5,485 research outputs found

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    The advantages and cost effectiveness of database improvement methods

    Get PDF
    Relational databases have proved inadequate for supporting new classes of applications, and as a consequence, a number of new approaches have been taken (Blaha 1998), (Harrington 2000). The most salient alternatives are denormalisation and conversion to an object-oriented database (Douglas 1997). Denormalisation can provide better performance but has deficiencies with respect to data modelling. Object-oriented databases can provide increased performance efficiency but without the deficiencies in data modelling (Blaha 2000). Although there have been various benchmark tests reported, none of these tests have compared normalised, object oriented and de-normalised databases. This research shows that a non-normalised database for data containing type code complexity would be normalised in the process of conversion to an objectoriented database. This helps to correct badly organised data and so gives the performance benefits of de-normalisation while improving data modelling. The costs of conversion from relational databases to object oriented databases were also examined. Costs were based on published benchmark tests, a benchmark carried out during this study and case studies. The benchmark tests were based on an engineering database benchmark. Engineering problems such as computer-aided design and manufacturing have much to gain from conversion to object-oriented databases. Costs were calculated for coding and development, and also for operation. It was found that conversion to an object-oriented database was not usually cost effective as many of the performance benefits could be achieved by the far cheaper process of de-normalisation, or by using the performance improving facilities provided by many relational database systems such as indexing or partitioning or by simply upgrading the system hardware. It is concluded therefore that while object oriented databases are a better alternative for databases built from scratch, the conversion of a legacy relational database to an object oriented database is not necessarily cost effective

    The schema coercion problem

    Get PDF
    Journal ArticleOver the past decade, the ability to incorporate data from a wide variety of sources has become increasingly important to database users. To meet this need, significant effort has been expended in automatic database schema manipulation. However, to date this effort has focused on two aspects of this problem: schema integration and schema evolution. Schema integration results in a unified view of several databases, while schema evolution enhances an existing database design to represent additional information. This work defines and addresses a third problem, schema coercion, which defines a mapping from one database to another. This paper presents an overview of the problems associated with schema coercion and how they correspond to the problems encountered by schema integration and schema evolution. In addition, our approach to this problem is outlined. The feasibility of this approach is demonstrated by a tool which reduces the human interaction required at all steps in the integration process. The database schemata are automatically read and converted into corresponding ER representations. Then, a correspondence identification heuristic is used to identify similar concepts, and create mappings between them. Finally, a program is generated to perform the data transfer. This tool has successfully been used to coerce the Haemophilus and Methanococcus genomes from the Genbank ASN.l database to the Utah Center for Human Genome Research database. Our comprehensive approach to addressing the schema coercion problem has proven extremely valuable in reducing the interaction required to define coercions, particularly when the heuristics are unsuccessful

    A DESIGN OF AN OBJECT-ORIENTED DATABASE FOR EFFECTIVE DATA MINING

    Get PDF
    This paper focuses on the design of an object-oriented database (OODB), through incorporation of object-oriented programming (OOP) concepts into existing relational databases. The proposed approach makes use of the OOP concepts namely, inheritance, encapsulation and polymorphism to design an OODB and perform classification in it respectively. Usually, database is a collection of tables with common fields. In this study, those common fields are grouped together to form a single generalized table. The newly created table resembles the base class in the inheritance hierarchy. Polymorphism allows different classes to have methods of the same name and structure, performing different operations based on the calling object. The polymorphism is specifically employed to achieve classification in a simple and effective manner while Encapsulation ensures the hiding of the data and behavior of an object behind a limited and well-described interface. In Java terms, the limited and well-described interface is the set of public methods and attributes. The use of these object oriented concepts for the design of OODB ensures that even complex queries can be answered more efficiently. Particularly, data mining task and classification can be achieved in an effective manner.Â

    Translating Relational Conceptual Schema to Object-Oriented Schema

    Get PDF
    A multidatabase is a confederation of preexisting distributed, heterogeneous, and autonomous database system. The integration process is essential in the effort of forming a distributed, heterogeneous database system. This process generally consists of two main phases, which are conceptual schema translation phase and followed by the integration phase. In our research, we have proposed an alternative translation approach to convert relational database schema to object--oriented database schema. The translation approach consists of a set of translation rules, which are based on inclusion dependencies, key attributes and types of attributes. A database schema translation tool prototype, called RETOO (Relational-to-Object-Oriented) is then developed based on the proposed translation approach. RETOO receives a relational database schema as input data and generate an object-oriented database schema as the output data.RETOO operates semi-automatically, especially in the process of identifying operations for each class. This is because relational data model does not provide the behavioural information of every entity. The translation approach and RETOO database translation tool prototype are not only able to maintain the semantics of the relational database schema, but also enhance the semantics of the translated object-oriented schema via object-oriented data modelling concepts

    Query Modification in Object-oriented Database Federation

    Get PDF
    We discuss the modification of queries against an integrated view in a federation of object-oriented databases. We present a generalisation of existing algorithms for simple global query processing that works for arbitrarily defined integration classes. We then extend this algorithm to deal with object-oriented features such as queries involving path expressions and nesting. We show how properties of the OO-style of modelling relationships through object references can be exploited to reduce the number of subqueries necessary to evaluate such querie
    corecore