10,901 research outputs found

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    TechNews digests: Jan - Nov 2009

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Management of spatial data for visualization on mobile devices

    Get PDF
    Vector-based mapping is emerging as a preferred format in Location-based Services(LBS), because it can deliver an up-to-date and interactive map visualization. The Progressive Transmission(PT) technique has been developed to enable the ecient transmission of vector data over the internet by delivering various incremental levels of detail(LoD). However, it is still challenging to apply this technique in a mobile context due to many inherent limitations of mobile devices, such as small screen size, slow processors and limited memory. Taking account of these limitations, PT has been extended by developing a framework of ecient data management for the visualization of spatial data on mobile devices. A data generalization framework is proposed and implemented in a software application. This application can signicantly reduce the volume of data for transmission and enable quick access to a simplied version of data while preserving appropriate visualization quality. Using volunteered geographic information as a case-study, the framework shows exibility in delivering up-to-date spatial information from dynamic data sources. Three models of PT are designed and implemented to transmit the additional LoD renements: a full scale PT as an inverse of generalisation, a viewdependent PT, and a heuristic optimised view-dependent PT. These models are evaluated with user trials and application examples. The heuristic optimised view-dependent PT has shown a signicant enhancement over the traditional PT in terms of bandwidth-saving and smoothness of transitions. A parallel data management strategy associated with three corresponding algorithms has been developed to handle LoD spatial data on mobile clients. This strategy enables the map rendering to be performed in parallel with a process which retrieves the data for the next map location the user will require. A viewdependent approach has been integrated to monitor the volume of each LoD for visible area. The demonstration of a exible rendering style shows its potential use in visualizing dynamic geoprocessed data. Future work may extend this to integrate topological constraints and semantic constraints for enhancing the vector map visualization

    Remote rendering for virtual reality on mobile devices

    Get PDF
    Nowadays it is possible to launch complicated VR applications on mobile devices, using simple VR goggles, e.g. Google Cardboard. Nevertheless, this opportunity has not been introduced to the wide use yet. One of the reasons is the low processing power even of the hi-end devices. This is a massive obstacle for mobile VR technologies. One of the solutions is to render the high-quality 3D world on a remote server, streaming the video to the mobile device

    Telescience Testbed Pilot Program

    Get PDF
    The Telescience Testbed Pilot Program is developing initial recommendations for requirements and design approaches for the information systems of the Space Station era. During this quarter, drafting of the final reports of the various participants was initiated. Several drafts are included in this report as the University technical reports
    • …
    corecore