6,453 research outputs found

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Integrated Design and Implementation of Embedded Control Systems with Scilab

    Get PDF
    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.Comment: 15 pages, 14 figures; Open Access at http://www.mdpi.org/sensors/papers/s8095501.pd

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Implementation Of Modular Testing In Bios Development And Debug

    Get PDF
    This project presents a modular approach in BIOS development in purpose to tackle the problem of long development time with the existing methodologies which are hardware platform approach and virtual platform approach. The proposed approach consists of previous generation platform, a FPGA card and UEFI drivers. The FPGA is loaded with the RTL of one Intellectual Property (IP) from the current company project. The chosen IP is Low Power Subsystem (LPSS). The card is then plugged into the PCI slot of the platform. Besides, UEFI Configuration Driver and UEFI Reset Driver are built to configure and reset the LPSS registers respectively. Both of them are stored into a thumb drive and plugged into USB port of the platform. They are executed in the UEFI Shell environment. In this project, the development time of LPSS needed by the three methodologies which are hardware platform approach, virtual platform approach and modular approach are compared. The results indicate that modular approach is capable to save up to 90% of the development time in comparison with the other two approaches. At the same time, both of the UEFI drivers are functioning correctly. The processing time of both of the UEFI Configuration Driver and UEFI Reset Driver are about 1 to 2 seconds only. In conclusion, the novelty of the modular approach is that the BIOS can be developed in modular basis, without having to develop the BIOS as a whole. Therefore, it is able to cut down the BIOS development time efficientl

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    VERILOG DESIGN AND FPGA PROTOTYPE OF A NANOCONTROLLER SYSTEM

    Get PDF
    Many new fabrication technologies, from nanotechnology and MEMS to printed organic semiconductors, center on constructing arrays of large numbers of sensors, actuators, or other devices on a single substrate. The utility of such an array could be greatly enhanced if each device could be managed by a programmable controller and all of these controllers could coordinate their actions as a massively-parallel computer. Kentucky Architecture nanocontroller array with very low per controller circuit complexity can provide efficient control of nanotechnology devices. This thesis provides a detailed description of the control hierarchy of a digital system needed to build nanocontrollers suitable for controlling millions of devices on a single chip. A Verilog design and FPGA prototype of a nanocontroller system is provided to meet the constraints associated with a massively-parallel programmable controller system

    Optimum Selection of DNN Model and Framework for Edge Inference

    Get PDF
    This paper describes a methodology to select the optimum combination of deep neuralnetwork and software framework for visual inference on embedded systems. As a first step, benchmarkingis required. In particular, we have benchmarked six popular network models running on four deep learningframeworks implemented on a low-cost embedded platform. Three key performance metrics have beenmeasured and compared with the resulting 24 combinations: accuracy, throughput, and power consumption.Then, application-level specifications come into play. We propose a figure of merit enabling the evaluationof each network/framework pair in terms of relative importance of the aforementioned metrics for a targetedapplication. We prove through numerical analysis and meaningful graphical representations that only areduced subset of the combinations must actually be considered for real deployment. Our approach can beextended to other networks, frameworks, and performance parameters, thus supporting system-level designdecisions in the ever-changing ecosystem of embedded deep learning technology.Ministerio de Economía y Competitividad (TEC2015-66878-C3-1-R)Junta de Andalucía (TIC 2338-2013)European Union Horizon 2020 (Grant 765866
    corecore