lack of measurement data. Experimental 

testing is limited in that it involves component switching or part of the network, which is 

expensive. Therefore, modeling, analytics, and simulation techniques must be used to gain 

further insight into the dynamics of the system. 

 

 

 

 



 

 17 
  

2.4. System Identification 

 

 Power generation systems with multiple input-output have a wide operating range 

and due to high order nonlinear dynamics cannot be entirely described by a fixed model. 

Since the parameters of conventional excitation and speed governor controllers are 

determined by the system model, which is linearized around rated operational point, the 

performances of the controllers at different operating points can be reduced [29]. 

 The method of transferring from observable data to a mathematical model is a 

theoretical basis of science and engineering this method was called System Identification. 

System identification is a mathematical model to define and describe system action based 

on system input/output data. And the objective is then to find dynamical models from 

observed input and output signals. System Identification deals with the problem of building 

models of systems where there is insignificant prior knowledge and where system 

properties are known. The area of system identification begins and ends with real data. 

Data are required to build and to validate models.   

 

The system identification procedure has four basic ingredients [30]:  

1- Measure the input and output signals from your system in time or frequency domain. 

System identification uses the input and output signals you measure from a system 

to estimate the values of adjustable parameters in a given model structure. 

Obtaining a good model of your system depends on how well your measured data 

reflects the behavior of the system. 
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2- Select a model structure. Select a mathematical relationship between input and 

output variables that contains unknown parameters. 

3- Apply an estimation method to estimate value for the adjustable parameters in the 

candidate model structure. 

4- Validation and evaluate the estimated model to see if the model is adequate for your 

application needs. It can be evaluated the model quality by Comparing Model 

Response to Measured Response. 

 

 These main steps are shown in Figure 1, in the system identification process that 

can be considered as modeling from experimental data [31]. 
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Fig. 1: Steps of system identification 

  

 Generally, the system's input and output at time 𝑡 are denoted by 𝑢(𝑡) and 𝑦(𝑡) 

respectively [32]. Perhaps the most basic relationship between the input and output is the 

linear difference equation:  

 𝑦(𝑡) + 𝑎1𝑦(𝑡 + 1) + ⋯+ 𝑎𝑛𝑦(𝑡 − 𝑛) = 𝑏1𝑢(𝑡 − 1) + ⋯+ 𝑏𝑚𝑢(𝑡 − 𝑚)         (1) 
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 In particular, because the data are always obtained by sampling, the system prefers 

to be represented in a discrete time. So the comparison of the observed data with discrete-

time models becomes easier. 

 In equation (1) assuming the sampling interval to be a one-time unit. This is not 

essential but makes notation easier.  A logical and practical way of looking at it is to see it 

as a way to evaluate the next output value given previous observations: 

 𝑦(𝑡) = −𝑎1𝑦(𝑡 − 1)−. . . −𝑎𝑛𝑦(𝑡 − 𝑛) + 𝑏1𝑢(𝑡 − 1)+. . . +𝑏𝑚𝑢(𝑡 − 𝑚)          (2) 

For more compact notation we introduce the vectors 

 𝜃 = [𝑎1, . . . , 𝑎𝑛𝑏1, . . . , 𝑏𝑚]
𝑇                                                                                   (3) 

 𝜑(𝑡) = [−𝑦(𝑡 − 1)…− 𝑦(𝑡 − 𝑛)𝑢(𝑡 − 1)…𝑢(𝑡 −𝑚)]𝑇                                           (4) 

With these four equations can be rewritten as: 

 �̂�(𝑡|𝜃) = 𝜑𝑇(𝑡)𝜃                                                                                                        (5) 

 

 The system identification process can be explained as a model fitting to the 

experimental data recorded by giving appropriate values to the system parameters. 

Basically, there are two standard methods for system identification: parametric methods 

and nonparametric methods [33]. Parametric methods: The method by which the recorded 

data is matched to the estimated parameter vector. Nonparametric methods: The preferred 

method in the preliminary steps for estimating the structure of the system when there is no 

need for prior information about the model structure or where there is no prior information. 
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 Many studies have been conducted using non-parametric and parametric methods, 

the most related work being the following. Chen et. al. [34] present nonlinear dynamical 

system analysis, identification, signal process, and fault diagnosis. In this work, Matlab 

was used to identify nonlinear dynamical system coefficients by truncation model and 

adopts a group of experiment input/output data to simulate, which obtaining nonlinear 

dynamical system 1 order and 2 order amplitude-frequency response. 

 Wang et. al. [35] presented a new dynamic neural network based on the Hopfield 

neural network was proposed to perform the nonlinear system identification. The 

Lyapunov’s criterion is applied to derive the adaptive training laws of weighting factors of 

the Hopfield-based dynamic neural network. Kaur et, al. [36] presented analyses and 

compares the applicability of various system identification techniques for modal analysis 

of a multi-area power system. It was applied to PMU measurements of frequency and active 

power to find a linear multi-input multi-output dynamic model of the primary frequency 

control of the power system. The study was based on the Kundur two area power system 

simulated in Digsilent Powerfactory. 

 In the study [37], another method is used for the identification of inertia constant. 

A closed-loop micro perturbation method (MPM) is used to estimate the system equivalent 

inertia which is sensitive to turbine controllers and the changing operating conditions. In 

order to estimate the inertia constant, frequency and active power measurements are made 

using the phasor measurement unit at the transmission line at the point where the plant is 

connected to the system. To be able to perform identification with sufficient performance, 

the energy in the disturbance signal which is injected into the system during the 
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identification process must be greater than the energy of the system noise which are the 

changes in load and operating conditions. 

 In [38], computer simulation in which the non-linear equations are used to create a 

mathematical model is done for a thermal power plant. With a fuzzy neural network 

identifier, it is tested whether the system can identify the transient conditions that occur in 

the system after any fault such as 3-phase short-circuit faults. The identifier predicts the 

action signals given at the plant input and follows terminal voltage or active power 

deviations. The delayed states of the plant inputs are also given as inputs to the identifier, 

while the other identifier inputs are speed, actual terminal voltage, and turbine power. The 

parameters of the identifier’s membership function are updated each time. 
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Chapter 3 

System and Methodology 

 This chapter describes the main system, including the methods used to generate 

training and testing data, as well as the proposed CNN architecture.  

 

3.1. Main System 

 

 The main system, as shown in Figure 2, includes a deep neural network trained 

from the simulated dynamic response data of the power system for disturbances, and the 

output is the estimated model parameters. The system uses a deep CNN to map the dynamic 

response data of the system to the generator parameters. Deep learning is part of a machine 

learning family based on artificial neural networks that typically need a large amount of 

data to make it work. Thus, thousands of simulated disturbances are generated to train the 

proposed system on a wide range of model parameters and disturbances, as discussed in 

detail in the following section. To calibrate the power system model (we have two types of 

generator: GENROU and GENCLS), it is only necessary to provide the disturbance event 

data to the trained neural convolution network for obtaining the calibrated parameters. 
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Fig. 2. The designed system to estimate generator parameters. The Convolutional Neural 

Network (CNN) takes as input the response data. Take GENROU as an example, the 

output of the CNN is the 14 estimated parameters. 

 

3.2. Data Generation 

 

 We used three power systems: IEEE 14-Bus shown in Figure 3 and IEEE 39-Bus 

shown in Figure 4 to generate the system dynamics response data. For each generator in 

the bus systems used, the stability dynamics are modeled using the GENROU or GENCLS 

model. The transient stability of the system is simulated using the simulation package of 

the power system. Dynamic data is collected as GENROU model 14-parameters or 

GENCLSE model 2-parameters are simulated at different 100 MVA base values along with 

a random duration of three-phase bolt faults applied to system buses such that the system 

stability is maintained. 
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Fig. 3. IEEE 14-bus system. 

 

 At the beginning of the research, we only consider the classical generator model 

GENCLS in our system, which has two parameters H and D. After this, we use a more 

complicate generator called GENROU that has 14 parameters. We selected the GENROU 

not only because of its popularity but also because of its high complexity, which consists 

of 14 parameters. GENROU is a synchronous machine modeled through two circuits, 
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representing the d and q axis. The summation of machine electrical torque obtained from 

the two circuits is used in the swing equation, establishing a link between the speed and 

the net torque acting on the machine. 

 

Fig. 4. IEEE 39-bus system. 

 

 To train an efficient system that can verify most of the combinations of the 

parameters, the dataset is chosen to cover most of the space of the model parameters. This 

is done by randomly adding a parameter combination to a dataset called databank. If the 
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Euclidean distance between the stored parameters in the databank and the new combination 

is greater than a given threshold, a combination of Random GENROU parameters is added 

to the databank. We randomly generated 60 K samples for this research, each of which has 

a Euclidean distance of 0.7 or more from the other databank parameter sets. The reason for 

not applying databank for GENCLS is that the possible combinations of GENCLS 

parameters are much less than GENROU parameters (2 parameters versus 14 parameters). 

GENCLS parameters and their ranges are shown in Table II. GENROU parameters and 

their ranges are shown in Table III. 

 

Table II. The range of the parameters in GENCLS. 

 

 

 

 

 

 

 

 

Parameter Low High 

H 1 10 

D 1 8 
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Parameter Low High Parameter Low High 

T’do 2 10 Xq 0.4 2.4 

T’’do 0.06667 0.2 X’d 0.8 2.5 

T’qo 0.5 1.2 X’q 0.4 2.4 

T’’qo 0.1 0.2 X’’d 0.3 0.3 

H 1 10 Xl 0.01 0.25 

D 0 3 S1.0 0.001 1 

Xd 0.8 2.5 S1.2 0.01 5 

Table III. The range of the parameters in GENROU. 

 

 In order to build IEEE power systems and use the GENROU or GENCLS model, 

we chose the "Power System Simulator for Engineering" (PSSE) software to simulate data 

in different scenarios. This software is used to simulate electrical power transmission 

networks in steady-state conditions as well as in timescales of a few seconds to tens of 

seconds. Moreover, the software provides its own Python API, which allows easy 

communication with the simulator. By writing just a few lines of code, we were able to 

generate data as much as we need to train our CNN models. 
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3.3. Principal Component Analysis 

 

 Principal Component Analysis (PCA) simplifies the complexity of high-

dimensional data by compressing correlated data without a significant loss of information. 

It obtains Principal Components that are uncorrelated by projecting physical variables into 

a low-dimensional subspace that retains most of the variances of the projected variables 

[39]. 

In the first experiment, we reduced the size of the used features by downsampling 

the PMU signal sampling rate from 60 to 10 samples per second. Each feature was 

downsampled independently by implementing a PCA for each feature. We used more than 

200K samples to find the highest 10 principal components after projecting 60 samples into 

10 PCA components. The mean reconstruction error achieved after PCA was 0.01%, thus 

we were able to reproduce the original data from the reduced dimensions. 
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3.4. Convolutional Neural Network Based Approach 

 

 This section describes a system to estimate the generator (GENROU or GENCLS) 

parameters. The system input is the dynamic response data of the power system for 

disturbances and the output is estimated values for parameters. The size of the output 

depends on the generator type. The system uses a deep machine learning technique to map 

the dynamic response data of the system to the generator parameters, see Figure 2. 

 The deep learning technique features a CNN consisting of two convolutional layers 

interleaved with maximum pooling operations, followed by two fully connected layers. See 

Figure 5 for more details. The input layer consists of time samples for PMU data recording 

the dynamic response of the power system to disturbances. These samples record the status 

of the system just before the occurrence of the disturbance and the system response after 

it. These responses include such as rotor angle, rotor speed, and voltages at different buses. 

 The first convolutional layer consists of 256 filters and employs a one-dimensional 

convolutional kernel with a size equal to one-fourth of the number of input samples. This 

allows filters to be applied and features to be compared across most input samples. The 

output of each filter is forced to have the same size as the input using the padding technique. 

Then it is followed by an element-wise rectified linear activation. A downsampling process 

by a factor of four is applied using a max-pooling layer to compress the features. 

 The second convolutional layer consists of 512 filters and employs a one-

dimensional convolutional kernel of the same size as the number of input samples divided 

by four. This allows filters to be applied and features to be compared across multiple filter 
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responses. The output of each filter is forced to have the same size as the input using the 

padding technique. Then it is followed by an element-wise rectified linear activation. A 

downsampling process by a factor of two is applied using a max-pooling layer. 

 The two fully connected layers consist of 1024 and 256 hidden neurons, 

respectively. The first layer is connected to the downsampled output of the second 

convolutional layer. The output of this layer is the input for the second fully connected 

layer. Each layer employs an element-wise rectified linear activation and followed by a 

dropout layer with a drop rate set to 0.2 to prevent overfitting. 

 The number of the output layer neurons is decided by the generator type. Take 

GENROU as an example, the output layer consists of 14 output neurons: one for each 14 

GENROU parameter. The input of this layer is the output of the second fully connected 

layer, i.e., the one with 256 hidden neurons. This layer employs an element-wise rectified 

linear activation to allow an estimate of the GENROU model 14 parameters that are greater 

than or equal to zero. 
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Fig. 5. The architecture of the CNN. Information flows from left to right. The first layer is 

the convolutional layer of 256 filters of size Nx1 followed by Max-Pooling layer of size 

1xN/2x256. The third layer is the convolutional layer with 512 filters of size N/2x1. Then 

follows Max-Pooling layer with the size of 1xN/4x512. The output of Max-pooling is 

connected to Fully-connected layer of size 1024 which is further connected to Fully-

connected layer of size 256. The last layer is the output layer of size 14 which gives the 

values of GENROU 14-parameters. 

 

 The CNN model is implemented using TensorFlow Python API 

(https://www.tensorflow.org/). TensorFlow is chosen due to the wide range of available 

functions and community support. All models are mainly trained and tested with 

TensorFlow on the UVM DeepGreen cluster, which is a new massively parallel cluster 

composed of over 70 GPUs capable of over 8 petaflops of mixed precision calculations 

based on the NVIDIA Tesla V100 architecture (https://www.uvm.edu/vacc).  

 

 



 

 33 
  

3.5. Recurrent Neural Network Based Approach 

 

 In order to find the optimal deep learning architecture to calibrate the models in the 

power system, we build a different system that uses a deep learning algorithm called 

recurrent neural network (RNN). Specifically, the hidden unite of RNN is long short-term 

memory (LSTM) or gated recurrent units (GRU). LSTM is an artificial recurrent neural 

network (RNN) architecture used in the field of deep learning [40]. GRU is similar to 

LSTM with forget gates. There are two RNN architectures: one for LSTM in Figure 6 and 

the other for GRU in Figure 7. 

 

 

 

 

 

 

 

 

   

 

Fig. 6. The architecture of the LSTM. 
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 The input layer consists of time samples for PMU data recording the dynamic 

response of the power system for disturbances. These samples record the status of the 

system just before the occurrence of the disturbance and the system response after it. 

 The hidden layer consists of 512 LSTM/GRU units. It processes data passing on 

information as it propagates forward. The difference between LSTM and GRU is that an 

LSTM cell has three gates (namely input, output and forget gates) whereas it has two gates 

(reset and update gates) only. 

 The output layer consists of 14 output neurons: one for each 14 GENROU 

parameter. The input of this layer is the output of the hidden layer. This layer employs an 

element-wise rectified linear activation to allow an estimate of the GENROU model 14 

parameters that are greater than or equal to zero. All RNN models are mainly trained and 

tested with TensorFlow on the UVM DeepGreen cluster. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The architecture of the GRU. 
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Chapter 4 

Result 

 

 The proposed system was quantitatively evaluated to demonstrate the ability of the 

proposed CNN to estimate the model parameters from the recorded system response data. 

We did three main experiments to verify the accuracy, scalability, and reliability of the 

proposed system.  

 

4.1. Accuracy 

 

 We train a CNN model by modeling a GENROU generator from the IEEE 14-bus 

system. All generators used in the 14-bus system are GENROU type. The proposed CNN 

in III-C was trained in such a way that for each set of 14 parameters in the database 

described in Section III-B, twelve different disturbances have been introduced on the IEEE 

14-bus system with a random fault location and duration. The fault was applied to all buses 

except for bus #3 (where the generator model is connected). Each disturbance event lasts 

for 15 seconds. The fault starts at the beginning of the third second. Table II displays the 

14 GENROU parameters low- and high-range used for calibration. Each event included 

eight measurements obtained from the bus directly connected to the generator with a 

sample rate of 60 samples per second. These measurements included rotor angle, real 

power, reactive power, field voltage, speed, field current, voltage&angle, and flow. The 

measurements were normalized and standardized by removing the mean and scaling 
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variance to the unit. The length of the feature vector has been reduced from 81,000 to 

13,500 using PCA described in section 3.4. 

 The dataset included 390K samples of simulated responses after removing the 

samples that caused system instability. The dataset is divided into training, validation and 

testing sets at a ratio of 60:20:20. The model has been trained for 100 epochs on the training 

set and validated on the validation dataset at each epoch. We found the best model in 

epoch# 88. The Mean Square Error (MSE) for the training set was 0.048, and the validation 

set was 0.016. The testing dataset contains events that have not been shown to the trained 

model. The total number of samples in the testing dataset is 19.5K samples. The Mean 

Square Error (MSE) for the testing set is 0.017. The experimental results summarized in 

Figure 8 shows that the proposed system is capable of accurately estimating the value of 

the model parameters. Having a very small MSE of 0.017 on the testing set indicates that 

the proposed training methodology of a very large-scale deep neural learning network is 

capable of finding a well-posed solution.  
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Fig. 8. Boxplot of absolute errors for the CNN experiment. 

 

 For comparing the performance of CNN and RNN, the RNN based models were 

trained by the same dataset described above. The best model of LSTM achieved an MSE 

of 0.026 on the testing data. The best model of GRU achieved an MSE of 0.0079 on the 

testing data. The experimental results of LSTM and GRU summarized in Figure 9, 10. 

show that the RNN based system is capable of accurately estimating the value of the 

GENROU model parameters in the IEEE 14-bus system. 
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Fig. 9. Boxplot of absolute errors for the LSTM experiment. 
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Fig. 10. Boxplot of absolute errors for the GRU experiment. 

 

 The results in Table IV showed that GRU achieved an MSE of 0.0079 which is 

much smaller than an MSE of 0.017 achieved by CNN. In this type of experiment, the 

performance of CNN, LSTM, and GRU is GRU > CNN > LSTM. However, the most 

appropriate model for the parameter calibration we have found is CNN. The RNN based 

model achieved a bad result when it calibrated the generator model in a large power 

system such as the IEEE 39-bus system. In the scalability testing, the validation error loss 

of the GRU model stopped decreasing after 5 epochs and maintain a big MSE of 0.9 (the 
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CNN model achieved a small MSE of 0.12 in the same experiment). The training 

processing of RNN is quite time-consuming, the training time of the RNN based model is 

more than 4 times of CNN. Overall, our proposed CNN is the most suitable model to do 

the calibration so far.  

 

Model Testing MSE Training Time  

CNN 0.017 525 seconds per epoch 

LSTM 0.026 1915 seconds per epoch 

GRU 0.0079 1789 seconds per epoch 

Table IV. The testing results of CNN, LSTM, and GRU. 
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4.1.1. Data Comparison With PPPD 

 

 We also compared the proposed system with the PPPD tool in Figure 11 by 

providing ten random disturbance events from the testing dataset. The input data (ten 

random disturbance events) must include six features: electrical power, reactive power, 

terminal voltage, filed voltage, field current, and speed. The PPPD tool was able to 

calibrate the models with an MSE of 2.6. The proposed system was able to calibrate the 

models on the same disturbance events with a small MSE of 0.018. We noticed that the 

PPPD tool depends on the initial model parameters, and relativity achieved better results if 

the disturbance caused by a long fault duration. 

 Our method doesn’t suffer from having multiple solutions as it is trained from a 

large number of simulated disturbance events that don’t include multiple solutions for the 

same event and thus rely less on expert judgment. We showed the effectiveness of our 

method by comparing it to the mathematically based approaches implemented in the PPPD 

tool and we showed our method usability on one real example. 
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Fig. 11. PPPD Generator Data Entry Screen. 
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4.2. Scalability 

 

 To prove the scalability of the proposed system, we train a CNN model by modeling 

10 GENCLS generators from the IEEE 39-bus system. All generators used in the 39-bus 

system are classical generator model “GENCLS”. The dataset includes 60K records of 

simulated responses for the system described in subsection 3.1 for different disturbances. 

It is divided into training and testing sets at a ratio of 9 to 1. Each disturbance event lasts 

for 15 seconds by using random H and D values, as well as, different fault parameters. The 

ranges for H and D are shown in Table I. The range of H values is between 1 and 10, while 

the range for D values is between 1 and 8. Fault parameters include fault location and fault 

duration. The fault starts at the beginning of the third second. Each record includes 6 

measurements obtained from the 39 buses with a sample rate of 120 per second. These 

measurements include real power, reactive power, speed, field current, frequency, and 

voltage for each of the buses in the system. The measurements were normalized and 

standardized by removing the mean and scaling variance to the unit. The sample rate has 

been reduced from 120 to 30 by downsampling. It will slice each feature vector and take 

every third element of the slice.  

 Cross-Validation is a method used to estimate the generalization of machine 

learning models. In this experiment, we especially applied K-Fold Cross-Validation. K is 

a parameter that refers to the number of groups that a given dataset is to be split into. There 

are 10 generators in the 39-bus system, the dataset is split into 10 groups (K = 10) base on 

these 10 generators. Each group represents the response data from the different generators. 
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For each unique group: 1. Take the group as a testing dataset; 2. Take the remaining groups 

as a training dataset and fit it into a model; 3. Evaluate it on the testing data and retain the 

evaluation results, see Figure 12.  

 

 

#30 #31 #32 #33 #34 #35 #36 #37 #38 #39 

 

#30 #31 #32 #33 #34 #35 #36 #37 #38 #39 

          … 

#30 #31 #32 #33 #34 #35 #36 #37 #38 #39 

 

Fig. 12. Cross-Validation for 10 generators in the IEEE 39-bus system. For example, #30 

means the generator connected to the Bus 30 in the power system. 

 

 The evaluation score summarized in Table V shows that the proposed system is 

scaling very well since it can model the generator that has never been shown to the trained 

system and achieve very high accuracy, the average of MSE is less than 0.05. 

 

 

 

Training data 

Group 1 

Group 2 

Group 10 

Testing data 
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TABLE OF SCORES ON TEST DATASET 

Generator MSE Generator MSE 

#30 0.008 #35 0.006 

#31 0.02 #36 0.02 

#32 0.008 #37 0.008 

#33 0.007 #38 0.009 

#34 0.0098 #39 0.43 

 

TABLE V. IEEE 39-bus system with all GENCLS generators. 

 

 In order to further prove the scalability of the system, we replace the much more 

complicate generator model “GENROU” in the IEEE 39-bus system. This GENROU has 

14 parameters and makes the model more difficult to estimate the well-posed solutions. 

The experiment is based on the same methodology as we introduced above. The CNN 

model was trained in such a way that for each set of 14 parameters in the databank 

described in Section 3.2. The dataset includes 60K records of simulated responses for 

different disturbances. The six measurements: real power, reactive power, speed, field 

current, frequency, and voltage were normalized and standardized by removing the mean 

and scaling variance to the unit. The sample rate has been reduced from 120 to 30 by 

downsampling. 
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 The evaluation scores in Table VI give us the confidence to say that the model is 

scalable even we test it on the more complicate generator.  

 

TABLE OF SCORES ON TEST DATASET 

Generator MSE Generator MSE 

#30 0.11 #35 0.55 

#31 0.16 #36 0.12 

#32 0.11 #37 0.11 

#33 0.11 #38 0.11 

#34 0.13 #39 0.19 

 

TABLE VI. IEEE 39-bus system with all GENROU generators. 

 

 The proposed method requires only one disturbance event to precisely calibrate the 

model parameters. The results shown in this research are still subject to improvements by 

providing more training data, bigger and ensemble models, and thus more reliable 

modeling. The results of the calibrated models can be verified by comparing the output of 

the calibrated models to the recorded PMU data. 
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Chapter 5 

Conclusion and Future Work 

 

 In this thesis, a robust and fast estimation approach has been offered. The main 

contributions of the master’s thesis can be summarized in the following two significant 

points: 

 

1- An approach for model parameter calibration in power system models using deep 

learning was created. 

2- A comparative study has been conducted between three architectures of deep 

learning, which are CNN, GRU, and LSTM. All of these are trained with row data. 

It has been found that CNN is more accurate and robust in parameter calibration 

and this decision has been reached through two types of generator models 

(GENROU and GENCLS).  

 

 This research illustrates a novel approach for dynamic model parameter calibration 

by using PMU disturbance measurements. The proposed approach has achieved very high 

accuracy in estimating parameters of different models in different systems trained from a 

massive amount of simulated data. The proposed system integrates deep leaning techniques 

with existing computational power system simulation tools to find the optimal solution for 

the parameter estimation problem. In this research, the proposed system showed a well-

posed solution for parameter calibration comparing to mathematically based methods. It is 
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important to help engineers in estimating the correct responses of power systems in real-

time to enhance their stability and reliability.  

 Future work is going to investigate methods to improve these results in complex 

topology such as modeling the complicate type of generators in the big power system with 

more buses and using reinforcement learning to refine the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 49 
  

Reference 

 

[1] Reliability Guideline Power Plant Model Verification and Testing for Synchronous 

Machines. Available: 

https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Reliability_Guideline_-

_PPMV_for_Synchronous_Machines_-_2018-06-29.pdf 

[2] Venkatasubramanian, Vaithianathan, and Yuan Li. “Analysis of 1996 Western 

American electric blackouts.” Bulk Power System Dynamics and Control-VI, Cortina 

d’Ampezzo, Italy (2004): 22-27. 

[3] Y. Li, R. Diao, R. Huang, P. Etingov, X. Li, Z. Huang, S. Wang, J. Sanchez-Gasca, B. 

Thomas, and M. Parashar, “An innovative software tool suite for power plant model 

validation and parameter calibration using PMU measurements,” in Power & Energy 

Society General Meeting, 2017 IEEE, 2017, pp. 1–5. 

[4] Western Electricity Coordinating Council (WECC), “Recommendations on WECC 

SAR-0101 and Power Plant Modeling Standards Recommendations, 21 pp,” Salt Lake City, 

UT, 2013. 

[5] P. DeRusso, R. Roy, C. Close, and A. A. Desrochers, State Variables for Engineers, 

2nd ed. Ho. NJ, USA: Wiley, 1998. 

[6] V. Vyatkin, G. Zhabelova, N. Higgins, K. Schwarz, and N. K. C. Nair, “Towards 

intelligent smart grid devices with IEC 61850 interoperability and IEC 61499 open control 

architecture,” in 2010 IEEE PES Transmission and Distribution Conference and 

Exposition: Smart Solutions for a Changing World, 2010. 

[7] K. Zhu, L. Nordstr¨om, and L. Ekstam, “Application and analysis of optimum PMU 

placement methods with application to state estimation accuracy,” in 2009 IEEE Power 

and Energy Society General Meeting, PES ’09, 2009. 

[8] Z. Huang, P. Du, D. Kosterev, and S. Yang, “Generator dynamic model validation and 

parameter calibration using phasor measurements at the point of connection,” IEEE Trans. 

Power Syst., vol. 28, no. 2, pp. 1939– 1949, May 2013. 

[9] "Proposed Terms & Definitions for Power System Stability," in IEEE Transactions on 

Power Apparatus and Systems, vol. PAS-101, no. 7, pp. 1894-1898, July 1982.  

[10] N. A. S. I. (NASPI), “Model Validation Using Phasor Measurement Unit Data,” 2015. 

[11] N. Zhou, D. Meng, Z. Huang, and G. Welch, “Dynamic state estimation of a 

synchronous machine using PMU data: A comparative study,” IEEE Trans. Smart Grid, 

vol. 6, no. 1, pp. 450–460, 2015. 

[12] Y. Wehbe, L. Fan, and Z. Miao, “Least squares based estimation of synchronous 

generator states and parameters with phasor measurement units,” in 2012 North American 

Power Symposium, NAPS 2012, 2012. 

https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Reliability_Guideline_-_PPMV_for_Synchronous_Machines_-_2018-06-29.pdf
https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Reliability_Guideline_-_PPMV_for_Synchronous_Machines_-_2018-06-29.pdf


 

 50 
  

[13] R. Huang and et al., “Calibrating parameters of power system stability models using 

advanced ensemble Kalman filter,” vol. 33, no. 3, 2018 

[14] I. Kamwa, S. R. Samantaray, and G. Jos, “Development of rule-based classifiers for 

rapid stability assessment of wide-area post-disturbance records,” IEEE Trans. Power Syst., 

vol. 24, no. 1, pp. 258–270, 2009. 

[15] K. Chen, J. Hu, and J. He, “Detection and Classification of Transmission Line Faults 

Based on Unsupervised Feature Learning and Convolutional Sparse Autoencoder,” IEEE 

Trans. Smart Grid, vol. 9, no. 3, pp. 1748– 1758, 2018.  

[16] Y. Zhou, J. Wu, Z. Yu, L. Ji, and L. Hao, “A hierarchical method for transient stability 

prediction of power systems using the confidence of a SVM-based ensemble classifier,” 

Energies, vol. 9, no. 10, 2016.  

[17] A. Gupta, G. Gurrola, and S. P.S, “An Online Power System Stability Monitoring 

System Using Convolutional Neural Networks,” IEEE Trans. Power Syst., p. 1, 2018. 

[18] N. G. Badayos, “Machine Learning-Based Parameter Validation,” Virginia 

Polytechnic Institute and State University, 2014. 

[19] Nayak, N., Chen, H., Schmus, W., & Quint, R. (2016, May). Generator parameter 

validation and calibration process based on PMU data. In 2016 IEEE/PES Transmission 

and Distribution Conference and Exposition (T&D) (pp. 1-5). IEEE. 

[20] Huang, R., Diao, R., Li, Y., Sanchez-Gasca, J., Huang, Z., Thomas, B., ... & Matthews, 

G. (2017). Calibrating parameters of power system stability models using advanced 

ensemble Kalman filter. IEEE Transactions on Power Systems, 33(3), 2895-2905. 

[21] Zhou, N., Lu, S., Singh, R., & Elizondo, M. A. (2011, August). Calibration of reduced 

dynamic models of power systems using phasor measurement unit (PMU) data. In 2011 

North American Power Symposium (pp. 1-7). IEEE. 

[22] Zhang, Y., Jiang, H., Gao, K., Zhang, J., Liu, J., & Wang, Y. (2019, May). Generator 

Model Validation and Parameter Calibration Based on PMU Measurement Data. In 2019 

IEEE International Conference on Energy Internet (ICEI) (pp. 522-526). IEEE. 

[23] Huang, Z., Du, P., Kosterev, D., & Yang, B. (2009, July). Application of extended 

Kalman filter techniques for dynamic model parameter calibration. In 2009 IEEE Power 

& Energy Society General Meeting (pp. 1-8). 

[24] Electric Power Research Institute (EPRI). Power Plant Parameter Derivation (PPPD), 

2015. [Online]. Available: http://www.epri.com/abstracts/Pages/ProductAbstract.aspx 

/ProductId=000000003002005748  

[25] P. Pourbeik, R. Rhinier, S.-M. Hsu, B. Agrawal, and R. Bisbee, “Semiautomated 

model validation of power plant equipment using online measurements,” 

IEEETrans.EnergyConvers., vol.28, no.2,pp.308–316, Jun. 2013.  



 

 51 
  

[26] MathWorks. Model-Based Calibration Toolbox, 2017. [Online]. Available: 

https://www.mathworks.com/products/mbc/ 

[27] Allen, E., Kosterev, D., & Pourbeik, P. (2010, July). Validation of power system 

models. In IEEE PES General Meeting (pp. 1-7). IEEE. 

[28] D. Kosterev, “Hydro turbine-governor model validation in Pacific 

Northwest,”IEEETrans.PowerSyst.,vol.19,no.2,pp.1144–1149,May2004.  

[29] OZKAYA, D., & KOSALAY, I. (2018). A review on system identification in power 

generation systems. Communications Faculty of Sciences University of Ankara Series 

A2-A3 Physical Sciences and Engineering, 60(2), 147-162. 

[30] Ljung L. (1998) System Identification. In: Procházka A., Uhlíř J., Rayner P.W.J., 

Kingsbury N.G. (eds) Signal Analysis and Prediction. Applied and Numerical Harmonic 

Analysis. Birkhäuser, Boston, MA. 

[31] L. Ljung, 1987. System Identification: Theory for the User. Prentice Hall, New 

Jersey. 

[32] Levine, W. S. (Ed.). (2011). Control system advanced methods (pp. 50-1). Boca 

Raton, FL: CRC press. 

[33] Ljung, L. (2001). System identification. Wiley Encyclopedia of Electrical and 

Electronics Engineering. 

[34] Wang, C. H., Chen, P. C., Lin, P. Z., & Lee, T. T. (2009, August). A dynamic neural 

network model for nonlinear system identification. In 2009 IEEE International Conference 

on Information Reuse & Integration (pp. 440-441). 

[35] Chen, Y., Zhang, M., & Wen, X. L. (2010, May). Research of nonlinear dynamical 

system identification based on Volterra series model. In 2010 The 2nd International 

Conference on Industrial Mechatronics and Automation (Vol. 2, pp. 435-438). 

[36] Tuttelberg, K., Kilter, J., & Uhlen, K. (2017, June). Comparison of system 

identification methods applied to analysis of inter-area modes. In Proceedings of 

International Power Systems Transients Conference 2017. 

[37] J. Zhang and H. Xu, Online Identification of Power System Equivalent Inertia 

Constant, IEEE Transactions on Industrial Electronics, 64/10 (2017) 8098- 8107. 

[38] W.A. Albukhanajer, H.A. Lefta and A.A. Ali, Effective identification of a turbo 

generator in a SMIB power system using Fuzzy Neural Networks, 2014 International 

Joint Conference on Neural Networks (IJCNN), Beijing, (2014) 2804-2811. 

[39] E. L. Russell, L. H. Chiang, and R. D. Braatz, Data-Driven Methods for Fault 

Detection and Diagnosis in Chemical Processes. London, U.K.: Springer, 2012. 

[40] S. Hochreiter, and J. Schmidhuber, “Long short-term memory,” Neural computation., 

vol. 9, pp. 1735–1780, 1997. 

https://www.mathworks.com/products/mbc/


 

 52 
  

[41] C. C. Lee, and O. T. Tan, “A Weighted-Least-Squares Parameter Estimator for 

Synchronous  Machines,” IEEE Transactions on Power Apparatus and Systems, PAS 96, 

no 1, Part 1., pp 97-101, Jan 1977. 

[42] P. Pourbeik, and F. Modau, “Model Development and Field Testing of a Heavy-Duty 

Gas-Turbine Generator,” IEEE Transactions on Power Systems, Vol 23, No. 2, pp 664-

672, May 2008.  

[43] P. Pourbeik, “Automated Parameter Derivation for Power Plant Models Based on 

Staged Tests,” IEEE Power and Energy Society Power System Conference and Exposition 

2009, Seattle, WA, USA, March 15-18, 2009. IEEE, Piscataway, NJ.  

[44] L. Hannett, and J. W. Feltes “Testing and Model Validation for Combined-Cycle 

Power Plants,” IEEE Power Engineering Society Winter Meeting, Schenectady, New York, 

2001. Institute of Electrical and Electronics Engineers, Piscataway, NJ. 

[45] J. Chow, M. Glinkowski, R Murphy, T. W. Cease, and N. Kosaka, “Generator and 

Exciter Parameter Estimation of Fort Patrick Henry Hydro Unit 1,” IEEE Transactions on 

Energy Conversion, Vol. 14, No.4, Dec 1999, pp 923-929.  

[46] S. Benchluch and J. Chow, “A Trajectory Sensitivity Method for the Identification of 

Nonlinear Excitation System Models,” IEEE Transactions on Energy Conversion, Vol. 8, 

No. 2, pp.159-164, June 1993. 

[47] P. Overholt, D. Kosterev, J. Eto, S. Yang, and B. Lesieutre, “Improving reliability 

through better models: Using synchrophasor data to validate power plant models,” IEEE 

Power Energy Mag., vol. 12, no. 3, pp. 44– 51, 2014. 

[48] I. Kamwa, S. R. Samantaray, and G. Jo´os, “Development of rule-based classifiers for 

rapid stability assessment of wide-area post-disturbance records,” IEEE Trans. Power Syst., 

vol. 24, no. 1, pp. 258–270, 2009. 

[49] K. Chen, J. Hu, and J. He, “Detection and Classification of Transmission Line Faults 

Based on Unsupervised Feature Learning and Convolutional Sparse Autoencoder,” IEEE 

Trans. Smart Grid, vol. 9, no. 3, pp. 1748– 1758, 2018. 

[50] Y. Zhou, J. Wu, Z. Yu, L. Ji, and L. Hao, “A hierarchical method for transient stability 

prediction of power systems using the confidence of a SVM-based ensemble classifier,” 

Energies, vol. 9, no. 10, 2016. 

[51] A. Gupta, G. Gurrala, and S. P.S, “An Online Power System Stability Monitoring 

System Using Convolutional Neural Networks,” IEEE Trans. Power Syst., p. 1, 2018. 

[52] N. G. Badayos, “Machine Learning-Based Parameter Validation,” Virginia 

Polytechnic Institute and State University, 2014. 

[53] S. Tacke, “WECC REMTF Workshop,” [Online]. Available: 

www.wecc.org/Reliability/Wkshp WECC REMTF Workshop 2016.pdf 


	Model Parameter Calibration in Power Systems
	Recommended Citation

	tmp.1591192496.pdf.MzEmk

