
T h e  S c h e m a  C o e r c i o n  P r o b l e m

Terence Critchlow and Gary Lindstrom

UUCS-97-002

Department o f Computer Science 
University o f Utah 

Salt Lake City, UT 84112 USA

February, 1997



T eren ce  C ritch low  
G a ry  L in d strom

Abstract

Over the past decade, the ability to incorporate data from a wide 
variety o f sources has become increasingly important to database users.
To meet this need, significant effort has been expended in automatic 
database schema manipulation. However, to date this effort has focused 
on two aspects o f this problem: schema integration and schema evolution. 
Schema integration results in a unified view o f several databases, while 
schema evolution enhances an existing database design to represent 
additional information. This work defines and addresses a third problem, 
schema coercion, which defines a mapping from one database to another.

This paper presents an overview o f the problems associated with 
schema coercion and how they correspond to the problems encountered by 
schema integration and schema evolution. In addition, our approach to 
this problem is outlined. The feasibility o f this approach is demonstrated 
by a tool which reduces the human interaction required at all steps in the 
integration process. The database schemata are automatically read and 
converted into corresponding ER representations. Then, a correspondence 
identification heuristic is used to identify similar concepts, and create 
mappings between them. Finally, a program is generated to perform the 
data transfer. This tool has successfully been used to coerce the 
Haemophilus and Methanococcus genomes from the Genbank ASN.l 
database to the Utah Center for Human Genome Research database.

Our comprehensive approach to addressing the schema coercion 
problem has proven extremely valuable in reducing the interaction 
required to define coercions, particularly when the heuristics are 
unsuccessful.

Introduction

As information becomes increasingly available from a vast variety o f sources, the 

need to develop uniform views and evolve existing representations becomes vitally 

important. Unfortunately, information is stored in a wide variety o f formats ranging from

T h e  S c h e m a  C o e r c i o n  P r o b l e m



web pages to flat file representations to object-oriented databases. Because o f the number 

and complexity o f these representations, there has been significant interest in developing 

processes to automatically define mappings between databases. To date this effort has 

concentrated on two specific problems: schema integration and schema evolution.

Different expressions o f similar concepts constitutes the central theoretical 

problem associated with automating schema manipulation. These expressions are a result 

o f the environment in which the database was developed, and manifest as differing 

database representations. Recognizing correspondences between these representations 

requires resolving the disparities (conflicts [20]) across these representations.

Three categories o f conflicts are associated with schema manipulation: naming, 

structural, and semantic. Naming conflicts occur when similar concepts are given 

different names, or when different concepts are given the same name. Problems arise 

because the name is assumed, by default, to encapsulate the semantics o f the abstract 

concept since names often constitute the only, albeit weak, meta-information available 

concerning the database design. As a result o f these conflicts, correct correspondences 

may be missed, and false correspondences may be identified. Structural conflicts occur 

because different expressions may incorporate different details about a concept. For 

example, in an employee database, the concept o f marriage may be a boolean attribute 

representing whether or not an employee is married. However, in a vital statistics 

database the concept o f marriage may be associated with an entity having attributes such 

as the date o f marriage, the marriage license number, and the social security numbers o f 

the husband and wife. In such conflicts, required information may not be available in the 

source database and defaults may have to be provided. Semantic conflicts occur because



the environment in which the database was developed may place implicit contextual 

interpretations on the data. For example, product prices are usually expressed in the 

currency o f the country in which the database resides. As a result o f this conflict, simple 

mappings between corresponding constructs may be incorrect across international 

borders. Thus a database representing prices in Canadian dollars and another 

representing prices in US dollars should not be merged without translating the prices to a 

common currency.

Schema integration is the process o f deriving a global database schema from an 

initial collection o f schemata. This consensus schema, which is unknown at the start o f 

the process, must be capable o f representing all o f the information defined in the original 

schemata. To bound the complexity o f this problem, integration is usually performed 

pairwise, with the resulting schema being used as input to a later integration step. The 

major challenges to successfully automating this process are identifying corresponding 

concepts represented in both schemata, and resolving the structural and semantic 

differences between these concepts. The primary motivation behind work in this area is 

the popularity o f federated databases. The schema associated with a federation is the 

global schema obtained by integrating the schemata o f the participating databases. 

Therefore, most solutions addressing this problem assume the initial schemata are 

represented by dissimilar database management systems, although usually only relational 

and object-oriented databases are considered.

Schema evolution addresses the problem o f a single database’s changing 

representation. This problem requires data to be transferred from an original schema into 

a new schema, and existing applications to be modified to accommodate the new schema.



Usually this problem is addressed within the scope o f a single database management 

system, with the only difference between the old and new schemata being structural.

Work in this area is motivated by practical demands for databases to adapt to new and 

unanticipated applications. While these demands underscore the database vitality, failure 

to adapt to them quickly enough will result in the database becoming obsolete and 

atrophied. The major challenges to successfully automating this process are determining 

when and how data should be transferred to the new representation, and how to minimize 

the effect o f the new representation on existing applications.

In contrast to other research, this work defines and addresses a third problem: 

schema coercion. Schema coercion is the process o f transferring data from one database -

- the source — to another database — the target. This term reflects the recasting o f 

concepts represented in the source database into a corresponding target database 

representation. The theoretical challenges associated with this manipulation are a 

combination o f those encountered by schema integration and schema evolution: 

identifying correspondences, resolving conflicts, and transferring data.

The practical impact o f automating schema coercion is potentially much broader 

than for either schema integration or schema evolution, because this problem is pervasive 

in database manipulation, and must regularly be addressed within the context o f practical 

application development. For example, this problem is encountered within schema 

evolution with the old representation acting as the source, and the new representation 

acting as the target. In addition, this problem arises with federated databases when data 

from the local databases is transferred to the federated representation. Finally, this 

problem frequently appears in scientific application domains, such as genetics, which rely



on data sharing among independent organizations. Genetics research labs store local data 

in representations varying from flat files to object-oriented databases. Lab databases 

must frequently share data with large community databases. Because o f the different 

representations used by lab and community databases, transferring data between them is 

often tedious and at times extremely complicated and non-intuitive. Indeed, the Utah 

Center for Human Genome Research’ s need to share information with other databases 

formed primary motivation o f this work.

The next section summarizes previous work performed in the areas o f schema 

integration and schema evolution. The approach taken by this work is then discussed and 

the application o f this approach on coercions defined within the genetics domain is 

presented. Finally, contributions o f this work are summarized, along with its 

implications and future research directions.

Previous work

Batini [2] decomposed schema integration into four steps:

1 . preintegration: converting schemata into a uniform representation

2 . comparison: identifying corresponding concepts

3. conformation: resolving conflicts between corresponding concepts

4. merging: unifying the schemata to produce the global schema

Most work in schema integration has attempted to address a single kind o f

conflict, and thus has focused on either the comparison or the conformation steps. 

Naming conflicts are usually resolved by associating additional information with the 

schemata. This information may provide additional semantic information, for example



by using a thesaurus [4], or may use specialized knowledge to infer correspondences, for 

example by using an expert system [6 8 9]. Resolving semantic conflicts requires 

assumptions implicit in the database development environment to be explicitly 

represented. The most common approach [11 21] is to enhance the database schema so 

that meta-information is represented in the database along with the associated data. For 

example, this is the approach taken by Sciore [19]. Unfortunately, this limits the 

approach to those database management systems which use a specific data model. In 

addition, this approach cannot be used on non-traditional data representations, such as 

ASN. 1, which do not allow dynamic schema modification. Structural conflicts are 

resolved by representing the final concept using the least general representation that 

accommodates all o f the data associated with the corresponding constructs [5]. While it 

is relatively easy to resolve simple conflicts, such as between an attribute and an entity, 

resolving complex conflicts, such as between a relationship and a relationship-entity- 

relationship structure, is significantly more complicated. This problem is partially 

addressed by Spaccappietra [22], While significant work has been done in this area, 

resolving conflicts and developing a general purpose tool to automate the integration 

process remains an active research area.

Most schema evolution work has focused on reducing the manual modifications 

required to enable existing applications to access data via the new schema. To this end, 

most approaches [3 15 16] require the new schema to be defined as a sequence o f 

transformations applied to the old schema. By defining a fixed set o f transformations, 

these approaches are able to automatically generate methods to dynamically convert 

existing data into the new format. This allows existing applications to access old data



without modification, while applications using the new representation have access to both 

the old and new data. Inverse conversions may also be defined to transfer new data to the 

old representation for use by the original applications. Because the overhead required to 

transfer data between representations is significant, particularly when there are several 

intermediate representations, other approaches perform the data transfer once, either 

eagerly [10] or lazily [18], and require applications to recognize the new representation. 

As long as a restricted set o f operations are used to define the schema reorganization, the 

data transfer may be automatically performed. However, by restricting the permitted 

transformations, the set o f schemata evolvable from a source schema is also restricted. 

Recent work [23] attempts to provide complete schema restructuring capability while still 

reducing the effort required to perform the data transfer. In addition, there has been little 

success in developing techniques to reduce the interaction required to update existing 

applications using these techniques.



Coercion Preintegration Correspondence Conflict Data Transfer
Steps Identification Resolution

Task
Flow

Purpose specify location 
and DBMS for 
source and target 
databases 
schemata 
automatically 
converted to ER 
representation

automatically or
manually
identify
correspondences 
between the 
source and target 
databases

modify default 
transformations 
to resolve 
conflicts

generate a 
translation 
program to 
perform the data 
transfer

Figure 1 Schema Coercion Tool Utilization



The steps involved in schema coercion are very similar to those outlined by Batini 

for schema integration. The first three steps are identical; however, the final step 

transfers data from the source database to the target instead o f merging the resulting 

schemata. The work we report here constitutes a comprehensive approach to schema 

coercion. It encompasses all steps in the process within a uniform environment, and 

attempts to reduce the interaction required at each step. The feasibility o f the concepts 

presented in this paper is demonstrated by a tool developed and validated within the Utah 

Center for Human Genome Research.

Our approach addresses the schema coercion problem iteratively, as shown by 

Figure 1. The preintegration step requires the user to specify the location and data 

representation format for the source and target databases. Once the schemata have been 

read by the tool, correspondences between the constructs can be identified by using an 

automatic matching algorithm or by explicitly identifying them. Simple conflicts are 

resolved automatically, while more complicated correspondences require the user to 

define an appropriate mapping. Finally, a translation program, which can be used to 

perform the data transfer, is generated based on these mappings. The remainder o f this 

section describes this approach in more detail. The results o f using our tool are discussed 

in the next section.

The first step in the coercion process — preintegration — is addressed by 

automatically reading database schemata directly from database management systems and 

converting them into Entity-Relationship representations. Because DBMSs use

10

Schema Coercion



idiosyncratic meta-data representations, automatically reading a schema requires explicit 

knowledge about the associated DBMS. Obviously, it is impractical for a single tool to 

have knowledge about all available DBMSs. However, in order to demonstrate the 

versatility o f this tool, several different DBMSs are supported and knowledge about 

additional systems may be added as required. Currently, Sybase and the Utah Genome

[17] database formats are the only relational databases recognized. In addition to these 

databases, two non-traditional data representation formats are also supported: ASN.l 

binary data files, and flat files represented in the GBD format or as relational table 

dumps. These representations comprise a collection o f data files as well as a definition 

file. The definition file provides missing meta-information about the structure and 

location o f the data files, in addition to the data types associated with these files. Object- 

oriented databases are not currently supported, but we believe they may added without 

inordinate effort.

A translation similar to the one defined by Abu-Hamdeh [1], between the 

relational model and the ER model, is used to create the ER representations o f Sybase and 

flat file databases. This translation uses primary and foreign key attributes to identify 

entity sets and relationships; however, it required minor modifications to correctly 

translate Utah Genome and ASN.l databases. The two modifications associated with the 

Utah databases result from the meta-data representation o f this model. First, this 

representation explicitly defines the ER representation o f each table, simplifying the 

mapping. Second, the Utah Genome model defines sets as relationships which have only 

one role. To represent these sets in the ER model, an entity corresponding to the set is 

created and associated with the relationship. For example, a set o f wells may be created



by defining a single relationship, well-set, where each instance o f this relationship 

corresponds to a distinct set. To map well-set to an ER representation, a new entity, sets- 

of-wells, representing the concept o f this set is created, and wells are related to it throught 

the well-set relationship.

The modifications associated with the ASN. 1 databases result from the complex 

class definitions allowed by the language. In effect, ASN.l classes are similar in 

structural complexity to objects. The chosen translation simply represents base classes as 

strong entities, primitive attributes as attributes, and complex attributes as weak entities.

A better translation would differentiate between optional, mandatory, and list attributes. 

This could be accomplished by creating relationships and defining cardinalities 

appropriately: optional attributes are 0:1 ; mandatory attributes are 1 :1 ; list attributes are 

1 :n. Accurately representing choice attributes would require defining a generalization of 

the choices, and defining a 1:1 relationship between that generalization and the enclosing 

entity. This alternative was not pursued because o f the additional complexity o f the ER 

diagram obtained is beyond the requirements o f our tool. This translation may be 

implemented in the future if required. -

The second step o f the coercion process — identifying corresponding concepts 

between the source and target databases — uses the ER representations o f the participating 

databases. To identify possible correspondences, each target entity and relationship is 

compared against each source entity and relationship to determine a confidence in the 

correspondence between the represented concepts. This confidence is the larger o f the 

confidence in either a primitive correspondence or a complex correspondence. The 

confidence in a primitive correspondence is based on a variety o f factors including the



similarity between the construct names, whether the construct types are the same, and the 

highest confidence mappings from source attributes onto target attributes. The 

confidence in attribute mappings is primarily based on the attributes’ name similarity and 

data type compatibility. However, other features, such as the defined keys, if any, and the 

data size o f the attributes, are also considered. If confidence construct correspondence is 

sufficiently high, a conversion is created to formalize this correspondence.

Confidence in a complex correspondence is determined using a combination o f 

alternative construct representations and existing conversions. If existing conversions 

fulfill the prerequisite correspondences required by an alternative representation, their 

confidences are used to determine the confidence in the resulting complex 

correspondences. This resulting confidence will always be lower than the confidences in 

the associated conversions, but may be higher than the confidence in the primitive 

correspondence.

For example, consider the coercion presented in Figure 2. The source database, 

order_2 , consists o f three constructs: two entities, customer and product, and a single 

relationship, ordered, associating customers with the products they have bought. The 

target database, order_1, has corresponding customer and product entities, but the 

ordered relationship is replaced by the placedBy-invoice-line structure. The primitive 

correspondence identification algorithm is only capable o f identifying the 

correspondences between the customer and product entities. These conversions are used 

in conjunction with the knowledge that relationships may be decomposed into 

relationship-entity-relationship structures to identify the remaining correspondences 

between ordered and placedBy, invoice, and line.



14

Figure 2 Simple Coercion

The third step in the coercion process -- conflict resolution — is performed in 

conjunction with the correspondence identification step. Whenever a conversion is 

created, default transformations are assigned to the target attributes. These 

transformations use Smalltalk code to resolve simple conflicts between the source and 

target representations, and are usually either simple assignments or type safe casts. 

However, in some cases more complicated transformations are generated. For example, 

since number is not a key for ordered, but is a key for invoice, duplicate records may be 

inserted into the invoice table. To prevent this, the default transformation, shown by the 

code in the lower right o f Figure 3, queries the target database to identify all existing key 

values. The default reference restriction prevents duplicate insertions from occurring. If 

a corresponding source attribute cannot be identified, the target attribute is assigned a null 

value. Unfortunately, our tool is not able to automatically resolve all conflicts; however,



15

Selecled Aliibules

a.number *
a.date

?
M 1*

Souice Construct*

ordered £

1
£j l<*.

Source Restrictions Raf Restrictions

Reference Allribules Assigned Value

Icon sess ans|
con := referenceDB getConnection. sess := con getSession. 
sess prepare. 'SELECT a.number from invoice a', execute, 
ans := sess answer. userDefined := List new.
Stream endOfStreamSignal handle: (:sig I nil] do: 

(userDefined add: ans next first], 
sess disconnect con disconnect. 
curSrc number

Figure 3 Default Transformation

by defining each transformation as a stub function, the user is able to replace it with 

specialized code which explicitly resolves the conflict.

The association o f additional meta-information with database constructs has been 

recognized as a way to further automatic conflict resolution [24], The approach taken by 

this work is to allow definition o f database independent annotations, which guide the 

correspondence identification and conflict resolution steps. The format used to associate 

annotations with constructs is similar to an association list, where the construct is 

specified and the annotations associated with it follow in an arbitrary order. Currently, 

information such as aliases, data types, and transformations, may be associated with a 

construct. Aliases allow naming conflicts to be avoided by renaming the constructs. 

Annotations allow the data type associated with an attribute to be refined, not just 

redefined, providing additional semantic information about the attribute. This permits 

some semantic conflicts to be identified and resolved using the appropriate 

transformations. For example, consider the annotation presented in Figure 4, in which



16

(price (typelnformation (Currency USDollars))
(typeConversions (CanDollars convertFromCanToUS:)))

Figure 4 Simple Annotations

the price attribute is specified to be type USDollars, which is a refinement o f type 

Currency. The associated type transformation ensures that if an attribute o f type 

CanDollars is associated with this attribute the semantic conflict is automatically 

resolved. In addition to transformations based on data types, default transformations, 

which are used when no matching source attributes are identified, and mandatory 

transformations, which are used whenever the attribute is involved in a conversion, may 

also be defined. [7] presents a detailed discussion o f all currently defined annotations and 

their syntax. There is obviously other meta-information that may be desired; however, 

the current set o f annotations is sufficient for the existing correspondence identification 

algorithm. Additional annotations, representing new meta-information, may be 

incorporated in the future.

There are three advantages to defining annotations in a database independent 

format as opposed to using a tight binding between the annotations and the database 

representation [14]. First, it allows meta-information to be associated with database 

management systems that do not provide meta-information capabilities. For example, flat 

file databases do not have meta-information associated with them; by using an 

independent representation, these databases may be treated the same as the traditional 

relational and object-oriented databases. Second, this format does not require database 

restructuring. This is an important consideration for database representations that do not



allow for dynamic restructuring, such as ASN. 1. Third, this format allows annotation 

files to be shared between similar databases. For example, if  several similar databases 

were coerced onto the same target, the annotation file created for the first source database 

could be shared, or copied and modified, with the other source databases. This may 

significantly reduce the interaction required to perform the desired coercions. In addition, 

the interaction required to annotate the target database may be distributed among all the 

coercions in which it participates.

Once all conversions and transformations are specified, a translation program may 

be generated to perform the data transfer. This program performs the data transfer one 

conversion at a time, with conversions to target entities performed before conversions to 

target relationships. Each conversion incrementally reads the required information from 

the source database, performs the transformations for each target attribute, and updates 

the target database. External interfaces mask the complexity o f communicating with the 

underlying database management systems to perform the required retrieval and update 

functions by defining an SQL interface for each system. A vendor supplied interface was 

used to access the Sybase and Utah Genome databases, while interfaces to the flat file and 

ASN. 1 database systems were created as part o f this work. Depending on the initial 

conversion specification, the translation program may require minor modifications to 

perform repeated transfers from the same source database. Modifications may be made 

through the coercion program, or directly to the code.

The interaction required to refine the coercion when the source or target database 

evolves is reduced by allowing modifications to the existing coercion. In particular, the 

current schemata may be modified within the tool to reflect the new schema, and the

17



affected conversions and transformations may be explicitly modified. If the new 

representation is vastly different than the old, it may be necessary to define a new 

coercion. However, by re-using the annotations for the original databases, with 

appropriate modifications, the interaction required to define this coercion will be 

significantly reduced. The ability to update a coercion based to conform to a new 

representation is a significant problem and has not been addressed, although handling the 

simple cases could be easily incorporated.

Validation

The feasibility o f the approach presented in the previous section has been 

demonstrated using a number o f preliminary experiments and two significant 

applications. Coercions performed between several small databases, such as the example 

from the previous section, demonstrate the tool’ s ability to resolve various conflict 

challenges reported in the literature. The correspondence identification algorithm is able 

to robustly identify correspondences despite a variety o f conflicts, and created reasonable 

transformations based solely on the available information.

Unfortunately, this is the extent o f the testing performed by most schema 

manipulation programs. In contrast, in order to determine the value o f our tool in a real 

world setting, it was used to coerce the Haemophilus and Methanococcus genome data 

from the Genbank ASN. 1 database to the Utah Genome database. These coercions were 

chosen because a local representation o f this data was a high priority for current research

[12]. Because o f the radically differing database representations, the correspondence 

identification algorithm was unable to automatically identify conversions or define



transformations. This is not surprising considering that, for example, the genetic 

sequence data is stored in a binary representation associated with the attribute bearing the 

uninformative name ncbieea within Genbank. It took approximately one day to explicitly 

create all o f the transformations required for the coercion, primarily because several o f 

the transformations required querying the target database to obtain additional 

information. Modifying the Haemophilus coercion to perform the Methanococcus 

transfer required only thirty minutes, even though the data representation had several 

minor differences.

The value o f annotations was demonstrated by creating an annotation file for the 

Utah Genome database in the Haemophilus coercion. It took approximately one hour to 

define the 38 annotations in this 100 line file. Using these annotations, the program was 

able to identify all o f the conversions, and correctly define 62% o f the transformations.

In addition, 13% o f the incorrect transformations were partially correct, but were simple 

assignments instead o f more complex operations. For example, one default 

transformation should have been a choice between two source attributes. While a specific 

annotation could have been defined to correctly generate this transformation, it would not 

reduce the amount o f interaction required. The ability to define a significant portion o f a 

complicated coercion quickly and easily through an annotation file is a significant 

accomplishment.

While the results o f the genetics coercions were disappointing in some aspects, 

these coercions validated our holistic approach to addressing the schema coercion 

problem. Despite the failure o f the correspondence identification and conflict resolution 

heuristics, the ability to explicitly identify correspondences and resolve conflicts within a



consistent environment was extremely beneficial. By providing a comprehensive tool, 

the interaction required to create these coercions was focused on these steps, and 

additional interaction to address the pre-integration and data transfer steps was not 

required. In conjunction with the specification environment, this focus allowed the 

coercion to be defined in one day, as opposed to the one week it has been estimated a 

programmer would require to define an equivalent coercion from scratch. This 

strengthens our belief that creating a tool addressing all o f the steps involved in the 

coercion process dramatically increases the usability o f the tool.

Conclusions

This work makes significant practical and theoretical contributions. In practical 

terms, the tool developed as part o f this work addresses the entire schema coercion 

process within a consistent environment. This allows complex coercions between real- 

world databases to be easily defined. The generality o f this approach is underscored by 

the variety o f DBMSs that are recognized by the tool. From a theoretical perspective, this 

work presents three major contributions. First, it defines a new area o f schema 

manipulation. While schema coercion is frequently encountered in database 

manipulation, there has been no prior research specifically targeted at this problem. 

Second, it presents a correspondence identification heuristic that uses all available 

information to determine a confidence in the correspondence between two constructs.

This is a dramatic departure from traditional algorithms which only use the construct 

name, an possibly the attribute names, to determine whether constructs correspond. In 

addition, by associating confidences with the conversions, existing conversions used in

20



conjunction with representational knowledge are able to identify complex 

correspondences. Third, it defines a database independent representation for annotating 

schemata. This allows meta-information to be associated with primitive as well as 

relational and object-oriented DBMSs, and allows similar databases to share annotations.

The current version o f the coercion tool is a framework in which components may 

be enhanced or replaced as required; it was never intended to be an ultimate realization of 

this approach. To that end, several enhancements are anticipated as the needs o f the Utah 

Genome Center expand. First, the set o f recognized databases is expected to eventually 

include OODBs such as ObjectStore [13]. The addition o f new database systems requires 

the definition o f a translation from the underlying data model to the ER model, and the 

ability to generate retrieval and update queries on the database. Second, the 

correspondence identification algorithm may be enhanced or replaced. For example, a 

thesaurus may be added to the existing algorithm or an alternative algorithm such as an 

expert system may be added. Third, the set o f defined annotations is expected to grow as 

additional meta-information is required.

To summarize, it is currently impossible to define a single algorithm that will 

automatically identify all correspondences, and resolve all conflicts, between arbitrary 

databases. However, by using a combination o f good heuristics and interactive tools, the 

effort required to define and implement a coercion may be significantly reduced. This 

work presents an engineered approach that resolves complex as well as obvious conflicts; 

allows complex transformations to be defined; associates meta-information with 

schemata in a database independent fashion; and works in a real world environment.

21



22

Funding for this project was provided, in part, by National Institute o f Health grant “Utah 

Center for Human Genome Research” .

Acknow ledgm ents

References

[1] Rateb Abu-Hamdeh, James Cordy, and Patrick Martin. Schema translation 
using structural transformation. In Proceedings o f  the 1994 CAS 
Conference, pages 202-215, October 1994.

[2] C. Batini and M. Lenzerni. A comparative analysis o f methodologies for 
database schema integration. A C M  Computing Surveys, 18(4):323-364, 
1986.

[3] Mohamed Bouneffa and Nacer Boudjlida. Managing schema changes in 
object-relationship databases. In OOER'95: Object Oriented and Entity 
Relationship Modeling, pages 113-122, December 1995.

[4] M. W. Bright, A. R. Hurson, and Simin H. Pakzad. Automated resolution 
o f semantic heterogeneity in multidatabases. Transactions o f  Database 
Systems, pages 212-253, June 1994.

[5] P. Buneman, S. Davidson, A. Kosky, and M. Vanlnwegen. A basis for 
interactive schema merging. In Proceedings Hawaii International 
Conference on System Sciences, 1992.

[6] Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource 
integration using a large knowledge base in Carnot. Computer, 24(12):55- 
62, December 1991.

m  Terence Critchlow. Scema Coercion: Using Database Meta-Information 
to Facilitate Data Transfer. Dissertation. University o f Utah. Available 
from Dept, o f Computer Science, University o f Utah. June 1997.

[8] Bogdan Czedjo and Malcolm Taylor. Integration o f database systems 
using an object-oriented approach. In First Workshop on Interoperability 
in Multi-database Systems, pages 30-37. IEEE, April 1991.

[9] David M. Dilts and Wenhua Wu. Using knowledge-based technology to 
integrate CIM databases. Transactions on Knowledge and Data 
Engineering, 3(2):237-245, June 1991.



23

[10] J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, and D. Roland. 
Database evolution: The DB-MAIN approach. In ER'94: Thirteenth 
International Conference on the Entity Relationship Approach, pages 112
131, December 1994.

[11] Daniel A. Keim, Hans-Peter Kriegel, and Andreas Miethsam. Integration 
o f relational databases in a multidatabase system based on schema 
enrichment. Technical Report 9307, Ludwig-Maximilians-Universat 
Munchen, April 1993.

[12] Karen Young Kreeger. 1995. First DOE Sequencing Project Grants 
Widely Hailed as Potential ‘Treasure Trove’ . The Scientist. Vol 9 num 3.

[13] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The 
ObjectStore database system. CACM, 34:50-63, October 1991.

[14] Patrick Martin, James R. Cordy, and Rateb Abu-Hamdeh. Information 
capacity preserving translations o f relational schemas using structural 
transformations. Technical Report 95-392, Dept, o f Computing and 
Information Science Queen's University at Kingston, November 1995.

[15] Simon Monk and Ian Sommerville. Schema evolution in OODBs using 
class versioning. SIGMOD Record, 22(3): 16-22, September 1993.

[16] Young-Gook Ra and Elke A. Rudensteiner. A transparent object-oriented 
schema change approach using view evolution. In Eleventh International 
Conference on Data Engineering, pages 165-172, March 1995.

[17] Rob Sargent, Dave Fuhrman, Terence Critchlow, Tony Di Sera, Robert 
Mecklenburg, Gary Lindstrom, and Peter Cartwright. The design and 
implementation o f a database for human genome research. In The Eighth 
International Conference on Scientific and Statistical Database 
Management. IEEE Computer Society Press, June 1996.

[18] Peter Schwarz and Kurt Shoens. Managing change in the Rufus system. In 
Tenth International Conference on Data Engineering, pages 170-179. 
IEEE, February 1994.

[19] Edward Sciore, Michael Siegel, and Amon Rosenthal. Using semantic 
values to facilitate interoperability among heterogeneous information 
systems. Transactions o f  Database Systems, pages 254-290, June 1994.

[20] Peretz Shoval and Sara Zohn. Binary-relationship integration 
methodology. Data and Knowledge Engineering, 6(3):225-250, May 
1991.



24

[21] Micheal Siegel and Stuart E. Madnick. A metadata approach to resolving 
semantic conflicts. In Seventeenth International Conference on Very Large 
Data Bases, pages 133-145, September 1991.

[22] Stefano Spaccapietra and Christine Parent. View integration: a step 
forward in solving structural conflicts. Technical Report tdke93, Institute 
o f Technology in Lausanne, Lausanne Switzerland, 1993. To appear in 
IEEE TKDE 1993.

[23] Barbara Staudt Lerner and A. Nico Habermann. Beyond schema evolution 
to database reorganization. In Norman Meyrowitz, editor, 
ECCOP/OOPSLA '90 Conference on Object-Oriented Programming: 
Systems, Languages and Applications European Conference on Object- 
Oriented Programming, pages 67-76, October 1990.

[24] Susan D. Urban and Jian Wu. Resolving semantic heterogeneity through 
the explicit representation o f data model semantics. SIGMOD Record, 
20(4): 5 5-5 8, December 1991.


