36 research outputs found

    Design and experimental validation of planar programmable inertia generators

    Get PDF
    This paper investigates the design and experimental development of planar programmable inertia generators. An inertia generator is a hand-held haptic device that has a programmable inertia. By moving internal masses in reaction to accelerations induced by the user, the effective inertia of the device is modified in order to render a prescribed inertia. In this paper, a one-degree-of-freedom device with one internal moving mass is first proposed. The corresponding dynamic model is developed and the rendering capabilities of the device are investigated. Then, a controller is designed to produce the appropriate motion of the internal mass in reaction to the acceleration induced by the user. A prototype is presented and experimental results are discussed. A mechanical architecture is then proposed for the design of a planar three-degree-of-freedom inertia generator. The corresponding dynamic model is derived, and it is shown that the generalized inertia matrix of the proposed mechanism is always of full rank. The rendering capabilities of the device are also investigated. Finally, simulation results obtained with the three-degree-of-freedom inertia generator are reported and discussed

    Development of a Virtual Laboratory for the Study of Complex Human Behavior

    Get PDF
    The study of human perception has evolved from examining simple tasks executed in reduced laboratory conditions to the examination of complex, real-world behaviors. Virtual environments represent the next evolutionary step by allowing full stimulus control and repeatability for human subjects, and a testbed for evaluating models of human behavior. Visual resolution varies dramatically across the visual field, dropping orders of magnitude from central to peripheral vision. Humans move their gaze about a scene several times every second, projecting taskcritical areas of the scene onto the central retina. These eye movements are made even when the immediate task does not require high spatial resolution. Such “attentionally-driven” eye movements are important because they provide an externally observable marker of the way subjects deploy their attention while performing complex, real-world tasks. Tracking subjects’ eye movements while they perform complex tasks in virtual environments provides a window into perception. In addition to the ability to track subjects’ eyes in virtual environments, concurrent EEG recording provides a further indicator of cognitive state. We have developed a virtual reality laboratory in which head-mounted displays (HMDs) are instrumented with infrared video-based eyetrackers to monitor subjects’ eye movements while they perform a range of complex tasks such as driving, and manual tasks requiring careful eye-hand coordination. A go-kart mounted on a 6DOF motion platform provides kinesthetic feedback to subjects as they drive through a virtual town; a dual-haptic interface consisting of two SensAble Phantom extended range devices allows free motion and realistic force-feedback within a 1^3 m volume (Refer to PDF file for exact formulas)

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Haptic induced motor learning and the extension of its benefits to stroke patients

    Get PDF
    In this research, the Haptic Master robotic arm and virtual environments are used to induce motor learning in subjects with no known musculoskeletal or neurological disorders. It is found in this research that both perception and performance of the subject are increased through the haptic and visual feedback delivered through the Haptic Master. These system benefits may be extended to enhance therapies for patients with loss of motor skills due to neurological disease or brain injury. Force and visual feedback were manipulated within virtual environment scenarios to facilitate learning. In one force feedback condition, the subject is required to maneuver a sphere through a haptic maze or linear channel. In the second feedback condition, the subject\u27s movement was stopped when the sphere came in contact with the haptic walls. To resume movement, the force vector had to be redirected towards the optimal trajectory. To analyze the efficiency of the various scenarios, the area between the optimal and actual trajectories was used as a measure of learning. The results from this research demonstrated that within more complex environments one type of force feedback was more successful in facilitating motor learning. In a simpler environment, two out of three subjects experienced a higher degree of motor learning with the same type of force feedback. Learning is not enhanced with the presence of visual feedback. Also, in nearly all studied cases, the primary limitation to learning is shoulder and attention fatigue brought on by the experimentation

    Twelfth Annual Conference on Manual Control

    Get PDF
    Main topics discussed cover multi-task decision making, attention allocation and workload measurement, displays and controls, nonvisual displays, tracking and other psychomotor tasks, automobile driving, handling qualities and pilot ratings, remote manipulation, system identification, control models, and motion and visual cues. Sixty-five papers are included with presentations on results of analytical studies to develop and evaluate human operator models for a range of control task, vehicle dynamics and display situations; results of tests of physiological control systems and applications to medical problems; and on results of simulator and flight tests to determine display, control and dynamics effects on operator performance and workload for aircraft, automobile, and remote control systems

    Geo-Design:

    Get PDF
    Geo-Design. Advances in bridging geo-information technology and design brings together a wide variety of contributions from authors with backgrounds in urban planning, landscape architecture, education and geo-information technology presenting the latest insights and applications of geodesign. Geo-Design is here understood as a hybridization of the concepts “Geo” – representing the modelling, analytical and visualisation capacities of GIS, and “Design” – representing spatial planning and design, turning existing situations into preferred ones. Through focusing on interdisciplinary design-related concepts and applications of GIS international experts share their recent findings and provide clues for the further development of geodesign. This is important since there is still much to do. Not only in the development of geo-information technology, but especially in bridging the gap with the design disciplines. The uptake on using GIS is still remarkably slow among landscape architects, urban designers and planners, and when utilised it is often restricted to the basic tasks of mapmaking and data access. Knowledge development and dissemination of applications of geodesign through research, publications and education, therefore, remain key factors. This publication draws upon the insights shared at the Geodesign Summit Europe held at the Delft University of Technology in 2014. All contributions in the book are double blind reviewed by experts in the field

    Dual Loop Rider Control of a Dynamic Motorcycle Riding Simulator

    Get PDF
    Compared to the automotive industry, the use of simulators in the motorcycle domain is negligible as for their lack of usability and accessibility. According to the state-of-the-art, it is e.g. not possible for motorcyclists to intuitively control a high-fidelity dynamic motorcycle riding simulator when getting in contact with it for the first time. There are four main reasons for the insufficient simulation quality of dynamic motorcycle riding simulators: ▪ The instability of single-track vehicles at low speed, ▪ The steering force-feedback with highly velocity-dependent behavior, ▪ Motion-simulation (high dynamics, roll angle, direct contact to the environment), ▪ The specific influence of the rider to vehicle dynamics (incl. rider motion). The last bullet point is peculiar for motorcycles and dynamic motorcycle riding simulators in comparison with other vehicle simulators, as motorcycles are significantly affected in their dynamics by the rider’s body motion. However, up until today, almost no special emphasis has been put on the consideration of rider motion on dynamic motorcycle riding simulators. In this thesis, a motorcycle riding simulator is designed, constructed and put into operation. The focus here is attaching a real rider to a virtual motorcycle. Based on a commercially available multi-body-simulation model, a simulator architecture is designed, that allows to control the virtual motorcycle not only by steering, but by rider leaning as well. This is realized by determining the so-called rider induced roll torque, that allows a holistic measurement of the apparent coupling forces between rider and simulator mockup. Performance measures and study concepts are developed that allow to rate the system. In expert and participant studies, the influence of the system on the riding behavior of the simulator is investigated. It is shown that the rider motion determination allows realistic control inputs and has a positive effect on the stabilization at various velocities. The feedback of the rider induced roll torque to the virtual dynamics model allows study participants to control the virtual motorcycle more intuitively. The vehicle states during cornering are affected as expected from real riding. First results indicate that it becomes easier for naïve study participants to access the simulator in first-contact scenarios. The achieved improvements regarding the rideability of the simulator however do not suffice to overcome the abovementioned challenges to a degree that allows for a completely intuitive interaction with the simulator throughout the whole dynamic range
    corecore