246 research outputs found

    LDO compensation with variable Miller series resistance

    Get PDF
    A new compensation method for low dropout (LDO) voltage regulators is proposed, where the series resistor of the conventional Miller compensation changes with the load current to track the variations in the first nonโ€dominant pole

    ๋ฉ”๋ชจ๋ฆฌ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•œ ๋น ๋ฅธ ๊ณผ๋„ ์‘๋‹ต ์„ฑ๋Šฅ์„ ๊ฐ€์ง€๋Š” ๋””์ง€ํ„ธ ๋‚ฎ์€ ๋“œ๋กญ์•„์›ƒ ๋ ˆ๊ทค๋ ˆ์ดํ„ฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2023. 2. ์ •๋•๊ท .In this dissertation, the design of a fast transient response digital low-dropout regulator (DLDO) applicable to next-generation memory systems is discussed. Recent technologies in memory systems mainly aim at high power density and fast data rate. Accordingly, the need for a power converter withstanding a large amount of load current change in a short period is increased. Accordingly, a solution for compensating for a voltage drop that causes significant damage to a memory data input/output is searched according to a periodic clock signal. With this situation, two structures that achieve fast transient response performance under the constraints of memory systems are proposed. To mitigate the transient response degradation under slow external clock conditions, an adaptive two-step search algorithm with event-driven approaches DLDO is proposed. The technique solves the limitations of loop operation time dependent on slow external clocks through a ring-amplifier-based continuous-time comparator. Also, shift register is designed as a circular structure with centralized control of each register to reduce the cost. Finally, the remaining regulation error is controlled by an adaptive successive approximation algorithm to minimize the settling time. Fast recovery and settling time are shown through the measurement of the prototype chip implemented by the 40-nm CMOS process. Next, a digital low dropout regulator for ultra-fast transient response is designed. A slope-detector-based coarse controller to detect, compensate, and correct load current changes occurring at every rising or falling edge of tens to hundreds of megahertz clocks is proposed. Compensation efficiency is increased by the method according to the degree of change in load voltage over time. Furthermore, the LUT-based shift register enables the fast loop response speed of the DLDO. Finally, a bidirectional latch-based driver with fast settling speed and high resolution are proposed. The prototype chip is implemented with a 40-nm CMOS process and achieves effective load voltage recovery through fast transient response performance even with low load capacitance.๋ณธ ๋…ผ๋ฌธ์€ ์ฐจ์„ธ๋Œ€ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๋น ๋ฅธ ๊ณผ๋„ ์‘๋‹ต ์„ฑ๋Šฅ์„ ๊ฐ€์ง€๋Š” ๋””์ง€ํƒˆ ๋‚ฎ์€ ๋“œ๋กญ์•„์›ƒ ๋ ˆ๊ทค๋ ˆ์ดํ„ฐ์˜ ์„ค๊ณ„์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•œ๋‹ค. ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์˜ ์ตœ๊ทผ ๊ธฐ์ˆ ๋“ค์€ ๋†’์€ ์ „๋ ฅ ๋ฐ€๋„์™€ ๋น ๋ฅธ ๋ฐ์ดํ„ฐ ์†๋„๋ฅผ ์ฃผ๋œ ๋ชฉํ‘œ๋กœ ํ•˜๋ฉฐ ์ด์— ๋งž์ถ”์–ด ๋‹จ๊ธฐ๊ฐ„, ๋งŽ์€ ์–‘์˜ ๋ถ€ํ•˜ ์ „๋ฅ˜ ๋ณ€ํ™”๋ฅผ ๊ฒฌ๋””๋Š” ํŒŒ์›Œ ์ปจ๋ฒ„ํ„ฐ์˜ ํ•„์š”์„ฑ์ด ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค. ์ด์— ์ฃผ๊ธฐ์ ์ธ ํด๋ฝ ์‹ ํ˜ธ์— ๋”ฐ๋ผ ๋ฉ”๋ชจ๋ฆฌ ๋ฐ์ดํ„ฐ ์ž…์ถœ๋ ฅ์— ์œ ์˜๋ฏธํ•œ ์†์ƒ์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ์ „์•• ๊ฐ•ํ•˜๋ฅผ ๋ณด์ƒํ•˜๋Š” ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์„ ํƒ์ƒ‰ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์ด ๊ฐ€์ง€๋Š” ์ œ์•ฝ์กฐ๊ฑด ํ•˜์—์„œ ๋น ๋ฅธ ๊ณผ๋„ ์‘๋‹ต ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์„œ, ๋Š๋ฆฐ ์™ธ๋ถ€ ํด๋ฝ ์กฐ๊ฑด์—์„œ ์œ ๋ฐœ๋˜๋Š” ๋””์ง€ํƒˆ ๋‚ฎ์€ ๋“œ๋กญ์•„์›ƒ ๋ ˆ๊ทค๋ ˆ์ดํ„ฐ์˜ ๊ณผ๋„ ์‘๋‹ต ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์™„ํ™”์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ด๋ฒคํŠธ ์ฃผ๋„ ๋ฐฉ์‹์˜ ์ ์‘ํ˜• ๋‘ ๋‹จ๊ณ„ ์„œ์น˜ ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๊ธฐ์ˆ ์€ ๋Š๋ฆฐ ์™ธ๋ถ€ํด๋ฝ์— ์˜์กดํ•œ ๋ฃจํ”„ ๋™์ž‘ ์‹œ๊ฐ„์˜ ํ•œ๊ณ„๋ฅผ ๊ณ ๋ฆฌ ์ฆํญ๊ธฐ ๊ธฐ๋ฐ˜ ์—ฐ์† ์‹œ๊ฐ„ ๋น„๊ต๊ธฐ๋ฅผ ํ†ตํ•ด ํ•ด๊ฒฐํ•œ๋‹ค. ๋˜ํ•œ ์ž๋ฆฌ ์ด๋™ ๋ ˆ์ง€์Šคํ„ฐ์˜ ๊ตฌํ˜„์— ์†Œ๋ชจ๋˜๋Š” ๋น„์šฉ์„ ์ค„์ด๊ณ ์ž ๊ฐ ๋ ˆ์ง€์Šคํ„ฐ์˜ ์ œ์–ด ์žฅ์น˜๋ฅผ ์ค‘์•™์œผ๋กœ ์ง‘์ ์‹œํ‚จ ์ˆœํ™˜ํ˜• ๊ตฌ์กฐ๋กœ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‚จ์•„์žˆ๋Š” ์กฐ์ • ์—๋Ÿฌ๋Š” ์ ์‘๋ฐฉ์‹์˜ ์ถ•์ฐจ ๋น„๊ตํ˜• ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์ œ์–ดํ•˜์—ฌ ๊ต์ •์— ํ•„์š”ํ•œ ์‹œ๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜์˜€๋‹ค. 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋œ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์˜ ์ธก์ •์„ ํ†ตํ•ด ๋ถ€ํ•˜ ์ „์••์˜ ๋น ๋ฅธ ํšŒ๋ณต ์†๋„์™€ ์ •์ •์‹œ๊ฐ„์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์„œ, ์ดˆ๊ณ ์† ๊ณผ๋„ ์‘๋‹ต ํ™˜๊ฒฝ์— ์ ํ•ฉํ•œ ๋””์ง€ํ„ธ ๋‚ฎ์€ ๋“œ๋กญ์•„์›ƒ ๋ ˆ๊ทค๋ ˆ์ดํ„ฐ๊ฐ€ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ˆ˜์‹ญ~์ˆ˜๋ฐฑ ๋ฉ”๊ฐ€ํ—ค๋ฅด์ฏ” ํด๋ฝ์˜ ์ƒ์Šน ๋˜๋Š” ํ•˜๊ฐ• ์—ฃ์ง€๋งˆ๋‹ค ๋ฐœ์ƒํ•˜๋Š” ๋ถ€ํ•˜ ์ „๋ฅ˜ ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๊ณ  ๋ณด์ƒํ•˜๊ณ  ์ •์ •ํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์šธ๊ธฐ ํƒ์ง€๊ธฐ ๊ธฐ๋ฐ˜ coarse ์ œ์–ด๊ธฐ ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ถ€ํ•˜ ์ „์•• ๋ณ€ํ™”์˜ ์ •๋„์— ๋”ฐ๋ผ ์ฐจ๋“ฑ ๋ณด์ƒํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•จ์œผ๋กœ์จ ๋ณด์ƒ ํšจ์œจ์„ ๋†’์˜€๋‹ค. ๋‚˜์•„๊ฐ€ ์ˆœ๋žŒํ‘œ ๊ธฐ๋ฐ˜ ์ž๋ฆฌ์ด๋™ ๋ ˆ์ง€์Šคํ„ฐ๋Š” ๋ถ€ํ•˜ ์ „๋ฅ˜ ๊ณผ๋„ ์ƒํƒœ ์ดํ›„ ๋””์ง€ํƒˆ ๋ ˆ๊ทค๋ ˆ์ดํ„ฐ์˜ ๋น ๋ฅธ ๋ฃจํ”„ ์‘๋‹ต ์†๋„๋ฅผ ๊ฐ€๋Šฅ์ผ€ ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‚จ์€ ์กฐ์ • ์—๋Ÿฌ๋ฅผ ์ œ์–ดํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ๊ธฐ์กด ์ž๋ฆฌ์ด๋™ ๋ ˆ์ง€์Šคํ„ฐ ๋ฐฉ์‹์—์„œ ๋ฒ—์–ด๋‚˜ ๋น ๋ฅธ ์ˆ˜๋ ด ์†๋„์™€ ๋†’์€ ํ•ด์ƒ๋„๋ฅผ ๊ฐ€์ง€๋Š” ์–‘๋ฐฉํ–ฅ ๋ž˜์น˜ ๊ธฐ๋ฐ˜ ๋“œ๋ผ์ด๋ฒ„๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ํ•ด๋‹น ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ๋‚ฎ์€ ๋ถ€ํ•˜ ์ถ•์ „์šฉ๋Ÿ‰์—๋„ ๋น ๋ฅธ ๊ณผ๋„ ์‘๋‹ต ์„ฑ๋Šฅ์„ ํ†ตํ•ด ํšจ๊ณผ์ ์ธ ๋ถ€ํ•˜ ์ „์•• ํšŒ๋ณต์„ ์ด๋ฃจ์–ด ๋‚ด์—ˆ๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 VARIOUS TYPES OF LDO 4 1.2.1 ANALOG LDO VS. DIGITAL LDO 4 1.2.2 CAP LDO VS. CAP-LESS LDO 6 1.3 THESIS ORGANIZATION 8 CHAPTER 2 BACKGROUNDS ON DIGITAL LOW-DROPOUT REGULATOR 9 2.1 BASIC DIGITAL LOW-DROPOUT REGULATOR 9 2.2 FAST TRANSIENT RESPONSE LOW-DROPOUT REGULATOR 12 2.2.1 RESPONSE TIME 13 2.2.1 SETTLING TIME 20 2.3 VARIOUS METHODS FOR IMPLEMENT FAST TRANSIENT DIGITAL LDO 21 2.3.1 EVENT-DRIVEN DIGITAL LDO 21 2.3.2 FEEDFORWARD CONTROL 23 2.3.3 COMPUTATIONAL DIGITAL LDO 25 2.4 DESIGN POINTS OF FAST TRANSIENT RESPONSE DIGITAL LDO 27 CHAPTER 3 A FAST DROOP-RECOVERY EVENT-DRIVEN DIGITAL LDO WITH ADAPTIVE LINEAR/BINARY TWO-STEP SEARCH FOR VOLTAGE REGULATION IN ADVANCED MEMORY 29 3.1 OVERVIEW 29 3.2 PROPOSED DIGITAL LDO 32 3.2.1 MOTIVATION 32 3.2.2 ALSC WITH TWO-DIMENSIONAL CIRCULAR SHIFTING REGISTER 36 3.2.3 SBSC WITH SUBRANGE SUCCESSIVE-APPROXIMATION REGISTER 39 3.2.4 STABILITY ANALYSIS 41 3.3 CIRCUIT IMPLEMENTATION 44 3.3.1 TIME-INTERLEAVED RING-AMPLIFIER-BASED COMPARATOR 44 3.3.2 ASYNCHRONOUS 2D CIRCULAR SHIFTING REGISTER 49 3.3.3 SUBRANGE SUCCESSIVE APPROXIMATION REGISTER 51 3.4 MESUREMENT RESULTS 54 CHAPTER 4 A FAST TRANSIENT RESPONSE DIGITAL LOW-DROPOUT REGULATOR WITH SLOPE-DETECTOR-BASED MULTI-STEP CONTROL FOR DIGITAL LOAD APPLICATION 62 4.1 OVERVIEW 62 4.2 PROPOSED DIGITAL LDO 64 4.2.1 MOTIVATION 64 4.2.2 ARCHITECTURE OF DIGITAL LDO 66 4.2.3 SLEW-RATE DEPENDENT COARSE-CONTROL LOOP 69 4.2.4 FINE-CONTROL LOOP 72 4.2.5 CONTROL FOR LOAD-TRANSIENT RESPONSE 74 4.3 CIRCUIT IMPLEMENTATION 77 4.3.1 COMPARATOR-TRIGGERED OSCILLATOR DESIGN 77 4.3.2 SLOPE DETECTOR DESIGN 81 4.3.3 LUT-BASED SHIFT REGISTER DESIGN 84 4.3.4 BI-DIRECTIONAL LATCH-BASED DRIVER DESIGN 86 4.4 MEASUREMENT(SIMULATION) RESULTS 90 CHAPTER 5 CONCLUSION 95 BIBLIOGRAPHY 97 ์ดˆ ๋ก 109๋ฐ•

    Modelling of a P-MOS low drop-out voltage regulator with fast transient response and its feasibility in low cost technology

    Get PDF
    I regolatori di tensione lineari sono dei componenti molto utili in campo elettronico. Questi componenti garantiscono una tensione costante in uscita a fronte di una tensione variabile in ingresso. Gli alimentatori di ultima generazione, sfruttano la serie di un convertitore tipo switching e di un regolatore lineare. Nelle applicazioni che funzionano tramite batterie, il regolatore lineare รจ assi diffuso. Per esempio, in campo automobilistico, i regolatori lineari sono ampiamente utilizzati in quanto ad ogni sistema elettrico รจ garantito una tensione costante. In questa tesi si รจ analizzato nel dettaglio i principali tipi di regolatori lineari, focalizzandosi su quelli a basse cadute low drop-out. Ci si รจ inoltre focalizzati su una tecnica di compensazione multi retroazione. Per far questo si รจ realizzato una interfaccia grafica tramite Matlab chiamata LDO behavior, che riuscisse a spiegare, almeno in prima approssimazione, l'effetto dei feedback sul sistema totale. La fase di progettazione รจ stata realizzata sfruttando le informazioni fornite da questa interfaccia grafica. Infine si รจ realizzato un test-chip che รจ stato caratterizzato in laboratori

    A Ringamp-Assisted, Output Capacitor-less Analog CMOS Low-Dropout Voltage Regulator

    Get PDF
    Continued advancements in state-of-the-art integrated circuits have furthered trends toward higher computational performance and increased functionality within smaller circuit area footprints, all while improving power efficiencies to meet the demands of mobile and battery-powered applications. A significant portion of these advancements have been enabled by continued scaling of CMOS technology into smaller process node sizes, facilitating faster digital systems and power optimized computation. However, this scaling has degraded classic analog amplifying circuit structures with reduced voltage headroom and lower device output resistance; and thus, lower available intrinsic gain. This work investigates these trends and their impact for fine-grain Low-Dropout (LDO) Voltage Regulators, leading to a presented design methodology and implementation of a state-of-the-art Ringamp-Assisted, Output Capacitor-less Analog CMOS LDO Voltage Regulator capable of both power scaling and process node scaling for general SoC applications

    A Case Study in CMOS Design Scaling for Analog Applications: The Ringamp LDO

    Get PDF
    As CMOS process nodes scale to smaller feature sizes, process optimizations are made to achieve improvements in digital circuit performance, such as increasing speed and memory, while decreasing power consumption. Unfortunately for analog design, these optimizations usually come at the expense of poorer transistor performance, such as reduced small signal output resistance and increased channel length modulation. The ring amplifier has been proposed as a digital solution to the analog scaling problem, by configuring digital inverters to function as analog amplifiers through deadzone biasing. As digital inverters naturally scale, the ring amplifier is a promising area of exploration for analog design. This work presents a ring amplifier scaling study by demonstration of scaling an output capacitor-less, ring amplifier based low-dropout voltage regulator designed in a standard 180 nm CMOS process down to a standard 90 nm CMOS process

    A fully on-chip LDO voltage regulator with 37 dB PSRR at 1 MHz for remotely powered biomedical implants

    Get PDF
    This article presents a fully on-chip low-power LDO voltage regulator dedicated to remotely powered wireless cortical implants. This regulator is stable over the full range of alternating load current and provides fast load regulation achieved by applying a time-domain design methodology. Moreover, a new compensation technique is proposed and implemented to improve PSRR beyond the performance levels which can be obtained using the standard cascode compensation technique. Measurement results show that the regulator has a load regulation of 0.175 V/A, a line regulation of 0.024%, and a PSRR of 37 dB at 1MHz power carrier frequency. The output of the regulator settles within 10-bit accuracy of the nominal voltage (1.8 V) within 1.6ฮผs, at full load transition. The total ground current including the bandgap reference circuit is 28ฮผA and the active chip area measures 290ฮผmร—360ฮผm in a 0.18ฮผm CMOS technolog

    Tehonhallinta integroidulle hermosignaalin hallintapiirille

    Get PDF
    Wireless biosignal measurement is a growing opportunity to increase the efficiency of medical procedures: An integrated circuit (receiver) is implanted inside human tissue and itโ€™s output can be read wirelessly with a transmitter that also provides energy for the implant. This method requires RFID technology, where wireless data is transmitted in the RF-band back-and-forth between the receiver and transmitter. The receiver can be implemented either as an active design, where a local power supply is required inside the receiver, or as a passive design without internal energy storage. However, as the modern CMOS process is fairly advanced and the power consumption is low - passive designs are the most common. In the passive design the power for the receiver is drawn from the electromagnetic field transmitted to the chip, generally with electromagnetic induction. A design and implementation of an 860 MHz UHF-band RFID power system is presented in this work and its performance evaluated. The system was designed for a wireless EEG (electroencephalography) reader that can be implanted under the skalp โ€“ but the design principles can be expanded upon any RF-band RFID system. The final system works with an input power of -6.8 dBm with a startup time of slightly below 40 ยตs with specifications of 700 mV to 150 ยตA load. The LDO line regulation achieves a -51 dB level at DC with the full bandwidth covered. The RF Rectifier uses the design principles of a cross-coupled rectifier and a 63% conversion efficiency is achieved with the proposed matching circuitry. The reference circuitry is designed with the Betamultiplier architecture and expanded slightly to improve the current consumption in the circuit. The reference current is set at 100 nA and reference voltage at 400 mV.Langaton biosignaalien mittaus mahdollistaa yleisien lรครคketieteellisien signaalien mittauksien tehokkuuden kasvamista: Integroitu elektroninen piiri voidaan asentaa ihmisen kudokseen ja tรคmรคn sirun ulosantama tieto voidaan lukea langattomasti lukijalla, mikรค useassa tapauksessa toimittaa myรถs energian sirulle. Tรคmรค teknologia vaatii RFID teknologiaa, mikรค on hyvin tunnettu ja tutkittu langattoman datan siirtรคmiseen kehitelty teknologia radiotaajuuksilla lukijan ja vastaanottimen vรคlillรค. Lukija voidaan suunnitella sekรค passiiviseksi ettรค aktiiviseksi, mutta modernin CMOS- teknologian tehonkulutus ominaisuuksien vuoksi RFID-lukijat ovat yleisesti passiivisia. Passiivisessa RFID suunnittelussa lukija vastaanottaa tarvitsemansa energian vastaanottimelta yleisesti elektromagneettisen induktion avulla. 860 MHz UHF-kaistan suunnitelu ja toteutus kรคydรครคn lรคpi tรคssรค tyรถssรค ja suorityskyky on mitattu simulaatioilla. Itse jรคrjestelmรค oli alunperin suunniteltu langattomaan EEG-lukijaan (aivosรคhkรถkรคyrรค), minkรค pystyisi asentamaan pรครคnahan alle - mutta periaatteet pรคtevรคt mihin tahansa RF-kaistan jรคrjestelmรครคn. Lopullinen jรคrjestelmรค toimii -6.8 dBm sisรครคntuloteholla ja kรคynnistysmisaika on hieman alle 40ยตs 700 mV ja 150 ยตA kuormaan. Linjaregulaatio saavuttaa -51 dB arvon alhaisilla taajuuksilla ja regulaatio on koko kaistan kattava. RF-tasasuuntaaja saavuttaa 63 % AC-DC huippu tehonmuutosarvon ehdotetulla impedanssien sovituspiirillรค. Referenssipiiri on suunnitellu Betamultiplier-arkkitehtuurilla ja modifioitu pienentรคmรครคn virrankulutusta. Referenssit ovat 100 nA ja 400 mV

    Analysis on Supercapacitor Assisted Low Dropout (SCALDO) Regulators

    Get PDF
    State-of-the-art electronic systems employ three fundamental techniques for DC-DC converters: (a) switch-mode power supplies (SMPS); (b) linear power supplies; (c) switched capacitor (charge pump) converters. In practical systems, these three techniques are mixed to provide a complex, but elegant, overall solution, with energy efficiency, effective PCB footprint, noise and transient performance to suit different electronic circuit blocks. Switching regulators have relatively high end-to-end efficiency, in the range of 70 to 93%, but can have issues with output noise and EMI/RFI emissions. Switched capacitor converters use a set of capacitors for energy storage and conversion. In general, linear regulators have low efficiencies in the range 30 to 60%. However, they have outstanding output characteristics such as low noise, excellent transient response to load current fluctuations, design simplicity and low cost design which are far superior to SMPS. Given the complex situation in switch-mode converters, low dropout (LDO) regulators were introduced to address the equirements of noise-sensitive and fast transient loads in portable devices. A typical commercial off-the-shelf LDO has its input voltage slightly higher than the desired regulated output for optimal efficiency. The approximate efficiency of a linear regulator, if the power consumed by the control circuits is negligible, can be expressed by the ratio of Vo/Vin. A very low frequency supercapacitor circulation technique can be combined with commercial low dropout regulator ICs to significantly increase the end-to-end efficiency by a multiplication factor in the range of 1.33 to 3, compared to the efficiency of a linear regulator circuit with the same input-output voltages. In this patented supercapacitor-assisted low dropout (SCALDO) regulator technique developed by a research team at the University of Waikato, supercapacitors are used as lossless voltage droppers, and the energy reuse occurs at very low frequencies in the range of less than ten hertz, eliminating RFI/EMI concerns. This SCALDO technique opens up a new approach to design step-down, DC-DC converters suitable for processor power supplies with very high end-to-end efficiency which is closer to the efficiencies of practical switching regulators, while maintaining the superior output specifications of a linear design. Furthermore, it is important to emphasize that the SCALDO technique is not a variation of well-known switched capacitor DC-DC converters. In this thesis, the basic SCALDO concept is further developed to achieve generalised topologies, with the relevant theory that can be applied to a converter with any input-output step-down voltage combination. For these generalised topologies, some important design parameters, such as the number of supercapacitors, switching matrix details and efficiency improvement factors, are derived to form the basis of designing SCALDO regulators. With the availability of commercial LDO ICs with output current ratings up to 10 A, and thin-prole supercapacitors with DC voltage ratings from 2.3 to 5.5 V, several practically useful, medium-current SCALDO prototypes: 12V-to-5V, 5V-to-2V, 5.5V-to-3.3V have been developed. Experimental studies were carried out on these SCALDO prototypes to quantify performance in terms of line regulation, load regulation, efficiency and transient response. In order to accurately predict the performance and associated waveforms of the individual phases (charge, discharge and transition) of the SCALDO regulator, Laplace transform-based theory for supercapacitor circulation is developed, and analytical predictions are compared with experimental measurements for a 12V-to-5V prototype. The analytical results tallied well with the practical waveforms observed in a 12V-to-5V converter, indicating that the SCALDO technique can be generalized to other versatile configurations, and confirming that the simplified assumptions used to describe the circuit elements are reasonable and justifiable. After analysing the performance of several SCALDO prototypes, some practical issues in designing SCALDO regulators have been identified. These relate to power losses and implications for future development of the SCALDO design

    Design consideration in low dropout voltage regulator for batteryless power management unit

    Get PDF
    Harvesting energy from ambient Radio Frequency (RF) source is a great deal toward batteryless Internet of Thing (IoT) System on Chip (SoC) application as green technology has become a future interest. However, the harvested energy is unregulated thus it is highly susceptible to noise and cannot be used efficiently. Therefore, a dedicated low noise and high Power Supply Ripple Rejection (PSRR) of Low Dropout (LDO) voltage regulator are needed in the later stages of system development to supply the desired load voltage. Detailed analysis of the noise and PSRR of an LDO is not sufficient. This work presents a design of LDO to generate a regulated output voltage of 1.8V from 3.3V input supply targeted for 120mA load application. The performance of LDO is evaluated and analyzed. The PSRR and noise in LDO have been investigated by applying a low-pass filter. The proposed design achieves the design specification through the simulation results by obtaining 90.85dB of open-loop gain, 76.39ยบ of phase margin and 63.46dB of PSRR respectively. The post-layout simulation shows degradation of gain and maximum load current due to parasitic issue. The measurement of maximum load regulation is dropped to 96mA compared 140mA from post-layout. The proposed LDO is designed using 180nm Silterra CMOS process technology
    • โ€ฆ
    corecore