141,547 research outputs found

    Heralded quantum steering over a high-loss channel

    Get PDF
    Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long distances is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We design and experimentally demonstrate a scheme that verifies entanglement in the presence of at least 14.8±0.114.8\pm0.1 dB of added loss, equivalent to approximately 8080 km of telecommunication fiber. Our protocol relies on entanglement swapping to herald the presence of a photon after the lossy channel, enabling event-ready implementation of quantum steering. This result overcomes the key barrier in device-independent communication under realistic high-loss scenarios and in the realization of a quantum repeater.Comment: 8 pages, 5 figure

    Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects

    Full text link
    In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in non-saturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. The impact of both non-ideal channel and capture become important in terms of the actual observed throughput in typical network conditions whereby traffic is mainly unsaturated, especially in an environment of high interference. We extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the buffer of a station. Finally, we derive a linear model of the throughput along with its interval of validity. Simulation results closely match the theoretical derivations confirming the effectiveness of the proposed model.Comment: To appear on IEEE Transactions on Wireless Communications, 200

    Tumor-derived microvesicles modulate antigen cross-processing via reactive oxygen species-mediated alkalinization of phagosomal compartment in dendritic cells

    Get PDF
    Dendritic cells (DCs) are the only antigen-presenting cells able to prime naĂŻve T cells and cross-prime antigen-specific CD8+ T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs) enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS) accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies

    Saturation Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects

    Full text link
    In this paper, we provide a saturation throughput analysis of the IEEE 802.11 protocol at the data link layer by including the impact of both transmission channel and capture effects in Rayleigh fading environment. Impacts of both non-ideal channel and capture effects, specially in an environment of high interference, become important in terms of the actual observed throughput. As far as the 4-way handshaking mechanism is concerned, we extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel. This way, any channel model characterizing the physical transmission medium can be accommodated, including AWGN and fading channels. We also extend the Markov model in order to consider the behavior of the contention window when employing the basic 2-way handshaking mechanism. Under the usual assumptions regarding the traffic generated per node and independence of packet collisions, we solve for the stationary probabilities of the Markov chain and develop expressions for the saturation throughput as a function of the number of terminals, packet sizes, raw channel error rates, capture probability, and other key system parameters. The theoretical derivations are then compared to simulation results confirming the effectiveness of the proposed models.Comment: To appear on IEEE Transactions on Communications, 200

    Probabilistic classification of acute myocardial infarction from multiple cardiac markers

    Get PDF
    Logistic regression and Gaussian mixture model (GMM) classifiers have been trained to estimate the probability of acute myocardial infarction (AMI) in patients based upon the concentrations of a panel of cardiac markers. The panel consists of two new markers, fatty acid binding protein (FABP) and glycogen phosphorylase BB (GPBB), in addition to the traditional cardiac troponin I (cTnI), creatine kinase MB (CKMB) and myoglobin. The effect of using principal component analysis (PCA) and Fisher discriminant analysis (FDA) to preprocess the marker concentrations was also investigated. The need for classifiers to give an accurate estimate of the probability of AMI is argued and three categories of performance measure are described, namely discriminatory ability, sharpness, and reliability. Numerical performance measures for each category are given and applied. The optimum classifier, based solely upon the samples take on admission, was the logistic regression classifier using FDA preprocessing. This gave an accuracy of 0.85 (95% confidence interval: 0.78–0.91) and a normalised Brier score of 0.89. When samples at both admission and a further time, 1–6 h later, were included, the performance increased significantly, showing that logistic regression classifiers can indeed use the information from the five cardiac markers to accurately and reliably estimate the probability AMI

    Ancient DNA from coral-hosted Symbiodinium reveal a static mutualism over the last 172 years.

    Get PDF
    Ancient DNA (aDNA) provides powerful evidence for detecting the genetic basis for adaptation to environmental change in many taxa. Among the greatest of changes in our biosphere within the last century is rapid anthropogenic ocean warming. This phenomenon threatens corals with extinction, evidenced by the increasing observation of widespread mortality following mass bleaching events. There is some evidence and conjecture that coral-dinoflagellate symbioses change partnerships in response to changing external conditions over ecological and evolutionary timescales. Until now, we have been unable to ascertain the genetic identity of Symbiodinium hosted by corals prior to the rapid global change of the last century. Here, we show that Symbiodinium cells recovered from dry, century old specimens of 6 host species of octocorals contain sufficient DNA for amplification of the ITS2 subregion of the nuclear ribosomal DNA, commonly used for genotyping within this genus. Through comparisons with modern specimens sampled from similar locales we show that symbiotic associations among several species have been static over the last century, thereby suggesting that adaptive shifts to novel symbiont types is not common among these gorgonians, and perhaps, symbiotic corals in general

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al
    • …
    corecore