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ABSTRACT

The feasibility of implementing the interpolating cubic spline function as encryption 

and decryption transformations is presented. The encryption method can be viewed as 

computing a transposed polynomial. The main characteristic of the spline cryptosystem is 

that the domain and range of encryption are defined over real numbers, instead of the tra

ditional integer numbers. Moreover, the spline cryptosystem can be implemented in terms 

of inexpensive multiplications and additions.

Using spline functions, a series of discontiguous spline segments can execute the 

modular arithmetic of the RSA system. The similarity of the RSA and spline functions 

within the integer domain is demonstrated. Furthermore, we observe that such a reformu

lation of RSA cryptosystem can be characterized as polynomials with random offsets 

between ciphertext values and plaintext values. This contrasts with the spline cryptosys

tems, so that a random spline system has been developed. The random spline cryptosys

tem is an advanced structure of spline cryptosystem. Its mathematical indeterminacy on 

computing keys with interpolants no more than 4 and numerical sensitivity to the random 

offset ti increases its utility.

This article also presents a chaotic public-key cryptosystem employing a one

dimensional difference equation as well as a quadratic difference equation. This system 

makes use of the El Gamal’s scheme to accomplish the encryption process. We note that 

breaking this system requires the identical work factor that is needed in solving discrete 

logarithm with the same size of moduli.
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I. INTRODUCTION

In order to plan for the information society in the twenty-first century, we must 

understand the community which we now inhabit and anticipate the future. The net

worked population in this society has increased enormously in the past decade. A great 

deal of international trade and commerce is already being mediated via computers and 

communication mediums. Traditionally, hand-written papers dominated most human 

activities. The explosive utilization of computers and networks has drastically reduced 

the distances among human beings and among nations. The cooperation and collaboration 

of various entities and units are mediated by electronically transmitted data. Business 

practices based on paper will continue to decrease to an absolute minimum, and more 

uses will be made of digital technology. Therefore, the quicker we adapt to the new tech

nology, the greater the benefits we will obtain.

From a negative point of view, information on networks can be stolen, sabotaged, 

and used for extortion. In this digitalized environment, the integration of computers and 

telecommunication networks becomes an attractive target. There is usually no security 

problem involved when a single computer is used in one room by one person for one 

application only. However, when we start to share databases and computers, there is a 

chance for confidential information to be misused. Along with the fact that networks will 

extend access; it is clear that such networks inherently increase the risk to information 

security. To protect the property of individuals, organizations and governments in the 

forthcoming information society, cryptography provides us a promising technique. Cryp

tography is inextricably bound to information technology in general and to computers in 

particular. The advent of this technology could be used to convert the future communica

tion traffic from public to secret formats.
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Encryption is the process of scrambling data into an unfamiliar form for privacy. 

The process is a function of the input data and a key. There are two classes of crypto

graphic systems; in a secret-key cryptosystem the legitimate sender and receiver employ 

the same key for scrambling and unscrambling data, in a public-key cryptosystem each 

user has one public key for scrambling data and one private key for reproducing the origi

nal data.

Traditionally, cryptography has been used for military and diplomatic missions. 

Cryptography can be used for civilian users as well as military users. In the civilian sec

tor, cryptography is used for internetwork commerce, electronic mail, international bank

ing, and electronic money exchange. It provides both privacy and authentication. This 

includes the identification and authentication of digital signatures instead of hand-written 

signatures. Public-key cryptosystems can be explicitly used for these purposes.

Public-key cryptography has implications far beyond simple data scrambling and 

unscrambling. It allows people to do things securely over computer networks which are 

impossible in any other way. For instance, there are password protections, digital signa

tures, fair coin tosses, and bit commitments, etc. Regarding conventional password pro

tection, the host computer stores the password in encrypted form, which can create seri

ous security problems. For one, when the user types the password into the system, anyone 

accessing the data path can read it. He might be accessing his computer through a trans

mission path that passes through industrial competitors, foreign countries, and some uni

versities, any one of which can look at his password through its machine. Two, anyone 

with access to the processor memory of the system can see the password before the sys

tem encrypts it, and can compare it with the system encrypted form in the password file.
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Public-key cryptography solves this problem by allowing the host computer to keep 

a file of every user’s public key, each user keeps his own secret key. This secret key is 

generated by the user’s hardware or communication software. This requires a trusted and 

intelligent terminal, but neither the host nor the communication path needs to be secure, 

When logging in, the host sends a challenge number to the user. The user encrypts the 

random number with his secret key, and sends it back to the host computer. The host 

computer decrypts the message using the user’s public key. If the decrypted message 

matches what the host computer sent to the user in the first place, the computer allows the 

user to access to the system. No one else has access to the user’s secret key, so no one 

else can impersonate the user. More important, the user never sends his secret key over 

the communication channel to the host computer. No one listening to the channel can 

learn the secret key and impersonate the user.

Digital signature protection is another important application. Encrypt a document 

with your secret key, and you have a secure digital signature. Anyone with the public key 

can decrypt it, so anyone can read it. Only you have access to your secret key, so no one 

else could sign it. And finally, anyone who modifies the encrypted document will produce 

gibberish when decrypted, so no one can modify the signed document. With the digital 

signature protocol, a trusted authority should sign both communicating users’ public keys 

to prevent the potential impersonation attack. The signed keys would include a signed 

certification. Now both parties would know that the public key that they received over the 

communication channel actually belongs to each other.

Assume that two persons who do not trust each other can flip a coin over some com

munication media. The fair coin toss protocol could prevent each one from cheating. 

Assume that Alice and Bob both generate a secret and public key pair. Alice generates
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two messages, one indicating heads find the other indicating tails. Alice encrypts both 

messages with her public key and sends them to Bob. Bob who cannot read either mes

sage, chooses one randomly. He encrypts it with his public key and sends it back. Alice, 

who cannot read this message, decrypts it with her secret key and sends it back to Bob. 

Bob decrypts the message with his secret key to reveal the result of coin toss. He sends 

the decrypted message back to Alice. Alice reads the result of the coin toss and verifies 

that the message is correct. Both Alice and Bob reveal their public and secret keys so that 

both can verify that the other did not cheat. This protocol is self-enforcing. Either party 

can immediately detect cheating on the other party.

The bit commitment protocol is to let Alice commit to a prediction, but does not 

reveal that prediction to Bob until sometime later. On the other hand, Bob wants to make 

sure that Alice cannot change her mind after she has committed to her prediction. First, 

both Alice and Bob each generate some random bit strings. Bob hands Alice his string. 

Alice creates a message consisting of her random string, the bit she wishes to commit to, 

and Bob’s random string. She then encrypts it with her public key and sends the result 

back to Bob. Bob cannot decrypt the message, so he does not know what the bit is. 

When it comes time for Alice to reveal her bit, she decrypts it using her secret key. Bob 

then ensures himself that the bit is valid by checking that his random string is correct. 

Moreover, two parties could be involved in long distance contract signing. No one is 

willing to sign first. We could establish a public-key cryptographic protocol for signing 

contracts by computer, so that both parties are bound by the contract at the same time. 

Physical proximity and written signatures are what we want to avoid.

We notice that identification of individuals is one of the critical requirements of 

access control, whether it is for access into buildings, authorization of credit at a point of
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sale, or into computers and communication networks. In most access control systems, 

personal data of each user is stored in a secure computer. This personal data must be 

retrieved whenever someone wants to access the computer networks. To avoid the extra 

communication to the computer storing this database, off-line systems require the user to 

provide this data that card readers can verify. Magnetic stripe cards have been used to 

hold the data necessary for anyone to authenticate the user’s identification. But they are 

forgeable. The smart card or chip card is designed for the replacement of the magnetic 

stripe card of the 90’s. Smart cards are plastic cards with an embedded integrated circuit 

capable of performing computations.

The smart card is intended to be a multipurpose card. Its protected memory can store 

identification data other than payment transactions. In the off-line system, public-key 

systems provide a means of authenticating this crucial data by providing digital signa

tures that any terminal can verify. A certification center creates a digital signature for the 

data on each smart card, and this signature is also included in the smart card data. Any 

alternation of the personal identification data in the smart card will result in an incorrect 

certification center digital signature, which can be immediately detected. Smart cards 

will probably replace all magnetic stripe cards.

Cryptography is progressing rapidly, both in the development of algorithms and 

cryptographic protocols, and in the related discipline of designing an encryption device. 

Integrated circuits for encryption are now produced economically. More and more chip 

level encryption products will be produced. Public-key cryptography will be available in 

this form. One of the most difficult aspects of cryptographic applications is key manage

ment. Poorly done, it can endanger secure communication. Overdone, it can present a 

burdensome expense. The chosen method of key management must be consistent with
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the overall security requirement and architecture. Thus, key generation, distribution, and 

organization will be the most critical issues of cryptographic application. Furthermore, 

cryptographic systems must be international in scope and address the problems related to 

the common encryption algorithms, secure key management and efficient distribution 

irrespective of national boundaries. Cryptographic devices must become one of the insep

arable parts of computer design. Making use of secure cryptographic systems and effi

cient key management, we could design secure cryptographic protocols to allow people 

to do business securely and fairly over computer networks.

The future of computer technology is becoming quite clear, with artificial intelli

gence machines, and microchip technology being built into everything around us. World

wide business relies on electronic communication via computers. Any decision made and 

action taken is a result of computerized outputs as well as reliable information inputs. 

Information integrity must be absolutely maintained in order to insure the quality and 

accuracy of the result. A communication environment designed with the aid of cryptogra

phy should provide security that will be needed. Regarding the internal security feature 

of computer systems, an individual or an organization could regulate their security policy. 

People can access encrypted files and data only when they have legal authority. Sum

ming up, we understand that the internal security policy of computer systems should be 

regulated by permission-based and cryptographic techniques, depending on how sensitive 

the protected entities are. The external secure communication systems should be fully 

regulated by computationally secure cryptographic techniques, no matter what data 

streams are transmitted. Key features of the information society in the twenty-first cen

tury will include cryptographic communication channels and cryptographic protocols.
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A. PRELIMINARY

Cryptology is a difficult and esoteric science. Especially, when one seeks particular 

cryptographic functions without compromising their security. The aim of this introduc

tion is to sketch the intellectual outlines of this subject. Two newly designed crypto

graphic systems are presented; spline cryptosystem and chaotic-map public-key cryp

tosystem.

The term, cryptology, stems from Greek roots meaning hidden and word, it is used 

to describe the study of secret communications. Generally speaking, cryptology can be 

separated rather cleanly into two sectors: cryptography and cryptanalysis. Cryptographic 

research is concerned with the secrecy and/or authenticity of data communication. 

Cracking systems and protocols are the major research areas in cryptanalysis. It sounds 

hostile, but decent cryptanalysts can expose the unsuspected weakness of systems so that 

modifications can be made to improve security.

Cryptography involves the study of transformations E on data; we use the notation

E : X - > ?  = E(X)

in which X  is called the clear message, or simply the plaintext. X is encrypted into the 

ciphertext message, or just the ciphertext, or most often the cryptogram Y = E(X)  by the 

cryptographic transformation E, where Xe M the finite message space and 7 e C the 

ciphertext space. E  denotes the encipherment(encryptioencoding) of plaintext X into 

the ciphertext Y. The only requirement on E is the obvious one; it must be possible to 

reverse the process of encipherment (called decipherment) and recover plaintext from the 

ciphertext. Thus the transformation E must have an inverse D, so that ED = /  or DE = I
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where I is the identity transformation. We use the notation

D : Y  —t X = D{?) =

which is read ciphertext Y is decrypted to plaintext X = D(Y) by the inverse crypto

graphic transformation D.

Originally, cryptographic transformations were made by hand. Later, mechanical 

devices were introduced to carry out the transformation and these were succeeded by 

electromechanical devices. Today, encipherment is the result of the execution of a pro

gram. If encipherment is to hide information, a pair of users must tailor the transforma 

tion to their specific communication. A cryptographic is a family T

= {Ek, Dk: k e K) of cryptographic transformations. The subscript k on Ek and , is 

called the key. We can assume that kis a sequence of alphanumeric ASCII charactersfor 

a sequence of bit streams) and Ek is an algorithm(or a program) which takes input X and 

produces output Y. The key space K is the totality of key values.

A cryptanalyst’s chore is to break a cryptosystem; this means that the cryptanalyst 

will attempt to deduce the meaning of ciphertexts, or to determine a decryption algorithm 

that matches an encryption algorithm. The analyst can do any or all of the following 

three things:

a. attempt to break a single message,

b. attempt to recognize patterns in encrypted messages, in order to break subse

quent ones by applying a straightforward decryption algorithm,

c. attempt to find general weaknesses in an encryption algorithm, not necessarily 

having any messages.



9

Using the Kerckhoff's principle, an analyst works on many things. Such as 

encrypted messages, known encryption algorithms, intercepted plaintext, data items 

known or suspected in ciphertext, mathematical or statistical tools, and techniques and 

properties of languages. There are three attacks with which cryptanalysts have used:

a. Ciphertext-only attack: to make use of statistical tools on intercepted ciphertext 

to crack the system.

b. Known-plaintext attack: to compare the known ciphertext with the correspond

ing plaintext so that the secret key can be derived.

c. Chosen-plaintext attack or chosen-ciphertext attack: to submit unlimited plain

text or ciphertext of his own and then inspect the difference of outputs resulted 

from the different inputs. So that secret keys can be derived.

Most cryptosystems in use today are intended to be secure against the chosen - 

plaintext attack or chosen-ciphertext attack.

Historically, there are two simple and classical groups of cipher; substitution cipher 

and transposition cipher. For the former, one letter is replaced with another in the same 

alphabet, and for the latter, the order of letters is rearranged. These classical ciphers are 

relatively easy to break using information about letter frequency distribution.

Because of Dififie and Heilman’s speculation[DiH76], cryptographic research moved 

into the new era of public-key systems. Computationally hard problems with number the

ory were introduced as the building blocks of secure cryptosystems. Most of these sys

tems can be implemented in a public-key style in which it is easy for everyone to encrypt 

messages, whereas only the legitimate receiver can decrypt. Such systems sometimes
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include the concept of a digital signature, which is a marker resulting from the signer and 

message. So the legal receiver of the encrypted message can be assured that the message 

was sent by a legal sender. The security of these systems partly depends on our current 

inability to solve certain number-theoretical problems efficiently. The security of RSA 

depends on the difficulty in factoring large composite integers and solving the discrete 

logarithm problem defined over a finite field. To set RSA up, one must be able to recog

nize whether large numbers are prime or not by primality test.

More specifically, Figure 1. illustrates a complete cryptosystem architecture consist

ing of three parts: an enciphering process, a deciphering process, and a key generator 

dominated by an initial condition, where X is the plaintext and ? is the ciphertext.
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Figure 1. Complete architecture of a secret-key cryptosystem.

Actually, the previous architecture is a secret-key structure, and Figure 2., specifies 

a public-key architecture with the key generator controlled by the receiver, where K and k 

are public-key and secret-key respectively.
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Figure 2. Complete architecture of a public-key cryptosystem

Strictly speaking, the strength of an encryption algorithm depends on the computa

tional security, instead of theoretical security. An encryption algorithm may be 

able, meaning that given enough time and data, an analyst could determine the algorithm. 

However, practicality is also an issue. For instance, a particular cipher scheme may have 

an inverse decryption scheme that requires 1030 operations. Assuming a current- 

technology computer, which performs on the order of 1010 operations per second, this 

decipherment would require 1020 seconds, or roughly 1012 years. In this case, although 

we know that theoretically, a decryption algorithm exists, the decryption algorithm can be 

ignored as infeasible using current technology.
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B. RESEARCH MOTIVATION

Current cryptosystems are built upon the assumption that the associated number- 

theoretical problems cannot be solved in a practical amount of time. However as com

puters become more powerful, it may become possible in the near future to break existing 

cryptosystems. Thus a spline cryptosystem which does not follow the traditional number- 

theoretical assumption may be a useful alternative. In 1991, we proposed a spline cryp- 

tosystem[HqH92], which can be classified as a transposed polynomial system. In that 

paper, the plaintext values represent values of S(t) from which a multi-segment cubic 

spline may be defined, and corresponding values of t at x-axis are given. Since, the 

resulting cubic spline is continuously defined over the interval [0,1], it is possible to 

choose values t 'in each subinterval and compute the corresponding S(t') as the cipher- 

text.

The spline cryptosystem used a fixed offset between t and t \  which is This fixed 

offset contrasts with the RSA system and would probably be the target for cryptanalysts. 

In the case of the RSA system, randomness is the major characteristic. Under the assump

tion of randomness in the RSA system, mapping the plaintext value into the ciphertext 

value will result in the ciphertext value uniformly distributed among the range. In fact, 

each ciphertext value will occur only once, and no ciphertext value will occur before all 

values have been generated. Thus, a random approach has been applied to the spline 

cryptosystem, so that the offset is not fixed at 0.5. Furthermore, the system is sensitive to 

the variation of offsets and is mathematical indeterminacy without sufficient boundary 

conditions. These characteristics increase its utility.
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Chaotic behavior has been studied in many fields. It is desired to inject chaos into 

cryptography, so that the designated system becomes dynamic and non-linear. Recently, a 

chaotic-map secret-key cryptosystem[HaN91] was introduced. This cryptosystem 

employs a one-dimensional iterated map as the encryption transformation. It encrypts 

64-bit plaintexts into about 147-bit ciphertexts, using a 64-bit key a. Plaintexts, cipher- 

texts, and keys are all real numbers e [0,1]. Whereas, a public-key version of chaotic- 

map cryptosystem is proposed. The El Gamal’s[EGt85] public-key encryption scheme 

has been added into this public-key cryptosystem, in addition to the chaotic map. The 

motivation of designing such a system is that the one-dimensional difference equa- 

tion(iterated map) is well suited to be a one-way function.
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II. REVIEW OF LITERATURE

A. NUMBER-THEORETIC NOTATIONS AND DEFINITIONS

We begin with a study of properties of multiplication and division of integers. In 

particular, we investigate prime numbers, the computation of inverse and factorization, 

since these topics have major implications in the advanced encryption transformation. 

We also study a restricted number system, called a field. The fields we consider are finite 

and have convenient properties that make them useful for representing cryptosystem. 

Especially, modular arithmetic defined over finite fields has been heavily used as a cryp

tosystem tool.

1. Modular Arithmetic. Recall that a modulus applied to a nonnegative integer means 

remainder after division. So that any two integers are congruent under modulus n if their 

results of mod n are equal. This is denoted as:

x =n yif and only if x = y (mod n), (2.1.1.1)

alternately:

x = n y if and only if ( x -  for some k. (2.1.1.2)

Modular arithmetic on nonnegative integers form a construct called, a commutative ring, 

with the operations of addition and multiplication. All rings have the properties of asso

ciativity and distributivity. Commutative rings, as their name implies, commutativity. 

Furthermore, if every number other than 0 has an inverse under multiplication, the num

ber system is called a field. Inverses under multiplication produce a finite field called a 

Galois field. The integers, mod n, consist of a Galois field(GF). Cryptography is based
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on GF(p), where p is  a prime, and there is a shortcut way to compute modulo n. That is, 

we could either obtain the residue modulo n and then do the operation or do the operation 

first and then find the residue modulo n.

To perform a secure encryption, we need a procedure for finding the inverse of an 

arbitrary element under modulo n, even for very large values of n, see Figure 3. The for

mal description is the following:

Given: a e {0,n-l}, GCD(a, n)= 1, and n> 1 

Find: x e {0,n-l}, such that a x x = 1 (mod n) 

where GCD stands for greatest common divisor.

This algorithm[Knd81] is a fast approach that makes use of Euclid’s algorithm for 

finding the greatest common divisor, as well as, computing the inverse of a under modulo 

n.
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procedure inverse(a,n) /* find the inverse of a with respect to n */ 

begin

g[0] <- n; 

g [l]< -a; 

i <— l ;

for(i = 1; g[i] *0; i++) 

begin

y <— g[i-l] div g[i]; 

g[i+l] <-g[i-l] -yxg[i];  

u[i+l] <— u[i-l] - y x u[i]; 

v[i+l] <r- v[i-1] - y x v[i]; 

i++;

end;

if (v[i-l] > 0) then inverse <— v[i-l];

else inverse <— v[i-l] + n;

end;

Figure 3. Extended Euclid algorithm

Many encryption algorithms are based on modular exponentiation, so computing the 

power of a number is an important operation. There is a fast algorithm, so-called 

repeated squaring and multiplying, shown in Figure 4. Squaring when the bits of binary 

representation of exponents are 0 and multiplying when they are 1.
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procedure fastexp(a,z,n) /* calculate a ** z (mod n) */ 

begin

X 4— 1 i 

a 4— a mod n; 

while(z *  0) 

begin

while(z mod 2 s  0) 

begin

z » =  1;

a 4-(a x a) mod n; 

end;

z-5

x = (x x a) mod n;

end;

return(x);

end;

Figure 4. Repeated squaring and multiplying.

2. Notations And Definitions. Let Z* be the set of elements in Z„ = {0,1, • 

are relatively prime to n(or called reduced set of residues). The size of Z* 

<p{n), known as Euler’s totientfunction,satisfies the equation:

• •, n - 1} that 

is defined as
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0(n) = n x n ( l  -  - ) ,
P

where p runs over all primes dividing n.

Especially, if pis a prime, then <p{p)~ p — 1. The following three theorems are an

important part of the theoretical backbone of current cryptosystems. Especially the Chi

nese Remainder Theorem is a powerful cryptographical tool.

Theorem 2.1: (Euler’s Theorem)

For all integer n > 1, a ^n) s  1 ( modn), for all a 

Theorem 2.2: (Fermat’s Theorem)

If p is a prime, a/>_I = 1 ( modp), for all ae Z*

Theorem 23: (Chinese Remainder Theorem)

Let n = «] x n2 x • • • x n k,where the nt are pairwise prime. Consider the correspondence

a = (flj, a2, ■ • •, ak), where a e Z„, Oj = a(mod nt) e Zn.. In other words, the system of 

congruence, a s a ( ( modnt)\ i -  1,2. k,has a common solution in [0, n -  1].

The following section introduces some difficult number theory problems that can be

used to protect cryptosystems.



20

B. COMPUTATIONAL COMPLEXITY

A recent trend in encryption is to consider problems that are hard to solve, and for 

which the number of possible solutions is large. Then, even with computer support, an 

exhaustive brute force search is expected to be infeasible. Thus, computational complex

ity provides a foundation for analyzing the computational requirements of cryptanalytic 

technique, and for studying the inherent difficulty of solving ciphers. So that the strength 

of a cipher is determined by the computational complexity of the algorithm used to solve 

the cipher.

In 1979, Diffie and Heilman[DiH79] suggested applying computational complexity 

to the design of the encryption algorithms. They noted that NP-complete problems might 

be excellent candidates for cryptosystems, because they cannot be solved in polynomial 

time by any known efficient techniques. Problems that are computationally more difficult 

than the problems in NP are not suitable for designing encryption algorithms, since the 

encryption and decryption must be fast(i.e. in polynomial time). Therefore, the endeavor 

of breaking any polynomial-time encryption algorithm must be in NP. They speculated 

that information could be encrypted in such a way that breaking the system would require 

an extensive and difficult computation. With a decryption key, however, a short-cut solu

tion would be possible.

Diffie and Heilman’s speculation brought cryptography from traditional number 

games into the massive computational complexity problems. It introduced the RSA cryp

tosystem and the knapsack cryptosystem to the public. Those related cryptographic 

research areas are blossoming. Researchers who work on cryptanalysis are burning their 

energy to discover efficient polynomial-time algorithms, so that those successfully
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developed systems are breakable.

The Discrete Logarithm Problem and Factorization Problem are two hot issues in 

cryptanalysis. If both could be solved efficiently, then most of the current cryptosystems 

and cryptographical protocols would not be secure any more. The following two 

instances provide a more detailed description:

Instance 1: discrete logarithm problem.

Given: qis a primitive root of a prime p {l,2,..,p-l}, and 

qk = s mod p.

Find: k.

Instance 2: factorization problem.

Given: Nis a large composite integer(over 200 digits), which is the 

result of multiplication of two approximately equal primes.

Find: p and q such that N = p x q .

The discrete logarithm problem has found great popularity in cryptography for mes

sage authentication, secrecy system, and protocol design. It is quite infeasible to compute 

the value k given p, q, and ^[PoH78], Exponential complexity is needed [Oda84] in solv

ing the discrete logarithm over finite fields. Similar discrete logarithm problems can be 

found in a finite field with prime characteristic p, GF(pk), or in the group of points on the 

elliptic curve[Kon87]. Note that it should be a genuine one-way function, instead of 

keeping an intrinsic trap-door secret. This is a contrast to the RSA[RSA78] trap-door 

one-way function.
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Regarding the factorization problem, if the composite number N is very large, then 

factoring N to be two equally sized prime numbers becomes computationally infeasible. 

So far, the best algorithms found for solving the factorization problem are of exponential 

order.

The knapsack problem was used as a backbone by Merkle and Hellman[MeH78] to 

design a public-key cryptosystem in 1978. Soon after that, it was broken. But, it built a 

bridge between NP-complete problems and cryptography. There is no known efficient 

polynomial time algorithm that is able to solve an arbitrary instance of the NP-complete 

problem. Breaking such a knapsack system does not mean we have found an efficient 

algorithm to solve all instances of such problems, because the knapsack cryptosystem 

was based on an easy knapsack problem for which the instance might be solved using a 

linear time algorithm. Despite the fact that the knapsack cryptosystem is insecure, it is 

still being used.

C. ADVANCED CRYPTOSYSTEM

Older encryption schemes using substitution ciphers and permutation ciphers were 

relatively straightforward. Cryptanalysts now have new tools for analyzing codes. Even 

taking character frequency counts is tedious and error-prone when done by hand, while it 

is fast, and reliable by computers. So, we will discuss four important encryption algo

rithms, which represent the state of the art of the encryption algorithm. All of these four 

algorithms require extensive computation. Interestingly, most of these algorithms were 

presented at about the same time.
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1. Secret-key Cryptosystem (DES), DES is based on an early proposal, Lucifer. It was 

developed by IBM to solve the growing needs for data security. This algorithm became 

known as the Data Encryption Standard, although its proper name is DEA(Data Encryp

tion Algorithm) in the U.S. and DEA1 in other countries. It was adopted by the National 

Bureau of Standards and has withstood all the attacks published in open literatures. DES 

is a one-key, secret-key, or symmetric system, in which both of the joined parties use the 

same key to encrypt and decrypt messages.

DES is a careful and complex combination of two fundamental encryption tech

niques, substitution and permutation. It splits a data block in half, scrambles each half 

independently, combines the key calculated via a key schedule algorithm with one half, 

and swaps the two halves. The process is repeated 16 times, using table lookups and sim

ple bit operations. The substitution parts are S boxes the only non-linear part of DES and 

the security of the cryptosystem depends on their constructions. Permutation is used to 

rearrange the output of the S boxes in order to produce a random effect. This depends on 

having as many S boxes as possible. The security of this standard depends on the secrecy 

of key instead of the encryption algorithm. The scheme can be implemented quite effi

ciently. Input to DES is divided into blocks of 64 bits, which are transformed using a

56-bit key (actually, the key length is 64 bits, however, parity bits on positions 8, 16....64

are discarded). The scheme is described as follows:

given

plaintext x = (x0, x , , . . . ,  x63),

ciphertext y = (y0, y i, • • •, y63)>
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key Jc (Jko, kj j •. •»̂ 55)*

define

DES : X —> y = , x),

where DES is the product of mappings

DES = /E-1 x r16 x • • • x l  x T, x /E,

and

7E is initial permutation,

T, is the mapping on the i-th round, 

<p is the interchange involution,

<t> ’• ( x 0, X i,  • • • ,  * 3 1 ,  ^ 3 2 ,  J^33> • • • * * 6 3 )  “ * (X & 1  X Z1 ' ■ ■ ’ > •*(>>■■'* -*3 l ) -

At the last iteration, the left and the right halves are not exchanged, instead the two halves 

are concatenated and input to the final permutation 7E_1. The algorithm can be used both 

to encrypt and decrypt. Figure 5 shows one specific round of the DES algorithm, where + 

is the exclusive-OR operation.
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Figure 5. One round iteration of DES

A short description of the DES algorithm appeared in [DiH79] and a complete 

description is readily available in [DaE77]. Nowadays, the consensus of cryptanalysis is 

that the key size is the weakness of DES. It could be cracked by a brute-force attack.
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Diffie and Heilman[DiH77] proposed a parallel architecture to exhaustively search the 

entire key space, which has a size of 256. It can be searched in about one day, but the cost 

of this architecture is over millions of dollars. Hellman[Hem80] also proposed a chosen- 

plaintext attack using a special purpose machine which also requires an impractical pre

processing time. Recently, Biham and Shamir[BiS90] published a chosen-plaintext attack 

on DES. They announced that DES with up to 15 iteration rounds could be cryptana- 

lyzed using a different procedure than an exhaustive search. This attack finds particular 

differences in plaintext pairs resulting in the difference of the corresponding ciphertext 

pairs. Thus, if one knows the probability of the possible keys, one is able to locate the 

most probable key.

2. Public-key Cryptosystem, Diffie and Hellman[DiH76] proposed a fantastic encryption 

system in 1976. In that paper, they proposed a revolutionary public-key system and also 

described two subtle definitions: First, a one-way is defined such that for every 

jc in the domain of /, f(x) is easy to compute, but it is computationally infeasible to find 

f~ \y ) .This function has been applied to design a secure computer-login procedure. Sec

ond, a trap-door one-way function f k is defined such that given the parameter k, it is easy 

to compute f k(jc) and /* 1(y), for all x and y  in the domain and range. Then, they pro

posed a key-exchange protocol eliminating the key distribution problem in secret-key 

cryptosystem. To break this protocol seems to be as hard as solving the discrete loga

rithm problem. But it has not been proven that breaking the system is equivalent to com

puting the discrete logarithm problem. The scenario of this protocol is as follows:

a. The numbers X  and P are known to each subscriber, where is a primitive root

ofP.
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b. Each subscriber i chooses a secret number S, e 1 ,2 ,.. . ,  -  1} and publishes

the number Yt-  Xs' mod P in the open domain or transmits to the intended 

subscriber j  over public channel.

c. While the subscriber j  receives Yh he raises the number to Thus, YtJ = X S(Sj 

is common to subscribers as well.

More concretely, the protocol employed by subscriber A and subscriber B is illus

trated in Figure 6.

A B

Sa Ya Sn
Ya = Xs A

IS
y b = XSbA

A B

V V$A ^  YA B
YAB~ Y B y a b  =

Figure 6. Key-exchange protocol
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An impersonation attack [RiS84] on this scheme makes use of the fact that the iden

tity of Y( is not assured. Assume that the interceptor C can control the communication 

channel between A and B. Upon receiving YA from A he sends Yc = Xsc to B. Identi

cally, he sends Ycto A instead of YB. Eventually, he will completely decrypt, modify, and 

replay messages through this channel (See Figure 7).

Ya

v Yc

Figure 7. An impersonation attack

With a public key system, each user would have a key that does not have to be kept 

secret. The public nature of the key would not inhibit the secrecy of the system. The sce

nario of public-key system is as follows:



29

Each joined user must have two keys; one public key for encryption and one 

secret key for decryption. There must be a relation between the public key and 

the secret key, so that the legal designer knowing the trapdoor of the relation 

could derive one key easily given the other key. Indeed, the user might publish 

the public key freely.

There are several conditions which have to be fulfilled so that a public key cryp

tosystem can work properly:

a. Calculation of the public key and secret key of each subscriber should be fin

ished in polynomial time.

b. Sender A, knowing the public key of receiver B, can encrypt a message sent to 

B in polynomial time.

c. Receiver B, using his/her secret key, can decrypt the received ciphertext in 

polynomial time.

d. Not knowing the trapdoor between the public key and the corresponding secret 

key, the attacker faces an intractable numerical problem or an infeasible com

putation.

e. The attacker faces an infeasible problem of trying to recover the message by 

viewing the ciphertext sent to some receiver and the public key of the receiver.

In general, conditions a, b, and c must belong to the class P, and conditions d and e 

must belong to either the NP-complete class or the NP-incomplete class. Actually, condi

tions b and e define a one-way function. This means the encryption transformation is easy, 

but recovering the message is infeasible, even if the public key and ciphertext are known.
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3. The RSA Cryptosystem. The RSA[RSA78] was introduced by three people, Ronald 

Rivest, Adi Shamir, and Leonard Adleman. They made the most spectacular contribution 

to public-key cryptography in 1978. It has remained secure, to date. The RSA system 

results from the number theory, and makes use of the fact that finding large(e.g. 200 dig

its) composite numbers is computationally easy. But, it is computationally infeasible to 

factor this composite number to be two prime numbers.

The RSA cryptosystem is a block cipher in which the plaintexts and ciphertexts are 

integers between 0 and N -  1 for some composite number, N. It resembles the exponen

tial key-exchange system[DiH76] using exponentiation in modular arithmetic for its 

encryption and decryption operations. Unlike that system, RSA must do its arithmetics 

not over prime numbers, but over composite ones. The knowledge of a plaintext M, a 

modulus N, and an exponent are sufficient for calculation of Me N. Exponentiation, 

however, is a one-way function with respect to the extraction of roots as well as loga

rithms. Depending on the characteristics of N, M, and e, it may be very difficult to invert.

RSA treats a plaintext block as an unsigned integer and operates with arithmetic 

mod N. Two keys, d and e, are used for decryption and encryption. Furthermore, these 

two keys are interchangeable. In the RSA system, a participant creates his own public 

and secret keys with the following scenario:

a. The receiver selects two large prime numbers at random, say, 100 digits each, p 

and q, and multiplies them together to obtain a composite modulus

b. The receiver suitably chooses a small odd encrypting exponent, e, that is rela

tively prime to 0(N) = (p -  1) x (q -  1). Using <p(N) the receiver can calcu- 

late[Knd81] a number das the multiplicative inverse of such that
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ex d s 1 mod <p(N), is uniquely defined.

c. The receiver publishes the pair K = N) as the public key and keep the 

secret parameter d as the secret key

For this scheme, plaintext, ciphertext, and two keys(public key and secret key) are 

in the set ZN = {0,1,...,//- 1}. The encryption of a message M associated with a public 

key K  is:

EK(M) = Me (2 .3 .3 .1) 

The decryption of a ciphertext C associated with a secret key k is:

Dk(C)=Cd (m o d  )

The encryption process can be carried out by anyone who knows the public key. But, 

only the genuine receiver, who knows the factors of can reverse the process and 

decrypt. Because of symmetry in modular arithmetic, encryption and decryption are 

mutual inverses and commutative.

The quantity of fi(N) plays a critical role in Euler’s theorem, which says that for any 

number a that is invertible modulo N

a *(.N) s  j ^

or more generally

amN) = 1 (mod N).

When the cryptogram Me mod N  is raised to the power d, the result is

(Me)d = Med = = M (mod N),

(2.3.33)

(2.3.3.4)

(2.3.3.5)

the original message M.
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We know that the strength of the exponential key-exchange protocol is not known to 

be equivalent to the difficulty of extracting discrete logarithms. Similarly, the strength of 

RSA has not been proven equivalent to factoring. There might be some method of taking 

the eth root of Me without calculating d and thus breaking RSA without factoring. 

Rabin[Ram79] produced a variant of RSA, subsequently improved by William[Wih80], 

that is equivalent to factorization. Diffie and Rivest have observed [Dif82] the precise 

equivalence of Rabin’s.

4. El Gamal Cryptosystem. El Gamal[EGt85] proposed a cryptosystem which was a vari

ant of the key-exchange protocol of Diffie and Heilman. The general concept is given a 

generator g of cyclic group G„ with order s, where s is in 0(2"), such that group elements 

can be represented as /i-bit strings. The sender chooses a secret key k { uniformly dis

tributed in [0.. n — 1) and the receiver’s public key is y such that the encryption E 

is

E(w) = (£ * ', / ' + = (cj,c2), (2.3.4.1)

and the decryption D is

D(C],c2) = ckS + c2,(2.3.4.2)

where + represents exclusive-OR which may be replaced by any invertible operation.

To attack this system is as hard as to break the Diffie and Heilman’s key-exchange 

protocol. Note that the secret key is never used more than once in order to randomize 

the encryption process. The modulus is about the same size as the RSA’s, thus the cipher- 

text is double the size of the plaintext.
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5. Knapsack Cryptosystem. Merkle and Hellman[MeH78] proposed an interesting knap

sack cryptosystem based on a known knapsack problem which belongs to the NP- 

complete class. They built trapdoors into the knapsack one-way function to produce the 

trap-door knapsack public-key cryptosystem. The general idea of knapsack system is 

transforming an easy, superincreasing, knapsack problem(in the special case where the 

components are 1,2, 4, 8, etc., this is the elementary operation of binary decomposition), 

solved at linear time into a general knapsack problem.

Given a knapsack vector of integers W = (viq, w2, • • •, w„), it is easy to add up the 

elements of any specified subvector. Presented with an integer S, however, it is not easy 

to find a subvector of W whose elements sum up to S, even if such a subvector is known 

to exist. This knapsack problem is well known in combinatorics and is believed to be 

extremely difficult in general. It belongs to the class of NP-complete problems, problems 

thought not solvable in polynomial time on any deterministic algorithms.

Merkle identified the knapsack problem as a theoretically attractive basis for a one

way function. The knapsack vector W can be used to encrypt an n-bit message 

X = (jcj, x2, • • •, x n), X(e {0, 1}, by taking the dot product W as the ciphertext.

This process is easy and simply requires n additions. Inverting the function by finding a 

binary vector X  such that WX = S solves the knapsack problem. It is believed to be com

putationally infeasible if W is randomly selected. Despite this difficulty in general, many 

cases of the knapsack problems are quite easy. Merkle contrived to build a trapdoor into 

the knapsack one-way function by starting with a simple knapsack vector and converting 

it into a more complex form[MeH78]. The scenario of the system is as follows:
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a. The participator first chooses the initial condition which is a sequence of super-

increasing integers W = , w2, • • •, w„), that is £  w/ < where 2 < j
i= 1

b. The participator transforms the superincreasing vector into an general problem 

by determining a suitable field Zm and an integer e Z = {0, 1, 2,..,m-l},
n

where m is randomly provided such that m > £  w,.
(=1

c. According to the following congruences, k, = w, x t(mod m), the vector

K = {&,,• • *, k„]has no superincreasing property. Thus, K is the public key 

and (W, m, t) is the secret key

d. An intended sender sends an encrypted message which has been computed by

« , 
C = £  fc, x m,- to a legal receiver. The receiver decrypts it by computing t

i=i

and M' = C x f 1, such that the receiver uses the secret key W and M' to obtain 

the genuine message M.

From a geometric perspective, the knapsack cryptosystem is based on the intersec

tion of two n dimensional planes, shown in Figure 8. The plaintexts lie along the inter

secting pencil. If the solution exists, it must be a point on that line consisting of all inte

ger coordinations and unique as well.
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Figure 8. Graphical interpretation of knapsack cryptosystem

This process can be iterated to produce a sequence of knapsack vectors with more 

and more difficult knapsack problems by using transformations (/,, mi), m2), etc. 

The overall transformation is not, in general, equivalent to any single (r, m) transforma

tion. The trap-door knapsack system is not designed for digital signature. This does not 

interfere with the use of the system for sending private messages, but requires special 

adaptation for signature applications.

Nineteen eighty-two, was an exciting year for public-key cryptanalysis. In March, 

Shamir sent out a research announcement: he had broken the single iteration Merkle-
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Heilman knapsack system[Sha84]. Shamir had learned how to take a public knapsack 

vector and discover t' and m' that would convert it back into a superincreasing secret 

knapsack vector, not necessarily the same one that the originator had used, but the one 

that would suffice for decrypting messages encrypted with the public knapsack vector. 

The idea behind the attack is to consider the transformation of the easy knapsack problem 

(W, t, m) into the hard knapsack problem (K, C, m),

K = t x W  ( m). (2.3.5.1)

From equation (2.3.5.1), there exists integers y,, y2,..., yn such that

‘fc, -  y,rn = wh (2.3.5.2)

Therefore,

[ \ y±= w,
m ki mkj

(2.3.5.3)

yi
(2.3.5.4)

Thus

( yi y<t+\ ,\ ? j ‘ ‘» /
y\ ’ yi ’ >i

(2.3.5.5)

is a simultaneous diophantine approximation to the vector

(2.3.5.6)

for d >2. Once the y,’s are found, it is easy to break the system. Shamir’s attack is based 

on the assumption that displaying a good approximation might be unique and could be 

obtained by an algorithm[Leh83] to solve simultaneous diophantine approximations.
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Many of the crucial observations about the weakness of the basic Merkle-Hellman 

system had been made earlier by Desmedt[DGo84]. Finally, the era of the knapsack sys

tem was ended by Brickell[Bre84][Bre85][Bre88], who invented a polynomial time algo

rithm allowing the secret key to be created from the public key. Although the knapsack 

system has been broken, its temporary success encouraged researchers to investigate 

other NP-complete problems for other possible encryption schemes.

6. The McEliece Coding Scheme. Within a short time, McEliece’s[Mcr78] proposed 

another public-key system. McEliece’s system makes use of the existence of a class of 

eiTor-correcting codes, the Goppa codes, for which a fast decoding algorithm is known. 

His idea was to construct a Goppa code and disguise it as a general linear code, for which 

the decoding problem is NP-complete. There is a strong parallel with the trapdoor knap

sack system in which a superincreasing knapsack vector, with knapsack problem which is 

simple to solve, is disguised as a general knapsack vector whose knapsack problem is 

NP-complete.

In a knapsack system, the secret key consists of a superincreasing knapsack vector v, 

together with the multiplier w and the modulus m that disguise it. In McEliece’s system, 

the secret key consists of the ( kx n) generator matrix G for a Goppa code together with a 

(k x k) nonsingular scrambling matrix S, and a (n x permutation matrix P that disguise 

it. The public-key appears as the encoding matrix G' = SGP of an arbitrary linear code, 

for which a fast algorithm for error-correcting is not known.

a. To encrypt a k-bit data block X into a n-bit message Y, the sender multiplies it 

by the receiver’s public encoding matrix G', then adds a locally generated n-bit 

noise block e of weight t.
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b. To decrypt, the receiver multiplies the received message by ', decodes 

YP~] = (XS)G + eP~] to get a Goppa code then multiplies this by to 

recover the sender’s data block X.

McEliece’s system has never achieved wide acceptance and has probably never even 

been considered for implementation for any real application. This may be due to the large 

public key, requiring in the order of a million bits. Or, it may be because the McEliece’s 

system bears a structural similarity to knapsack systems which can be broken. Whereas, 

cryptographic researchers are still trying to improve the McEliece’s system, because of its 

error-correcting feature. Adams[AdM89] shows that carefully choosing parameters k and 

t, the dimension of code and the maximum correcting errors, will increase the cryptanaly

sis’s endeavor and decrease its data expansion.

With this article, Adams demonstrates the optimal values of t is 37, instead of 50, so 

that the work factor of attack is about 284 and the dimension k increases from 524 to 654. 

Thus, the data expansion is reduced. However, Korzhik and Turkin[KoT91] proposed an 

approach to attack this well-known algebraic coding system, that is based on iterative 

optimization algorithm[KoT91]. This algorithm guarantees correction of a linear code 

with at most t errors. Their experiment shows that a (1024,654) BCH code with 65 

can be attacked within 60 hours on personal computers.

7. Cryptanalysis of RSA Cryptosystem. Ever since RSA was published, researchers have 

tried to break it. They are trying to solve the associated two hard problems:

a. Factoring large numbers: if the modulus N  can be factored, then the secret key 

would be derived from the public key.
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b. Discrete logarithm problem: since the public key e and the ciphertext C are 

known(i.e. Me = C ( modN)), recovering the message M becomes a feasible 

attempt. On the other hand, determining if a large number is prime is also a 

related work. But RSA has resisted various kinds of attacks.

Many papers provide comprehensive understanding on factoring prob- 

lems'[Leh86][Leh87][Mop87][MoS90][Pom84], and on discrete logarithm prob- 

lems[Cod84][Oda84][LaO90]. Pomerance[Pom84] proposed the quadratic sieve factor

ing algorithm, which has been applied with parallel techniques in order to break RSA. 

The idea is if N  is to be factored and integers r and s can be found so that

r2 = ,y2 (m N)(2.3.7.1)

then

(r + s)(r -  s) = 0 ( N). (23.7.2)

If either

N> gcd (N, r + s) or N> gcd ( , r - s )  (23.7.3) 

then a factor of N  is determined.

To find such pairs (r, s), we start with a randomly selected t e [2 -  1] and define

h = t2( modN). The number u is defined as a quadratic residue of It might happen that 

u is a square, but in general, this will not happen. So that we choose different values tt 

and compute ut = tf ( modN). By multiplying some of we obtain a perfect square, so

that the quadratic sieve algorithm can be employed.

An interesting fact is that the best algorithm for solving the discrete logarithm prob

lem under modulus p and the best algorithm for factoring N require about the same
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amount of computations as p« N .Most of the fast factoring algorithms have been shown 

to run in time

exp [(1 + o(l))((log n)(log log n))1/2],

as n becomes large; then it is of interest in cryptography. One of the fascinating ques

tions about RSA is; is it as secure as factoring? There are no known attacks on RSA that 

are faster than factoring the modulus.

As mentioned above, RSA requires two very large prime numbers, p and to con

struct its moduli. How to test primality becomes a critical issue. The prime number theo-

rem states that the approximation -—  specifies accurate estimate of n{n), the number of
In n

primes less than or equal to n.

For instance, to find a 100-digit prime number we require to test approximately 

In 10100 = 230 randomly chosen 100-digit numbers for primality. Actually, the numbers 

can be cut into half by considering odd integers only. Recall Fermat’s theorem, it says if p 

is a prime then

= 1 ( p), (2.3.7.4)

for every a relatively prime to p. Conversely, if a ^ 1 * 1 ( p) for any a then p must 

be composite. Note that if the equation (2.3.7.4) is satisfied with arbitrary number a, then 

p is said to be pseudoprime to base a and a is a witness to the compositeness of n. In par

ticular, there exists such a integer n, the so-called carmichael number, and equation 

(2.3.7.4) holds for all a relatively prime to n, so it is not sufficient to merely use Fermat’s 

theorem for primality test. Thus, Rabin[Rab80] proposed a probabilistic algorithm for 

testing primality:
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a. Randomly choose s integers a t, a2,..., as with 1 <

b. Test if the equation (23.7.4) holds,

1) . if it does not hold for any a, then outputs <COMPOSITE NUMBER>,

2) . else declares nto be a prime number with error probability at most ^ .

8. Key Management. Key management is a major problem in networks protected by 

cryptographic technique. For example, regarding the secret-key system, if there are n sub

scribers in the network, one will need n(n -  1 )/2 different secret keys for every possible 

pair of subscribers. This is an impractical situation in a large network. A popular solution 

to this problem is to avoid the assumption that the two parties share a secret key. They 

use an entity, called Key Distribution Center(KDC), trusted by all network processors. 

They share a key with each subscriber and use these in a process to provide additional 

keys to subscribers as needed.

a. KDC delivers a randomly chosen key to subscriber i in the system, for 

i — 1,2,. . .  y n.

b. When subscriber /' wishes to communicate securely with subscriber he sends 

a request to KDC.

c. KDC randomly generates a new session key and encrypts it under k,- and kj. 

Then KDC sends each cryptogram to subscriber i and subscriber j.

d. Subscriber iand j  decrypt the cryptograms they have just received and thereby 

obtain the session key ky ,which is to be used for encryption by two sub

scribers.
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As the protocol described, every subscriber shares a secret key with KDC and can 

only authenticate messages explicitly meant to him. In a public-key network, each sub

scriber has the public key of KDC which is a trusted distributor of each subscriber’s pub

lic key. Then the key distribution protocol becomes:

a. each subscriber has to register his/her public key to

b. subscriber isends a request(communicating to subscriber to KDC, and then 

KDC encrypts / s public key under ADC’s secret key. This cryptogram, so- 

called certificate, is sent to subscriber

Now the subscriber ibelieves the public-key’s authentication and is happy to use it. 

These protocols are called three party protocols, and have been studied extensively 

in[BBF83] [BMR90] [DeS81 ].

D. AUTHENTICATION AND DIGITAL SIGNATURE

Cryptography has two main applications over data security, secrecy, and 

user/message authentication. Securely authenticated exchange is essential for network 

security. Authentication issues become crucial due to networks spreading worldwide 

with users accessing via remote terminals. In general, messages are transmitted via inse

cure channels so that the following issues might happen; modifying, reusing, and block

ing the contents of messages. The receiver must determine that the messages comes from 

the genuine sender and that the contents of the messages have been not altered.
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1. Authentication. The extensive use of open networks and distributed systems poses 

increasing threats to the security of data communications involving end-users and net

work components. Authentication is nothing more than the determination by the autho

rized receiver, or perhaps the trusted third party, that a particular message was sent by the 

authorized sender under the existing authentication protocol, which has not been altered 

or substituted for.

The essential feature in the authentication scheme[BsM90] is that authentication 

depends on the measure of redundant information inherently present in the structure of 

the message. In other words, authentication is concerned with schemes that do not accept 

incorrect messages, without the legal party recording the message. This captures the fact 

that the adversary cannot fool one side to accept a message without the other side being 

involved. On the other hand, coding theory is concerned with codes that introduce redun

dancy in such a way, that the most likely alternations to the encoded messages are in 

some sense close to the codeword they derive from. From cryptographic point of view, 

there are two different implementations.

a. Secret-key cryptosystem: generally speaking, a secret-key system delivers 

secrecy and authentication. For example, using the cipher-block chaining 

mode of DES it produces a 64-bit message authentication code(MAC) append

ing to the message to be authenticated.

b. Public-key cryptosystem: authentication scheme is dominated by the sender, 

that is, the sender executes C = Dk(M) and the receiver applies the sender’s 

public key to authenticate the message. So, the public-key system delivers 

either secrecy or authentication. If you want to have both, you must use the 

public-key system twice, one for secrecy and the other for authentication.
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It is not difficult to design authentication protocols, but many of them are not secure. 

For instance, Figure 9 demonstrates a trivial attack to the secret-key authentication 

scheme. Here, X is randomly generated by party A, and E(X) is the value of X encrypted 

by E. Attacker C intercepts the first flow sent by A to B. He wishes to pretend to be B, 

but he cannot decrypt E(X) directly. Whereas, the attacker takes advantage of A to 

accomplish this purpose. The attacker C, starts a second flow with A, pretending to be 

party B starting this communication. When this protocol is finished by the forth flow, A 

does communicate with attacker C, instead of party B.

( 2 ) ____ 5^—— < D CD

( 3 > ____g”
— © CD

O ---------— —< D CD

G > --------— — C D CD
Figure 9. An impersonation attack on authentication scheme.

The above protocol is defined as one-way authentication. Two-party authentication 

protocols are designed for correctly authenticating messages exchanged between two par

ties in a communication network. The basic idea behind it is to authenticate a message 

from the sender. We use a challenge previously sent by the receiver. Usually, the sender
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combines the challenge with the authenticated message, and the receiver verifies such a 

combination. In one-way authentication, it is sufficient that one party marks acceptance; 

in the two-way authentication we require both parties to mark acceptance.

Bird[BJM92] proposed a new two-way authenticated protocol which is provably 

secure, efficient, and practical. The built-in block of such a protocol is based on the CBC- 

mode of the DES cryptosystem. With their proposition, they indicate that the current 

authentication protocols are breakable, such as ISO authentication standard, and also pre

sent their model’s secure strength. They have tried to identify and avoid the security 

weaknesses of other protocols. Each response to a given challenge is encrypted, so that 

the attacker cannot pretend to be a legal party by directly relaying each response. Their 

model uses only three exchanged messages.

2. Digital Signature, With the rapid expansion of computer application and data commu

nication in networks, the paperless electronic offices have been predicted. Digital signa

tures will replace hand written signatures to sign documents, contracts, and electronic 

messages of all kinds. In general, a digital signature is a protocol that produces the same 

effect as a real signature. It is a mark that only the sender can make, but other people can 

easily verify that it belongs to the sender. Just like a real signature, digital signatures 

must meet the following conditions; unique, impossible to deny, easy to verify, and not 

replayable. Indeed, these methods can be divided into two classes:

a. Direct signature authentication performed by receivers only.

b. Indirect signature authentication performed by the third notarized party.
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The characteristic attribute of a digital signature must depend on the message and a 

unique secret number of the signer. From a practical perspective, the signature should not 

be the same size as the message. Therefore, a compression function must be applied at 

first. Generally, compression methods are similar to hash functions, that is, a compression 

function should be designed in such a way that there are no two identical results for two 

different messages.

3. Secret-Key Digital Signature. With a secret-key encryption system, the secrecy of the 

key guarantees the authenticity of the messages, as well as its secrecy. However, the 

secret-key encryption does not prevent impersonation or substitution attack. The receiver 

can create an identical message sent by the sender, since it also has access to the key. 

With the secret-key encryption such as DES, an arbiter is needed to prevent counterfeit

ing. Here is an outline of the digital signature protocol and is shown in Figure 10:

a. The sender has the ks in common with the arbiter, and the receiver has the key 

kr in common with the arbiter.

b. The sender first sends Eks(M) to the arbiter, and then the arbiter decrypts M 

using ks.

c. The arbiter sends Ekr{M, IDS, Eks{M)) to the receiver. The receiver decrypts it 

and knows the message coming from the sender.

d. The receiver cannot decrypt Eks(M) since it is encrypted by ks. However, the 

receiver files a copy of M and Eks(M) in case there is a future dispute.

e. If the sender denies the message, then the receiver produces M and Eks(M) to 

the arbiter who decrypts Eki(M) and certifies that only the sender could have 

produced Eks(M).
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Arbiter

Figure 10. Secret-key digital signature

4. Public-Key Digital Signature. Public-key encryption systems are ideally suited to cre

ate a digital signature. The sender should be able to use the secret key to sign a document, 

whereas all users can verify the authenticity of the signature by his public key. Under 

RSA, the sender wants to sign message M:

a. it computes a compression function CF(M),

b. SG(M) = Da(CF(M)), where SG represents digital signature,

c. forwards (M, SG(M '))to the receiver.
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The receiver verifies the signature by:

a. applying the public key of the sender, CF{M) = EA(SG(M)),

b. computing the compression function CF'(A/)and then accepting the signature 

if CF'(M) = CF(M).

Under the scheme of El Gamal[EGt85], the signature for is the pair ( , w), w e 

[0, p  -1 ] . Each subscriber selects two secret numbers, s, t, then compute = p,

and u = q1 mod p. Next he puts a into a public directory, so that all users are able to 

access it. Now the signature («, w) for m is satisfied

m = s x  u + 1 x w  mod (p -  l). (2.4.4.1)

While the verification procedure is checking if

qm = au x  uw.(24.4.2)

Note that the signature scheme is as secure as the discrete logarithm problem, and 

the signature is still double the size of the document.

5. Shared Digital Signature. For the sake of security, a document would be signed by t 

individuals rather than one person. An organization or a company may set up its policy to 

choose n individuals, and permit any subset consisting of persons to sign docu

ments. Desmodt and Frankel[DFr90] proposed the shared generation of the RSA signa

ture. This is better than letting each individual create its own signature. This scheme 

lessens communication overheads and does not need a large public-key directory. Fur

thermore, there is no communication among individuals or shareholders. The secret key 

is not revealed to each individual, and nobody can perform a substitution attack. The
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scheme is based on Lagrange interpolation polynomial over integers. The RSA signature 

scheme is SG = md (i modn). A dealer distributes a partial result SG, = mSi ( n) to 

each individual. Then any t individuals can create h x SG,.

Each share st is generated by a polynomial f(x) with degree M , such that 

/(0 ) = d -  1 mod <p(n). Using Lagrange interpolation

n x ) = i y , x ( h ^ - ) -  (2.4.5.i)
1=1 j* i  ■ */ X j

Thus, the share st of each user iis

*i = yt x [ h ( — ^ )1 . (2.4.5.2)
j* i

6. Undeniable Digital Signature. The concept of undeniable signature was proposed by 

Chaum and van Antwerpen[Cdv90]. Such a protocol is to guarantee the recipient of this 

commitment should be able to ensure that the issuer cannot deny it and the recipient 

should be unable to replay the commitment to anyone else without the issuer’s coopera

tion. The validity of an undeniable signature is verified by the recipient establishing a 

challenge and response protocol with the signer. If the test is successful, the probability of 

the signature being valid is high. Otherwise, either the signer denies a valid signature 

later or the signature is invalid.

The security assumption of undeniable signatures is based on the difficulty of com

puting discrete logarithms in a cyclic group of prime order. In this scheme, the public 

keys are g and gx, where gis a generator of the group and x  is the secret key. Given an 

arbitrary message m, the signature has the form mx.
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E. CRYPTOGRAPHIC PROTOCOL

1. Zero-knowledge Protocol. Zero-knowledge protocol is a new cryptographic research 

area. It is an interactive-proof system. The verifier just believes that the assertion claimed 

is true and makes no effect to test his assertion. It is a robust prover against attempts of 

verifier to extract information by means of interaction. Goldwasser, Micali, and Rack- 

off[GMR85] make this notion precise. They call an interactive-proof system for language 

L zero-knowledge, for all xe L. The verifier can compute, after participating in the inter

action with the prover, via two probabilistic interactive machines computing in polyno

mial time on the input x. Initially, both machines access to a common input tape. Each 

machine has its own tapes and communication tapes, in addition to the common input 

tape. Moreover, one machine is not allowed to monitor the internal computation of the 

other or to read the other’s coin tosses, current states, and programs. The verifier’s output 

is either accepted or rejected. We require the prover and the verifier to follow the prede

terminated protocol, which succeeds in two conditions, completeness and soundness.

By far, the most important result about zero-knowledge was given by Goldrach, 

Micali, and Wigderson[GMW86]. They showed the following result:

I f  there exists polynomial-time indistinguishable encryption scheme then every

NP language has a computational zero-knowledge interactive proof system.

We exemplify the zero-knowledge proof systems for graph isomorphism. The fact 

that graph isomorphism has an efficient proof system, is because it is in NP. In the follow

ing protocol, the prover needs a probabilistic polynomial-time machine, an auxiliary 

input, and the isomorphism between the input graphs. Let <f> denote the isomorphism
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between G,(V, £ j) and G2(V, E2). The following steps executed for n times, each time 

we use random coin tosses:

a. The prover randomly generates an isomorphism H of G, and sends it to veri

fier. This is done by an one way permutation n such that (7r(x), it(y) ) € edges 

ofH  if and only if Ot,y) e is,.

b. The verifier chooses a e {1,2} at random and sends it to the prover.

c. The prover justifies if a  = 1 then sends to the verifier, else sends

d. If this one way permutation is valid, then it goes to a., otherwise this protocol 

is stopped.

If the verifier iterates n times successfully, then he accepts.

This proof is zero-knowledge since whatever the verifier receives is useless, as the 

prover can generate random isomorphic copies of the input graphs by himself. Since the 

graph 3-coloring problem has been proved by this zero-knowledge protocol, we recog

nize that all languages in NP have zero-knowledge proof systems assuming the existence 

of secure encryption scheme. Reviewing this setting, cryptography is a much wider and 

vital subject than the classical setting.

2. Multi-party Protocol. In society, communications is group-oriented. That is, it is the 

communications between an organization and another. Desmedt[Dey88] introduced the 

group-oriented cryptosystem as a mean of sending messages to a group of n people, so 

that only certain subsets of these n people are able to decrypt the message. He introduced 

two different groups. One is called known, if the sender has to know each member’s
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public key. The other is anonymous, if there is a public key independent of the members. 

For both types of groups, the decipherment needs the cooperation of all the members.

This research topic has been further studied by Desmedt and Frankel[DFr90], 

Frankel[Fry90], and Hwang[Hwt91]. Desmedt and Frankel[DFr90] designed a system 

where any k honest members can decrypt the received ciphertexts. This system is 

assumed to have an anonymous group and trusted parties. Meanwhile, Frankel’s protocol 

does not match its name(for large group oriented networks). His proposal is based on the 

assumption of trusted clerks and tamper-proof modulars. In a large network, these 

assumptions are impractical and inefficient. However, Hwang proposed a protocol base 

on the Diffie and Heilman’s key-exchange protocol and Shamir’s secret sharing 

scheme[Sha79]. The sender has more authority to decide the messages destination with

out the cooperation of the receiving group. The most interesting property is that his sys

tem does not need the trusted party at all.

Shamir[Sha79] introduced a (/, n) threshold scheme with + 1. It permits a

secret value to be shared by a set of n participants(See Figure 11).
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Arbitrary Subset of n Person At The Receiver Side 

To Recover The Secret s

Figure 11. Shamir’s secret sharing scheme.

Even when at most t out of n participants are malicious, the secret value can still be 

recovered. The general concept is based on a polynomial interpolation. Given a polyno

mial fix) with degree at most t, / (  x) = a0 + a\X + ■ • • + where /(0 ) = s, the secret

value. A distinguished participant among them, a so-called dealer, evaluates shares of s 

by computing

/ ( l )  = *i, /(2 ) = s2,. . ■, f ( i )  = su. ..,  f (n)  = 

and distributes them to each participant’s identification
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Given any subset of s(, which size is f+1, the polynomial can be reconstructed by 

interpolation, and then the secret is s = /(0), thus s can be used as secret communication 

and user authentication. In practical situations, some participants might be traitors and 

might contribute bad shares as their shares of secret. This will prevent the correctness of 

computation for honest participants. Regarding this, a verifiable secret sharing has been 

proposed by Chaum, Crepeau, and Damgard[ChC88]. Loosely speaking, a verifiable 

secret sharing is a n+1 -party protocol, through which a sender can distribute to the 

receivers pieces of a secret s recognizable through an interpolation polynomial f(x). A 

verifiable secret sharing consists of two phases, commitment and computation. For the 

first phase, the dealer convinced that the secret value has been committed by all honest 

participants. And later on, all honest participants will know the secret value. For the sec

ond phase, the value is recovered by the cooperation of the honest majority.

The notion of verifiable secret sharing differs from Shamir’s secret sharing, in that 

the secret is recognizable and the piece should be verifiable, as authentic. It has been used 

as the building block for protocols with the honest majority[BMR90][RaB89]. Moreover, 

improvements in efficiency and fault-tolerance are also made.
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III. THE SPLINE CRYPTOSYSTEM

A. PRELIMINARY

The feasibility of implementing the interpolating cubic spline function as the trans

formation for encipherment and decipherment[HqH92] has been demonstrated. The 

encryption method can be viewed as computing a transposed polynomial. The main char

acteristic of the spline cryptosystem is that the domain and range of encryption are 

defined over real numbers, instead of traditional integer numbers. In addition, the spline 

cryptosystem can be implemented in terms of simple matrix computations. Furthermore, 

an advanced structure of the spline cryptosystem, the random spline cryptosystem, will be 

introduced in order to resist more sophisticated attacks.

Generally, cryptography is defined over finite fields. Such as the RSA system, the 

encryption process and the decryption process are under GF(N), where is a large com

posite number. A new attempt is to construct a cryptosystem based on real number 

assumption. It seems to be a maxim that the real numbers are not allowed to be applied to 

any known cryptosystem. In fact, through theoretical verification and experimental 

results of executing our proposed cryptosystem, the total error (double precision) gener

ated by this system is nearly zero (<10-7) and negligibly small. In order to construct such 

a system, a precise, well-behaved cubic spline function is introduced as the fundamental 

building block of this new cryptosystem, and then it has been named as the spline cryp

tosystem. The first appearance of the cryptosystem is linear, and it has been modified into 

non-linear transformation via substitution and permutation, thus making it more capable 

of resisting the cryptoanalysts’ attacks.
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The spline cryptosystem has two major achievements. First, the system is defined 

over real numbers. Secondly, without providing precise boundary conditions, recovering 

messages from corresponding cryptogram is unsuccessful. Moreover, the cryptosystem 

can be implemented on any current personal computer via simple encryption and decryp

tion processes.

This chapter is organized as follows. The second section introduces the elementary 

mathematical background of cubic splines. In the third section, the encryption transfor

mation and the decryption transformation are built up. In the fourth section the probably 

generated error is analyzed. A concrete example is demonstrated in the fifth section. 

Finally, in the sixth section, the security of spline cryptosystem is discussed.

B. DEFINITION AND NOTATION

We consider the interval [0, 1] and subdivide it by a mesh of points corresponding to 

the location of the nodes:

5: 0 = x0 < Xi < . .  .< jc„+1 = 1. (3.2.1)

The cubic spline[AdR76] S(jc) within 5, or the spline on the S, is a function which is con

tinuous together with its first and second derivatives on [0, 1] and coincides with a cubic 

polynomial in each subinterval [x^i, Xj ]  (j = 1,2, • • • ,n  + 1). According to the funda

mental theory of spline[Scl81], for arbitrary real number (1 < < 4) representing the 

required boundary condition, and m.j(1 < j  <n) representing the value at each node, the 

spline S(x) on S is uniquely defined by the following boundary conditions,

S'(0) =  fcj 5(0) =  *2,5(1) =  *3 S '( l)  =  /t4, (3.2.2)
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and the value at each node is defined as

S(xj) = nij (1 < n). (3.2.3)

Now only the case of equally-spaced mesh is considered, i.e.

8 : Xj = j x  h(0 < j  < n+ 1), (3.2.4)

where h = l/(n + 1) is the length of the subinterval. In this case, the spline S(x) on 8 can 

be represented as

71+2
S(x) = X  dj x 5(0 and r = (^ -  x; )//i, (0 < jc < 1), (3.2.5)

where, Xy = j  x  h, (-1 < j  <n + 2).

5 (0  is the normalized cubic B-spline represented in equation (3.2.6) and shown in 

Figure 12:

5(0  =

f

-lt l3/6 + Irl2 -  2lrl + 4/3 
lrl3/2 -  Irl2 + 2/3 

0

if
if
otherwise,

l < Irl < 2 
0 < Irl < 1 (3.2.6)

and the constant d j  (J =  — 1 ,0 , • • •, n +  2) is said to be a control point.
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B ( t )

Figure 12. Normalized cubic B-spline curve.

Substituting (3.2.5) into (3.2.2) and (3.2.3) yields the algebra system:

P x [cL,, • • •, dn+2]T =

The matrix form of P is

B0(x0) fl'lUo) • • • ■ Bn+2(x0) 1
B-\(Xq) B0(x0) Bi(x0) . . • • Bn+2(x0)

B-\(*i) Bo(X]) #i(*i) . . ■ ■ Bn+

B-\ (*„) Bo(xn) B M  . . • • Bn+)
B-i(xn+l 5o(*«+i) B\C-̂ n+l) ■ • • • B„+2(

B_}(xn+]) 5oUn+l) B\(xn+i) . . • • Bn+2(xn+l)

(3.2.7)

where Bj(x) = B((x -  xj)/h) and Pis a (n + 4) x (n + 4) matrix. For example, = 3:
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P =

'  -1 1
0 0 0 0 0

~2h 2 h
1 2 1

00 0 0
6 3 6

1 2 1
0 00 0

6 3 6
1 2 1

0 00 0
6 3 6

1 2 1
0 0 0 0

6 3 6
1 2 1

0 0 0 0
6 3 6

-1 1
0 0 0 0 0

2h 2 h

Let be the middle point of subinterval [jcy_j, X = 1,2, • • •, and Cj = S(£; ) be the 

ciphertext. Then from (3.2.5) we have

Qx[d- i .........dn+2]T = [kCj, • • •, cn, /c3, (3.2.8)

The matrix form of Q is

B -i ( * o ) # o ( * o ) B\{Xo ) ■ • • 0 )

5 - i ( * o ) B o ( * o ) B j ( X q ) .  .  . B n+2( x 0 )

B0(ti ) • ■ ■ B n+2 ( ^ i )

B - i i U 5 o ( ^ n ) £ , ( £ » )  • • • • Bn̂ n)
B -\(x n+]) £ o ( * „ + . ) 5 i ( x „ + 1 )  . ■ ■ ■ B„+2(xn+])

_ B l , ( x n + 1 ) B \(xn+}) . • ■ ■ B n+2(xn+l) _

where Bj(x ) = B((x -  Xj)/h ) and Q is a (n + 4) x (n + 4) matrix. For example, = 3:
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-1 1
0 0 0 0 0

lit 2h
1 2 1

0 00 0
6 3 6
1 23 23 1

0 0 0
48 48 48 48
0

1 23 23 1
0 0- __

48 48 48 48
0

1 23 23 1
00 __ __

48 48 48 48
1 2 1

0 0 0 0 —
6 3 6

-1
0

1
0 0 0 0 2h 2h

Both matrixes P and Q, are tridiagonal and nonsingular.

The following section demonstrates the processes of applying the interpolating 

cubic spline to the encryption transformation and the decryption transformation.

C. ENCRYPTION AND DECRYPTION

For our scenario, suppose that A and B (also known as Alice and Bob) are two sub

scribers of the spline cryptosystem, and the encryption algorithm and the decryption algo

rithm are represented as Ek and Dk. Obviously, this spline cryptosystem is a symmetric 

cryptosystem. Therefore, both subscribers use the same key in order to establish a secure 

communication channel. The security of the system relies on the concealment of the key 

which is generated by a key-exchange protocol. According to the Diffie and Heilman 

scheme[DiH76], the common session key is kAB.
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Now the system will be outlined as follows. The spline cryptosystem encrypts n- 

character message with kAB. Meanwhile, there exist seven working subkeys, , 

k4, k5, k6, and klt which are derived from kAB. These subkeys provide a secure environ

ment for our system and they are generated as follows:

k] = kAB mod 256, is one-byte length,

k2 = LCS(k]) (Left Circular Shift by one bit), is one-byte length, 

k3 = LCS(k2) (Left Circular Shift by one bit), is one-byte length, 

k4 = LCS(k3) (Left Circular Shift by one bit), is one-byte length,

k5 = LCS(k4) (Left Circular Shift by one bit), is one-byte length,

k6 = LCS(ks) (Left Circular Shift by one bit), is one-byte length,

kj = LCS(k6) (Left Circular Shift by one bit), is one-byte length.

k \t k2, k3, and k4 are four boundary conditions, k5 mod 10 is n, the number of characters 

in each block. k6, k7 are used for scrambling the original cryptogram to achieve the non

linearity of the system.

Next, the encryption algorithm and the decryption algorithm are introduced. A tries 

to send a n-character (mj, m2, ..., mn) message to B by executing Ek with the following 

two steps:

step 1 : P x d  =[ki,k 2,m ], m2, • • •, k4] ,

step 2:Q x dT = [*,, k2,c,, c2, • • •,

where m, is the corresponding plaintext value. With the first step, we obtain the vector
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dT = d0,..., *fn+2] where matrix P is specifically defined. The second step results in 

a ciphertext vector. The first two components, as well as the last two components of the 

ciphertext vector, are given by boundary conditions, and the remaining members, cx, c2, 

..., c„, are corresponding ciphertext values. Because all the algebraic computations in this 

system are linear, it cannot resist a determined attack. For the sake of security, ciphertext 

values need to be scrambled via substitution (S-box) and permutation (P-box). More 

specifically, Figure 13 illustrates these two transformations dominated by k6 and kn. The 

constructions of the S-box and the P-box are given below:

S-box: indeed, we would like to scramble the mantissa and leave the exponent 

untouched. We shift left circular, with mantissa of each real number c,, by k6 

mod 8 bits, then insert them into the P-box sequentially.

P-box: we pick up three digits from /c7, say n,, n2, and n3 sequentially from 

right to left. Let n, = n, mod n, = 1,2,3, then move cB|,cBj, and c„3 to the 

rightmost sequentially. If any of n,, n2, or n3 are equal to 0 or , then the real 

numbers are not moved.

For example, let us consider the case c = (cj, c2, c3, c4, c5, c6), k2 = 109, n, = 9, 

0, n3 = 1. Then it produces nj = 3, n2 0, n3 = 1, and its output is

C  (c2, C4, Cj, Cj , C3, Cj ).
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Figure 13. Substitution and permutation parts.
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While B receives disguised ciphertext, he recovers genuine ciphertext through P-box 

first and then S-box. Then he performs the decryption algorithm Dk according to:

step 3 :Q x d T = [ku k2,c u c2, • ■ ,

^  J* nn

s te p 4 :P x d  = [k]t k2, m \, m'2,■ • •, ,

With the third step, B obtains the control point vector d, where matrix Q is specifically 

defined. Through the fourth step, the first two members and the last two members of the 

plaintext vector are obtained by boundary conditions. Finally, by rounding off ,...

, and m'„, B has the corresponding plaintext.

Most of the computations of the encryption and decryption algorithms involve com

putations of matrix inversion. Therefore, the complexity of the algorithm is 0(n3), where 

n is the number of characters in each block.

D. ERROR ESTIMATION

The floating-point representation of a real number in computers is of finite length. 

Thus, there must be errors generated through our system. However, if the absolute error 

generated through our system is theoretically approximated to zero, then the error due to 

the processes of computation is tolerable and can be ignored.

Let M = (m], m2, • • •, mn) be the sending message, and M = (m], m2, • • •, mn) be the 

recovered message. It can be stated that M = M.
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While the encryption process is started, both matrix P and plaintext vector M 

are precisely given. The control point vector d derived from step 1 has only 

machine-generated interior errors, i.e ., = 0. It results in the absolute error 

for each member of control point vector d, which is less than c. Again, in 

examining the conditions of matrixes P and Q, they are both tridiagonal matri

ces and the sum of each row equals one, except the 1st and the last two rows. 

This type o f matrixes is considered to be well-behaved for matrix inver- 

sion[RcM71] and will not augment the error during the transformations. 

Therefore, the solution of this system is considered to be stable. It is also 

believed that there is no other possible error in the encipherment due to the 

rearrangement of ciphertext.

Likewise, the same arguments can be applied to the decipherment. Let
fl _

G = C '1 and q = max, £  IG, Xi = 1,2 .,nthen = G x c, where the vector
J=i

cconsists of the original ciphertext value. Thus, the upper bound o f the total 

error is equal to qe. We have found that the value q is consistently less than 

20, so qe ~ 0. Therefore, the error quantity of qe can be ignored.
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E. A SIMPLE EXAMPLE

As the verification procedure is presented, the four boundary conditions together 

with the number of encrypted characters in each block are provided for demonstrating 

correctness of the spline cryptosystem. Considering an 8-character message, UM- 

ROLLA, we encode each character to be its corresponding ASCII code: A=65, L=76, 

M=77, 0=79, R=82, U=85, and ’-’=45. With A, = —100, k2 = - 400, k3 =400, 

k4 = -  100, h = 1/9, P and Q are defined as above. Then the encryption process solves 

the control point vector d in advance,

P x d T = [-100, -400,85,77,45,82,79,76,76,65,400, -100].

Then

Q x d T = [-100, -400, c ,, c2, c3, c4, c5, c6, c7, c8,400, -100],

where

cj =-208.23162227 

c2 = 147.44977802 

c3 = 39.807510174 

c4 =64.945181280 

c5 = 85.036764706 

c6 = 72.907759896 

c7 = 88.707195708

c8 = 27.263457270 ,
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and the control point vector is 

d[l]= 332.76468122 

d[2]= -760.82678505 

d[3]= 310.54245900 

d[4]= 28.656949069 

d[5]= 36.829744728 

d[6]= 94.024072019 

d[7]= 79.073967197 

d[8]= 63.680059193 

d[9]= 122.20579603 

d[10]= -96.503243310 

d[ll]= 653.80717721 

d[12]=-118.72546553.

Of course, the original cryptogram should be scrambled before transmission. For simplic

ity, let us skip the rearrangement of the cryptogram, and directly express the recovered 

message. The decryption process solves the control point vector d as follows,

Q x d T = [-100,-400, Cj, c2, • • •, c8, 400,-100].

Then

P x d T =  [—1 0 0 ,- 4 0 0 , m j , m 2, . . ,  m 8, 4 0 0 ,- 1 0 0 ] ,

where



m, =  85 .000000000(85)

m2 = 77.000000000(77) 

m3 = 45.000000000(45) 

m4 = 82.000000000(82) 

m5 = 79.000000000(79) 

m6 = 76.000000000(76) 

m1 = 76.000000000(76) 

m8 = 64.999999994(65),

and the control point vector 

d[l]= 332.76468122 

d[2]= -760.82678505 

d[3]= 310.54245900 

d[4]= 28.656949069 

d[5]= 36.829744728 

d[6]= 94.024072019 

d[7]= 79.073967197 

d[8]= 63.680059193 

d[9]= 122.20579603

d[10]=-96.503243310
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d[ll]= 653.80717721 

d[12]=-118.72546553.

The number in each parenthesis is the recovered ASCII code, and it shows that 

the message is precisely recovered.

F. THE ANALYSIS OF SECURITY

The security of this system has to be evaluated. However, our speculations lead us 

to believe that this is a relatively novel approach to cryptography, and that all the known 

attacks can be applied.

Namely, the fundamental ciphertext-only attack is evaluated in advance. The cubic 

spline is a continuous function within the range [0,1], and its n interpolation points repre

sent a set of characters that are strongly related. Any change of a single interpolant will 

result in changes for the rest. Moreover, the frequency distribution of cryptogram based 

on the spline cryptosystem becomes obscure, since the same characters at different Jt-axis 

with the same set are uniformly mapped into real numbers. Obviously, a statistical attack 

on inspecting ciphertexts is not feasible.

In its elementary form, this cryptosystem undergoes a series of linear algebraic 

transformations without substitution and permutation. One may attack this system by 

comparing the plaintext and its corresponding ciphertext, since the subkeys k2, 

and k4 of this linear system can be easily reconstructed. Therefore, in addition to these 

four working subkeys, three subkeys are introduced to modify our system. These
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additional subkeys result in the procedures of substitution and permutation of the original 

cryptogram which make the encipherment and decipherment no longer simple linear 

transformations.

Inspecting the substitution and permutation parts, the worst working factor in break

ing the non-linear transformations, without the knowledge of and is 8 x n!. is the 

length of each block, but it is no more than 10. Thus, this might provide a weak point of 

the spline cryptosystem.

Considering the previous key generation, there are 256 values for k ]. This indicates 

that the system could be broken by trying all the values of k}. In order to avoid such a 

weakness, the modulus 256 is replaced by a certain 56-bit number. Note that the DES 

cryptosystem takes 56 bits as the key length. Furthermore, a careless choice of k\ will 

result in the block size to be k5 mod 10 = 0. The system cannot work in this special 

instance. See Appendix-invalid values of k̂  e [0,255].

G. CONCLUSION

A practical cryptosystem has been proposed, which implements under real numbers. 

It has been demonstrated how the spline cryptosystem uses an interpolation cubic spline 

as an encryption method. Cryptography has been expanded from the traditional discrete 

integer domain into real numbers. Recently, a random spline cryptosystem has also been 

designed. This is a sophisticated system, in which the security is based on its random

ness.



71

IV. MULTI-SEGMENT SPLINES AND THE RSA SYSTEM

A. PRELIMINARY

A formal, general transformation of encipherment and decipherment of the RSA 

cryptosystem is presented. The spline cryptosystem constructs ciphers based on an inter

polating spline function. Using spline functions, a series of discontiguous spline seg

ments can execute the modular arithmetic of the RSA system. Recently, we[HqH92] pro

posed a new encrypting method called the spline cryptosystem. This system, is based on 

the interpolating cubic spline function[LaS86]. This system has been improved to be a 

random version. In order to understand the similar property between random spline cryp

tosystem and the RSA cryptosystem[RSA78], the RSA cryptosystem is reformulated to 

be a series of discontiguous spline segments. So that the encryption process and decryp

tion process of RSA can be simulated properly.

The RSA cryptosystem has been reformulated to be multi-segment splines. Apply

ing multi-segment splines[dBc78] one segment is found in which the value of ciphertext 

corresponds to an integer value of the plaintext. Furthermore, the reformulation of RSA 

cryptosystem can be characterized as polynomials with random offsets between cipher- 

text values and plaintext values. In fact, given a plaintext, we can find a spline segment 

defined over the x-axis, with index i. Therefore, the corresponding ciphertext is the value 

at the y-axis, and the ciphertext corresponds to a spline segment defined over the y-axis, 

with index j. We also recognize that given an arbitrary function, / ,  f ( i , j )  is not a con

stant. This is identical to the random encryption process of random spine cryptosystem. 

That is, with the random spline cryptosystem, the ciphertext corresponding to a given
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plaintext is generated by an arbitrary parameter r, e [0.25,0.75], where is the block 

number. This means the value of ttcould be anywhere within each subinterval.

B. RELATED TRANSFORMATION

In modem and classical encryptions, modular arithmetic is the primary computation. 

In the RSA cryptosystem, N is assumed to be a composite number, and 

D = {0 ,1 ,..., N -  1}. Let M e Dand C e Dbe the plaintext and the ciphertext respec

tively, e and d be the encryption key and the decryption key. Let e and d be related to 

each other, so that

Ee :C = Me mod Nand Dd = mod N, (4.2.1)

where

ed = 1 mod(<t>(N)). (4.2.2)

More specifically, the encipherment and the decipherment of the RSA system are 

reformulated by a series of discontiguous spline segments, multi-segment splines. In 

general, the encipherment could be simulated by a series of discontiguous e-th degree 

spline segments, xe-  iN,where i is the index of the segment with respect to a:-axis. Sim

ilarly, the decipherment can be simulated by a series of discontiguous th degree spline 

segments, yd — jN, where j  is the index of the segment with respect to y-axis. These for

mulas consist of monotonically increasing but progressively narrower intervals [0, N Ue), 

[NVe, (2N)Ve),etc. (or [0, N vd), [Nvd, ( 2N)ud), etc.)

In particular, let x t = (ilV)lle,i = \  yj = (jN)Ud, j  = 0 where jc,-

are coordinates on jc-axis and y; are coordinates on y-axis. Then we define
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f i x )  = X  </>i(x)(xe -  iN), = X ¥j(y)(yd ~
1=0 7=0

(4.2.3)

where

<t>i(x) = ■
1 if < x(+1
0 otherwise

(4.2.4)

and

¥jiy) =
1 if ,
0 otherwise

(4.2.5)

such that ./fa) and g(y) are multi-segment splines(see Figure 14 and Figure 15).

The scenarios of the encipherment and the decipherment are as follows. To encrypt 

an integer value M. Assuming M e [xitjc/+1 ) if iN < Me < (i-1-1 Then, compute

f(M ) = Me - iN .  Thus the range of values of f (M)  is [0, N]. The decipherment is to 

compute g(C) = Cd -jN given the value of C = f (M).  That is, choose C e [y;,y;+]) if 

jN < Cd <(j  + l)N.  Then the range of the value of g(C) is [0, N]. We demonstrate 

these processes via the following example: assume that 3, 11, <j>{N) = 2Q,

(e,d) = (7,3), and M -  17.

The encryption steps are:

1. to compute the segment’s index i = \_Me!N \ = 177/33 = 12434505 such

that M e fa,-,j:/+1),

2. to compute /(17) = 177 - 1 x 33

= 410338673 -  12434505 x 33

= 8 .
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And the decryption steps are:

1. to compute the segment’s index = |^Crf/jV

th a t C  e  [yj,yj+i),

2. to compute g(8) = 83 -  x 33

= 5 1 2 -1 5 x 3 3

83/33J = 15 such

= 17.

It has been shown that the order of above algorithm is identical to the RSA’s. 

Clearly, the relationship between the degrees of the two series of spline segments must be 

concealed. Otherwise the attacker would be able to determine x, given f(x).
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Figure 14. A series of spline segments defined over x.
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y

Figure 15. A series of spline segments defined over

Is encipherment and decipherment using multi-segment splines feasible?. The fol

lowing equations answer this question:

f (M )  = Me-  iN = Me mod N -  C = Ee by (4.2.1), (4 .2.6)

and

g(C) =Cd -  jN = ( Me-  iN)d -  jN = Med mod N = M = Dd by (4 .2. 1). (4.2.7) 

Generally speaking, with RSA or the exponential encipherment, D(£(M)) or
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E(D(C)) = C. But, with the spline segments, g(f(x))  = or /(g (y )) = y is always true 

when x, ye {0,1, • • •, N -  1}. This means that only integer values of x may be encoded 

and decoded. Whereas such formulas do not work over real numbers. This is because 

there may not be any intersection between f(x)and g(y) for arbitrary pairs x and y.

C. DISCUSSION

A geometric interpretation of encryption and authentication is provided. The RSA 

encryption was defined in the previous section. From a geometric perspective, there are a 

set of curves along the jc-axis and a set of curves along the y-axis. It follows that / ( jc) = y 

and £(y) = x. However, both x and y are integers. Viewing that at all intersections 

between f(x)and g(y)(see Figure 14. and Figure 15.), there are Ne~] x Nd~} such intersec

tions, but only N integer intersections. Clearly, a certain spline segment expressed in x 

will intersect some spline segments expressed in y at integer coordinates, there is possible 

no integer intersection.

So these integer intersections indicate a one-to-one mapping. That is, the solution 

must be unique in x and y. Notice that the offset between jc and y is random. This means 

it enables the scheme to withstand any chosen-plaintext attack. Indeed, the spline cryp- 

tosystem[HqH92] can be characterized as a transposed polynomial system. In that paper, 

the offset between t and t' is fixed, this is in contrast to the multi-segment spline 

approach.
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D. CONCLUSION

The significance of multi-segment splines was demonstrated for the execution 

behavior of the RSA system. That is, under the integer domains of/(xj and g(y), the enci

pherment and the decipherment can be executed correctly as the RSA’s. Furthermore, it 

was shown that reformulation of both the encryption and decryption processes are neces

sary conditions for inspecting the similar characteristic of random spline cryptosystem. 

This implies that random spline cryptosystem functions properly.

Given very large e , d, and N, such a reformulation becomes impractical. Because 

Me of f {M)  and Cd of g(C) generate extremely large results that cannot be represented 

correctly in computers. A bridge has been established between multi-segment splines 

and the RSA system. This may provide a new topic for cryptographic communities.
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V. THE RANDOM SPLINE CRYPTOSYSTEM

A. PRELIMINARY

In this chapter, a random encryption scheme named the random spline cryptosystem 

is presented. The mechanism is an advanced structure of our earlier work, spline cryp

tosystem. Its mathematical indeterminacy on computing keys with interpolants no more 

than four and numerical sensitivity to the offset ti increases its utility. From the theoreti

cal point of view, the notion of interpolating cubic splines is easy to understand and 

implement. From practical viewpoint, this system is capable of handling real numbers 

and it can be enforced by simple operations.

The preliminary design of spline cryptosystem was disclosed in the ACM SIGSAC 

Review in winter of 1992[HqH92], An advanced mechanism, called the random spline 

cryptosystem, having mathematical indeterminacy and numerical sensitivity, is presented. 

For any given interpolant points, representing the plaintext, encipherment consists of 

evaluating the spline at the midpoint of each segment. This produces a new set of inter

polant points, through which a new cubic spline passes. Conversely, given the ciphertext, 

the previously defined cubic spline can be reproduced precisely. That is the amazing 

behavior of the cubic spline.

With the earlier structure of the spline cryptosystem, its security solely relied on 

scrambling of the ciphertext by substitution and permutation. Viewing Biham and 

Shamirs’[BiS90] paper, they developed a new type of cryptanalytic attack. This attack 

can be applied to any variation of DES-like substitution and permutation ciphers.
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Conceivably, the plaintext may still be recovered with the application of the spline cryp

tosystem. With this speculation, an advanced technique to enhance the security of the 

system is in order. The substitution and permutation steps are eliminated and a variable 

parameter t( is provided which is dominated by an initial condition. More defining infor

mation is involved than just the intermediate point of each subinterval. In other words, 

each block in the sequence is encrypted and decrypted by the fixed matrix P together 

with a randomized matrix Qh where Qt is derived by the parameter th i = 1,2, • • •. The 

specified initial condition and the boundary conditions are considered to be the secret 

keys, together with the block /. Both the encryption process and the decryption process 

are achieved simply by multiplication and addition operations, which are simple calcula

tions.

It is found that the ciphertext is sensitive to the offset r, and boundary conditions. If 

the precise seed and boundary conditions are not known, then the system should be diffi

cult to attack. The interpolant n = 3 is the safety margin and boundary conditions can be 

systematically constructed. The same boundary conditions never are used more than 

once within each block. Another interesting characteristic of the system is that the 

ciphertexts are uniformly distributed in real numbers.

The remainder of this chapter is organized as follows. The second section reviews 

the theoretical essence of cubic splines. In the third section, encipherment and key man

agement of the random spline system are discussed. We also analyze the security and sen

sitivity of the randomized system in the fourth section. Finally, future research with this 

system is mentioned.
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B. THEORETICAL FOUNDATION

The spline was heavily used in the past in the shipbuilding and aircraft industries. 

The spline bends in such a way that its internal energy due to bending is minimal, consis

tent with the interpolation constraints imposed on it. If the formula of the interpolating 

spline is viewed as the function S(x), then S(x)can be constructed by interpolating at the 

knots a = jc0 < x x < • • • < xn+1 = b, so that the bending energy is minimal.

The cubic .v/?/me[AdR76][dBc78][Scl81] is well-suited as the candidate for con 

structing the spline cryptosystem, because the higher degree polynomials are character

ized by their oscillatory behavior and large swings. In order to construct the cubic func

tion S(x), a basis is required for S(x), that is, the cubic B-splines. For simplicity, equally 

spaced knots are employed. First, the cubic B-spline is defined for all real numbers. Then 

the normalized blending function B(t) is given for the cubic B-spline, represented in 

equation (5.2.1) and shown in Figure 12.

B(t) =
-lfl3/6 + lfl2-2lrl + 4/3 

lrl3/2 — l/t2 + 2/3 
0

if 1 < Irl < 2
if 0 < Irl < 1.
otherwise

(5.2.1)

Considering the interval x_x < x0 < ■ • ■ < xn+1 < x n+2, there are a few more cubic B- 

splines whose support is not entirely in [x0, ;c„+1] and either start at the knot x_i or termi

nate at the knot x n+2- Thus, the complete set of cubic B-splines restricted to [jc0 x„+1] is 

the following translate of B(x):

Bj(x) = B((x -  jh)/h), = -1 ,0 , • • •, + 2, (5.2.2)

where h is the length of the subinterval [*,, xM ], = 0,1, • • •, n. Therefore, any cubic
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spline S(x) with the knots x0, • • •, Jcfl+) can be written in the form

n+2
S(x) = 1  d j *  Bj(0<x<l), (5.2.3)

y—i

where Xj = j  x h, and dj is said to be the control point.

The resulting cubic spline S(x) is a continuous function within the interval [0, 1], 

with continuous first and second derivatives. With respect to the interpolating cubic 

spline, my (1 < j  < n),the plaintext, represents the interpolant at each knot, Xj. Four 

boundary c o n d i t io n s ,  viewed as the secret keys o f  our system, are given as b e lo w

S'(0) = 5(0) = k2,5(1) = k„ 5'( 1) =

where k\ and k4 are the slopes at 0 and 1 , k2 and k2 are the positions at 0 and 1. So that 

equation (5.2.3) can be reformulated in the matrix form

Px[d_u --- ,dn+2]T = [k^k^mi , - - -  ,mn,k i , k4]T, (5.2.4)

where P is a (n + 4) x (n + 4) matrix. For example, when = 3:

'  -1
0

1
2h 2h
1 2 1_ _ _
6 3 6

1 2
0

6 3
1
60 0

0 0 0

0 0 0

0 0 0 0

0 0

0 0

0 0
1
6

0
2 1
3 6
0

1
2h

0 0 0 0
2 h
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Recall that, in our paper[HqH92], a new set of interpolant points c} was calculated 

corresponding to the intermediate points given a set of interpolant points nij corre

sponding to Xj(see Figure 16). Furthermore, in order to increase the utility and security 

of the spline system, it enforces the matrix Qt randomly by using the formula 

^  = (1  — ff) x Xj_i + tj x x j ,  where 0  < t( < 1, = 1 , 2 , • • •, j  = 1 , 2 , • • •, could be

anywhere within the interval [xj- i,Xj] and cj = S i ^ ) ,  instead of fixed at the middle 

point of [Xj-\,Xj].Meanwhile, t, should be generated such that lim Fori—̂oo

instance, t( = 0.5 x (1 + ( - l ) l+SEEt>/(i + SEED+ 1)), and SEED must be integer. Such a 

formula should be dominated by an initial condition and the output be oscillated about

0.5. In other words, the value of r, jumps back and forth around the optimal value , but 

it never comes close to 0 or 1 . This means t = 0.5 will produce a new set of interpolant 

points with the middle offset t from the original ones.

Indeed, the system is executed by multiplying a random matrix with the control 

points j, * jdn+\, dn +2

Qf x , . . . . ,  dn+2 ] [k], 2 > ^i, * * ■, cn, /C4 ] , (5.2.5)

where the matrix Qt is formulated as a (n + 4) x (n + 4) matrix. For example, when n = 3:
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Qi =

■ -1 1
0 0 0 0 0

2h 2h
1 2 1

00 0 0
6 3 6

o>\ 0)2 0)1 0)4 0 0 0

0 Q}2 0>3 o)4 0 0

0 0 0) 1 ©4 0
1 2 1

0 0 0 0
6 3 6

-1 1
0 0 0 0 0

2/1 2 h

where

o)\(t/) — -(1 + t/)3/6 + (1 + tj)3, — 2(1 + 1[) + 4/3

0)2(t() = tp ‘.2 - t f  + 2/3

= (1-  t,)3/ 2 - ( l - t t)2 + 2/3

a>4(ti) -  -(2 -  t i f /6  + (2 -  ttf  -  2(2 -  tt) + 4/3 .

Combining equations (5.2.4) and (5.2.5), the control points s are eliminated so 

that it is possible to compute the new interpolant points directly from the original ones.
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Figure 16.The ciphertext cj with respect to the plaintext nij.

C. ENCIPHERMENT AND KEY MANAGEMENT

In this section the encryption process and the decryption process are introduced. 

Meanwhile, a simple example is presented and a concrete architecture is illustrated. 

Finally, we systematically construct the keys in order to manage the system easily.

1. Encipherment. Notice that the encryption process Ek and the decryption process Dk of 

random spline cryptosystem are straightforward. The plaintext is viewed as 16-bit inte- 

ger(two characters), but the ciphertext is viewed as 32-bit real number. For each block i

^Jt • Qi E X [ * lt k-2, rW2 > > , &3 , ^4] “* [ ^ 1» ^ 2 ^2 ’ * * ^ 3 ’ ^4] »

and

Dk • ^  Qi  ̂ [̂ "1 > 2̂>  ̂1 * 2̂, * 3̂> “̂4] — [̂ “1» ^2’ * ^2* » 3̂» ^4] >
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where Q, is dominated by th i = 1,2, • • •, and for i * j  and T is the transposition

operator. Then by rounding plaintexts m, in terms of the decryption, the plaintext can be 

recovered. As a matter of fact,

Dk(Ek(M)) = Px QJ1 x Q{x P_1 x [k m,, • •, &4] = M' -  M,

but these two vectors M' and M are identical by rounding each element of M'.

An example:Let n = 4, h - 0 . 2 ,  SEED =10, =0.458, kx = -  100, k2 = - 400,

/c3 = 400, and k4 = -  100. Then the matrixes P and Qt are

■2.5 0 2.5 0 0 0 0 0 ‘
1 2 1

0 00 0 0
6 3 6

1 2 1
0 0 0 0 0

6 3 6
1 2 1

0 0 0 0 0
6 3 6

1 2 1
0 0 0 0 0

6 3 6
1 2 1

0 0 0 0 0
6 3 6

1 2 1
0 0 0 0 0

6 3 6
0 0 0 0 0 -2 .5 0 2.5

and
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- 2 . 5 0 2 . 5 0 0 0 0 o  -

1 2 1
0 0 00 0

6 3 6
*>i 0 ) 2 O) 4 0 0 0 0

0 0>\ O) 2 <y3 0 0 0

0 0 0 ), O) 2 CD 3 co4 0 0

0 0 0 Q>1 0l>2 cd3 cd4 0
1 2 1

0 0 0 0 0 —
6 3 6

.  0 0 0 0 0 - 2 . 5 0 2 . 5  .

where Wj = 2.6487750773E-02, w2 = 5.0473813658E-01, w3 = 4.5272714119E-01, and 

vv4 = 1.6046971452E-02. The plaintexts are TEXT. Then we execute the encryption pro

cess as follows:

<2i x P~{ x [-100,-400,84,69,88, 84,400,-100]r = [

where ciphernumbers are same as those in Table 2. The decryption process is executed as 

follows:

P x  <27* x [-100, -400, ciphernumbers, 400, -100]7 = [returnplain]7,

by rounding each member of returnplain. We obtain the plaintexts just the same as the 

original ones.

More specifically, let us turn to the problem of computing the encryption process, 

Ek, or the decryption process, Dk. As described before, there is an inverse matrix P~l 

involving in Ek, so that this computation suffers in practice from numerical instability. 

That is, the round-off errors tend to accumulate when floating-point number representa

tions are used instead of real numbers. Fortunately, there is an approach, called the LUP 

decomposition, which is numerically stable and has the further advantage of n3/3 opera

tions instead of n3 operations.
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This decomposition algorithm could be presented within any numerical analysis ref

erences. The idea behind the LUP decomposition is to find three x matrices, L, U, and 

P for an arbitrary nonsingular matrix A such that LU = ,

where

a. Lis a unit lower-triangular matrix,

b. Uis an upper-triangular matrix,

c. Pis a permutation matrix.

Recall that the encipherment

Qi x P"1 x [kx,k2, m x,m2,. . ,mn, k ^ k A]T = [kl ,k2, c ],c2, .., c„,

is composed of two steps, equation (5.2.4) and equation (5.2.5). Conceivably, equation 

(5.2.4) involves the computation of the matrix inversion first. However, it can be replaced 

by the efficient LUP decomposition. On the other hand, decipherment produces the same 

replacement. After the decomposition, the process is accelerated by forward substitution 

and backward substitution.

2. Architecture. More concisely, the following illustration(Figure 17.) is a concrete archi

tecture of random spline cryptosystem. It is composed of the encryption process, the ran

dom matrix generator, and the key generator, but does not specify the decryption part for 

simplicity.
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Figure 17. Architecture of random spline cryptosystem.

3. Key Management. Understandably, the smoothness of the cubic spline makes the sys

tem vulnerable, since the ciphertext does not vary much with respect to the corresponding 

plaintext. The spline curve is dominated by four boundary conditions, especially the 

starting point and the ending point of a spline curve. The curve should be as vibrant as we 

wish, in order to obtain further distance between the ciphertext and the corresponding 

plaintext. For example, in Figure 18, the two curves are generated by different boundary 

conditions. The upper one is generated by k] = -  100, k2 = -400, = 400, k4 = -  100,
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k3 = 40, k4 = -  100, and SEED = 9 with block 2. The upper curve demonstrates better 

feature than the lower one. Table 1 illustrates the corresponding outputs with the different 

boundary conditions. The strategies for choosing keys are given below:

a. The magnitudes of k2 and k3 both are £ 400, but the signs of k2 and k3 are 

reversed.

b. Both k2 mod 10 = 0 and k3 mod 10 = 0.

c. The increasing or decreasing magnitude of k2 or k3 is if necessary.

d. The reasonable bounds are -128 to 127 for i and

e. The initial condition SEED could be an 8 -bit integer.

and SEED  =  9 with block 2. The lower one is generated by k, = - 1 0 0 ,  k2 = -  40,

Summing up, the key size may be described as:

k\ + k2 + k2 + k4 + SEED = 56,

since k x and k4 both are 8 -bit integers, k2 and k3 both are 16-bit integers and SEED is an 

8 -bit integer. However, from the security point of view, the size of keys are too small. 

This system could be attacked by a brute-force search. In order to enhance its utility, the 

size of keys can be adaptable. For instance, k2 and k3 both are 32-bit integers, and SEED 

is a 64-bit integer. Thus, the total size of keys can be 144 bits.
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Figure 18. Two curves generated by different boundary conditions.

In the random spline cryptosystem, the well-conditioned property of both P and 

<2,[RcM71] diminishs the error accumulated through computation, so that the message is 

recovered completely. Note that, the matrix Q( of each block is completely decided by 

the corresponding thbut the matrix P is identical everywhere within the system.
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Therefore, it is safe to put the matrix Pin a public file, so that each user of the spline 

cryptosystem can access it. In general, there is no complicated computation involved in 

encipherment and decipherment, thus it is easy to implement the model.

D. INFORMATION RATE, SENSITIVITY, AND SECURITY

In this section, we analyze the information rate of encryption process, and the sensi

tivity of parameters related to security. We also show how the mathematical indetermi

nacy of the system helps to improve security.

1. Information Rate. Note that the n bits of plaintext are encrypted as m bits of ciphertext 

approximately. Then the information rate R of the encipherment is n/m. Viewing the sys

tem performance, the plaintext is represented as a 16-bit integer number, but the cipher- 

text is represented as a 32-bit floating-point representation. So the information rate is 

0.5(or data expansion is 2). In order to decrease the data expansion, we allow the plain

text to have 4 characters producing a 32-bit integer which still a 32-bit ciphertext.

2. Sensiti vity of Parameters. In general, the ciphertext is extremely sensitive to variations 

of the corresponding value r,(see Table 2). This enhances the secure nature of the system. 

The initial condition SEED is also a secret key coupled with the system. Therefore there 

are five secret keys within the random spline system, k2, k3, k4, and SEED. Table 2 is 

organized as follows:
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a. The first cluster is the original output with the [HqH92] proposed specification. 

That is, the plaintext, TEXT, together with four boundary conditions^, = -100,

k 2 = -400, k2 = 400, k4 = -100) and the parameter, t = 0.5. The ciphertext is 

fixed at the intermediate point of each subinterval.

b. The second, third, and fourth clusters have been collected by executing the sys

tem coupled with SEED = 9. We also consider block 1, block 2, and block 3 

sequently.

If we define the float-point representation of ciphertext to be double precision, then 

the mantissa will be a 16 digits decimal number. Plaintext is allowed to be 16 digits(8  

characters) number, in order to recover the plaintext correctly. This makes the system 

very sensitive to boundary conditions. Minor changes of boundary conditions result in 

quite different ciphertext. Thus, boundary conditions are defined over arbitary real num

bers, and the previous key scheduler becomes unexisted.

Regarding the sensitivity of the offset th Figure 19 shows the distribution of the rel

ative errors between the ciphertexts and the plaintexts. For which, /,• is divided into 20 

intervals, with fixed boundary conditions. When tt is close to 1, the relative error is close 

to 0. This means that the ciphertext is identical to the plaintext and attackers can recog

nize the pattern easily. Whereas, if r, is close to 0, the ciphertext only shifts to the left for 

one subinterval. This means attackers would observe partial information from ciphertexts. 

This is not allowed in cryptography. However, when is around the relative error 

becomes either larger or smaller. Such a phenomenon should confuse the attackers. 

Therefore, we assume that /, should be generated between 0.25 and 0.75. This conclusion 

resulted from our proposed equation.
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3. Security. Since, this is a relatively novel approach to cryptography, all possible 

breaches need to be assessed. Namely, the basic ciphertext-only attack is considered first. 

Because the cubic spline is a continuous function, its interpolating points are strongly 

related to each other. This means the change of an interpolating point will result in the 

change for the rest. Moreover, we consider whether attacks would reconstruct the cubic 

spline function by just viewing the ciphertexts. If they could, then the plaintexts would be 

obtained by computing the function’s values at each corresponding x-coordinate. From 

interpolating viewpoint, a cubic polynomial f(x) can be constructed only if there are at 

least four points on this curve, such as (£lt Cj), (£2, c2), (£3, c3), and (£4, c4). While 

attackers could easily intercept ciphertexts c,, c2, and c3, they still do not know exact 

boundary conditions. One cannot rebuild the cubic spline not knowing the exact bound

ary conditions. Secondly, if boundary conditions are changed slightly, the ciphertexts 

become obviously different. Summing up, a ciphertext-only attack can be ruled out.

On the other hand, we analyze the possibility of reconstructing the secret-key by 

comparing the ciphertext and the corresponding plaintext. Because of the similar process 

for encrypting each block, only one block of message will be analyzed here.
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Let U = Qj x P 1 = (w |̂)(„+4)x(n+4)’ where each u(̂  is a function of of each block i. 

Consider

V,=

m33 w34 M3,n+2

u43 «44 . w4,n+2

un+2.3 un+ 2,4 • Un+2,n+2

and

Wt =

m31 m32 M3,n+3 w3,n+4

- un+ 2,1 un+ 2,2 M/i+2,n+3 Mn+2,/i+4 -

where V,- is a n X nmatrix and W, is a n x 4 matrix. Then encipherment is formed as fol

lows:

[Ci, • • •, c„]T = Vt x[mi, • • •, mn]T + W, x [k},k 2, fc3, k4]T. (5.4.3.1)

As long as 1 < n<4, equation (5.4.3.1) shows the mathematical indeterminacy of the 

computing keys. The unknown parameters are always greater than the equation numbers. 

Such solution spaces are infinite. Thus, a brute-force attack should not be possible. The 

mathematical indeterminacy of deciding keys forces attackers to give up the technique of 

trying all possible solutions. Therefore, the reconstruction of the secret key by compar

ing the ciphertext with the corresponding plaintext can be thwarted.
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The relative error between the plaintext and the ciphertext is analyzed in order to 

recognize that the spline curve is not only dominated by boundary conditions but is also 

dominated by the interpolant numbers n. Note that the relative error is defined as
n

XI c, -  ra, I / mt, where ct is the ciphertext and m, is the respective plaintext. It was
i=i

found that n = 3 is a good candidate to construct the spline curve(see Table 3). Because, 

the constructed curve is as vibrant as we wish. The interpolant numbers n was chosen by 

considering the maximal relative error.

In addition, another probable weakness of the random spline cryptosystem is that if 

t( was generated as in our original proposal, that is, lim /,• = 0.5. When /, comes very
I — ►oo

close to 0.5 for some block /,£>, is just the same as the previously defined matrix 

<2[HqH92], which was fixed in all encryption and decryption processes. This makes it 

easier to break the system by using the fixed matrixes Q and P to recover plaintexts with 

block number j, j  > i. Based on this observation, we replace the formula whose output r, 

is oscillated about 0.5 by a random number generator whose output yM = ) is

between 0 and 1, where r, = y tl2 + 0.25 for = 1,2, • • • and y0 is the SEED. This refor

mulation makes tt e [0.25, 0.75],

Furthermore, if the SEED is compromised, then this cryptosystem is insecure. It can 

be protected by letting users select its size based on the users’ security requirement. 

Meanwhile, four boundary conditions can be solved by a set of known plaintext and 

ciphertext pairs easily. Assume that attackers obtain four pairs of plaintext and cipher- 

text, (A/,, C,), (Mj,Cj), (Mk, Ck), and (Mh C;), where M and C are plaintext vector and 

ciphertext vector respectively. Then attackers can make use of any two of four pairs to 

derive the interdependence of four boundary conditions. So that four boundary conditions
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can be obtained by repeating the process. To avoid this possibility the same four bound

ary conditions should be never used more than once within each block. The unknown 

numbers are always greater than the equation numbers, that is, 4 x j > 3 x where is the 

encrypted block number and i = 1 , 2 , • • •.

E. CONCLUSION

It has been found that the interpolating cubic polynomial, especially the cubic 

spline, can be employed as an encryption method. The random spline cryptosystem has 

the additional features of the mathematical indeterminacy of computing keys and sensi

tivity of boundary conditions and offset th making it more difficult to break. The possi

ble weakness of random spline cryptosystem has been investigated. It is also suggested 

that readers might use more sophisticated attacks, such as a chosen-plaintext attack, or 

might try to find possible trapdoors in this system.

The random spline cryptosystem also can be used as a message authentication sys

tem. The receiver checks whether the derived boundary conditions are just the same as 

the committed ones. If they are different, then the receiver will know that the ciphertext 

has been altered. Notice that the random spline cryptosystem is a totally different mecha

nism from existing ones[Der82][DiH76][RSA78]. Conceivably, it is not intended to 

replace all other methods, but rather as an alternative way to enlarge cryptographic 

research. In this regard, the random spline cryptosystem offers us a promising answer. 

Hopefully, cryptologists will use this approach to penetrate beyond the traditional theory 

of numbers.
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Figure 19. The sensitivity of ciphertext in terms of the offset t.
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Table I. Demonstration ciphernumbers resulting from different boundaries

conditions.

SEED:9, i:2, t:0.458

key: -1 .0000000000E +02 -4,Of)OOOOOOOOE+02 4.0000000000E-K)2 -1.0000000000E +02

ciphemumber plainnumber rctumplainnumber

T -2 .8 5 15978175E+02  
E 1.4032802497E+02  
X 4 .4771365312E+01 
T 6.6112338435E+01

8.4000000000E+01 8.4000000002E+01 T 
6.9000000000E +01 6 .8999999998E+01 E 
8,8000000000E +01 8 .8000000003E-K)l X 
8.40000CXX100E+01 8.3999999994E+01 T

S E E D :9 ,1:2, t:0.458

key:-l.<XXXXXXXXX)E+02 -4.(XXXXXXXXX)E+01 4.(XXXXXXXXX)E+01 -1 ,0(XXXXXXXX)E+02

ciphemumber plainnumber rctumplainnumber

T -2 .3271075614E+01 
E 8.6606807868E+01  
X 5 .4 9 8 1069259E4O1 
T 7.8994739749E+01

8.4000000000E+01 8.3999999999E+01 T 
6.9000000000E +0 ] 6.90(XXXXXX)2E-K)1 E 
8.8000000000E +01 8 .7999999997E-KJ1 X 
8.4000000000E +01 8.4000000009E+01 T
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Table II. The same plainnumbers enciphered via increased block indexes.

t:0.5

key:-1.0000000000E+02 -4.0000000000E +02 4.0000000000E +02 -1 .0000000000E+O2

ciphemumber plainnumber rctumplainnumber

T -2 .7134483911E+02 8.40QOGOOOOOE+01 8.4000000000E+01 T
E L5711286618E+02 6.9000000000E+01 6.9000000000E+01 E
X 5 ,8 4 7 1886807E+01 8.8000000000E+01 8.7999999999E+01 X
T 6.8647971271E+01 8.4000000000E+01 8.4000000002E+01 T

S E E D :9 ,i:l, t:0.545

key: 1 .OOOOOOOOOOEl02 4.0000000000E +02 4.0000000000E+02 -1 ,0000(XXXXX)E+02

ciphemumber plainnumber rctumplainnumber

T -2 .0 8 7 5 135794E+02 
E 1.3091914199E+02  
X 5.9757735128E+01  
T 5 .6105514795E+01

8 .4000000000E +0 1 
6.9000000000E+01  
8.8000000000E+01  
8.4000000000E +01

8.4000000001 E+01 T 
6.8999999999E+01 E 
8.8000000001 E+01 X 
8.3999999999E+01 T

SEED:9, i:2, t:0.458

key:-1.0000000000E+02 -4iXXXXXXXXX)E+02 4.0000000000E +02 -1.0000000000E +02

ciphemumber plainnumber rctumplainnumber

T -2 .8515978175E+02 
E 1.4032802497E +02  
X 4.4771365312E + 01 
T 6.6112338435E+01

8.4(XKXXXXXX)E-i-01 
6.9000000000E +01 
8.8000000000E +01 
8.4000000000E +01

8.4000000005E+01 T 
6 .8999999990E +01 E 
8.8000000021E+01 X  
8.3999999942E +01 T

SEED:9, i:3, t:0.538

key:-1 .(XMXXXXKXK)E+02 -4.0(XXKXXKXX)E+02 4.0000000000E +02 -l.(XKXXXXXXX)E+02

ciphemumber plainnumber rctumplainnumber

T -2 .1 4 7 1779046E+02 8.40tXXXXXXX)E+01 8.40tXX)00000E+Ol T 
E 1.3178317323E+02 6.9000000000E +01 6 .9000000001E+01 E 
X 5.8669303291 E+01 8.8000000000E+01 8.8000000000E+01 X  
T 5.6765376014E+01 8.40OQOQOOQ0E+O1 8 .4000000001E+01 T
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Table III. Demonstration o f the optimal interpolant numbers.

SEED: 10, i: l,t:0 .4 5 8 , n:l

key:-1 .OOOOOOOOOOE+02 -4.0000000000E-K12 4.(XXKKKXKXME+02 -1.OOOOOOOOOOE+02

ciphemumber plainnumber rctumplainnumber

A -2.9499674479E +02 6.5000000000E+0J 6.5000000004E+01 A
Relative ErTor = 5*5384615

SEED:10, i: l, t:0.458, n:2

key:-1.0000000000E+O2 -4.0000000000E +02 4 .(KX)OOOOOO0E+O2 -1 .OOOOOOOOOOE+02

ciphemumber plainnumber reiurnplaiiinunibei

A -2.8942334587E +02 6.5000000000E+01 6.5000000004E+01 A
B 1.1193991609E+02 6.6000000000E+01 6.5999999987E+01 B

Relative Error = 6.1487261

SEED: 10. i: l ,  t:0.458, n:3

key:-1,000(KXXKXK)E+02 -4.(XXKXXXXX)0E+O2 4.0000000000E +02 -1 .OOOOOOOOOOE+02

ciphemumber plainnumber returnpiainnumber

A  -2.8853993572E +02 6.5000000000E+01 6.4999999999E +01 A
B 1.3095418940E+02 6.6000000000E+01 6 .6000000003E+01 B
C 2 .0796384136E+01 6.7000000000E+01 6.6999999991 E+Ol C

Relative Error = 7.1128363

SEED: 10, i: 1, t:0.458, n:4

key:-l.OOOOOOOOOOE+02 -4.0000000000E+-02 4.0O0OOfX)OOOE+O2 -1 .OOOOOOOOOOE+02

ciphemumber plainnumber rctumplainnumber

A -2 .8741208861E+02 6.5000000000E +01 6 .5000000001E+Ol A
B 1.2567214878E+02 6.6000000000E +01 6.5999999998E +01 B
C 4 .0796699520E +01 6.7000000000E +01 6.7000000004E +01 C
D 4 .6002598284E +01 6.8000000000E +01 6.7999999989E +01 D

Relative Error = 7.0404329
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VL THE CHAOTIC-MAP PUBLIC-KEY CRYPTOSYSTEM

A. PRELIMINARY

Now we present a chaotic public-key cryptosystem employing a one-dimensional 

difference equation as well as a quadratic difference equation. This system also makes 

use of the El Gamal’s scheme to accomplish the encryption process. The trapdoor was 

built by allowing the designer to know the iteration times of a certain difference equation.

Chaotic behavior has been studied in many fields. It is desired to inject chaos into 

cryptography, so that the designated system becomes dynamic and non-linear. Recently, a 

chaotic-map secret-key cryptosystem[HaN91] has been introduced. The cryptosystem 

employs a one-dimensional iterated map as the encryption transformation. It encrypts 

64-bit plaintexts into about 147-bit ciphertexts, using 64-bit keys a. Plaintexts, cipher- 

texts, and keys are all real numbers e [0,1]. A major weakness of this system is its lin

earity which is not expected in cryptographic system design. Moreover, the system has 

been cryptanalyzed by Biham[Bie91] soon after their presentation in professional confer

ence.

A public-key version of chaotic-map cryptosystem is proposed. The El 

Gamal’s[EGt85] public-key encryption scheme is added into this public-key system, in 

addition to the chaotic map. The iterated map[ThS8 6 ] is an excellent candidate for con

structing dynamic systems. In particular, a one-dimensional difference equation(iterated 

map) is well suitable to be a one-way function. Viewing this, a trapdoor was built by let

ting the legitimate receiver know iterated times of certain difference equation. Note that



103

the security of this system depends on the infeasibility of solving discrete logarithm over

finite fields. As was true with the El Gamal’s system, such an equivalence has never been 

proven.

The work is organized as follows: the public-key protocol is constructed in the sec

ond section. In the third section, concrete examples are illustrated. Finally, the security of 

chaotic-map public-key system is analyzed in the fourth section.

B. PUBLIC KEY PROTOCOL

First, the chaotic-map secret-key cryptosystem is reviewed. With such a system, 

arbitrary plaintext is encrypted into 2" ciphertexts. Whereas, the decryption process guar

antees the plaintext must be obtained by tracing the ciphertext backwards. In particular, 

this system is defined over real numbers, and for the sake of security, the iterated lower 

bound n = 75. The encryption process is

X  is the plaintext, Y is the ciphertext, and a  is the control parameter of map. X, Y, and a  

are e  [0,1]. Alternatively, the decryption process is

(6 .2 . 1)

where

a15 = X, and a0 = Y.

(6 .2 .2)
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Regarding the El Gamal’s scheme, the general concept is given a generator of 

cyclic group G„ with order s, where s is in 0(2"), such that group elements can be repre

sented as n-bit strings. The sender chooses a secret key k x uniformly distributed in 

[0.. n -1 ]  and the receiver’s public key is y = gkl, such that the encryption E is

£(m) = (A y * 'x m ) , (6.2.3)

and the decryption D is

D(c„ c2) = ^ ,  (6.2.4)
ci

where x might be replaced by any invertible operations.

Therefore, the chaotic-map public-key system is constructed as follows. Assume 

that each subscriber iof the system selects and publishes initial values a0, an, and a  

which are uniformly distributed between 1 and , where is a large prime 

number(= 2 0 0  digits) such that p-l has a large prime factor, as well as a  is a primitive 

element of p, but the subscriber keeps n secret. a„, the n-th iteration of a0, can be gener

ated from the difference equation

aM s  aa t ( p). (6.2.5)

The following Figure 20 is a graphical interpretation of equation (6.2.5), where 2 is 

defined as the slope of the line segments.
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a n+l

an
P

Figure 20. Graphical interpretation of equation 6.2.5.

Obviously, this process is concerned with the discrete case, instead of the continu

ous tent map of equation (6.2.1). In order to increase its security, it is anticipated that 

each subscriber will use a different modulus p instead of the universal modulus. Alterna

tively, the above one-dimensional difference equation can be replaced by any quadratic 

difference equation, such as

a M  = p ) .  (6.2 .6)

Thus, the encryption process of chaotic public-key system consists of three steps.
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a. The sender randomly generates a positive secret integer k, and find out the 

receiver’s public keys, a0, an, and a.

b. The sender iterates a0 to be ak for k times, as well as iterates a„ to be

c. The ciphertexts are constructed as

ci =flt, c2 = mx  (

where m e  [0, p-l] is served as the plaintext. With the third step, it simulates the El 

Gamal’s scheme and the ciphertext is double the size of the plaintext.

Whereas, on the receiver’s side, the decryption process is composed of two steps.

a. The receiver i iterates c x by equation (6.2.5) n times to be s, where n is known 

to the receiver i only.

b. This step is to divide c2 by s to recover the plaintext m.

Similarly, constructing the public keys by means of equation (6.2.5) can be replaced 

by quadratic difference equation (6 .2 .6 ), so that the encryption process and decryption 

process are not different. We will argue that the encryption process of chaotic-map pub

lic key system works correctly. All parameters involving in argument are identical to pre

vious definitions, otherwise they will be specified particularly. The encryption process is

£(m) = (cj, c2) = ( , m an+ka0), (6.2.7)

and the decryption process is to iterate c, to be 5 for n times, so
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D{c x, c2) =  —  
s

ma kaQ 
----- 7----= ma n+kd()

(6.2.8)

Thus the result is the original message m. More specifically, two concrete examples 

are presented in the next section.

C. EXAMPLES

Assume that the receiver’s public keys are a0 = 137, a„ = 64, = 311, = 43 and

the secret key n = 30 such that an is calculated by equation (6.2.5). Given a message 

m = 76, the sender

a. selects k = 15 and then computes ai5 = 59 as well as a45 = 275 ,

b. computes cx = 59 and c2 = m x  a45 ( p) = 63.

On the receiver side, only he knows n = 30, he then

a. iterates cx for 30 times and obtains s = 275,

Cob. computes — ( mod p) = 63 x95 (mp) = 76.
s

Thus, the message is recovered correctly.

Alternatively, we consider the quadratic difference equation. Each public key is 

identical to the above instance, except that an = 200. Thus, the sender
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a. computes a 15 = 282, as well as aA5 -  267

b. computes Cj = 282 and x a45 ( p) = 77.

Whereas, the receiver

a. iterates cx for 30 times to get s = 267, and then

C'y
b. computes — ( mod =77 x 106 ( p) = 76.

s

This system is shown to work properly for this example.

D. SECURITY

Reviewing El Gamal’s scheme, he did not suggest that the sender’s secret number is 

useable more than once. To know one block of message enables attackers to compute 

other blocks. Similarly, this system generates the different secret number k uniformly 

distributed in [0 , p-l] for each encrypted block.

We claim that breaking the system is as hard as solving discrete logarithm over finite 

fields. First, considering if one can derive the secret key n from public keys. Given a0, 

an, a, and p such that

an = a na0 (modp). (6.4.1)

Then we have

a n =  —  =t(  p ) .  
do

(6.4.2)
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Thus, the value n is computable from equation (6.4.2) only if the discrete logarithm over 

finite fields is also efficiently solvable. Whereas, the best algorithm[Oda84] [LaO90] to 

solve discrete logarithm over finite fields remains exponential order. Meanwhile, the 

same argument can be employed for the secret number k. Secondly, we argue if one can 

recover the plaintext m by inspecting C] and c2. Given c ,, c2, and known parameters such 

that

cx =a k = a ka0 ( p). (6.4.3)

And we have

c2 = an+km = a n+k ( p). (6.4.4)

Thus, if equation (6.4.2) is solvable to n, then it is easy to compute the plaintext m from 

l = — = a nm ( modp). Furthermore, the size of modulus is considered as the safety
Cl

margin of the RSA[RSA78] system and the discrete logarithm problem.

For the encryption process, there are two iterations plus one multiplication needed. 

At the worst case, each iteration makes use of 2 log p multiplications in GF(p). On the 

other hand, the decryption process needs only one iteration as well as one division. In 

order to enhance its utility, higher order chaotic map or difference equations can be 

employed as iteration equations in this public-key system. Such as an+1 = d(mod p), 

where r > 2and dis an arbitrary constant. Conceivably, the higher the order is, the more 

the work factor of attack is needed.
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VII. CONCLUSION AND FUTURE RESEARCH

We have proposed a practical spline cryptosystem employing an interpolating cubic 

spline as an encryption method. It was found that the interpolating cubic polynomial, 

especially the cubic spline, can be employed as an encrypting method. The random 

spline cryptosystem has the additional features of the mathematical indeterminacy of 

computing keys and sensitivity of boundary conditions and offset making it more diffi

cult to break. Notice that the random spline cryptosystem is a totally different mecha

nism from existing ones. We understand that it is not intended to replace all other meth

ods, but rather as an alternative way to enlarge cryptographic research. In this regard, the 

random spline cryptosystem offers us a promising answer. In addition, there are addi

tional research topics related to spline cryptosystem. For instance, we may analyze its 

security intensively, design an efficient key management, promote the spline cryptosys

tem to be a public-key version, and design cryptographic protocols under public-key ver

sion.

The significance of multi-segment splines was demonstrated for the execution 

behavior of the RSA system. Under the integer domains of and g(y), the encipher

ment and the decipherment can be executed correctly as the RSA’s. Furthermore, it was 

shown that reformulation of both, the encryption and decryption processes, are necessary 

conditions for inspecting the similar characteristic of random spline cryptosystem. This 

implies that the random spline cryptosystem functions properly.

In addition, a chaotic-map public-key cryptosystem, based on the chaotic behavior 

or bifurcation of one-dimensional difference equations that are defined over finite fields, 

was proposed. It was found that such equations are suitable to be one-way functions in
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terms of constructing public-key cryptosystems. One-dimensional equations were chosen 

rather than higher-dimensional ones because higher-dimensional equations are invertible. 

The security of such a system relies on the infeasible computation of discrete logarithm 

over finite fields. For the sake of security, the sizes of ciphertexts and public keys are the 

double size of the RSA system.



APPENDIX

26 INVALID KEY VALUES OF *, e [0,255]

*1 h k5 mod

0(00000000) 0(00000000) 0

5(00000101) 80(01010000) 0

10(00001010) 160(10100000) 0

15(00001111) 240(11110000) 0

35(00100011) 50(00110010) 0

40(00101000) 130(10000010) 0

45(00101101) 210(11010010) 0

65(01000001) 20(00010100) 0

70(01000110) 100(01100100) 0

75(01001011) 180(10110100) 0

100(01100100) 70(01000110) 0

105(01101001) 150(10010110) 0

110(01101110) 230(11100110) 0

130(10000010) 40(00101000) 0

135(10000111) 120(01111000) 0

140(10001100) 200(11001000) 0

160(10100000) 10(00001010) 0

165(10100101) 90(01011010) 0

170(10101010) 170(10101010) 0

175(10101111) 250(11111010) 0

195(11000011) 60(00111100) 0

200(11001000) 140(10001100) 0
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205(11001101) 220(11011100) 0

225(11100001) 30(00011110) 0

230(11100110) 110(01101110) 0

235(11101011) 190(10111110) 0
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