3,092 research outputs found

    A fast-initializing digital equalizer with on-line tracking for data communications

    Get PDF
    A theory is developed for a digital equalizer for use in reducing intersymbol interference (ISI) on high speed data communications channels. The equalizer is initialized with a single isolated transmitter pulse, provided the signal-to-noise ratio (SNR) is not unusually low, then switches to a decision directed, on-line mode of operation that allows tracking of channel variations. Conditions for optimal tap-gain settings are obtained first for a transversal equalizer structure by using a mean squared error (MSE) criterion, a first order gradient algorithm to determine the adjustable equalizer tap-gains, and a sequence of isolated initializing pulses. Since the rate of tap-gain convergence depends on the eigenvalues of a channel output correlation matrix, convergence can be improved by making a linear transformation on to obtain a new correlation matrix

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems

    Performance of optimum detector structures for noisy intersymbol interference channels

    Get PDF
    The errors which arise in transmitting digital information by radio or wireline systems because of additive noise from successively transmitted signals interfering with one another are described. The probability of error and the performance of optimum detector structures are examined. A comparative study of the performance of certain detector structures and approximations to them, and the performance of a transversal equalizer are included

    A co-designed equalization, modulation, and coding scheme

    Get PDF
    The commercial impact and technical success of Trellis Coded Modulation seems to illustrate that, if Shannon's capacity is going to be neared, the modulation and coding of an analogue signal ought to be viewed as an integrated process. More recent work has focused on going beyond the gains obtained for Average White Gaussian Noise and has tried to combine the coding/modulation with adaptive equalization. The motive is to gain similar advances on less perfect or idealized channels

    Robust acoustic signal detection and synchronization in a time varying ocean environment

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2012Signal detection and synchronization in the time varying ocean environment is a difficult endeavor. The current common methods include using a linear frequency modulated chirped pulse or maximal length sequence as a detection pulse, then match filtering to that signal. In higher signal to noise ratio (SNR) environments (~0 dB and higher) this has been a suitable solution. As the SNR drops lower however, this solution no longer provides an acceptable probability of detection for a given tolerable probability of false alarm. The issue derives from the inherent coherence issues in the ocean environment which limit the useful matched filter length. This thesis proposes an alternative method of detection based on a recursive least squares linearly adaptive equalizer which we term the Adaptive Linear Equalizer Detector (ALED). This detectors performance has demonstrated reliable probability of detection with minimal interfering false alarms with SNR as low as -20 dB. Additionally this thesis puts forth a computationally feasible method for implementing the detector.Support from the Office of Naval Research (through ONR grant #N00014-07-10738 and #N00014-11-10426)

    Application of adaptive equalisation to microwave digital radio

    Get PDF

    Design trade-offs for cost-effective multimode fiber channel equalizers in optical data center applications

    Get PDF
    A 10-Gb/s transmission over 1-km standard multimode fiber for data center applications is casestudied in terms of the design considerations for low-complexity and cost-effective equalizers which can increase the reach of multimode fiber links

    Dynamic length equaliser and its application to the DS-CDMA systems

    Get PDF

    Detection of signals by weighted integrate-and-dump filter

    Get PDF
    A Weighted Integrate and Dump Filter (WIDF) is presented that results in reducing those losses in telemetry symbol signal to noise ratio (SNR) which occur in digital Integrate and Dump Filters (IDFs) when the samples are not phase locked to the input data symbol clock. The Minimum Mean Square Error (MMSE) criterion is used to derive a set of weights for approximating the analog integrate and dump filter, which is the matched filter for detection of signals in additive white Gaussian noise. This new digital matched filter results in considerable performance improvement compared to unweighted digital matched filters. An example is presented for a sampling rate of four times the symbol rate. As the sampling offset (or phase) varies with respect to the data symbol boundaries, the output SNR varies 1 dB for an unweighted IDF, but only 0.3 dB for the optimum WIDF, averaged over random data patterns. This improvement in performance relative to unweighted IDF means that significantly lower sampling and processing rates can be used for given telemetry symbol rates, resulting in reduced system cost
    corecore