221 research outputs found

    A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

    Get PDF
    Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations

    PAPR Reduction in OFDM System by using Nonlinear Companding Technique

    Get PDF
    Non linear companding technique is proposed to reduce the high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing system. Use of companding for peak - to - average - power ratio (PAPR) control is explored for a link involving a non - linear transmit power amplifier with orthogonal frequency division multiplexing (OFDM). This paper analyses the improvement in bit error rate (BER) and overall system performance by employing non linear companding technique for PAPR reduction in digital video broadcasting (DVB - T) system

    Performance improvement of a SOA-based coherent optical-OFDM transmission system via nonlinear companding transforms

    No full text
    International audienceCoherent-Optical OFDM systems are known to be sensitive to large peak-to-average power ratio (PAPR) at the transmitter output, due to nonlinear properties of some components involved in the transmission link. In this paper, we investigate the impact of an amplification of such signals via a semiconductor optical amplifier (SOA), considering some recent experimental results. An efficient tradeoff between BER performance, computational complexity and power efficiency is performed by a proper design of Wang's nonlinear companding function, considered for the first time in an optical communication context. A BER advantage of around 3 dB can hence be obtained over a standard system implementation not using PAPR reduction. The designed function also proves to be more efficient than µ-law function, considered in the literature as an efficient companding scheme

    New Hybrid Schemes for PAPR Reduction in OFDM Systems

    Get PDF
    الـ 3GPP قدمت مشروع LTE لتلبية الطلبات المتزايدة لخدمات الاتصالات ذات السرعة العالية والجودة العالية. يستخدم نظام الـ LTE تقنية مضاعفة تقسيم التردد المتعامد (OFDM) في شكل (OFDMA) في الوصلة الهابطة (Downlink) وشكل الـ (SCFDMA) في الوصلة الصاعدة (Uplink) مجتمعة مع تقنية الـ MIMO لتقديم معدل بيانات عالي، قدرة عالية، وحصانة ضد القنوات متعددة المسارات. ومع ذلك لا يزال ارتفاع نسبة القدرة العظمة إلى المتوسط (PAPR) لإشارة الـ LTE المرسلة هي المشكلة الرئيسية التي تعمل على تدهور كفاءة النظام بشك عام وإمكانية استهلاك الطاقة. لذلك كرست الكثير من البحوث للحد من تدهور الأداء بسبب مشكلة الـ PAPR في أنظمة LTE-OFDM. تعتبر طرق ضغط الإشارة (Companding Methods) جزءاً من الطرق المعروفة والتي تعتبر سهلة ومنخفضة التعقيد، وبلا قيود على شكل التضمين وحجم عدد الحوامل (Subcarrier Size)، ولها خصائص طيفية جيدة، ومع ذلك فإن هذه الطرق تقلل الـ PAPR بمقدار ضئيل. وقد اقترح هذا البحث سبعة طرق هجينة جديدة على أساس مزيج من Zaddoff Chu Matrix Transform (ZCT) مع ست أساليب مختلفة من طرق ضغط الإشارة وهي Rooting Companding (RCT)، New Error Function Companding (NERF)، Absolute Exponential Companding (AEXP)، Logarithmic Rooting Companding (LogR)، Cosine Companding (COS)، وTangent Rooting Companding (TanhR). بالإضافة إلى ذلك تم تطوير الطريقة الهجينة السابعة وتجمع الـ Zaddoff Chu Matrix Transform (ZCT) مع طريقة جديدة مقترحة تسمى Advanced AEXP (AAEXP). أظهرت النتائج أن هذه الطرق المتطورة تجمع بين خصائص طريقة الـ ZCT مع خصائص طرق ضغط الإشارة، وتحقق أداء أمثل وانخفاضاً أفضل من حيث PAPR وBER. كما حققت طريقة الـ ZCT+AAEXP أفضل النتائج مقارنة بالطرق الأخرى.The 3rd Generation Partnership Project (3GPP) introduced LTE to meet increasingly demands for communication services with high speed and quality. LTE uses OFDM in the form of OFDMA in the downlink and SCFDMA in the uplink combined with MIMO offering high data rate, high capacity and immunity against multipath channels. However, still the high PAPR of the LTE transmitted signal is the major problem affecting overall system performance degradation and power efficiency. A plenty of research has been devoted to reduce the performance degradation due to the PAPR problem inherent to LTE OFDM systems. A portion of the current techniques such companding methods have low-complexity, no constraint on modulation format and subcarrier size, good distortion and spectral properties; however, they have limited PAPR reduction capabilities. This paper proposes seven new hybrid schemes including Zaddoff Chu Matrix Transform (ZCT) precoding and six modern companding methods; Rooting Companding (RCT), New Error Function Companding (NERF), Absolute Exponential Companding (AEXP), Logarithmic Rooting Companding (LogR), Cosine Companding (COS) and Tangent Rooting Companding (TanhR) companding. Furthermore, the seventh proposed hybrid scheme has been added incorporating ZCT precoding with new proposed companding called Advanced AEXP (AAEXP) companding. The developed methods are combining properties of both ZCT & Compandings, and achieving superior PAPR performance and optimal BER. Simulations results illustrate that the new seven proposed hybrid schemes can achieve better PAPR reduction, and BER performance and the best achievement has been achieved by ZCT+AAEXP scheme

    Enhanced Artificial Bee Colony, Square Root Raised Cosine Precoding, and Mu law Compandor for Optimization of MIMO-OFDM System

    Get PDF
    The efficiency and high-speed data transfer rate of the communication system are increased based on Orthogonal Frequency Division Multiplexing (OFDM). The existing research in OFDM involves applying optimization methods to improve the system's efficiency. The high Peak Average Power Ratio (PAPR) value is a major limitation in the OFDM system, and this provides distortion due to the non-linear High-Power Amplifier (HPA). Local optima trap and lower convergence are two main limitations in existing optimization methods. This research proposes Enhanced Artificial Bee Colony (ABC) optimization method with a precoding-compandor technique to increase the efficiency of the OFDM system. Enhanced ABC method is applied with Boltzmann search to increase the exploitation capacity of the optimization efficiency. The selective mapping technique is applied to transform the candidate signal in the system. The ABC method increases exploration, and Boltzmann search increases exploitation. The enhanced ABC method increases the exploitation process that helps to overcome local optima traps and lower convergence. Square Root Raised Cosine (SRRC) precoding and Mu law compandor techniques were applied to reduce the PAPR. The Discrete Cosine Transform (DCT) technique is applied for domain conversion in the OFDM system. The proposed method has a convergence rate of 6.4069, and the existing one has a 6.4033 convergence rate. The enhanced ABC method provides higher efficiency in the MIMO-OFDM system regarding Symbol Error Rate (SER), PAPR, and Bit Error Rate (BER)

    A simple nonlinear companding transform for nonlinear compensation of direct-detection optical OFDM systems

    Get PDF
    In direct-detection OFDM systems, the nonlinear effects caused by optical modulation and fiber transmission can degrade the system performance severely. In this study, we propose a new nonlinear companding transform to improve the performance of direct detection optical OFDM transmission systems. The demonstration is realized by Monte-Carlo simulation of the intensity modulation and direct-detection DCO-OFDM optical transmission system at 40 Gbps over a 80 km of standard single mode fiber link. The influence of the companding parameters on the performance of system in different nonlinear transmission conditions has been investigated via simulation
    corecore