
Object-Oriented Modeling of Meta Information

for Semantic Schema Enrichment

and (Semi-)Automatic Schema Transformation

Daniel A. Keim, Hans-Peter Kriegel, Andreas Miethsam

Ludwig-Maximilians-Universität München
Institut für Informatik

Bericht 9306
April 1993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12165122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- 1 -

Object-Oriented Modeling of Meta Information

for Semantic Schema Enrichment

and (Semi-)Automatic Schema Transformation

Daniel A. Keim, Hans-Peter Kriegel, Andreas Miethsam

Institute for Computer Science, University of Munich,

Leopoldstr. 11B, D-8000 Munich 40

{keim, kriegel, miethsam}@dbs.informatik.uni-muenchen.de

Abstract

In this paper, we describe a framework for an object-oriented modeling
of meta information. The meta information consists of all kind of infor-
mation necessary to access and interoperate the participating databases.
As part of the meta information, we model the common properties and
differences of the various data models and concrete systems. We also in-
clude information to semantically enhance the schemas of the partici-
pating databases and provide the basis for an automatization of the
schema transformation process. We describe possibilities to (semi-)au-
tomatically transform flat relational schemas into structured object-ori-
ented ones which are more adequate to model complex real world
problems. We use the object-oriented data model as target model of the
transformation because of its semantic richness and its availability as
commercial systems. The meta information necessary for the schema
transformation may be user supplied or it may be deduced from an en-
tity-relationship design schema and corresponding mapping informa-
tion.

Keywords: interoperability, federated databases, global conceptual
schema, schema transformation, schema enrichment, trans-
lation of relational operations

- 2 -

1. Introduction

In a federated or multi-database system there is a need to store infor-
mation on the participating databases. This so-called ‘meta
information’ includes name and location (network-server-address), in-
formation on the data model, access rights and so on. In today’s
database systems the meta information is usually kept in some kind of
data dictionary. It is easy to store the meta information in the data dic-
tionary as long as we are only dealing with a system using a single data
model. In the relational model, for example, there is only information
on tables with their attributes and corresponding domains in the data
dictionary. All meta-information on tables has the same structure and
therefore it is adequate to use a standard data dictionary. In a federated
database environment, however, the meta information is structured dif-
ferently in the various databases to be integrated. Obviously, all
database systems using the same data model have common structural
properties of the meta information but database systems using different
data models use meta information of different structure. When consid-
ering concrete (commercial) database systems using one data model
e.g. relational database systems, such as Oracle and Ingres, the same sit-
uation may occur. All Ingres databases have a set of common properties
but these properties might differ from the ones of Oracle databases.

To adequately model meta information, we use an object-oriented
class hierarchy for the participating databases. The information on com-
mon properties of the participating databases and differences between
them is represented by class attributes or member variables. We extend
the meta information to also include information necessary for an inter-
operation of the participating databases. Since our goal is to achieve an
interoperation based on logical data integration rather than physical
data exchange we provide a basis for a semantic enrichment of the sche-
ma information available in the participating databases. This additional
semantic information is essential to support an automatic schema trans-

- 3 -

formation from the original data model to the integrating common data
model.

The choice of the common data model and data manipulation lan-
guage is crucial since it must provide adequate concepts to model the
semantic information and integration mappings for all databases partic-
ipating in the federation. Only semantic data models [HK 88] such as
the functional model [Shi 81] [LR 82], the extended entity-relationship
model [TYF 86] [DA 87] [NA 87] and the object-oriented model
[Kim 90] [KDN 90] [CT 91] are candidates providing the needed data
modeling capabilities. In our approach, we use the object-oriented data
model as common data model because of its semantic richness and
availability as research prototypes and commercial object-oriented da-
tabase systems which have been built over the last decade and are ready
to be used now. We prefer the object-oriented model over the functional
data model because, to our opinion, the object-oriented model is closer
to the users view of the real world modeled in the database. We also be-
lieve that the object-oriented data model is better suited as common data
model than the entity-relationship model because in the object-oriented
model only one concept (objects) is used as opposed to the two concepts
(entities and relationships) of the entity-relationship model. Using two
concepts may cause problems in the process of schema integration and
schema translation because the same real world object may be modeled
as entity in one schema but as relationship in another schema. In the ob-
ject-oriented data model everything is modeled as object and therefore
it is easier to integrate different schemas. An example for a project using
the object-oriented model as common data model is the Pegasus project
[Ahm 91] at the Hewlett-Packard Research Laboratory in Palo Alto. In
Pegasus, for each relation automatically a class with member variables
for all attributes of the relation is created which may be accessed like
any other class in the object-oriented database. Although using the se-
mantically rich object-oriented data model, the created structure of the
schema remains flat as it is in the relational model. In order to (semi-)
automatically create more structured classes from relational schemas, in

- 4 -

our approach, we use the object-oriented meta information for semantic
schema enrichment.

There are many approaches to enrich existing data models with
more semantics, most of which are independent of using the additional
semantics for an interoperation of heterogeneous databases. Codd, for
example, proposed an extended relational data model [Cod 79] and a lot

of research has been done in the area of NF2 relational systems but only
few of the proposed extensions to the relational data model have been
integrated into existing systems so far. Also research has been done to
extend the entity-relationship model [TYF 86] [Mar 87] and to semi-au-
tomatically translate relational schemas into extended entity-
relationship schemas [DA 87] [MM 90]. Much research has been car-
ried out in this area and many extensions for the entity-relationship
model have been proposed, but, to our knowledge, none of these exten-
sions resulted in a working system so far. In the context of schema
translation for interoperation of databases also a semantic extension of
the object-oriented model has been proposed [CS 91]. The extensions
are used to model special types of relationships between objects such as
cover aggregation or existence dependency. In contrast to the work of
Castellanos and Saltor, we use the object-oriented model as provided by
commercially available systems without adding any special extensions
[Ita 91].

Another approach to schema enrichment for interoperating databas-
es is the Carnot project [CHS 91]. In Carnot, a large knowledge base is
used to automatically provide the information necessary to access and
interoperate the heterogeneous databases participating in the federation.
We believe that the Carnot approach will work nicely for some applica-
tion domains with clear naming conventions and simple relationships,
but for other application domains with fuzzy naming and complex rela-
tionships user, interaction is necessary to get the needed meta-
information. It is impossible to guarantee that a knowledge base covers
knowledge about special application domains. Furthermore, even sim-

- 5 -

ple attribute names or relationships cannot be automatically decoded. In
our approach, we therefore demand user interaction for the semantic en-
richment process which is used as a basis for the automatic schema
transformation.

The paper is organized as follows: Chapter 2 introduces the object-
oriented modeling of meta-information as a basis to access and interop-
erate the databases and to enrich the semantic information available in
their schemas. Chapter 3 elaborates on the possibilities to (semi-)auto-
matically transform relational schemas into object-oriented ones. It also
includes a short description of inter-database relationships which are
necessary in a multi database environment. In chapter 4, we summarize
our approach and point out some problems related to an automatic trans-
lation of data manipulation operations in a multi database environment.

2. Modeling the Databases Participating in the Federated

Database

As already mentioned, we propose an object-oriented modeling of
the databases participating in the federated database system. The class
hierarchy is presented in Figure 1.In the hierarchy the class ‘Database’
has subclasses representing ‘Relational DB’, ‘Network DB’, ‘Hierar-
chical DB’ and ‘Object-oriented DB’ and, since files may be considered
as databases as well, a subclass called ‘Files’. Each of these classes di-
vides into subclasses according to the concrete (commercial) systems
available. The classes model the differences between the concrete data-
base systems explicitly, e.g. the differences in specifying the location of
a database. Each of the classes corresponding to one data model has a
subclass called ‘Result DB’ which is used to handle results obtained
from queries to different concrete systems using the same data model.
Let us assume that we pose a query involving several relational systems
such as Oracle, Ingres and others. The result of such a query is not lim-
ited to a single of the participating concrete systems (i.e. Oracle or
Ingres), the system, however, should be able to operate on such tables

- 6 -

as well. Using the subclass mechanism is a good approach since the
class ‘Result DB’ inherits all properties specific to the corresponding
data model (i.e. the relational model) but has no information related to
a concrete database system.

The properties of classes are modeled using class attributes or mem-
ber variables as they would be called in object-oriented database
systems based on C++. The properties common to all classes of the hi-
erarchy are modeled in the class ‘Database’, the properties common to
all databases of one of the supported data models are described in the
five subclasses and properties common to concrete (commercial) data-
bases are handled in the corresponding classes. In Figure 1 and Figure
1 only a small part of the hierarchy is depicted in detail but it gives an
impression how meta-information is represented in our system. Mem-
ber variables such as ‘number_of_records’ or ‘db_size’ may be used for
the query optimization process. Because of autonomy requirements,
however, they might not be available for all databases and tables.The
member variable ‘description’ contains a natural language description
of the database and its contents. This information is useful for the user
in determining the desired databases and in the future, it may also be

Figure 1: Object-Oriented Modeling of Federated Databases

Database

Network DB FilesHierarchical DB

Oracle DB Result DBSybase DBIngres DB Informix DB

. . .

. . . ITASCA DB Ontos DB

ObjectStore DB

. . .

IMS DB Result DB. . .

O2 DB

UDS DB Result DB. . . UNIX Files Result File. . .

Airport Personnel DB

GemStone DB

Air Plane DBFlight DB Booking DB is instance of

is subclass of

class hierarchy

instances

Object-Oriented DB

Result DB

Relational DB

- 7 -

used as a basis for a content oriented search as done in DEMOM
[HLR 90].

Special member variables are used to enhance the semantic informa-
tion available in the data model or concrete system. An example in the
relational model is the member variable ‘connecting_tables’ (see Figure
1) used for information on tables implementing a m:n, 1:n or 1:1 rela-
tionship. This information is useful not only for adequate access to the
databases but also for the schema transformation process. The
‘connecting_tables’ indicate tables which may not be transformed into
objects. Another example is the member variable
‘connecting_attributes’ which contains information on attributes used
to join tables. This member variable contains semantic information on
relationships between tables and on corresponding attributes which are
not modeled explicitly in the relational model. The additional semantic
information is necessary to automatize schema translation and integra-

Class Database with
name: String;
description: Text;
db_size: Integer; # in MByte
owner: Owner_Spec;
location: Network_Address;
access_rights: Access_Spec;
degree_of_autonomy: Autonomy_Spec;

end;

Figure 2: Object-oriented Modeling of the Federated

Class Relational DB isa Database with
relations: Set(Relation);
views: Set(View);
connecting_tables: Set(ConTable);

connecting_attributes: Set(ConAttribute);

...
end;

Class Hierarchical DB isa Database with
records: Set(Record);
DBTG-sets: Set(DBTG-Set);
link_records: Set(LinkRecord);

...
end;

. . .

. . .
. . .

isa isaisa

- 8 -

tion of the database schemas using different data models and database
systems. It is used to enable the interoperation of the databases and to
support the access of several databases with one query interface. The
(semi-)automatic schema translation process from the relational to the
object-oriented model will be described in the next chapter.

At this point it should be mentioned that the meta information on the
available databases and their properties such as location, degree of au-
tonomy or access rights can be changed dynamically. This is important
because the mentioned parameters may change very often for some of
the participating databases. In case of a change the system has to ensure
that accesses to the databases do not conflict with the new situation.
This can be achieved using the ‘transformed _from’ links between fed-
erated schema and meta information which will be described in the next
chapter.

For all classes also member functions (methods) are defined. These
member functions model the query languages available for the databas-
es of the corresponding class. For the class ‘Relational DB’ there are
functions supporting standard SQL. The subclasses representing con-
crete database systems such as Oracle or Ingres contain specializations

Class Relation with

name: String;

description: Text;

attributes: Attribute;

number_of_records: Integer;

end;

Figure 3: Modeling of Relations and Connecting Tables

Class ConTable isa Relation with

connected_tables: Set(Relation);

connecting_attributes: Set(ConAttribute);

end;

- 9 -

and additional functions supporting the special functionality of the con-
crete system.

Our class hierarchy is independent of the concrete databases to be
integrated and also independent of the federated database to be created.
Therefore, our modeling of databases as object-oriented class hierarchy
has to be performed only once. The instantiation of the classes with con-
crete databases has to be carried out for each database to be integrated.
The databases which are instances of the object-oriented class hierarchy
then might be used to create a federated schema. As we will describe in
the next section the user is able to choose the databases he wants to in-
tegrate into the federated schema. To support the user in determining
the desired databases, he can access the meta information on the avail-
able databases. As an example for a concrete instantiation of the class
hierarchy let us consider instances such as Flight DB, Booking DB,
Airport Personnel DB and Air Planes DB as shown in Figure 1.

Assume, a new database modeled in a database system which is not
yet known to the system shall be integrated into the federation. Then, a
new subclass of the class corresponding to the data model used has to
be created. In the new class all information on special properties of the
system has to be modeled including special semantic information nec-
essary to integrate the database schemas with schemas of databases
belonging to classes representing other database models and systems.

3. Transformation of Relational into Object-Oriented

Schemas

In this chapter, we investigate how the schema information of a re-
lational database can be transformed into class definitions in an object-
oriented model. Starting from a naive approach with one-to-one corre-
spondence of tables and classes, we will present a more elaborate
approach where the object-oriented class hierarchy provides more se-
mantics than the original relational schema. Therefore, an enhancement
of the relational schema with more semantics is necessary. This can be

- 10 -

achieved by querying the designer or administrator of the relational sys-
tem or by using design information if available. Then the transformation
will be done in a semi-automatic way. We will illustrate our ideas using
the following example. Consider two databases, one relational database
Flight DB containing information on passengers, flights, departures and
their relationships, and an object-oriented database Airport Personnel

DB containing information on ground personnel and flying personnel.

Flight DB:
Passenger (pid: Integer; name: String)
Departure (did: Integer; start: date; flight: Integer)
Pass_Dept (did: Integer; pid: Integer)

Airport Personnel DB:

In this paper, we only focus on schema transformation and schema
integration. This implies that only class definitions and mappings be-
tween classes and relational tables are created. Data, i.e. tuples, remain
in the relational database. We do not consider problems like type mis-
match, different metrics etc. These are for example tackled in other
projects such as the Carnot [CHS 91] and Pegasus project [Ahm 91].
Furthermore, we restrict ourselves to classes whose instances are either
completely managed by the object-oriented system or completely man-
aged by the relational database.

Class Pilot isa
FlyingPersonnel with

can_fly: Plane;
end;

Class Plane with
capacity: Integer;
name: String;

end;

Class Airline isa Company
. . .

end;

Class Personnel with
name, address: String;
employeed_by: Company;

end;

Class GroundPersonnel
isa Personnel with

stationed_at: Airport;
end;

Class FlyingPersonnel
isa Personnel with

employeed_by: Airline;

- 11 -

3.1 Simple Transformation of the Relational Schema into Object-
Oriented Class Definitions

The mapping of each relational table to a corresponding object-ori-
ented class as done for example in the Pegasus project [Ahm 91]
requires no additional information. Each table

R(A1: D1; ..., An: Dn)

is transformed into a class

Class R with

A1: D1; ..., An: Dn ;

end;

This transformation is performed no matter what specific role the ta-
bles or attributes have. Table names become class names, attribute
names become member variable names, and attribute domains become
types of the member variables. We derive the following classes from
our example tables:

All tuples of the tables become virtual instances of the respective
classes of the object-oriented model. The object-oriented model does
not provide more information than the relational. For querying the ob-
ject-oriented schema, we have to reimplement the relational algebra.
For example passengers and departures can be joined by the following
nested loop:

for each pa in Passenger
for each pa_de in Pass_Dept
for each de in Departure
 if pa.pid = pa_de.pid and pa_de.did = de.did
then return (pa.name, de.start, de.flight);

Class Passenger with

pid: Integer;

name: String;

end;

Class Departure with

did: Integer;

start: date;

flight: Integer;

end;

Class Pass_Dept with

did: Integer;

pid: Integer;

end;

- 12 -

In this case, the object-oriented system is (ab-)used in a value orient-
ed way. Unless an SQL-like or other declarative interface to the object-
oriented system is provided, this is inefficient and not user friendly.

3.2 Transformation of Relational Schemas into Object-Oriented
Class Definitions Using Meta Information

The object-oriented model provides better facilities to model the re-
lationship of passengers and departures. It is not necessary to use value
based references such as the attributes pid and did connecting passen-
gers with departures but we may use the system inherent object
identifiers and thus directly reference objects. This results in the follow-
ing definition of Pass_Dept:

Class Pass_Dept with

pass: Passenger;

dept: Departure;

end;

The classes Passenger and Departure remain as before. The corre-
sponding query is:

for each pd in Pass_Dept

return (pd.pass.name, pd.dept.start, pd.dept.flight);

Although this query is very short, it is not intuitive in the sense that
we have to use the class Pass_Dept which does not represent ‘natural’
objects. It would be more intuitive to ask the query from a passenger’s
point of view: “Give me all passengers, the start times and flight num-
bers of their departures.” Using the set constructor we may omit the
artificial class Pass_Dept:

Class Passenger with

pid: Integer;

name: String;

dept_set: Set (Departure);

end;

Class Departure with

did: Integer;

start: date;

flight: Integer;

pass_set: Set (Passenger);

end;

- 13 -

Now, the corresponding query is:

for each pa in Passenger

{return pa.name;

for each de in pa.dept_set

return (de.start, de.flight)}

The last two solutions are better suited for the object-oriented model
because the passenger-departure relationship is reflected directly and a
more intuitive access from passengers to departures and vice versa us-
ing the set-oriented member variables is possible. Since these solutions
contain more semantics than the original relational schema, any trans-
formation process needs more input than the pure relational schema to
produce such class definitions. To provide these additional semantics,
is one of the goals of the model for meta information representation in-
troduced in chapter 2. The meta information model does not only allow
to specify arbitrary databases, tables and their attributes as instances. It
also allows to specify whether they represent entities or relationships
and additionally the type of relationships by using the member variables
‘connecting_tables’ and ‘connecting_attributes’ defined within the
model. In our example, an instance of the member variable
‘connecting_tables’ classifies the table Pass_Dept as an m:n relation-
ship joining tables Passenger and Departure. Furthermore, instances of
member variable ‘connecting_attributes’ indicate that the join has to be
carried out using the pid attributes of Passenger and Pass_Dept on the
one hand and the did attributes of Departure and Pass_Dept on the other
hand. This enables a schema transformer to replace join attributes and
join tables by direct object references, e.g. by using the set constructor
as pointed out in the above example.

As a consequence of the two tasks, i.e. instantiating the meta infor-
mation model and creating object-oriented classes thereof, we work on
a transformation algorithm consisting of two steps (see Figure 1). The
first step is the semi-automatic enrichment of the relational model. It
transforms the relational schema into instances of the meta model que-

- 14 -

rying the administrator of the relational database for the necessary
additional semantic knowledge such as

- tables representing relationships,

- the type of the relationship (1:1, 1:n, n:m),

- attributes or groups of attributes representing foreign keys.

The second step, the schema transformation, takes the instantiated
meta model as input and produces the corresponding object-oriented
classes and mappings. These mappings are necessary later on to support
operations (methods) on the object-oriented classes. Recall that in the
object-oriented system we only generate class definitions for the inte-
grated tables, whereas the instances remain in the relational database.
Thus access operations to instances of object-oriented classes have to be
transformed into accesses to the corresponding relational tuples. Our

Figure 4:Two-step Transformation of a Relational Schema into
Object-oriented Class Definitions

schema transformation

relational schema
additional semantics

(provided by the user)

semantic schema
enrichment

instantiated meta model

mapping object-oriented classes

- 15 -

approach to establish the mapping is by automatically linking each new
class definition to its corresponding description in the meta model using
a member variable ‘transformed_from’. This member variable is de-
fined for every class and may be instantiated only once during class
creation time. It is an attribute of the class definition rather than an at-
tribute of each instance of that class. If we want to execute methods on
instances of one or more classes, we can access the information provid-
ed by the meta model by following the ‘transformed_from’ links. This
means, we can determine from which relational table the class is trans-
formed, in which database we have to look for the instances and
whether a given class attribute has to be translated to a join on the rela-
tional side.

Very often, before implementing a database, the domain of interest
is formalized using an entity- relationship (ER) model. It can be ob-
served that this model contains the semantic information we need for
the first step of the transformation process. If there is a formalized and
standardized semantic design model together with an also standardized
mapping which entity and which relationship lead to which table, a
nearly automatic schema enrichment is possible (see Figure 1). In prac-

Figure 5: Semantic Schema Enrichment Improved by Information
Obtained from the ER Design Schema

ER design schema

mapping
ER-to-relational

semantic schema
enrichment

instantiated meta model

relational schema

- 16 -

tice, there is no standardization for the mapping between the initial ER
model and the resulting tables. Thus, user support will still be necessary
to provide the information in a format suitable for the transformation
process. But at least the user may be guided, for example by a graphical
tool, to relate the ER design schema to the relational schema indicating
the correspondent information in both schemas.

3.3 Inter-Database Relationships

For a good integration it is important that integrated classes of dif-
ferent databases can interact with already existing classes. In our
example, we may for example want to establish e.g. a relationship be-
tween the originally object-oriented class Pilot and the class Departure

integrated from the relational database. We have to deal with the fol-
lowing problem arising from the value based nature of the relational
database and the object identifier based nature of the object-oriented
system. If we add a member variable ‘scheduled_for’ of type Departure

to the class Pilot then we must be able to assign to the ‘scheduled_for’
attribute of a concrete instance p of Pilot, a concrete instance d of De-

parture, i.e. we must be able to perform p.scheduled_for := d. This
means, we have to solve the problem that a departure instance is unique-
ly identified by its key value did in the relational system but has no real
object identifier. In general, on the object-oriented side we work with
object identifiers which in addition are invisible to the user whereas on
the relational side we work with keys built by groups of attributes.

Our proposal is to introduce an artificial class Departure_Map

with member variables which are the key attributes of the Depar-

ture table. This class is instantiated for each tuple of table
Departure, to which an instance of class Pilot is referring. The as-
signment statement p.scheduled_for := d is now transformed into:

Departure_Map dm;

dm.create;

dm.did := d.did;

p.scheduled_for := dm;

Class Departure_Map with

did: Integer;

end;

- 17 -

This implies that we have to follow an extra link and, more serious-
ly, that we have to maintain the instances of Departure_Map. Every
time the relational database deletes a departure tuple, the objects of
Departure_Map possibly reference a tuple that no longer exists. The
maintenance task may be expressed by the following referential integ-
rity constraint which is defined in the object-oriented system but also
affects data in the relational database:

The usual strategy to satisfy such an integrity constraint is to delete
all instances of Departure_Map referencing y before the departure tuple
y itself may be deleted. However, in our case the relational database is
an autonomous component and basically cannot be hindered from any
deletion which afterwards the federated system has to react on.As a con-
sequence, we must give up the policy:

“Try an update (like deletion of Departure tuple y), check the integ-

rity constraints, and if there is a violation reject that update.”

Instead, we have to adopt the new policy:

“If the update of a component database violates an integrity con-

straint of the federated system, perform the necessary operations within

the federated system in order to reach a consistent state of the overall

system.”

A minimal requirement in this case is that the object-oriented system
must be notified by the relational database of each update concerning
inter-database relationships. But even this notification obligation inter-
feres with the autonomy of the relational database and must be agreed
upon within a ‘contract’ between the component and the federated sys-
tem. If we integrate component databases which are not ready to sign
such contracts, we must be able to handle a temporarily inconsistent
state of the federated system.

x Departure_Map∈∀ y Departure :∈∃ x.did = y.did()

- 18 -

4. Summary and Conclusions

A major problem in interoperating heterogeneous databases is nec-
essary meta information on the databases participating in the federation.
Unfortunately, such information is not readily available. Our concept of
modeling the databases as object-oriented class hierarchy provides a
consistent and effective way to store and access all necessary meta in-
formation. Part of the meta information supports a semantic enrichment
of the databases allowing a (semi-)automatic schema and query transla-
tion as well as inter-database access. The meta information further
supports a flexible specification of access rights and autonomy degrees
and may also support the query optimization process. Finally, the meta
information provides a simple but powerful support to the user in find-
ing the desired databases. We believe that our approach to model meta
information is elegant and effective because we use the object-oriented
concept not only to store the information necessary to access and inter-
operate the heterogeneous databases, but also to enrich the semantic
information available in their schemas. For the transformation of rela-
tional schemas into object-oriented class definitions, we use the meta
information to provide an object-oriented class hierarchy with more se-
mantics than the original relational schema. The missing semantic
information can be determined by querying the designer or administra-
tor of the relational database system or by using ER-design information
if available. After completing the semantic enrichment and instantiating
the meta model, the actual creation of the classes in the object-oriented
model is done automatically. We are currently working on concepts to
support a (semi-)automatic transformation of network and hierarchical
schemas into object-oriented ones and on a (semi-)automatic integra-
tion of object-oriented schemas from different systems.

Further research is necessary to support not only the (semi-)auto-
matic transformation of schemas but also to support an automatic
translation of the data manipulation operations. This is important since
the transformation of schemas has to be done only once, but the trans-

- 19 -

lation of operations has to be done every time a query is processed by
the system. We envision a system with a uniform interface to query all
databases participating in the federation. A preprocessor will use the
meta information to detect accesses on virtual objects. The queries will
be divided into parts corresponding to the different participating data-
bases. The access of virtual objects will be translated into the data
manipulation languages and sent to the underlying databases. A declar-
ative query language for the object-oriented database system such as
XSQL which is used in AXIS [Koj 91] or HOSQL which is used in Pe-
gasus [Ahm 91] will be an essential part of our system for providing an
easy, non-procedural access and query facility.

References

[Ahm 91] Ahmed R., De Smedt P., Du W., Knet W., Ketabchi M. A.,
Witwin W. A., Rafii A., Shan M.: ‘The Pegasus
Heterogeneous Multidatabase System’, Proc. IEEE
Computer, Vol. 24, No. 12, 1991, pp. 19-27.

[BLN 86] Batini C., Lenzerini M., Navathe S. B.: ‘A Comparative
Analysis of Methodologies for Database Schema
Integration’, ACM Computing Surveys, Vol. 18, No. 4,
1986, pp. 323-364.

[CHS 91] Collet C., Huhns M. N., Shen W.: ‘Resource Integration
Using a Large Knowledge Base in Carnot’, IEEE
Computer Vol. 24, No. 12, 1991, pp. 55-62.

[Cod 79] Codd E. F.: ‘Extending the Database Relational Model to
Capture More Meaning’, ACM Trans. on Database
Systems, Vol. 4, No. 4, 1979, pp. 397-434.

[CS 91] Castellanos M., Saltor F.: ‘Semantic Enrichment of
Database Schemas: An Object Oriented Approach’, Proc.
1st Int. Workshop on Interoperability in Multidatabase
Systems, Kyoto, 1991, pp. 71-78.

[CT 91] Czejdo B., Taylor M.: ‘Integration of Database Systems
Using an Object-Oriented Approach’, Proc. 1st Int.

- 20 -

Workshop on Interoperability in Multidatabase Systems,
Kyoto, 1991, pp. 30-37.

[DA 83] Dumpala, Arora: ‘Schema translation using the Entity
Relationship Approach’, Entity Relationship Approach to
Information Modeling and Analysis, Amsterdam, 1983.

[DA 87] Davis, Arora: ‘Converting a Relational Database Model
into an Entity Relationship Model’, Proc. 6th ER Conf.,
New York, 1987.

[EWH 85] Elmasri R., Weeldreyer J., Hevner A.: ‘The category
concept: An extension to the entity-relationship model’,
Data & Knowledge Engineering, North-Holland, 1985,
pp. 75-116.

[HK 88] Hull R., King R.: ‘Semantic Database Modeling: Survey,
Applications, and Research Issues’, ACM Computing
Surveys, Vol. 19, No. 3, 1987, pp. 201-260.

[Ita 91] Itasca Systems Incorporated: ‘Technical Summary Release
2.0’, Itasca System Incorporated, 1991.

[HLR 90] Holtkamp B., Lum V., Rowe N. C.: ‘DEMOM - A
Description Bases Media Oject Data Model’, Proc. Int.
Computer Software and Applications Conference
COMPSAC ‘90, Chicago, 1990.

[KDN 90] Kaul M., Drosten K., Neuhold E. J.: ‘ViewSystem:
Integrating Heterogeneous Information Bases by Object-
Oriented Views’, Proc. IEEE Int. Conf. on Data
Engineering, 1990.

[Kim 90] Kim W.: ‘Introduction to Object-Oriented Databases’,
Prentice Hall, 1990.

[Koj 91] Kojima I., Tanuma H., Sato Y., Ebihara I., Mano Y.:
‘Implementation of an Object-Oriented Query Language
System with Remote Procedure Call Interface’, Proc. 1st
Int. Workshop on Interoperability in Multidatabase
Systems, Kyoto, 1991, pp. 79-86.

[LR 82] Landers T., Rosenberg R.: ‘An overview of Multibase’,
Distributed Databases, North-Holland, 1982.

- 21 -

[Mar 87] March S.: ‘Entity-Relationship Approach’, Proc. 6th ER
Conf., New York, 1987.

[MM 90] Markowitz V., Makowsky J.: ‘Identifying Extended Entity
Relationship Object Structures in Relational Schemas’,
IEEE Tran. on Software Engineering, Vol. 16, No. 8,
1990.

[NA 87] Navathe S., Awong: ‘Abstracting Relational and
Hierarchical Data with a Semantic Data Model’, Proc. 6th
ER Conf., New York, 1987.

[Shi 81] Shipman D.W.: ‘The functional data model and the data
lanuage DAPLEX’, ACM Trans. on Database Systems,
Vol. 6, 1981, pp. 140-173.

[TYF 86] Teorey T. J., Yang D., Fry J. P.: ‘A Logical Design
Methodology for Relational Databases Using the
Extended Entity-Relationship Model’, ACM Computing
Surveys, Vol. 18, No. 2, 1986, pp. 197-229.

