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Abstract. In a multi-protocol setting, different protocols are concur-
rently executed, and each principal can participate in more than one.
The possibilities of attacks therefore increase, often due to the presence
of similar patterns in messages. Messages coming from one protocol can
be confused with similar messages coming from another protocol. As a
consequence, data of one type may be interpreted as data of another,
and it is also possible that the type is the expected one, but the mes-
sage is addressed to another protocol. In this paper, we shall present
an extension of the LySa calculus [7, 4] that decorates encryption with
tags including the protocol identifier, the protocol step identifier and
the intended types of the encrypted terms. The additional information
allows us to find the messages that can be confused and therefore to
have hints to reconstruct the attack. We extend accordingly the stan-
dard static Control Flow Analysis for LySa, which over-approximates
all the possible behaviour of the studied protocols, included the possible
message confusions that may occur at run-time. Our analysis has been
implemented and successfully applied to small sets of protocols. In par-
ticular, we discovered an undocumented family of attacks, that may arise
when Bauer-Berson-Feiertag and the Woo-Lam authentication protocols
are running in parallel. The implementation complexity of the analysis
is low polynomial.

keywords: Multi-protocol attacks, Type Flaw Attacks, Control Flow Analysis, LySa.

1 Introduction

Usually, security protocols are studied and verified in isolation, i.e. under the
hypothesis that there is only a single protocol using the network at a time.
However, this is not realistic, since protocols share the same network and often
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they also share some cryptographic keys, for economical or practical reasons.
Verification of properties is more difficult in this setting, because of possible
unintended and unforeseen interactions: new attacks, involving more than one
protocol, can arise, called multi-protocol attacks. For this reason, protocols that
are proved secure in isolation, can be attack-prone when running in parallel:
indeed, security properties are not compositional in general. The first works on
this subject are in [2, 19], where the authors show that given a secure protocol,
an ad hoc protocol can be used to attack it, by suitably interleaving messages
of both. Formal verification in this setting, as put forward in [22], is something
to which we intend to contribute. In the multi-protocol setting, one of the main
problems is the presence of similar patterns in messages coming from different
protocols. As a consequence, attacks may easily occur, due to the confusion
between two messages that belong to different protocols. Mainly, these attacks
are based on type flaws, that occur when a field, originally intended to have one
type, is instead interpreted as having another type. To prevent such attacks, the
current techniques [17, 18] consist in systematically associating each message field
with a tag representing its intended type. Therefore fields with different types
cannot be mixed up. Other attacks may arise instead, that depend on the mix-up
of two messages with the same structure but that belong to different protocols.
Therefore, in general, type tags may not suffice. Following [8] and extending
the work done in [5], we then annotate each message with an identifier for the
protocol, and the protocol step, and with the type of each message component.
Here, we only deal with message confusions arising from messages that include
the same number of terms, e.g. in the present framework, it is not possible to
confuse a concatenation of terms with a single term (it is possible instead in
[13]).

In this paper, we explore these issues and propose a static analysis technique,
based on Control Flow Analysis, for detecting potential type flaw attacks in a
multi-protocol setting. The same unifying framework has been previously used
to deal with a wide range of security properties, including confidentiality [14],
freshness [12] and message authentication [7]. To address type flaw attacks, we
extend the version of LySa calculus presented in [4] with special tags, that,
besides the intended types of the encrypted terms, also include the protocol
identifier and the protocol step identifier. This additional information can also
be exploited to understand which are the possible message confusions and inter-
ferences between different protocols. The Control Flow Analysis approximates
the behaviour of protocols in terms of the possibly exchanged messages and po-
tential values of variables. Our framework can be working in either a prescriptive
way, such that flaws are avoided; or a descriptive way, such that flaws are de-
tected and recorded as violations. Furthermore, if no tag violation is found, we
can prove that the protocol is free of type flaw attacks at run time. The analysis
is fully automated and always terminates. By applying this framework to the
multi-protocol setting, we can statically verify if in a small group of protocols
tag-violations and the consequent attacks are possible. In particular, we dis-
covered a family of undocumented flaws (to our knowledge), possibly occurring



when the Bauer-Berson-Feiertag and the Woo-Lam authentication protocols are
running in parallel. They are based on the classical oracle mechanism.

The paper is organised as follows. In Section 2, we present the LySa calculus
with tags. We introduce the Control Flow Analysis in Section 3, which captures
any tag-mismatching that may happen. In Section 4, we show how the Control
Flow Analysis can detect an attack that may arise in the composition of two
protocols. In Section 5, we conclude with a discussion on our approach.

2 Calculus

The LySa calculus [7] is a process algebra, in the tradition of the π- [23] and
Spi- [1] calculi. It differs from these essentially in two aspects: (1) the absence
of channels: all processes have only access to a single global communication
channel, the network; (2) the inclusion of pattern matching into the language
constructs where values can become bound to variables, i.e. into input and into
decryption (while usually there is a separate construct). We use here a dialect
of LySa, which presents a more general pattern matching than the one in [7]
and that slightly extend the one in [4], thus allowing us to tag encryptions and
their components. In this paper, we only show the modelling of symmetric key
protocols. Asymmetric key protocols can be dealt with in a very similar way (see
e.g., [7]).

Syntax of Terms LySa consists of terms and processes; values correspond to
closed terms, i.e. terms without free variables. Values are then the basic blocks
of the calculus and are used to represent agent names, nonces, keys. Terms
may either be terms E or definition terms M . In fact, we distinguish between
definition (or binding) occurrences and use (or applied) occurrences of variables.
A definition occurrence is when a variable gets its binding value, while a use
occurrence is an appearance of a variable where its binding value is used. So far,
we have that terms – that can be names or variables – are used for modelling
outputs and encryptions. Instead, for modelling inputs and decryptions we use
definition terms, that include terms and definition variables.

The use/definition distinction is obtained by means of syntax: the definition
occurrence of a variable x is denoted by "x, while in the scope of the declaration,
the variable appears as x. This notation allows us to distinguish variables from
occurrences of terms in tuples of definition terms, by implicitly partitioning them
into terms or variables. In pattern matching, the first are checked for matching,
while the others are bound in case of successful matching (see below).

We have two syntactic categories, one for terms E and one for definition terms
M . Encryptions are tuples of terms (definition terms) E1, · · · , Ek (M1, · · · , Mk,
resp.) encrypted under a term E0 representing a shared key.

E ::= terms
n name (n ∈ N )
x use variable (x ∈ XS)
{E1, · · · , Ek}E0

symmetric encryption

M ::= definition terms
E terms
"x definition variable
{M1, . . . , Mk}E0

definition encryption



Here N denotes a set of names; the set XS contains occurrences of variables, be
they use or definition, respectively.

Tagging On the top of this syntax, in [4], an extension was proposed, in order
to cope with types, where tags were introduced to represent the intended types
of terms. The following formal treatment (syntax, semantics and control flow
analysis) is very similar to the one adopted in [4]. Following [17], we indeed
assumed to have a tag for each base type, such as nonce, key, etc.. Moreover, we
assume that the attacker is able to change tags, but only those of terms that he
can access. In fact, by making the assumption of perfect cryptography, we have
that only cleartext can be altered. Attackers can thus only forge an encryption
when possessing the key used to cipher it. Actually, we can tag every term we
want, but it suffices to check this information inside encryptions and decryptions,
as shall be shown in Section 3. Here, we further extend the above syntax in order
to include in the tagging schema of encryptions, an identifier ID for the protocol,
and an identifier for the message step i, in which the encryption is generated.
Tag ranges over a given set Tag that contains, besides type tags, such as agent,
nonce, key, and enc, also a string IDi encoding the protocol identifier and the
message step identifier. Furthermore, there are tag variables, that are to standard
variables such as tags are to closed terms (i.e. terms without variables). Similarly
to the "-notation, we syntactically distinguish the definition occurrences of tag
variables (in the form #t), from the corresponding use occurrences (in the form t).
Syntactically, we enrich the previous categories with the following productions,
where XT denote sets of occurrences of tag variables:

E ::= terms
...
T ag tags (Tag ∈ Tag)
t use tag variable (t ∈ XT )

M ::= definition terms
...
#t definition tag variable (t ∈ XT )

Intuitively, when specifying a protocol, we substitute each encryption like
{E1, ..., Ek}E0

with the tagged form {IDi, (E1, T ag1) · · · , (Ek, T agk)}E0
. We call

V al the set of values, i.e. closed terms. Each term can have a tag associated with
it. We do not associate each term with the corresponding tag, though. We just use
tags, when necessary. Put in other words, it is like having a jolly tag associated
with each other term, that is omitted, because its check is always successful.

Syntax of Processes In addition to the classical constructs for composing
processes, our calculus also contains an input and a decryption constructs both
with matching. Furthermore, to allow the static analysis to keep track of the
decryptions in which a violation may occur, we decorate each decryption with a
label l (from an enumerable set C). Labels are mechanically attached to program
points in which decryptions occur (actually, they are specific nodes in the ab-
stract syntax tree of processes), so the user/attacker cannot manipulate them.
Finally, by overloading the symbol ν, we use a new process construct to declare



the expected tag of a tag variable.

P ::= 〈E1, . . . , Ek〉.P | (M1, . . . , Mk).P | decrypt E as {M1, . . . , Mk}l
E0

in P |
(ν n)P | (ν #t : Tag)P | P1|P2 | !P | 0

We use fv(·) for representing the sets of free variables and tag variables, fn(·)
for free names and tags, bv(·) for bound variables/tag variables, and bn(·) for
bound names/tags, respectively. As usual, we omit the trailing 0 of processes.

Pattern matching is included both in inputs and decryptions. In both cases,
our patterns are tuples of definition terms (M1, · · · , Mk) that have to be matched
against tuples of terms (E1, · · · , Ek), when receiving (decrypting, resp.). Note
that, at run time, each tuple (E1, · · · , Ek) only includes closed terms, i.e. each
variable composing each one of the Ei has been bound in the previous steps of the
computation. Instead, definition terms Mi can be partitioned into closed terms
to be matched and variables to be bound. Intuitively, the matching succeeds
when the closed terms, say Mi, pairwise match to the corresponding terms Ei,
and its effect is to bind the remaining terms Ej to the remaining variables "xj .
To exemplify, consider the following processes.

R = (ν"tid : ID2)(ν"tk : key)decrypt {ID2, (A, agent), (NB , nonce), (z, key)}K as
{"tid, (A,agent), (NB , nonce), (#zk, "tk)}lR

K in R′

R̃ = (ν"tid : ID2)(ν"tk : key)decrypt {ID′
3, (A, agent), (NB , nonce), (z, nonce)}K as

{"tid, (A,agent), (NB , nonce), (#zk, "tk)}lR
K in R̃′

S = decrypt {tid, (A, agent), (NB , nonce), (z, t)}K as
{ID2, (A, agent), (NB , nonce), (#zk, key)}lS

K in S′

The decryptions in R and R̃ always succeed and result in binding "zk to (the
values assumed by) z, #tk to key and #tid to ID2, in R, and #tk to nonce and
#tid to ID′

3, in R̃. In particular, in R̃ the decryption succeeds, even though the
declared tag for #tk would be key and #tid should be ID2. In the decryption in
S "zk is bound to z only if t is itself key and tid is ID2. Note that the principal
that decrypts knows which is the protocol he is running and also knows in which
step has been generated the encryption.

Operational Semantics To simplify the definition of our Control Flow Anal-
ysis in Section 3, we discipline the α-renaming of bound values and variables. To
do it in a simple and “implicit” way, we partition all the names used by a process
into finitely many equivalence classes and we use the names of the equivalence
classes instead of the actual names. This partition works in a way that names
from the same equivalence class are assigned a common canonical name and
consequently there are only finitely many canonical names in any execution of a
given process. This is enforced by assigning the same canonical name to every
name generated by the same restriction. The canonical name $n% is for a name
n; similarly $x% is for a variable x. In this way, we statically maintain the iden-
tity of values and variables that may be lost by freely applying α-conversions.



Hereafter, when unambiguous, we shall simply write n (resp. x) for $n% (resp.
$x%). Similarly for tag variables.

We give LySa a reduction semantics. We slightly modify the standard struc-
tural congruence ≡ on LySa processes, to take care of tag declarations. We define
≡ as the least congruence satisfying the following clauses:

– P ≡ Q if P and Q are disciplined α-equivalent (as explained above);
– (P/≡, |, 0) is a commutative monoid;
– (νn)0 ≡ 0, (νn)(νn′)P ≡ (νn′)(νn)P , (νn)(P | Q) ≡ P | (νn)Q if

n '∈ fn(P ),
– (ν#t : Tag)0 ≡ 0, (ν#t : Tag)(ν#t′ : Tag)P ≡ (ν#t′ : Tag)(ν#t : Tag)P ,

(ν#t : Tag)(P | Q) ≡ P | (ν#t : Tag)Q if #t '∈ bv(P );
– !P ≡ P | !P

The reduction relation →R is the least relation on closed processes that sat-
isfies the rules in Table 1. We consider two variants of reduction relation →R,
graphically identified by a different instantiation of the relation R, which deco-
rates the transition relation. Both semantics use the tag environment Γ , which
maps a tag variable to a tag.

Γ : XT → Tag

One variant takes advantage of checks on tag associations, while the other one
discards them: essentially, the first semantics checks for tag matching, while the
other one does not (see below):

– the reference monitor semantics Γ ) P →RM Q takes

R(E, M,Γ ) =

{

false if (M = #t) ∧ (E '= Γ (#t))
true otherwise

this function only affects tag variables, i.e. only definition terms M in the
form #t. It checks whether the tag associated with the variable in the tag
environment (Γ (#t)) is E;

– the standard semantics Γ ) P → Q takes, by construction, R to be univer-
sally true (and therefore the index R is omitted).

Moreover, we define an auxiliary function that handles closed terms and vari-
ables to be bound in two different ways. Technically, we implicitly partition the
tuples and treat the respective elements differently. The pattern matching func-
tion comp(E, M) compares E against M only when M is a closed term and not
a definition variable, nor a definition tag variable.

comp(E, M) =

{

false if M /∈ {"x| x ∈ XS} ∪ {#t| t ∈ XT } ∧ (E '= M)
true otherwise

We use the standard notion of substitution applied to a process P , P [E/M ]. Note
that when used in pattern matching, it has an effect only on definition variables
"x and definition tag variables #t; in the other cases the substitution function



coincides with the identity function. Furthermore, notice that each definition
variable occurs at most once in each pattern matching.

The judgement Γ ) P →R P ′ means that the process P can evolve
into P ′, given the tag environment Γ . The rule (Com) expresses that an out-

(Com)
∧k

i=1comp(Ei, Mi)
Γ " 〈E1, . . . , Ek〉.P | (M1, . . . , Mk).Q→R P | Q[E1/M1, . . . , Ek/Mk]

(Dec)
E0 = E′

0 ∧ ∧k
i=1comp(Ei, Mi) ∧ ∧k

i=1 R(Ei, Mi,Γ )

Γ " decrypt {E1, . . . , Ek}E0
as {M1, . . . , Mk}

l
E′

0

in P →R P [E1/M1, . . . , Ek/Mk]

(Tag Decl) (Res)
Γ ["t &→ Tag] " P →R P ′

Γ " (ν "t : Tag)P →R (ν "t : Tag)P ′

Γ " P →R P ′

Γ " (ν n)P →R (ν n)P ′

(Par) (Congr)
Γ " P1 →R P ′

1

Γ " P1 | P2 →R P ′
1
| P2

P ≡ P ′ ∧ Γ " P ′ →R P ′′ ∧ P ′′ ≡ P ′′′

Γ " P →R P ′′′

Table 1. Operational semantics, Γ " P →R P ′, parameterised on R.

put 〈E1, . . . , Ek〉.P is matched by an input (M1, . . . , Mk) by checking whether
the closed terms Mi are pairwise the same with the corresponding Ei (i.e. if
comp(Ei, Mi)). When the matchings are successful, the remaining Ej are bound
to the corresponding Mj (that are use variables or tag variables).

Similarly, the rule (Decr) expresses the result of matching an encryption
{E1, . . . , Ek}E0

against decrypt E as{M1, . . . , Mk}l
E′

0

in P . As was the case for
communication, the closed terms Mi must match the corresponding Ei, and
additionally the keys must be the same. Note that the key cannot be a defini-
tion variable: it has to be matched in order to decrypt. When the matching is
successful the remaining terms Ej are bound to the corresponding Mj (that are
definition variables or definition tag variables). Recall that in the reference mon-
itor semantics we ensure that the components of the decrypted message have
the tags expected, by checking whether tag variables, e.g. #t, are bound to the
tags included in the corresponding tag environment, e.g. Γ (#t). In the standard
semantics the condition R(E, M,Γ ) is universally true and thus can be ignored.

Back to our example processes R, R̃, and S, using the reference monitor
semantics, we have that in R comp(ID2, #tid) = comp(z, "zk) = comp(key, #tk) =
true and R(key, #tk,Γ ) = true and R(ID2, #tid,Γ ) = true (because Γ (#tk) =
key and Γ (#tid) = ID2), while in R̃ comp(z, "zk) = comp(nonce, #tk) = true,
but R(nonce, #tk,Γ ) = false (because nonce '= Γ (#tk)) and also R(ID′

3, #tid,Γ )
= false (because nonce '= Γ (#tid)). Finally, in S comp(t, key) = true only if



t = key, comp(tid, ID2) = true only if tid = ID2, if both are true then "zk is
bound to z.

The rule (Tag Decl) records the new association between the tag variable #t
and the tag Tag in the tag environment Γ . The updating of Γ is indicated as
Γ [#t ,→ Tag]. The rules (Repl), (Par) and (Congr) are standard.

Dynamic Property As for the dynamic property of processes, we call a process
tag coherent, if the process respects the declared tags and therefore is free of
tag violations. This amounts to saying that each computation possible in the
standard semantics is also possible in the reference monitor semantics. In turn,
the reference monitor will never stop any execution step, when in all computa-
tions, each tag variable is bound to the expected tag, more precisely when each
term has the expected type and the decryption is performed on the encryption
generated in the correct protocol and in the correct step of the protocol. Actu-
ally, we assume that any attacker cannot modify the contents of an encryption,
unless possessing the encryption key. Thus, we only consider tag violations aris-
ing inside encryptions and decryptions. As usual, ∗ stands for the transitive and
reflexive closure of the transition relation.

Definition 1. A process P is tag coherent if for all executions Γ ) P →∗ P ′ →
P ′′, then Γ ) P →∗

RM
P ′ →RM P ′′.

3 Static Analysis

We develop a Control Flow Analysis for tagged LYSA processes that safely over-
approximates all the possible protocol behaviour. The result of the analysis of
a process P also permits to safely approximate when the reference monitor
may abort the computation of P . The approximation is represented by a tu-
ple (Γ, ρ,κ,ψ) (resp. a pair (ρ,ϑ) when analysing a term E), called estimate for
P (resp. or E), that satisfies the judgements defined by the axioms and rules of
Table 2. In particular, the analysis records which value tuples may flow over the
network and which values may be bound to each definition variable (e.g. "x) and
definition tag variable (e.g. #t). Moreover, at each decryption place, the analysis
checks whether a tag (e.g. nonce or IDi) bound to each definition tag variable is
the intended one, or a violation is reported. The analysis is defined in the flavour
of Flow Logic [25].

Analysis of Terms The judgement for analysing terms is ρ |= E : ϑ. The
analysis keeps track of the potential values of variables x or tag variables t, by
recording them into the global abstract environment ρ that maps variables and
tag variable to the sets of values that they may be bound to: ρ : XS ∪ XT →
℘(V al). The judgement is defined by the axioms and rules in the upper part of
Table 2. The rules describe the analysis of terms which approximates the set of
values ϑ that a term may evaluate to. A name n (a tag Tag, resp.) evaluates to
the set ϑ, provided that n (Tag, resp.) belongs to ϑ. Similarly for a variable x (a



tag variable t, resp.), provided that ϑ includes the set of values ρ(x) (ρ(t), resp.)
to which x (t, resp.) is associated with. To reduce the number of rules, we use
the parameter N that stands for both the generic name n and for the generic
tag Tag, and the parameter X that stands for both the generic variable x and
for the generic tag variable t.

To produce the set ϑ, the rule for (Encr) (i) finds the sets ϑi for each term
Ei, (ii) collects all k-tuples of values (v0, · · · , vk) taken from ϑ0 × · · · × ϑk into
values of the form {v1, · · · , vk}l

v0
(iii) requires these values to belong to ϑ.

Analysis of Processes In the analysis of processes, the information on the
possible values, that may flow over the network, is collected into the abstract
network environment component κ ⊆ ℘(V al∗) that includes all the value-tuples
forming a message that may flow on the network.

The judgement for processes takes the form: ρ,κ,Γ |= P : ψ, where the
components ρ,κ, and Γ are as above (recall that Γ : XT → Tag), while the
component ψ ⊆ C, is the (possibly empty) set of “error messages” that take the
form of decryption labels l: l ∈ ψ means that a tag-mismatching (or violation)
may happen inside the decryption labelled l. The judgement is defined by the
axioms and rules in the lower part of Table 2 (where X ⇒ Y means that Y is
only evaluated when X is True) and are explained later on.

For keeping the analysis component finite, as said before, we have partitioned
all the names used by a process into finitely many equivalence classes and we
have used the names of the equivalence classes instead of the actual names.

Before commenting on the analysis rules, we describe three auxiliary func-
tions that generate some logic formulas to be used in the analysis rules.

The first one is the matching function, that takes care of pattern matching,
by checking whether a value v corresponds to a term M . Remember that pattern
matching cannot be performed on either "x or #t. If this is not the case, matching
succeeds when v is a possible evaluation of the term M .

match(v, M, ρ) =







false if M '∈ {"x| x ∈ XS} ∪ {#t| t ∈ XT } ∧ (v '∈ ϑ)
where ϑ is s.t. (ρ |= M : ϑ)

true otherwise

For instance, when ρ |= x : ϑ, match(n, x, ρ), is true if n ∈ ϑ, while is false if
n '∈ ϑ; match(m, "x, ρ) is true, instead.

The second one is a substitution function, that takes care of variable binding.
Intuitively, it only makes sense to bind a value or a tag to either a definition
variable or a definition tag variable, respectively. So the substitution function
binds the value v to M only when M is a variable "x or a tag variable #t.

sub(v, M, ρ) =

{

false if (v '∈ ρ(M)) with M ∈ {"x| x ∈ XS} ∪ {#t| t ∈ XT }
true otherwise

For example, sub(m, "x, ρ) is true if (m ∈ ρ(x)), while sub(m, m, ρ) is true.
The last function is about tag checking. Given a tag environment Γ , it checks

whether v is the expected tag of a definition tag variable #t. If it is not the case,



the decryption labeled l, is recorded in the error component ψ. Note that in
order to let the tag checking work, M has to be a definition tag.

chk(v, M,Γ, l,ψ) =

{

false ifM ∈ {#t| t ∈ XT } ∧ (v '= Γ (M)) ∧ (l ∈ ψ)
true otherwise

For instance, if m '= Γ (#t), then chk(m, #t,Γ, l,ψ) is false and l ∈ ψ.

(Const)
N ∈ ϑ

ρ |= N : ϑ
(N = Tag or n) (V ar)

ρ(X) ⊆ ϑ
ρ |= X : ϑ

(X = x or t)

(Encr)

∧k
i=0 ρ |= Ei : ϑi ∧

∀v0, . . . , vk : ∧k
i=0 vi ∈ ϑi ⇒ {v1, . . . , vk}v0

∈ ϑ

ρ |= {E1, . . . , Ek}E0
: ϑ

(Out)

∧k
i=1 ρ |= Ei : ϑi ∧

∀v1, . . . , vk : ∧k
i=1vi ∈ ϑi ⇒ 〈v1, . . . , vk〉 ∈ κ ∧
ρ,κ,Γ |= P : ψ

ρ,κ,Γ |= 〈E1, . . . , Ek〉.P : ψ

(In)

∀〈v1, . . . , vk〉 ∈ κ ∧k
i=1 (match(vi, Mi, ρ) ⇒ sub(vi, Mi, ρ) ∧
ρ,κ,Γ |= P : ψ)

ρ,κ,Γ |= (M1, . . . , Mk).P : ψ

(Dec)

ρ |= E : ϑ ∧ ρ |= E0 : ϑ0 ∧

∀{v1, . . . , vk}v0
∈ ϑ : v0 ∈ ϑ0 ⇒

∧k
i=1(match(vi, Mi, ρ) ⇒ (sub(vi, Mi, ρ) ∧ chk(vi, Mi,Γ, l) ∧

ρ,κ,Γ |= P : ψ)

ρ,κ,Γ |= decrypt E as {M1, . . . , Mk}l
E0

in P : ψ

(TNew)
("t, Tag) ∈ Γ ∧ ρ,κ,Γ |= P : ψ

ρ,κ,Γ |= (ν "t : Tag)P : ψ
(Par)

ρ,κ,Γ |= P1 : ψ ∧ ρ,κ,Γ |= P2 : ψ
ρ,κ,Γ |= P1 | P2 : ψ

(Res)
ρ,κ,Γ |= P : ψ

ρ,κ,Γ |= (ν n)P : ψ
(Rep)

ρ,κ,Γ |= P : ψ
ρ,κ,Γ |=!P : ψ

(Nil) ρ,κ,Γ |= 0 : ψ

Table 2. Analysis of tagged Lysa Terms: ρ |= E : ϑ, and Processes: ρ,κ,Γ |= P : ψ

We now briefly comment on the rules for analysing processes. In the premises
of the rule for k-ary output (Out), we require that all the terms are abstractly
evaluated, and that all the combinations of these values are recorded in κ. Indeed
these are the values that may be communicated. Finally, the continuation process
must be analysed.

The rule (In) describes the analysis of pattern matching input and uses both
the match and substitution functions. The idea is to examine all the sequences
of 〈v1, ..., vk〉 in the κ component and to pointwise compare them against the
tuple of definition terms (M1, ..., Mk). The matching function selects only the
closed terms (names or tags) and for each of them, say Mi, checks whether
the corresponding vi is included in ϑi, i.e. the result of the analysis for Mi. If
the matching succeeds for all the closed terms, then, the substitution function



takes care of binding the remaining values vj to the corresponding definition
variables or definition tag variables Mj . Moreover, the continuation process must
be analysed.

The rule for decryption (Dec) is quite similar to the rule for input : matching
and substitution are handled in the same way. The values to be matched are
those obtained by evaluating the term E and the definition ones are the terms
inside the decryption. If the matching succeeds for all closed terms, then the sub-
stitution is applied to the remaining values that are bound to the corresponding
definition variables or definition tag variables. When processing the substitution,
tag checking is also performed to capture possible violations. These occur when
a definition tag variable is bound to an unexpected tag. In this case, the label l
of the decryption is recorded in the error component ψ. In the case of both input
and decryption the continuation process P is analysed only when the input or
decryption could indeed succeed.

The rule for tag declaration (TNew) requires that the declared tag is recorded
in the tag environment Γ . The rule for the inactive process (Nil) does not restrict
the analysis result, while the rules for parallel composition (Par), restriction
(Res), and replication (Rep) ensure that the analysis also holds for the immediate
subprocesses.

Semantic properties Our analysis is semantically correct regardless of the
way the semantics of LySa is parameterised. More precisely, we proved a subject
reduction theorem for both the standard and the reference monitor semantics:
(ρ,κ,ψ,Γ ) for P is a valid estimate also for all the states passed through in a
computation of P , i.e. for all the derivatives of P .

Theorem 1 (Subject reduction). If Γ ) P → Q and ρ,κ,Γ |= P : ψ then
ρ,κ,Γ |= Q : ψ. Furthermore, if ψ = ∅ then P →RM Q

In addition, when analysing a process P if the error component ψ is empty
then the reference monitor cannot stop the execution of P . This means that our
analysis correctly predicts when we can safely do without the reference monitor.
We shall say that the reference monitor RM cannot abort a process P whenever
there exist no Q, Q′ such that P →∗ Q → Q′ and P →∗

RM
Q /→RM, where Q /→RM

stands for ¬∃Q′ : Q →RM Q′. We then have:

Theorem 2 (Static check for reference monitor). If ρ,κ,Γ |= P : ψ and
ψ = ∅ then RM cannot abort P .

Example As shown in [4], our analysis acts in a descriptive way: it describes which
violations may occur. In the same setting, our approach also offers a prescriptive
usage: we can impose a tag discipline, by forcing some data to correspond to the
expected tags. At this point, the analysis may statically check that tag violations
are not possible any longer. In other words, we can instrument the code with
the only checks necessary to enforce tag security. We can illustrate it on our
example processes R, R̃, and S. For detecting possible tag violations, in R̃,



we assume that the tk should be key, but we do not impose it in the protocol
specification, we do not check the tag associated with the received value. The
analysis, instead, correctly reveals that the tag received, may be nonce. For
preventing such a tag violation and the consequent attack from arising, the
protocol has to be modelled differently, by explicitly requiring that tk has to
be a key. More precisely, we check whether the tag associated with the value
received and decrypted is key as expected. As a consequence, the decryption
fails and the analysis result does not find potential tag violations any longer.

Modelling the Attacker In a protocol execution, several principals exchange
messages over an open network, which is accessible to the attackers and therefore
vulnerable to malicious behaviour. We assume an active Dolev-Yao attacker
[11]: it can eavesdrop, and replay, encrypt, decrypt, generate messages providing
that the necessary information is within his knowledge, that it increases while
interacting with the network.

This scenario can be modelled in LYSA as a process running in parallel with
the protocol process. Formally, we shall have Psys | P•, where Psys represents
the protocol process and P• is some arbitrary attacker. To get an account of the
infinitely many attackers, the overall idea is to find a formula F (for a similar
treatment see [7]) that characterizes all P•: this means that whenever an estimate
(ρ,κ,Γ,ψ) satisfies F , then (ρ,κ,Γ ) |= P• : ψ for all attackers P•. Intuitively,
the formula has to mimic how all the P• are analysed. The attacker process is
parameterised on some attributes of Psys, e.g. the length of all the encryptions
occurred and all the messages sent over then network. In the formula, the names
and variables the attacker uses are apart from the ones used by Psys. We can
then postulate a new distinguished name n• and a new distinguished variable z•,
in which the names and variables, resp., of the attacker are coalesced; therefore
n• may represent any name generated by the attacker, while ρ(z•) represents
the attacker knowledge. It is possible to prove that if an estimate of a process P
with ψ = ∅ satisfies the attacker formula than RM does not abort the execution
of P | Q, regardless of the choice of the attacker Q. Further details can be found
in [7].

Implementation and Complexity The overall goal of the implementation of
the analysis is to compute the analysis result (ρ, κ, Γ , ψ) for a given process. This
is done in two phases. In the first phase, construct a function using Standard
ML that translates a LYSA process into a logic formula in Alternation-free Least
Fixed Point logic [24], which is regarded as an extension of Horn clauses, and in
the second phase use Succinct Solver to compute interpretations of predicates
that satisfy the formula. As the Succinct Solver is used to compute a finite
representation of the analysis result, according to the Proposition 2 in [24], it
is easy to draw a conclusion that: a finite representation of an analysis result
for ρ,κ,Γ |= P : ψ may be computed in low polynomial time in the size of the
process P .



4 Multi-protocol tagging

We are able to statically detected a family of similar attacks in a setting where
the (secure in isolation) Bauer-Berson-Feiertag (BBF) [3] and Woo-Lam Authen-
tication Πf (WL) [27] protocols are running in parallel, using the same long-term
keys (they both use symmetric encryption). They are all based on the fact that
the initiator of the WL can be exploited as an oracle to produce an encryption
that can be confused with the encryption including the new session key in the
BBF protocol, thus attacking the secrecy and authentication of BBF. For lack
of space, we only show one of these attacks. In this setting, each principal can
participate in different protocols and the trusted server S serves in both proto-
cols. In BBF, S is used to generate and distribute a new session key, while in
WL S acts as intermediary between I and R.

In BBF, the initiator, I, sends its identifier and a new fresh nonce to R which
forwards them to the trusted server, together with its own identifier and nonce.
The server creates the new session key and replays back to R two encrypted
messages; R decrypts the one encrypted with the long-term key, KRS , verifies
that the nonce is the same generated earlier in the session, and forwards the
other encryption to I, that can decrypt it and check for the nonce. At the end,
both should obtain the new session key.

The initiator I of the WL protocol sends R its identifier and receives
back from him its nonce. Then I sends to R its nonce and both the principal
identifiers, encrypted with its long-term key KIS. The responder contacts the
server S by sending him an encryption containing the I’s message together with
its nonce and the principal identifiers. Eventually, S confirms the identity of I
to R by sending R an encryption containing the fresh nonce generated in the
second step of WL. The narration of the two protocols follows.

1. I → R : I, NI

2. R → S : I, NI , R,NR

3. S → R : {KIR, I, NR}KRS
, {KIR, NI , R}KIS

4. R → I : {KIR, NI , R}KIS

1. I → R : I
2. R → I : NR

3. I → R : {I, R, NR}KIS

4. R → S : {I, R, NR, {I, R, NR}KIS
}KRS

5. S → R : {I, R, NR}KIS

BBF WL

In Table 3 we show the specification of the two protocols, where each message
begins with the pair of roles involved in the exchange. For the sake of simplic-
ity, we only specify the single roles in each protocol. Actually, each agent can
participate in both protocols and can play in both the initiator and responder
roles.
The attack arises in a scenario where the principal B begins a run of WL as
initiator with A as a responder. His messages are intercepted by the attacker
(M(X) stands for the attacker impersonating the principal X). The principal
B is then involved as responder in a run of the protocol BBF, apparently with
A as initiator, but actually with M(AI). The attacker exploits the fact that
the long-term key KBS between B and S is the same in both the protocols.



/∗Role I in BBF∗/ (ν NI)(ν "txk1 : KEY )(ν "txp : BBF3)
/∗1∗/ 〈I,R, I, NI〉.
/∗4∗/ (R, I, # xe1).decrypt xe1 as{"txp, ("txk1, #xk1), (nonce, NI), (agent,R)}"1

KIS
in 0

/∗Role I in WL∗/

/∗1∗/ 〈I,R, I〉.
/∗2∗/ (R, I, #xn).
/∗3∗/ 〈I,R{WL3, (agent, I), (agent,R), (nonce, xn)}KIS

〉.0
/∗Role R in BBF∗/ (ν NR)(ν "typ : WL2)(ν "tyk : KEY )

/∗1∗/ (I,R, #y1, #y2).
/∗2∗/ 〈R,S, y1, y2, R,NR〉.
/∗3∗/ (S, R, #ye1, #ye2).decrypt ye1 as{"typ, ("tyk, #yk), (agent, y1), (nonce, NR)}"2

KRS
in

/∗4∗/ 〈R, I, ye2〉.0
/∗Role R in WL∗/ (ν N ′

I)(ν "typ1 : WL5)(ν "tya2 : AGENT )
/∗1∗/ (I,R, #ya1).
/∗2∗/ 〈R, I, N ′

R〉.
/∗3∗/ (I,R, #ye3).
/∗4∗/ 〈R,S, {(agent, ya1), (agent,R), (nonce, N ′

R), ye3}KRS
〉.

/∗5∗/ (S, R, #ye4).decrypt ye4 as{"typ1, (agent, ya1), (agent,R), (nonce, N ′
R)}"3

KBS
in 0

/∗Server in BBF∗/ (ν K1)
/∗2∗/ (R, S, I, #sn1, R, #sn2).
/∗3∗/ 〈S, R, {BBF3, (key, K1), (agent, I), (nonce, sn2}KRS

,
{BBF3, (key,K1), (nonce, sn1), (agent,R)}KIS

〉.0
/∗Server in WL∗/ (ν "tzp1 : WL4)(ν "tzp2 : WL3)(ν "tzn1 : NONCE)

/∗4∗/ (R, S, #ze1).decrypt ze1 as{"tzp1, (agent, I), (agent,R), ("tzn1, #zn1), # ze2}
"4
KRS

in

decrypt ze2 in{"tzp2, (agent, I), (agent,R), (tzn1, zn)}"5
KIS

in
/∗5∗/ 〈S, R, {WL5, (agent, I), (agent,R), (nonce, zn1)}KRS

〉.0

Table 3. Specification of the two protocols

More precisely, the intruder suitably mixes the nonces of the two protocols and
then exploits B, in the role of initiator in WL, as an oracle to get a message
composed with three terms and encrypted with KBS ({B, A, NB}KBS

), that can
be wrongly accepted by B, in the role of responder in BBF, as the encryption
containing the new session key, the name of the initiator and the nonce generated
in the second step of BBF. As a consequence B, in the BBF session, believes to
have communicated with A and that the new session key is B.

/ ∗ 1.WL ∗ / B → M(A) : B
/ ∗ 1.BBF ∗ / M(A) → B : A, NA

/ ∗ 2.BBF ∗ / B → M(S) : A,NA, B, NB

/ ∗ 2.WL ∗ / M(A) → B : NB

/ ∗ 3.WL ∗ / B → M(A) : {B, A, NB}KBS
/ ∗ B acts as an oracle for the intruder ∗ /

/ ∗ 3.BBF ∗ / M(S) → B : {B, A, NB}KBS
, {B, A,NB}KBS

/ ∗ B accepts a wrong key ∗ /
/ ∗ 4.BBF ∗ / B → M(A) : {B, A, NB}KBS



In the LYSA specification, a system sufficient to capture the above attack, is
defined as the parallel composition of three processes A, B, and S, running in
parallel within the scope of the shared keys: System = (νKAS)(νKBS)A‖B‖S,
where A and B can play as initiator and responder in both protocols, and the
actions in the two roles in the two protocols run in parallel. In particular, we
can focus on B in the role of initiator in WL and B in the role of responder in
BBF.

Our analysis correctly detects the message confusion that occurs at step 3 of
the BBF protocol. In fact, the results, limited to the variables of interest, listed
below, shows that there has been a tag violation (l2 ∈ ψ) in the encryption,
where an agent identifier, B has been accepted as a key ({nonce} ∈ ρ(tyk), but
Γ (tyk) = key). Furthermore, from {WL3} ∈ ρ(typ) and Γ (typ) = BBF3 we
can say that a message created in WL at step 3 has been instead accepted in
BBF at step 3.

{{BBF3, (key, K1), (agent, A), (nonce, NB)}KBS
,

{WL3, (agent, B), (agent, A), (nonce, NB)}KBS
} ∈ ρ(ye1)

{BBF3, WL3} ∈ ρ(typ) {key, nonce} ∈ ρ(tyk) {K1, B} ∈ ρ(tyk) {l2} ∈ ψ

Note that the above results can be obtained by the specification in Table 3, by
replacing I and R in the third step of BBF with A and B, resp.

Furthermore, if we replaced typ with BBF3, i.e. if we forced the decrypted
value to match the tag BBF3, as in

decrypt ye1 as {BBF3, (#tyk, "yk), (agent, y1), (nonce, NB)}!2
KBS

in . . .

then the attack could be prevented at run time. The analysis of the new speci-
fication would be indeed such that ψ = ∅. Intuitively, in the third step of BBF,
B could still receive {B, A, NB}KBS

, but the decryption would fail, because of
pattern matching, in fact comp(BBF3, WL3) = false. This is an example of
instrumentation of the code, used to introduce the only necessary checks on
tags.

5 Conclusion

In the multi-protocol setting, harmful interactions among different protocols
often are based on the presence of similar patterns in messages that can be
exploited by attackers. As an example, we modelled and analysed an undocu-
mented family of attacks that occur when the Bauer-Berson-Feiertag and the
Woo-Lam authentication protocols are concurrently executed. We can also stat-
ically detect some of the attacks reported in [10], that we do not present here
for lack of space (an example can be found in [5]).

We extended the process calculus LYSA with tags, which represent the in-
tended types of terms, the intended protocol and the message step. The semantics
uses a reference monitor to capture tag-mismatching at run time. We developed
a Control Flow Analysis to check at each decryption place whether the received,
secret data has the right type and the message has been generated in the same



protocol, in the correct step. Our tagging schema let us therefore detect possible
multi-protocol attacks. In addition, we can impose a prescriptive tag discipline,
by using tags at run time to semantically force some data – only the ones that
can be confused – to be accepted only if they correspond to the expected ones:
in this case, we aim at preventing tag violation to arise. Attaching type tags and
protocol identifiers within encrypted messages is a classical countermeasure to
prevent this kind of attacks. It is often unnecessary and redundant to tag ev-
erything. The suggestions given by the analysis on how to instrument the code
with the necessary checks can thus lead to useful insights on the optimal usage
of tags at run time, identifying the redundant ones.

The Control Flow Analysis presented here is based on a particular kind of
tags. There are a lot of different tagging schemes in literature that can be in-
cluded in our framework as well, e.g. the just referred [20] or the ones proposed
in [10].

In the last years, LYSA has been given different kinds of annotations for
checking some classic security properties, e.g. confidentiality [14], freshness [12]
and message authentication [7]. It is very easy to combine tags with the above
annotations, thus obtaining a more general form of analysis. We therefore obtain
a single unifying framework for studying protocols. Our analysis has been imple-
mented and can be computed in low polynomial time in the size of the process
under consideration.

Studies on multi-protocol systems are usually focused on analysing possible
interactions between two, or a few more, specific protocols running in parallel,
as in [10]. There, verification techniques exploiting the Scyther Tool [9] are pre-
sented, in order to check the security properties of small groups of protocols, and
to discover new multi-protocol attacks. Scyther can either compute a fixed num-
ber of runs or simulate an unbounded number of runs: if the studied property
is not verified an attack is reconstructed. The termination is always guaranteed.
Our static approach guarantes that the over-approximated results covers all the
attacks both for a bounded or unbounded number of runs. We have termination,
because ours is a static analysis: the price is a loss in precision, that dynamic
techniques avoid. Model checking has been instead used in [26] to discover new
attacks. This technique has the disadvantage of state-explosion, not suffered by
Control Flow Analysis, again because of approximation. Also [21], presents a
certain number of new multi-protocol attacks. Similarly to [20], we apply a uni-
form tagging scheme for all the protocols in the system. We remark that our tags
just identify the expected types of message components and protocol identifiers,
instead of roles, identity, authentication, verification, as in [20]. There is also a
line of research devoted to establishing conditions for composition of protocols.
In [15], authors define two protocols independent, when the achievement of a
security goal of one protocol does not depend on the execution of the other.
Using the Strand Space formalism [16], they prove that protocol independence
is obtainable if encryption is used in non-overlapping way. In the same line of
research is [6], where it is shown that secrecy-preserving protocols can be safely
composed, if each encryption comes with a tag identifying the protocol name.
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