

Remote Rendering for Virtual

Reality on Mobile Devices

LAHTI UNIVERSITY OF APPLIED
SCIENCES
Degree programme in Business IT
Bachelor’s Thesis
29.11.2016
Aleksandr Menakhin

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/80992494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lahti University of Applied Sciences
Degree Programme in Business Information Technology
Research Methods

Menakhin, Aleksandr: Remote rendering for virtual reality on
mobile devices

Bachelor’s Thesis 31 pages, 5 pages of references

Autumn 2016

ABSTRACT

Nowadays it is possible to launch complicated VR applications on mobile
devices, using simple VR goggles, e.g. Google Cardboard.
Nevertheless, this opportunity has not been introduced to the wide use
yet. One of the reasons is the low processing power even of the hi-end
devices. This is a massive obstacle for mobile VR technologies. One of the
solutions is to render the high-quality 3D world on a remote server,
streaming the video to the mobile device.

Key words: VR, virtual reality, remote rendering, Android, mobile,
GamingAnywhere

ACKNOWLEDGEMENT

Before the actual thesis begins, I would like to express my gratitude to T-

Systems Multimedia Solutions GmbH for introducing me to the topic of

virtual reality and mobile development, for providing comfortable working

conditions and technical support throughout the research process.

I am grateful to my thesis supervisor, Antti Salopuro, for the guidance and

for meaningful rapid answers to every email.

Not less am I thankful to my supervisor from the company side, Frank

Lamack for providing me with the topic, guidance and inspiration.

Dresden, Germany, November 2016

Alexander Menakhin

1 INTRODUCTION 1

2 RESEARCH METHODOLOGY 3

2.1 Research Questions and Objectives 3

2.2 Research Structure 3

2.3 Research Method 4

2.4 Limitations and Boundaries 5

3 REMOTE RENDERING 7

3.1 Model- and Image-Based Classification Approaches 7

3.1.1 Model-Based Approach 8

3.1.2 Image-Based Approach 9

3.2 Current Situation in Remote Rendering 11

4 REMOTE RENDERING ON MOBILE DEVICES 13

5 QUALITY REQUIREMENTS 14

6 EXPERIMENT SETUP 16

6.1 Test Cases 16

6.2 Configuration 17

6.3 Measurement Technique 19

6.3.1 Applications and tools used for measurements 19

6.3.2 The process 20

7 RESULTS 22

8 DATA ANALYSIS 24

9 CONCLUSION 28

9.1 Answers to the Research Questions 28

9.2 Reliability and Validity 29

9.3 Further Research Suggestions 29

10 SUMMARY 31

REFERENCES 32

LIST OF FIGURES

Figure 1. Google Cardboard scheme.

Figure 2. Research structure.

Figure 3. Basic architecture overview.

Figure 4. Classify remote rendering and remote visualization systems

based on data types (Shi et al., 2012, 6).

Figure 5. Screenshot of the app.

Figure 6. Screenshot of the app: InfoPoint.

Figure 7. System Setup.

Figure 8. GA client: Home screen.

Figure 9. GA client: Profile configuration.

Figure 10. Visual timestamp.

Figure 11. The view during benchmarking on the client side.

Figure 12. GameBench metrics interface.

Figure 13. Median and average values correlation charts.

Figure 14. Real bitrate.

LIST OF TABLES

Table 1. Test cases.

Table 2. Sessions’ results.

Table 3. Delay analysis.

Table 4. Frame rate analysis.

Table 5. Processing delay.

ABBREVIATIONS AND TERMS

AR Augmented Reality

Bitrate or bit rate Number of bits processed per second

CTO Chief Technology Officer

D3D, Direct3D (9 or 11) Graphic API for Windows (versions)

FPS Frames Per Second

H.264, H.265 Video compression standards

IoT Internet of Things

Jank (frame) Lost, not displayed frame

NTP Network Time Protocol

QoE Quality of Experience

RAM Random Access Memory

RTT Round-Trip delay Time, ping

SDK Software Development Kit

Unity3D or Unity Cross-platform game engine

VP8 Video codec by On2Technologies

VR Virtual Reality

VRAM Video Random Access Memory

1

1 INTRODUCTION

The technology of virtual and augmented reality (VR & AR respectively) is

at the stage of a rapid growth now. If recently it was taken mostly as a new

way to play videogames, now more and more companies try to introduce it

to a wider range of business spheres. AR has already become one of the

important elements of the Internet of Things (IoT) concept (Kipper &

Rampolla, 2013, 53). Previously thought to be unreachable quality of user

experience makes both leading and arising brands investigate the

technology and use it in marketing or to adapt their products, increasing

their usability and user-friendliness.

Figure 1. Google Cardboard scheme.

The introduction of VR to mobile devices made it even more attractive,

especially after the release of Google Cardboard – a mobile VR platform

that uses a low-cost viewer, made mostly of cardboard. It has no screen,

camera or any computing capacity; for all of that you need your

smartphone (figure 1). A Google-Cardboard-optimized app divides the

smartphone’s display in two parts (for left and right eye) and then the

smartphone is inserted into the Google Cardboard. This has made VR

affordable for every smartphone owner and Google VR software

development kit (SDK) has provided developers with some powerful tools

2

that can be used with Unity, Android, iOS and Unreal Engine 4

development environments (Google VR, 2016).

Although the possibility of using a smartphone for a real VR experience

has created a wide range of opportunities, it has also put some new

boundaries: smartphone’s display resolution and computing power are far

from optimal for virtual reality.

The abovementioned limitations together with the demand of the high-

quality 3D world in VR lead to a probable solution: rendering the high-

latency 3D world on the remote server and streaming the video back to the

smartphone.

The probability of the successful realization of both software and hardware

parts of a solution for remote rendering for virtual reality on mobile

devices, showing acceptable level of quality, is currently questionable and

unclear for the author. Throughout the research process the comparable

solutions will be found and studied, optimal technical requirements will be

calculated and tested.

3

2 RESEARCH METHODOLOGY

2.1 Research Questions and Objectives

The purpose of the paper is to find an open source remote rendering

platform that supports mobile devices and, using it as an example, to

figure out if it is feasible to use the remote rendering approach for virtual

reality on mobile devices now or in the nearest future.

1) Does a remote rendering system meet the minimal VR

requirements?

2) What are the main challenges of using remote rendering with

mobile VR?

2.2 Research Structure

The actual research can be generally divided into three parts: (1)

theoretical part, serving to reach the understanding of the key concepts,

the existing remote rendering systems, methods, approaches and

classifications, to choose the software for testing and to define the minimal

requirements the chosen software must meet; (2) experiment, including

design, conduction and the measurement and data collection techniques

that may vary, depending on the software, chosen after in the theoretical

part; (3) data analysis, including the comparison of the resulted

benchmarks to the minimal performance requirements, defined in the

theoretical part and finding the key challenges. The actual thesis structure

is divided into more parts for better understanding and readability.

4

Figure 2. Research structure

Before the experiment a simple VR application for Windows will be

implemented and built with the help of Unity3D game engine. The app will

be run on the PC, and streamed to a smartphone in the local network with

the help of a chosen remote rendering platform.

2.3 Research Method

The data to be collected during the experiment is needed to evaluate the

quality of experience that is achieved. According to the survey, made by

Huang et al. (2014), delay and video quality affect the QoE the most in

cloud gaming.

Conclusion

Data analysis

Analysis and comparison of the data to the

pre-defined performance criteria
Detecting the weak points

Conduct the experiment

Measurement technique definition Data collection

Experiment Design

Minimal performance criteria definition System Design

Survey

Remote rendering concept
Existing solutions and

approaches

Remote rendering and mobile

devices

5

Video quality can be evaluated by bitrate, resolution and frame rate.

Bitrate is a numeric measure which tells the number of bits that can be

processed within one second. Frame rate is another criteria of the overall

video quality, it is measured in frames per second (FPS) and shows the

frequency at which a device displays frames. Low frame rate causes the

“slideshow” effect in games and streaming, high frame rate is essential for

the smoothness of the video stream, especially in VR.

Delay is the time span between the moment, when a frame is rendered on

the server and the moment, when it is displayed on the device’s screen. It

consists of the network delay, which is often referred as the network

round-trip time (RTT) or ping, and represents the time needed to deliver a

player’s command to the server and return a game screen to the client and

the processing delay on the client side – a period of time, needed to

decode and display the screen (Chen et al. 2011).

Hence, after the experiment sessions, held with different configurations,

described in further chapters, the measurement data, collected from

different measurement points (configuration combinations), for every or nth

frame will be the revealed. This brings us to the point, where it is possible

to state: the data analysis part will be quantitative.

2.4 Limitations and Boundaries

Before the start of the survey the author is aware of the lack of popular

and widely used remote rendering systems with open code, especially of

those supporting Android and/or iOS. Also the author expects the existing

platform(-s) not to support gyroscope interaction with the server, which is

the core feature of mobile VR headmounted devices (e.g. Google

Cardboard). Nevertheless those cases will be reviewed and evaluated by

other aspects of quality of performance, since the additional ways of

interaction are possible to add to the mobile clients in the future.

6

The list of technical limitations is amplified by: (1) remote rendering is

meant to happen in the local network (LAN/WLAN), (2) mobile VR is

limited to Google Cardboard, (3) Samsung Galaxy S5 Plus is used as a

client device.

7

3 REMOTE RENDERING

Remote rendering in the context of this paper is the process, when

rendering of 3D models and showing the output graphical data take place

on separate devices: a rendering server and a client device respectively.

Figure 3. Basic architecture overview

A client device serves as an input device for user interaction and as an

output device for graphical data, received from the server in response.

Such an approach helps to use low-capacity devices for tasks requiring

highly detailed 3D data, e.g. virtual reality applications.

However, it creates a demand on high quality broadband connection and

puts a strict limit on the reaction time that may be problematic to achieve if

working with the server situated elsewhere than the local network.

3.1 Model- and Image-Based Classification Approaches

Shi et al. (2012) proposed classification, according to which, there exist

two major approaches to remote rendering: model based and image

based. In the following sub-clauses they will be analyzed and evaluated by

the bandwidth and client device capacity requirements.

Mobile
Device

Rendering
Server

3D models

Logic

User activity

Rendering results

Network

8

Figure 4. Classify remote rendering and remote visualization systems based on

data types (Shi et al., 2012, 6).

3.1.1 Model-Based Approach

A group of remote rendering techniques that send the full-size or anyhow

simplified 3D models to the client are called model-based. There exist a

number of variations inside this group, differing by the level of involvement

of the client device to the rendering process.

Original Model. In this approach the whole 3D models are stored or

generated and then streamed to the client that fully handles the rendering

part. It is feasible to use only in cases, where the major difficulty is to

generate, rather than to render the models.

Partial Model. The original model approach creates a lot of difficulties,

when the environment to be streamed and rendered is large and of high

resolution or includes complex texture and geometry, then it will most

possibly take excessive network bandwidth and a considerable amount of

time. In the partial model the 3D objects are sorted by their importance,

according to the viewpoint’s position. The objects that are closer to the

user’s position are sent in their original resolution, while objects, situated

9

farther and therefore in less-important zones, can be streamed at the

reduced quality and resolution.

Simplified Model. This approach was introduced by Levoy (1995) and is

based on sending a simplified model together with an image of the

rendering difference between the simplified and the original models to the

client. The client may have a lightweight rendering engine, since it has to

render a simplified model and then to add the difference image to the

rendering result. Such an approach loads the network connection much

less than the abovementioned ones, uses fewer client device computing

resources and maintains the same rendering quality. However, the highly

loaded server, which has to render both original and simplified models and

then compare them, must be mentioned among the disadvantages.

Point Cloud. This approach is related to a simplified model, described

above, with the difference that a point cloud, instead of a polygon mesh is

streamed to the client. The idea originates from the fact that the mobile

devices are incapable not only to render, but also to display the high-

polygon models. (Duguet & Drettakis, 2004). However, the technical

capabilities of the smartphones have changed since 2004 and nowadays

bad quality of the models is the same level problem as the difficulty of

heavy models rendering.

3.1.2 Image-Based Approach

An image-based systems implements all rendering operation on the

server, streaming the result images to the client. Therefore there is no

need in graphical hardware for 3D rendering on the client device, but on

the other hand it creates the demand on a stable network connection and

increases the dependency of the performance quality on the common

reaction time, including both package transactions and server processing.

Image Impostor. This approach is the most popular by far (Ohazama,

1999; Lamberti & Sanna, 2007; Noimark & Cohen-Or, 2003). All the 3D

10

models are rendered on the server and the client receives only 2D images

that it needs to display and then send the user interactions back. The

required network bandwidth becomes dependent only on the target

device’s screen resolution and the complexity of the 3D models affects

only the server-side rendering time. (Shi et al., 2012).

Environment Map. Environment map has found its niche and has been

widely used in 3D game development to simplify the rendering of faraway

background objects. Chen (1995) and Boukerche & Pazzi (2006) claim

that it can be effectively applied to reduce the iteration latency. The

environmental map is actually a 360 degrees image of the environment,

rendered by the server according to the viewpoint position given by the

client. The major obvious advantage is that tilting and turning the virtual

camera around will not require any further server requests and the results

will be shown with no delay. The problems might appear when it comes to

moving the viewpoint position and the server must render the whole

environment again and the streamed results are much heavier than in

image impostor approach.

Depth Image. In depth image remote rendering systems the server sends

back an image containing both colour and depth map, rendered according

to the user’s viewpoint position. The client device can display the received

colour map immediately, like in the image impostor approach, until the

viewpoint changes. After the user changes the viewpoint, the client

implements 3D image warping according to the depth map. This approach

can be considered as a simple version of Point Cloud because every pixel

of the depth image represents a 3D point in the space, with the difference

in the amount of computation: 3D warping is a much more lightweight

operation, than rendering a point cloud with 3D graphics pipeline (Shi et

al., 2012).

11

3.2 Current Situation in Remote Rendering

The first attempts of remote rendering research appeared already in the

1990s, caused by the inability of an average PC to deal with 3D graphics

at all (Ohazama, 1999). Later, when the development of high-speed

connections and cloud computing, Beermann & Humphreys (2003)

proposed that 3D rendering will become a remote service and it came true

with introduction of cloud gaming (Ross, 2009). Current solutions in

remote rendering can be divided into 2 main categories (Shi & Hsu, 2015).

Thin clients and remote sharing. Thin client systems, like SLIM (Schmidt et

al., 1999) or THiNC (Baratto et al., 2005) as well as remote desktop

sharing systems, like RDP (Cumberland et al., 1999) or VNC (Richardson

et al., 1998) allow users to access applications remotely and share

computing resources. Through the thin client a user can access and

interact with the app, launched on the server. Practically no computing

happens on the client side that is why such an approach is called “thin”, or

in other words lightweight.

Discussing on thin clients, the following details must be considered: those

systems initially appeared without any support for 3D graphics and were

used only for remote desktop sharing. Only several recent

implementations include 3D rendering support (e.g. THiNC and

TurboVNC). What is more, the major aim of the protocols, designed for 2D

graphics sharing, was to efficiently update regional changes on the

screen, since 2D rendering is relatively lightweight and can happen either

on a server or on a client (Shi & Hsu, 2015). Therefore, further in this

research we will focus only on those thin clients that support 3D graphics

remote rendering.

Distributed Graphics and Cluster Rendering. Talking about remote

rendering solutions, distributed graphics and cluster rendering systems

must be considered. This approach is used, when one server is not

enough to render complex 3D graphics, or when the outcome should be a

12

huge image (e.g. a wall with multiple screens (Staadt et al., 2003)).

Although distributed rendering stands close to the issue of remote

rendering, there are key differences in the aim of research: distributed

rendering focuses more on dividing graphics rendering operations

between several servers, while remote rendering in its pure sense aims to

optimise the process of client-server interactions, including data

compression, image processing and transferring, latency reduction.

Among the examples of existing distributed graphics and cluster rendering

systems WireGL (Humphreys et al., 2001), Chromium (Humphreys et al.,

2002), OpenGL Multipipe SDK (Bhaniramka et al., 2005), ParaView

(Cedilnik et al., 2006) and Equalizer (Eilemann et al., 2009) can be

mentioned.

13

4 REMOTE RENDERING ON MOBILE DEVICES

The situation on the mobile remote rendering systems market is not that

delightful though. Shi et al. (2012) introduced a multi-depth image-based

mobile remote rendering system with user interaction prediction algorithm,

but common logic and calculations in Shi et al. (2012, 2009) and Shi &

Hsu (2015) showed that such an approach is optimal for scientific

visualisations or any other case with static models and restricted

interaction, preferably if the number or viewpoint positions and allowed

virtual camera movement directions is also limited.

2D remote rendering, as well as remote desktop sharing platforms with no

support for 3D remote rendering together with systems, based on

command streaming, will not be reviewed and considered further in this

paper, since either they do not meet the requirements for mobile VR QoE

requirements or they do not help to visualize high-quality 3D graphics on

mobile devices.

The first open-source cloud gaming system, called GamingAnywhere

(Huang et al., 2014 (1, 2)) was chosen as a case study for this research.

Cloud gaming and VR systems are similar in terms of QoE requirements,

especially latency. Later in this research, a VR app will be launched on a

remote server, running GamingAnywhere server module, it will be

accessed from a GamingAnywhere thin Android client, the benchmarking

will be made and analysed.

GamingAnywhere server can be of two types: periodic and event-driven

(ga-server-periodic and ga-server-event-driven). The first one periodically

captures the desktop or a window and the second one hooks directly into

the game executables to capture a game screen every time right after the

game updates the screen. (Huang et al., 2013 (2)). To achieve the best

performance an event-driven server should be used.

14

5 QUALITY REQUIREMENTS

Virtual Reality puts strict quality requirements, which can be explained by

two factors: (1) wearing a head-mounted device means the close proximity

of the display to the user’s eyes, so that he/she can see all the details and

any image irregularities, like low sharpness or blur, result in awful user-

experience, (2) limited eyeshot makes your brain to accept the VR world

as real, so long reaction time between the movement of the user’s head

(or any other interaction) and the resulted image, shown on the screen(s),

may lead to vestibular system confusions, causing symptoms, like general

discomfort, headache, stomach awareness, nausea, vomiting, pallor,

sweating, fatigue, drowsiness, disorientation, and apathy. (Kolasinski,

2014).

The CTO of Oculus VR John Carmack has said:

A total system latency of 50 milliseconds will feel
responsive, but still noticeable laggy (Oculus Rift Blog,
2014).

Nevertheless, considering the fact that we are working with remote

rendering and mobile devices, as well as the fact that the OnLive and

StreamMyGame cloud gaming platforms perform 250ms on average

(Huang et al., 2013 (2)), and based on empirical evidence, 100ms are

assumed to be tolerable and will be further referred as maximum delay

value.

The criteria, responsible for the video quality may be adjusted on the

server side and will result in a higher or a lower delay, since higher FPS,

bitrate and resolution considerably increase the bandwidth requirements

and the overall amount of data, streamed within a network. Therefore, the

positive answer on the question “Is it feasible to use a remote rendering

system, based on GamingAnywhere platform for virtual reality on mobile

devices?” will be given in case at least one configuration variant that

15

meets the VR video quality requirements will be able to perform a tolerable

delay value in milliseconds during an experiment.

Both senior staff engineer of Sony Chris Norden and the founder of Oculus

VR Palmer Luckey have established the minimum frame rate requirement

for VR developers of 60 frames per seconds (LinusTechTips, 2014; Hall,

2016). Nevertheless, in this research the topic of mobile VR is reviewed

and here the situation is a bit different: mobile devices, running iOS and

Android, cannot render more than 60FPS due to vertical synchronization,

and if the app runs at less than 60FPS, it will drop to 30FPS (Purcell,

2016). Therefore client side frame rate of 30FPS will be considered

acceptable in the experiment and only two frame rate configurations will be

tested: 30FPS and 60FPS.

The minimum resolution configuration will be 1280x720p (HD),

1920x1080p (FullHD) will also be tested. Default and optimal for QoE on

mobile client bitrate of GamingAnywhere is 3 Mbps. YouTube proposes

1.5Mbps to be the minimal bitrate for an HD (720p) video streaming,

higher values will not be taken, since they strongly increase the delay time.

(Huang et al., 2014). Thus, 1.5Mbps and 3Mbps will be taken as test

cases.

16

6 EXPERIMENT SETUP

6.1 Test Cases

As it was mentioned in section 2.2, the aim of the experiment is to figure

out, if GamingAnywhere is able to perform a tolerable delay value,

delivering a video quality level that meets the VR requirements. According

to the minimal VR quality requirements, given in the fifth chapter, 8 test

cases were designed.

Table 1. Test cases.

Frame rate Resolution Video bitrate

30FPS 1280x720 1.5Mbps

30FPS 1280x720 3Mbps

30FPS 1920x1080 1.5Mbps

30FPS 1920x1080 3Mbps

60FPS 1280x720 1.5Mbps

60FPS 1280x720 3Mbps

60FPS 1920x1080 1.5Mbps

60FPS 1920x1080 3Mbps

All 8 configuration combinations, shown in table 1, are assumed to be

acceptable for virtual reality. During the experiment, we will use

GamingAnywhere with the VR application from a thin client, running on the

smartphone in the course of 5 minutes for each of those configuration

combinations. Here it is important to mention that both frame rate and

bitrate, set up on the server side, may and most probably will vary from the

ones, resulted on the client side, so only if at least one of the configuration

variants is able to perform a delay value less or equal to 100ms, as well as

a client side frame rate value not less, than 30FPS and the bitrate, not less

than 1.5Mbps, the positive answer to the first research question will be

given as a conclusion.

17

6.2 Configuration

GamingAnywhere (GA) provides several specially adapted games

together with the configuration files for them on their website, but will not

be reviewed or used during the research, since none of them is available

in VR mode. A simple Windows standalone app, consisting of one 3D

scene and two virtual cameras for both eyes, was made in Unity 5.4.0f (64

bit). A user can look around an assembly hall, get information about its

features and components by staring at the infopoints (magenta circles)

and move between three viewpoints by staring at the blue spheres on

each of the viewpoints.

Figure 5. Screenshot of the app. Figure 6. Screenshot of the app:

InfoPoint.

Empirically, Direct3D9 was chosen as a graphical API for Windows, since

Direct3D11, as well as SDL, could not be hooked by GA event-driven

server. Thus, any standalone Windows app, built by Unity and using

Direct3D9 can be used for mobile gaming with GA.

18

Figure 7. System Setup.

The architecture of the system was rather simple: a laptop (Intel Core i5

3230M 2,6Ghz, 6GB RAM, NVIDIA GeForce GT 730M with 2GB VRAM,

Windows 8.1) was connected to a router (802.11n) with an Ethernet cable,

and the smartphone (Samsung Galaxy S5 plus) used Wi-Fi to connect to

the network. The event-driven binary of GA was running on the laptop,

capturing the frames from the VR app and streaming them through RTP to

a GA client instance on the smartphone.

Figure 8. GA client: Home screen Figure 9. GA client: Profile

configuration

LAN

WLAN

GA-Server
VR App

GA-

Client

19

Two types of codecs can be used by GA mobile client to decode the

incoming video stream: software codecs and Android built-in codecs

(figure 8). The software codecs are the same, as the ones, used by GA-

server, while the built-in codecs are provided by the Android MediaCodec

framework. Obviously, the built-in hardware-accelerated codecs perform

better in terms of decoding speed. (Huang et al., 2014 (2)). However, the

usage of the built-in ones results in totally corrupted colours, with no

difference, whether H.264, H.265 or VP8 are used for video encoding on

the server side. All the experiment sessions (table 1) are held with H.264

encoders on the server side and the client is configured to use software

decoders.

Moreover, there was one issue: the Android version of GA client, available

in alpha, does not support gyroscope control, which is essential for head-

mounted VR devices. Theoretically this functionality can be added in the

future and the lack of it will not affect the research results. Arrow buttons

control, emulated by the client, is used for lookaround instead.

6.3 Measurement Technique

6.3.1 Applications and tools used for measurements

GameBench app is installed on the client device to count frame rate. The

choice was made empirically and also based on Zhu & Shen (2016).

Among calculating median FPS and showing overall performance

statistics, including CPU, battery and GPU usage, the app takes

screenshots every second during the benchmarking session, which is

indeed helpful.

ClockSync app is used to measure the difference between Android system

time, and the time on Windows NTP server (time.windows.com).

Time and Memo app is used to display the overlaying widget with Android

system time with milliseconds above.

20

GamingAnywhere provide log files, containing the information about the

resulted bitrate and RTT.

6.3.2 The process

As described in section 5.1, 8 configuration combinations are used to

evaluate the feasibility of using a remote rendering system, based on

GamingAnywhere cloud gaming platform with virtual reality applications on

mobile devices. All the configurations (resolution, bitrate and frame rate)

are set up on the server side. The delay and resulted frame rate values

measurements are taken on the client side.

Figure 10. Visual timestamp.

In order to measure the common delay, a method, similar to the one,

described in Chen et al. (2011), is applied. A text field with system time

with milliseconds updates each frame after all the calculations are

performed (Unity LateUpdate() method), so we have a visual timestamp

for every frame rendered, as it is shown in figure 10.

21

On the client side Time and Memo app is installed to display Android

system time with milliseconds on top of all open application screens, so

every time GA client shows a frame, information about both when the

frame has been rendered on the server and when it has been displayed on

the client can be seen. The time is updated on both server and client, but

there still exists a difference from -330 to -300 milliseconds. This fact is

considered and kept in mind.

The time difference values were elicited using ClockSync after updating

the time 10 times within one minute.

Figure 11. The view during benchmarking on the client side.

After each five-minutes-long testing session, 300 snapshots are made by

GameBench (e.g. figure 11), every 30th screenshot is manually inspected,

both server and client timestamps are collected and put into an Excel list,

then server-client time difference is added.

If an average value, considering the measurement uncertainty of 30ms,

appears to be less or equal to 100ms, and the average frame rate,

measured by GameBench is more or equals to 30FPS, the configuration

meets the requirements of VR QoE.

22

7 RESULTS

As it was mentioned in 6.1, 8 testing sessions were made with different

configurations.

Figure 12. GameBench metrics interface

The median frame rate is counted by GameBench (figure 12, blue line),

the average frame rate is calculated by exporting the frame list as CSV

(timestamp, fps) and applying a simple C# script to read it and count the

amount and the sum of values. The information about average RTT and

real bitrate is provided by GamingAnywhere log files.

Table 2. Sessions’ results

The cell colouring in table 2 marks the acceptable (green), tolerable

(yellow) and inacceptable (red) benchmarks. As we can see, none of the

configurations performed well enough to meet the VR, described in

chapter 5, although the results of session 1 are relatively close: median

frame rate is 29, which one FPS less, than the target value of 30, and real

23

bitrate is even a bit higher, than was required. Nevertheless, even with the

minimal configuration, both average and median delay time is around 5

times bigger, than the required 100ms, which makes it totally impossible to

use with virtual reality.

24

8 DATA ANALYSIS

Although, preliminary conclusions could be made, according to the mean

and median values, deeper data analysis is mandatory to achieve the

maximum objectiveness. Especially it concerns the data about delay, due

to the physical inability to count the value for each of 300 frames in each

of 8 testing sessions.

Table 3. Delay analysis

In table 3 the delay values in milliseconds are input for every 30th frame of

each session. The “mean” row contains the same values, is table 2

(average delay). The standard deviation is counted with the use of Excel

STDEV.S function that estimates population standard deviation based on

a sample (Microsoft Office Support, 2016 (2)), afterwards the confidence

interval is calculated with CONFIDENCE Excel function (Microsoft Office

Support, 2016 (1)), which estimates the range of values, where the

population mean will be situated, with the given risk of 5%, or in other

words with 95% level of certainty. The confidence interval is counted with

both normal (marked with “N”) and Student’s (marked with “t”) distribution.

One of the reasons to use Student’s distribution is the small sample size.

Knowing the confidence interval and the sample mean, it is easy to

25

calculate the lowest and the highest borders of predicted population mean

values. Nevertheless, even the lowest possible value of the population

mean delay with normal distribution in every session is at least 2.69 times

as high, as the maximal value, acceptable in VR, and the one with

Student’s distribution is still more than twice as high.

The same procedure is done with another average value: the resulted

frame rate. Here it is impossible to provide the similar table, since the FPS

data is available for every frame, and the resulted table contains over 300

rows.

Table 4. Frame rate analysis

Sessions

1 2 3 4 5 6 7 8

Mean 25,6 21,5 11,1 8,9 26,1 23,6 13,6 15,8

St. Deviation 12,39 14,37 8,34 5,85 12,83 13,45 9,29 9,20

Confidence 1,40 1,63 0,94 0,66 1,45 1,52 1,05 1,04

Lowest border 24,2 19,9 10,1 8,3 24,6 22,1 12,5 14,7

Highest border 27,0 23,1 12,0 9,6 27,6 25,2 14,6 16,8

 Risk 0,05

Table 4 shows much higher level of certainty. With a sample of 300 values

for each session, the difference between confidence interval with normal

and Student’s distribution is less, than 1/100, so it was decided not to

include the ones with Student’s distribution to the table.

Answering the second research question, the data from the second table

was analysed, in order to figure out, what exactly is the main challenge for

using remote rendering in general and GamingAnywhere particularly in VR

solutions for mobile devices.

Table 5. Processing delay

26

Another interesting question is which part of overall delay time is the

largest. As it can be seen from table 5, the processing delay (PD =

average delay – round-trip delay time) makes from 91.93% to 98.18% of

the overall delay. It is important to keep in mind that the experiment was

held within the local network, if the server and the client had been situated

in the remote networks, the round-trip delay time would have been

considerably bigger. However, it is possible to conclude that the time,

needed for a mobile device to decode and display the image, is

unacceptably long. Thus, the decoding process is mostly responsible for

such a long delay, which can be partially explained by the fact that

software decoders were used during the experiment, as it was stated in

section 6.2.

Figure 13. Median and average values correlation charts.

What is more, the average real frame rate is always lower, than the

median, and the average delay is always higher, than the median (figure

13), which means that the video was relatively instable and several times

performed minimal FPS and high delay values, resulting in frame losses

and janks, which is totally inacceptable for VR QoE.

27

Figure 14. Real bitrate

GamingAnywhere could perform the target bitrate values only in two cases

(first and fourth configuration in figure 13), both configured on the minimal

frame rate (30FPS) and resolution (1280x720, HD). Two more cases

(second and third in figure 14) could perform the acceptable values (more

or equal to 1.5Mbps), although the resulted bitrate was nearly half as low,

as configured. As it can be seen, heightening at least one the

configurations: frame rate or resolution, results in GamingAnywhere’s

inability to maintain the target bitrate and drops it nearly to half.

28

9 CONCLUSION

In this chapter a brief overview of thesis outcomes, in the form of

answering the two main research questions, defined in 2.1, is delivered.

The further research suggestions are given in the last subchapter.

9.1 Answers to the Research Questions

1) Does a remote rendering system meet the minimal VR

requirements?

In chapters 3 and 4 the survey of the existing remote rendering

approaches was implemented and the only platform, which supports

hooking into the executable of your custom application and provides the

mobile client (although in alpha), was found and appeared to be a

research open source project: GamingAnywhere.

An experiment was conducted to figure out, if a remote rendering system,

based on GamingAnywhere cloud gaming platform, meets the minimal VR

QoE requirements, defined in chapter 5. The results of the experiment

have shown that using GamingAnywhere as a remote rendering platform

for virtual reality on mobile devices is untimely yet, though the results

were better, than the author expected in the beginning.

2) What are the main challenges of using remote rendering with

mobile VR?

The incapability of the tested device, together with the GA client software,

to decode and display high-resolution video frames even with minimal

tolerable frequency is the key obstacle, while the network delay

appeared to have a much lower impact on the overall performance, as the

author supposed before. Nevertheless, there exist no objective reasons,

why this obstacle cannot be overcome in the very nearest future,

especially considering the fact that the part of the problem lies in the

29

software codecs, used by GA client application, which is currently on its

alpha testing stage.

9.2 Reliability and Validity

The reliability and validity of the current research have been ensured by

the usage of a considerable number of reliable sources. The test cases

have been designed with the configurations that follow the recognised

standards and during the measurement phase, commonly used and

reliable tools have been applied. The correlations between the resulted

performance benchmarks, done with the use of different software, match

the ones, found in scientific articles, common logic and mathematical laws.

Moreover, the quantitative data analysis has been implemented with the

usage of common methods, based on evaluation of sample mean, sample

median and predicted of population mean values, considering both normal

and Student’s distribution.

9.3 Further Research Suggestions

As mentioned in 2.3, the research has been held with strict limitations on

technical resources, therefore conducting similar experiments with more

test devices and/or devices with different computing capacity is among the

suggestions for further research. In addition to that, a deeper research,

including the modification of GamingAnywhere source code, or building a

new client application, e.g. in order to add the gyroscope lookaround

control and/or to improve the video decoding functionality, can significantly

heighten the outcomes’ objectiveness in the context of the feasibility to

use the remote rendering approach for virtual reality on mobile devices in

general, and not affected by the imperfectness of software.

As a separate point, it is possible to mention that the delay measurement

technique may be improved further. It is shows objective results in the

current paper, but if the values, less than 100ms have to be identified and

30

evaluated, it will be more effective to make an injection into the client and

count the difference between sending the command and displaying the

resulted frame, in order to eliminate the measurement uncertainty, caused

by a slight difference between the system time of different devices.

Moreover, if further researchers succeed in achieving higher performance,

it would be relevant to put a standard deviation limit on the delay and

frame rate, e.g. 500ms and 50FPS, because such instability and the

possibility of janks and losses is inacceptable even if the population mean

is rather high.

31

10 SUMMARY

To sum up, the objectives of the research has been achieved. The survey

of the remote rendering approaches and techniques has been made,

resulting in the increased level of understanding the process of rendering,

encoding, transferring, receiving and decoding the graphical data, with its

pros and cons.

Based on this survey, a cloud gaming platform has been found and tested

during the experiment, together with the VR application, developed and

built especially for testing purpose. After measuring and analysis, it is clear

that on the current stage it is impractical to use real-time remote rendering

for mobile VR. Nevertheless, there is plenty of space for further research

and improvements and much better results will definitely be achieved in

the future, making it possible to use most ubiquitous mobile devices for

exploring the virtual worlds of nearly unlimited complexity, size and quality

of graphics.

The results of the current research can be used by companies and/or

researchers as theoretical base, helping understand the key problems and

issues to work on in the future and evaluate the current abilities of certain

software and hardware solutions in the fields of video streaming and

remote rendering.

32

REFERENCES

Published sources

Baratto, R. A., Kim, L. N., Nieh, J. 2005. Thinc: a virtual display

architecture for thin-client computing. In Proceedings of the twentieth ACM

symposium on Operating systems principles. SOSP ’05. ACM, New York,

NY, USA, 277–290.

Beermann, D. & Humphreys, G. 2003. Visual computing in the future:

Computer graphics as a remote service. University of Virginia, Computer

Science Department, University of Virginia Technical Report CS-2003-16

25.

Bhaniramka, P., Robert, P., Eilemann, S. 2005. OpenGL multipipe sdk: a

toolkit for scalable parallel rendering. In Visualization, 2005. VIS 05. IEEE.

119–126.

Boukerche, A. & Pazzi, R. W. N. 2006. Remote rendering and streaming of

progressive panoramas for mobile devices. In Proceedings of the 14th

Annual ACM International Conference on Multimedia (Multimedia’06).

ACM, New York, 691–694.

Cedilnik, A., Geveci, B., Moreland, K., Ahrens, J., & Favre, J. 2006.

Remote large data visualization in the Paraview framework. In

Proceedings of the 6th Eurographics Conference on Parallel Graphics and

Visualization. EG PGV’06. Eurographics Association, Aire-la-Ville,

Switzerland, Switzerland, 163–170.

Chen, K., Chang, Y., Tseng, P., Huang, C. & Lei, C. 2011. Measuring the

latency of cloud gaming systems. Proceedings of ACM Multimedia 2011.

Taipei, Taiwan.

Chen, S. E. 1995. Quicktime VR: An image-based approach to virtual

environment navigation. In Proceedings of the 22nd Annual Conference

33

on Computer Graphics and Interactive Techniques (SIGGRAPH’95). ACM,

New York, 29–38.

Cumberland, B. C., Carius, G., Muir, A. 1999. Microsoft windows NT

server 4.0 terminal server edition technical reference. Microsoft Press.

Duguet, F. & Drettakis, G. 2004. Flexible point-based rendering on mobile

devices. IEEE Trans. Comput. Graph. Appl.

Eilemann, S., Makhinya, M., Pajarola, R. 2009. Equalizer: A scalable

parallel rendering framework. IEEE Transactions on Visualization and

Computer Graphics 15, 3, 436–452.

Huang, C., Chen, D., Hsu, C. & Chen, K. 2013. GamingAnywhere: An

Open-Source Cloud Gaming Testbed. Proceedings of ACM Multimedia

2013 (Open Source Software Competition Track).

Huang, C., Hsu, C., Chang, Y. & Chen, K. 2014. GamingAnywhere: The

First Open Source Cloud Gaming System. ACM Transactions on

Multimedia Computing, Communications and Applications, Vol 10, No 1s.

Huang, C., Hsu, C., Chen, D. & Chen, K. 2014. Quantifying user

satisfaction in mobile cloud games. Proceedings of ACM MoVid 2014.

Taipei, Taiwan.

Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M., Hanrahan, P.

2001. WireGL: a scalable graphics system for clusters. In International

Conference on Computer Graphics and Interactive Techniques:

Proceedings of the 28th annual conference on Computer graphics and

interactive techniques. Vol. 2001. 129–140.

Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P. D.,

Klosowski, J. T. 2002. Chromium: A stream-processing framework for

interactive rendering on clusters. ACM Trans. Graph. 21, 3, 693–702.

34

Kipper, G. & Rampolla, J. 2013. Augmented Reality: An Emerging

Technologies Guide to AR. Elsevier, Inc. Waltham, MA.

Lamberti, F. & Sanna, A. 2007. A streaming-based solution for remote

visualization of 3D graphics on mobile devices. IEEE Trans. Vis. Comput.

Graph. 13, 2, 247–260.

Levoy, M. 1995. Polygon-assisted jpeg and mpeg compression of

synthetic images. In Proceedings of the 22nd Annual Conference on

Computer Graphics and Interactive Techniques (SIGGRAPH ’95). ACM,

New York, 21–28.

Noimark, Y. & Cohen-Or, D. 2003. Streaming scenes to mpeg-4 video-

enabled devices. IEEE Comput. Graph. Appl. 23, 58–64.

Ohazama, C. 1999. OpenGL VizServer. White paper, Silicon Graphics,

Inc.

Richardson, T., Stafford-Fraser, Q., Wood, K. R., & Hopper, A. 1998.

Virtual network computing. IEEE Internet Computing 2, 33–38.

Ross, P. 2009. Cloud computing’s killer app: Gaming. IEEE Spectrum 46,

3, 14.

Schmidt, B. K., Lam, M. S., Northcutt, J. D. 1999. The interactive

performance of slim: a stateless, thin-client architecture. In Proceedings of

the seventeenth ACM symposium on Operating systems principles. SOSP

’99. ACM, New York, NY, USA, 32–47.

Shi, S. & Hsu, C. 2015. A Survey of Interactive Remote Rendering

Systems. ACM Computing Surveys 47(4):1-29.

Shi, S., Jeon, W., Nahrstedt, K. & Campbell, R. 2009. Real-time remote

rendering of 3D video for mobile devices. Urbana, IL: University of Illinois

at Urbana-Champaign.

35

Shi, S., Nahrstedt, K. & Campbell, R. 2012. A Real-Time Remote

Rendering System for Interactive Mobile Graphics. Urbana, IL: University

of Illinois at Urbana-Champaign.

Staadt, O. G., Walker, J., Nuber, C., Hamann, B. 2003. A survey and

performance analysis of software platforms for interactive cluster-based

multi-screen rendering. In Proceedings of the workshop on Virtual

environments 2003. ACM, 261–270.

U. Lampe, R. Hans & R. Steinmetz. 2013. Will mobile cloud gaming work?

Findings on latency, energy, and cost. In Proc. of IEEE International

Conference on Mobile Services (MS'13), pages 960-961, Santa Clara, CA.

Zhu, M. & Shen, K. 2016. Energy Discounted Computing on Multicore

Smartphones. Proceedings of 2016 USENIX Annual Technical

Conference. Denver, CO.

Electronic sources

Google VR. 2016. Developer Overview. [referenced on 29.11.2016].

Available on https://developers.google.com/vr/cardboard/overview.

Hall, C. 2016. Sony to devs: If you drop below 60 fps in VR we will not

certify your game. Polygon. [referenced on 25.11.2016]. Available on

http://www.polygon.com/2016/3/17/11256142/sony-framerate-60fps-vr-

certification.

Kolasinski, E. M. 2014. Simulator sickness in virtual environments (ARI

1027). U.S. Army Research Institute for the Behavioral and Social

Sciences. [referenced on 29.11.16]. Available on http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA295861.

LinusTechTips. 2014. 30FPS vs High FPS discussion with Palmer Luckey.

YouTube. [referenced on 25.11.2016]. Available on

https://youtu.be/BQoPvZGjYvQ.

36

Microsoft Office Support. CONFIDENCE Function. [referenced on

29.11.2016]. https://support.office.com/en-us/article/CONFIDENCE-

function-75ccc007-f77c-4343-bc14-673642091ad6.

Microsoft Office Support. STDEV.S Function. [referenced on 29.11.2016].

Available on https://support.office.com/en-us/article/STDEV-S-function-

7d69cf97-0c1f-4acf-be27-f3e83904cc23?ui=en-US&rs=en-US&ad=US.

Oculus Rift Blog. 2014. John Carmack’s Delivers Some Home Truths On

Latency. [referenced on 25.11.2016]. Available on http://oculusrift-

blog.com/john-carmacks-message-of-latency/682/.

Purcell, P. 2016. Mobile game flips between running at 30FPS and 60FPS.

Unity3D Support. [referenced on 25.11.2016]. Available on

https://support.unity3d.com/hc/en-us/articles/205824295-Mobile-game-

flips-between-running-at-30FPS-and-60FPS.

YouTube. Live encoder settings, bitrates, and resolutions. [referenced on

25.11.2016]. Available on

https://support.google.com/youtube/answer/2853702?hl=en.

Applications and tools

ClockSync.

https://play.google.com/store/apps/details?id=ru.org.amip.ClockSync&hl=e

n.

GameBench. Official website: https://www.gamebench.net/, GameBench

on Google Play Store:

https://play.google.com/store/apps/details?id=com.gamebench.metricscoll

ector&hl=en.

	1 INTRODUCTION
	2 RESEARCH METHODOLOGY
	2.1 Research Questions and Objectives
	2.2 Research Structure
	2.3 Research Method
	2.4 Limitations and Boundaries

	3 Remote rendering
	3.1 Model- and Image-Based Classification Approaches
	3.1.1 Model-Based Approach
	3.1.2 Image-Based Approach

	3.2 Current Situation in Remote Rendering

	4 Remote rendering on mobile devices
	5 QUALITY REQUIREMENTS
	6 EXperiment setup
	6.1 Test Cases
	6.2 Configuration
	6.3 Measurement Technique
	6.3.1 Applications and tools used for measurements
	6.3.2 The process

	7 RESULTS
	8 Data analysis
	9 CONCLUSION
	9.1 Answers to the Research Questions
	9.2 Reliability and Validity
	9.3 Further Research Suggestions

	10 SUMMARY
	REFERENCES

