
Automated Analysis of Security in
Networking Systems

Mikael Buchholtz

Kongens Lyngby 2004

IMM-PHD-2004-141

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13706358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Abstract

It has long been a challenge to build secure networking systems. One way to
improve the state of affairs is to provide developers of software applications for
networking systems with easy-to-use tools that can check security properties
before the applications ever reach the market. These tools will both raise the
general level of awareness of the problems as well as prevent the most basic flaws
from occurring. This thesis contributes to the development of such tools.

Networking systems typically attain secure communication by applying standard
cryptographic techniques. In this thesis such networking systems are modelled
in the process calculus LySa. The next step is the development of an analysis of
system behaviour that relies on techniques from data and control flow analysis.
These are analysis techniques that can be fully automated and this feature makes
them an ideal basis for tools targeted at non-experts users. The feasibility of the
techniques is illustrated by a proof-of-concept implementation of a control flow
analysis developed for LySa. From a technical point of view, this implementation
is also interesting because it encodes infinite sets of algebraic terms, which denote
encryption, as a finite number of tree grammar rules.

The security of any software application relies crucially on the scenario in which
the application is deployed. In contrast to many related analysis approaches,
this thesis provides an explicit mechanism for specifying deployment scenarios.
Even though these scenarios may be arbitrarily large, the analysis techniques
can be extended to cope with this. The analysis techniques are furthermore
capable of tackling security issues that arise because systems may be under
attack: the analysis can deal with confidentiality and authentication properties,
parallel session attacks, and attacks launched by insiders.

Finally, the perspectives for the application of the analysis techniques are dis-
cussed, thereby, coming a small step closer to providing developers with easy-
to-use tools for validating the security of networking applications.

IV

Resumé

Det har længe været en udfordring at udvikle sikre netværkssystemer. Et af de
steder, hvor man kan afhjælpe dette problem, er i udviklingsfasene af software
applikationer til brug i netværkssystemer. Her kan man benytte sig af værktøjer,
der automatisk kan undersøge sikkerhedsegenskaber ved applikationer, allerede
inden disse bliver sendt ud i handel. S̊adanne værktøjer vil højne det generelle
bevidsthedsniveau omkring sikkerhedsrelaterede problemstillinger, samtidig med
at de kan sikre, at de mest elementære fejl ikke opst̊ar. Denne afhandling
bidrager til udviklingen af s̊adanne værktøjer.

Kommunikation i netværkssystemer beskyttes typisk ved at benytte gængse
kryptografiske teknikker. I denne afhandling bliver s̊adanne netværkssystemer
modelleret in proceskalkulen LySa. Ud fra denne programmeringssprogbaserede
formalisme er der udviklet en analyse, der bygger p̊a teknikker fra data- og kon-
trolflowanalyse. Disse teknikker kan automatiseres fuldt ud, hvilket gør dem
ideelle som udgangspunkt for udvikling af værktøjer, der skal benyttes af ikke-
eksperter. For at godtgøre brugbarheden af denne analyseteknik er der udviklet
en forsøgs-implementation af analysen. Set fra et teknisk perspektiv er denne
implementation endvidere interessant, fordi den beskriver uendelige mængder
af algebraiske termer, der repræsenterer kryptering, som en endelig mængde af
regler i en trægrammatik.

Sikkerheden i enhver software applikation afhænger i høj grad af det scenarie,
hvori applikationen anvendes. Denne afhandling giver i modsætning til mange
lignende analysemetoder en eksplicit måde til at specificere anvendelsesscenarier.
Selvom disse scenarier kan være uendelig store, s̊a kan analyseteknikkerne ud-
vides til ogs̊a at kunne h̊andtere s̊adanne scenarier. Analyseteknikkerne kan
ligeledes h̊andtere sikkerhedsaspekter, der gør sig gældende, n̊ar en applikation er
under angreb fra en vilk̊arlig angriber: analysen kan h̊andtere hemmeligholdelses-
og autentifikationsegenskaber, angreb mellem parallel kørsler samt angreb fra

VI

insidere.

Til slut bliver perspektiverne for anvendelse af de udviklede analyseteknikkerne
diskuteret. S̊aledes kommes en smule tættere p̊a at kunne producere brugbare
værktøjer til at validere sikkerheden i netværkssystemer.

Preface

This thesis is a part of the work done for obtaining the Ph.D. degree under the
Ph.D. Programme in Mathematics, Physics, and Informatics at the Technical
University of Denmark. The Ph.D. study has been carried out at Informatics
and Mathematical Modelling under main-supervision of Professor Hanne Riis
Nielson and supervision of Professor Flemming Nielson in the period from Jan-
uary 2001 to December 2004. The study is funded by the DEGAS project of
the Information Society Technologies programme of the European Commission,
Future and Emerging Technologies (IST-2001-32072).

Remarks

I would like to begin with few general remarks on the style and the content of
this thesis. This thesis has been funded by the DEGAS project, which has also
provided the boundaries for the work presented in this thesis. Therefore, the
general picture, in which this thesis should be viewed, owes much to the people
who drew up the DEGAS project proposal.

When referencing work from the literature, I have tried to avoid double refer-
ences as much as possible. For example, if a particular strand of work has been
presented through a series of papers, only one central reference will be given —
unless different aspects in these papers are the target of reference.

Notation tailored for a specific purpose will be introduced in the main text the
first time it is used. More general mathematical notation, such as set operation,
notation for functions and sequences, logic operators etc. will rely on standard
conventions. The reader is referred to an overview of notation found at the end
of this thesis.

Most of the examples in this thesis are fairly short. In the words of Stephen

VIII

Gilmore: “There are examples that fits on a slide and then there are realistic
examples”. The examples in this thesis is of the former kind; a choice mainly
motivated by personal taste. However, the analysis techniques presented in this
thesis have also been applied to numerous realistic examples. The reader is
referred to Section 8.1.1 for pointers to these applications. Additionally, one
somewhat realistic example is given in Section 7.5.

This thesis is in part based upon previously published work, and certainly much
credit for that work goes to my co-authors of these publications. The presenta-
tion in the thesis is, of course, solely by the hand of, as well as at the fault of,
the author.

In more detail, the LySa process calculus and its control flow analysis were orig-
inally developed in [21] presented at CSFW 2003. The work was later extended
with asymmetric key cryptography in a journal version of the paper [23]. In
this thesis, these two papers will be cited uniformly as the journal version [23].
Following this development, the LySa calculus and its control flow analysis are
presented in Chapter 2 and Chapter 3, respectively. Parts of the presentation
deviates slightly from [21, 23], mainly in order to give a coherent presentation
throughout the thesis. I would also like to mention that Example 3.13 is in-
spired by personal communication with Esben Heltoft Andersen and Christoffer
Rosenkilde Nielsen.

Chapter 4 describes the techniques that are at the heart of the implementation
of the control flow analysis and is based on a draft DEGAS report [32]. The
implementation of the analysis is known as the LySatool and is available on-
line [90]. The initial version of what later became the LySatool was developed
for [21] under much discussion between the authors of [21] and with code con-
tributed by Hanne Riis Nielson. The LySatool has later been released in version
1 covering also asymmetric key cryptography as in [23]. Along side this thesis I
have developed version 2 of the LySatool with the main novelty being the im-
plementation of deployment scenarios, which is presented in Chapter 6. This
version of the LySatool has been used to provide the result shown in many of
the examples in the thesis.

The presentation of the attacker in Chapter 5 differs somewhat from the one
in [23]. However, the restricted hardest attacker in Section 5.1 essentially cor-
responds to the attacker in [23]. Section 5.2 gives a novel treatment of how to
handle all arities of polyadic communication and cryptography, which justifies
the validity of the original attacker.

Chapter 6 presents a notion of deployment scenarios. This idea comes from [34],
where it was developed for an extension of the LySa calculus known as LySaNS.
For this thesis, I have ported the idea into LySa and spend more effort on
developing the theory around this concept. The great advantage of porting the
idea is that the analysis of deployment scenarios can be implemented with a
minor effort by taking advantage of the implementation of the LySatool.

IX

Section 7.2 covers the authentication analysis that was developed in [23]. The
remainder of Chapter 7 is my interpretation of ideas that have been around on
how the analysis can be used to check other security issues. Section 7.5 presents
an application of the analysis to the Bauer, Berson, and Feiertag protocol. This
work was first performed in the spring of 2004 when I was trying to come up with
a good exercise for a course on language-based security. The description of the
protocol in Section 7.5 is based on the exercise text for that course. Section 7.6
is an extended version of a state-of-the-art report that I wrote for [35].

This final version of the thesis contains correction of typos and minor clarification
compared to the version handed in for evaluation on December 22, 2004.

Acknowledgements

First of all, I would like to thank Hanne Riis Nielson and Flemming Nielson
for their supervision and for providing me with this opportunity to work on an
international research project.

Furthermore thanks to René Rydhof Hansen for many interesting discussions
— some even relevant to this thesis. Also thanks to Chiara Bodei, Pierpaolo
Degano, and Carlo Montangero for taking good care of me during several visits to
Pisa over the past years. A special thanks goes to Pierpaolo for his comments on
drafts of this thesis and for the moral support. Also thanks to Henrik Pilegaard
for proof reading as well as for good company.

I would also like to thank the evaluation committee Riccardo Focardi, Joshua
Guttman, and Anne Haxthausen for their valuable suggestions that have im-
proved this final version the thesis.

Last but not least a thanks goes to the people at IMM, the people with whom I
have had the pleasure of writing papers, the people in the DEGAS project, the
people I met in Pisa, as well as the many other people that I have met along
the way; the work presented in this thesis is not least due to the many fruitful
discussions with them.

Mikael Buchholtz
Nørrebro May 26, 2005

X

Contents

1 Introduction 1

1.1 Overview of the Thesis . 3

2 Modelling in Process Calculi 5

2.1 Process Calculi for Security . 7

2.2 LySa . 10

2.2.1 Syntax . 11

2.2.2 Semantics . 14

2.2.3 Comparison with LySaNS 19

3 Control Flow Analysis 21

3.1 Concepts in Flow Logic . 22

3.1.1 Correctness of the Analysis 22

3.1.2 Analysis Results . 24

3.1.3 Verbose and Succinct Flow Logics 25

3.2 A Control Flow Analysis of LySa 26

3.2.1 Domain of the Analysis 26

3.2.2 Definition of the Analysis 28

3.2.3 Correctness of the Analysis 32

3.2.4 On the Precision of the Analysis 37

XII Contents

4 Implementation 41

4.1 From Succinct to Verbose . 43

4.2 From Infinite to Finite . 47

4.2.1 On Terms, Tree Languages, and Tree Grammars 48

4.2.2 Tree Grammars for the Analysis 49

4.2.3 The Finite Analysis . 50

4.3 The Generation Function . 55

4.3.1 ALFP and the Succinct Solver 55

4.3.2 Encoding the Analysis as ALFP 56

4.3.3 Generating ALFP . 59

4.4 Summary . 61

4.4.1 Existence of Solution . 62

4.4.2 Complexity . 63

4.4.3 Implementation in Standard ML 64

4.4.4 Tuning Expression Labels 64

5 Network Attackers 67

5.1 A Hardest Attacker . 68

5.1.1 Restricting the Attackers 68

5.1.2 A Restricted Hardest Attacker 69

5.2 Handling All Arities . 72

5.2.1 An O-precise Analysis . 72

5.2.2 Relationship with the Ordinary Analysis 75

5.2.3 Summary . 77

5.3 Implementing the Analysis of Attackers 78

5.3.1 Tuning Labels in Phard . 78

5.3.2 Tuning Input Variables 80

6 Deployment Scenarios 85

6.1 The Meta Level . 86

6.1.1 Semantics . 87

6.1.2 Free Names . 91

6.2 The Analysis . 93

Contents XIII

6.2.1 On Canonical Indices . 95

6.2.2 Correctness of the Analysis 97

6.2.3 Network Attackers at the Meta Level 98

6.2.4 Implementation . 99

6.3 Summary . 100

7 Security in Networking Systems 103

7.1 Confidentiality . 103

7.2 Authentication . 105

7.2.1 Destination and Origin Authentication in LySa 106

7.2.2 Authentication Analysis 108

7.2.3 Correctness of the Authentication Analysis 110

7.2.4 The Attacker . 110

7.2.5 Implementation . 111

7.2.6 Authentication at the Meta Level 113

7.3 Parallel Session Attacks . 114

7.3.1 A Scenario for Parallel Sessions 115

7.3.2 Analysing Parallel Sessions 116

7.3.3 Generalising the Scenario 118

7.4 Insider Attacks . 119

7.4.1 Legitimate Principals . 119

7.4.2 Illegitimate Principals . 120

7.5 A Worked Example: The Bauer, Berson, and Feiertag Protocol . 122

7.5.1 A Simple Scenario . 123

7.5.2 Multiple Principals . 125

7.5.3 Bi-directional Key Establishment 126

7.6 Comparison with Related Work 128

7.6.1 Techniques using Process Calculi 128

7.6.2 Other Related Techniques 130

7.6.3 Other Main Trends . 131

8 Conclusion 133

8.1 Perspectives . 133

XIV Contents

8.1.1 Direct Modelling . 134

8.1.2 Technology Transfer . 135

8.1.3 Problem Transformation 136

8.2 Recapitulation . 138

Notation 141

Bibliography 146

Contents XV

C h a p t e r 1

Introduction

In modern day society, IT infrastructure is becoming increasingly important. For
example, the internet is today frequently used for significant tasks such as bank-
ing, shopping, and for citizens to communicate with authorities. This increasing
popularity has not only been for the internet, which consists of relative station-
ary entities. Also mobile devices, such as mobile telephones and personal digital
assistants (PDA’s), are now frequently used and these devices too are becoming
more and more dependent on network infrastructure. While this development
offers many new services, it also leads to new threats because malicious par-
ties now have a much larger range of applications on which they can launch
attacks. With the massive increase in use of IT network infrastructure, it is
therefore becoming paramount for our society that this infrastructure, including
the applications that use it, are able to guard against malicious behaviour.

Previously, access to network infrastructure was limited to a few core software
applications, which to a certain degree could be overseen by security experts.
Today, however, it is commonplace for most kinds of application to have net-
working capabilities and these applications are often developed by people with a
relatively limited knowledge of network security. Sadly enough, this means that
most of the classical security problems and mistakes, such as the ones considered
as early as [104, 55], still cause serious problems and, consequently, are as rele-
vant as ever. This thesis investigates one way to tackle this problem; namely to
supply developers with easy-to-use tools that can automatically check security
properties of their networking applications.

Thus, the aim of this thesis is to provide a means for gaining confidence in newly

2 Introduction

developed applications for distributed systems. More specifically, the goal is to
provide application developers with tools and techniques that can be used in
the development phase of an application. The techniques will help find security
breaches and provide guarantees of the application’s ability to remain uncom-
promised even in a hostile network environment. Providing such guarantees
already in the development phase of an application may reduce the need for
patching already deployed applications, which today is one of the major security
problems [123].

To attain confidence in the techniques developed for security analysis, this thesis
relies on the use of formal methods. In order to develop rigorous analysis tech-
niques it is first of all necessary to be able to precisely describe the problem at
hand. This thesis relies on formal models known as process calculi, which over the
past decades have shown a large potential as a rigorous basis for description and
analysis of concurrent and distributed systems. A process calculus is basically a
small, idealised programming languages that can serve as an abstract modelling
tool. Furthermore, since most software is developed using some kind of pro-
gramming language, analysis techniques developed in a language based setting
also have a large potential for application to common, practical problems.

A problem with many techniques for formal validation is that they require much
effort on the part of the person who conducts the analysis. Thereby, the process
of software validation becomes costly — both in terms of the time is takes and in
terms of the level of education required from the people who need to perform it.
Effectively, this means that these methods have little chance of getting accepted
into the bulk of real-world application development, except possibly for a few
special cases. In contrast to these approaches, the techniques developed in this
thesis will all be automatable and, thereby, require only minimal effort on the
part of the application developer.

The development of automatable software analysis techniques involves a num-
ber of challenges both of theoretic and of pragmatic nature. Software applica-
tions will typically be written in some Turing complete language and conducting
automated analysis of software applications will — loosely interpreting Rice’s
Theorem [78] — mean solving an undecidable problem. More pragmatically, for
these analysis techniques to be feasible for real-world application development
they need to be relatively fast, thus making the time complexity of the analysis
an important factor.

Despite the nature of undecidable problems there are several ways that one can
automate their analysis. For example, in model checking one ignores the fact
that the problem is undecidable and simply tries to explore the solution space
from one end to the other. The hope is that something interesting turns up before
you run out of computing power. Though this strategy can work well for finding
flaws in applications it cannot, in general, give guarantees about the absence of
flaws nor that the analysis always terminates. In relation to security, this means

1.1 Overview of the Thesis 3

that model checking can be an efficient tool for finding security breaches but
cannot guarantee their absence.

In contrast, the analysis techniques used in this thesis are able to guarantee the
absence of security flaws and they will always terminate. To achieve these goals,
the strategy is to develop approximative analyses where the analysis results may
be imprecise. The analyses will be constructed, using techniques from control
and data flow analysis [109] in such a way that the nature of the imprecision
is known and the analysis result will be useful. In general, it is attractive to
have analyses that are very precise i.e. only give few incorrect answers due to
approximation. Unfortunately, such analysis are also the ones that are compu-
tationally expensive. Instead, the challenge is to construct analyses such that
they are sufficiently precise, but without being too expensive; this more of an
art than an exact science.

In summary, this thesis makes a contribution in the area of automated analysis
of networking applications for distributed systems. These applications will be
modelled in process calculi and the analyses will use techniques from control
and data flow analysis. The ability of these techniques to ensure the security of
modern distributed systems will be the main topic of this thesis.

1.1 Overview of the Thesis

Chapter 2 gives an overview of process calculi and their application to mod-
elling of security aspects. It shows how to define syntax and semantics of a
process calculus by introducing the process calculus LySa, which is a calculus
that models systems using secure network communication protected by means
of cryptography.

Chapter 3 introduces the basic concepts of the analysis technique and shows how
analyses are formulated in the Flow Logic framework. Next, a fairly standard
control flow analysis of LySa is given that captures the entire behaviour of any
LySa process. It is illustrated how to prove within the Flow Logic framework
that the analysis is indeed able to capture the behaviour of a process with respect
to the formal semantics given in Chapter 2.

Chapter 4 describes an implementation of the analysis that can be used to com-
pute analysis results for any LySa process. The implementation relies on an
already available solving engine and uses an encoding of infinite sets of terms as
a finite set of tree grammar rules, which provides an efficient way of computing
analysis results.

Chapter 5 describes how the analysis technique can be used to analyse arbitrary
attacks on a process from other parties also populating the network. With this
technique it is possible to find analysis results that capture the behaviour of a
process under attack from arbitrary attackers.

4 Introduction

Chapter 6 is concerned with how to model the scenarios, in which an application
is going to be deployed. The analysis is extended to cover such scenarios, and is
thereby able to guarantee properties of entire deployment scenarios.

Chapter 7 describes how the analysis can be used to study security aspects of a
networking application. The analysis can check confidentiality and authentica-
tion properties and furthermore with parallel session attacks as well as attacks
launched by insiders. These techniques are illustrated on a worked example and
the chapter ends with a comparison with related approaches.

Chapter 8 concludes the thesis and discusses perspectives of how to apply the
analysis techniques presented in this thesis.

C h a p t e r 2

Modelling in Process Calculi

Starting from the pioneering work of Hoare on Communicating Sequential Pro-
cesses (CSP) [76] and Milner on Calculus of Communicating Systems (CCS) [99],
process calculus has today gained a central position as framework of modelling
and reasoning about concurrent systems. The novelty in this early work was to
make small and highly idealised programming languages as the basis for study-
ing communication in concurrent systems. The primary goal was to make the
languages small, yet expressive, as to focus only on the core problems with-
out getting sidetracked by auxiliary information. Soon after the languages were
topped off with a precise, formal semantics [77, 100] thereby making the lan-
guages close relatives of mathematical calculi and suitable for rigorous studies.

Initially, the work on process calculi focused on studying effects of communica-
tion in fixed networks of parallel processes. Over the past decades these ideas
have evolved both in terms of technical profoundness and in the class of systems
that calculi are used to describe. For example, while the first calculi considered
only fixed network structures, more modern calculi, such as the π-calculus [101]
and Mobile Ambients [41], also model dynamically reconfigurable systems. An-
other example is calculi that focus a particular aspects of a system, such as
real-time, probabilistic, or security features; see e.g. [17] and Section 2.1.

The design of a good process calculus is governed by a number of conflicting
interests such as purity, expressivity, and ease-of-analysis. On one hand, it is
desirable that a calculus is pure and simple in syntax and semantics. On the
other hand, it is also desirable that the calculus is very expressive in the sense

6 Modelling in Process Calculi

that common features of a system can easily be modelled in the calculus. Some-
times people will argue that even though a particular feature of a system cannot
be described directly in a calculus, the feature can still be expressed through
an encoding of the problem. However, complex encodings lead to complex and
hard-to-read models of a system and often makes analysis of a given problem
unnecessarily hard because these encodings first need to be unravelled. Instead,
it may be more desirable to include additional features into the calculus to cater
for easy modelling but this often conflicts with the desire to keep things sim-
ple. These conflicting interest in the design goals for process calculi may well be
one of the reasons that a multitude of process calculi have been developed over
the past decades. Section 2.1 takes a closer look at some of the process calculi
developed specifically with security in mind.

The advantages of using process calculi as a basis of rigorous analysis about
networking systems are, in the view of the author, that

(1) it gives a small and simple formal framework,

(2) one may rely on a multitude of pre-developed theory, and

(3) it is programming language based.

On the part of (1), the very essence of process calculi is simplicity. This is oppose
to having a full-blown framework with lots of different features. The simplicity
makes rigorous analysis easier, e.g. when doing proofs, in the sense that only the
few central cases need to be considered rather than having to go through the a
lot of, often trivial, auxiliary cases as one has to in a more elaborate framework.
As for (2), the process calculi community has been quite active for more than two
decades and many results and much inspiration can be taken from the literature
on process calculi.

However, point (1) and (2) can probably be said to hold for other frameworks as
well. The distinguishing point in favour of process calculi is thus (3). First of all,
being based on programming languages also effects (2) in a positive direction,
since it is not only the theory known from process calculus research that can
be exploited. Additionally, all the theory from an even longer tradition of pro-
gramming language research can be used. Furthermore, relying on a well-known
concept, such as programming languages, makes modelling and reasoning easier
for many people who are already familiar with these concepts. For example,
most computer scientists and other people with reasonable programming skills
can with very little effort be taught to model systems using a specific process
calculus. Finally, and perhaps most significant, is that because process calculi
are programming language based then analysis and reasoning techniques devel-
oped for these calculi are likely to be adaptable to other programming languages;
and this with only moderate effort. This point has far reaching consequences
since programming languages play a central part in all modern day software

2.1 Process Calculi for Security 7

development. Thus, analysis techniques developed in a process calculus setting
have a big potential for effecting the application development in industry in a
very direct way. A further discussion of the application of process calculus based
analysis techniques will be given in Chapter 8.

2.1 Process Calculi for Security

When security in computer systems first started to be an issue, the problem
focused on protecting different users on a common main frame computer from
interfering with each other. To guard against these problems access control
mechanisms were install to ensure that users only may access a limited part of
the system and, thereby, prevent malicious users from interfering with legitimate
users.

Soon after, it became common for several computers to be connected through a
network. Consequently, new security challenges arose because malicious attack-
ers could now interfere with network communication, for example by reading,
intercepting, or faking network messages. However, due to the distributed nature
of a computer network it is no longer feasible to use access control mechanisms
to prevent such unwanted tampering. Instead, this led to the design of secu-
rity aware network protocols that intend to counter malicious network activity
typically by applying cryptographic techniques.

This thesis will be concerned with security issues related to network communica-
tion. However, a brief survey of work that uses process calculi to tackle both the
above problems will be given, since this will be relevant to get the bigger picture
of the efforts on using process calculi to tackle computer security problem.

Access Control Mobile Ambients [41] is a calculus that describes movement
of processes within a hierarchy of nested locations or ambients. For a process to
move, it must itself be enclosed in an ambient and have the capability to perform
the movement. The concept of access control has an intuitive interpretation in
the Ambient setting where ambients may be seen as protective boundaries that
must shield against unwanted access. Consequently, the movement capabilities
of moving into or moving out of an ambient become critical operations on which
access control must be imposed. In the original Mobile Ambient calculus anyone
knowing a capability can use it at any time, thus, obstructing the possibility of
easily enforcing this kind access control.

Mobile Safe Ambients [84] introduces co-capabilities that remedies the situation
and introduces a rudimentary form of access control. As in Mobile Ambients, a
process must have the capability to move into an ambient in order to do so. Ad-
ditionally, a co-capability must be present to allow processes to enter. Similarly,
co-capabilities must be present for other types of capabilities to function. Along

8 Modelling in Process Calculi

the same lines more sophisticated access control schemes have been presented
in the literature [71, 132, 95, 115] e.g. by having co-capabilities that only allow
specific processes to successfully execute their capabilities.

At the very heart of the problem, which access control aims to solve, is the
desire to ensure that users are only allowed to use parts of the system. This is
also the concern lies behind the information flow [64] problem, which studies
whether users may can information about the flow of data within a system.
The concepts for information flow have been adapted to a process calculus in
the Security Process Algebra (SPA) [60]. This CCS based calculus assigns a
security level to each action and information flow policies express how actions
of one security level are allowed to depend on action of another security level.
Techniques based on equivalence testing can then be applied to check whether
a certain information flow is present or absent [61].

Security Protocols A security protocol is a network protocols meant to work
between two or more legitimate network nodes or principals on a network popu-
lated by additional malicious principals. The goal of security protocols vary from
application to application. For example, the goal may be to prevent malicious
principals from attaining certain data or to ensure that the malicious principals
cannot falsely play the part of a legitimate principals. Common for security
protocols are that they rely on cryptographic techniques to prevent tampering
with parts of messages. However, clever manipulation of network messages by
malicious principals often result in unforeseen effects that can be used to violate
the goals of the protocol. Often these manipulations do not require any attacks
on the underlying cryptographic algorithms but are simply a consequence of a
poorly designed protocol.

Since process calculi traditionally have been used as models of communicating,
networking systems it seems relatively obvious that they can be used to model
security protocols. However, apart from network communication also a number
of domain specific features need to be modelled. This includes the modelling of
cryptographic operations; of nonces, which are fresh values used e.g. to identify
a session; initial distribution of long term cryptographic keys; etc. Below is a
survey of the process calculi that have been used to model security protocols,
which comments on how they differ in modelling the various domain specific
features.

Cryptographic techniques lie as the basis of security protocols. In practice, these
techniques are always subject to brute-force attacks. For example, decrypting a
message without knowing the proper key may simply be done by trying all of
the finitely many possibilities. However, in a well-designed crypto-system this
approach will be extremely tedious and shortcuts in these brute-force attacks
will only succeed with a very low probability. Much work on the analysis of
security protocols rely on an assumption of having perfect cryptography i.e.

2.1 Process Calculi for Security 9

cryptography where it is only possible to decrypting a message when the correct
key is used. This idea was first shown to be feasible by Dolev and Yao [55] who
modelled cryptographic operations as algebraic terms and used manual reasoning
to establish the presence or absence of attackers on a number of simple protocols.

Though the assumption of perfect cryptography is an idealisation of what actu-
ally goes on, it provides a setup that is relatively easy to analyse. Furthermore,
recent results [75, 135] indicate that the assumption of having perfect cryptogra-
phy is not as strong as it may first seem. Under realistic assumptions about the
underlying crypto-systems these results show that the only attacks that will be
missed are the ones that happen with a very small probability. The assumption
about perfect cryptography is made by all the calculi described below including
the LySa calculus presented in Section 2.2.

The feasibility of reasoning about security protocols using a process calculus was
first illustrated by Lowe [86], who used CSP to find a flaw in one of the protocols
from Needham and Schroeder’s seminal paper [104]. Also SPA has been used
as a model for security protocols, though in a value-passing variant known as
VSPA [59]. CSP and VSPA are similar in the way that they use algebraic terms
to model perfect encryption. Though certain function symbols are intuitively
designated to represent cryptographic operations there is no semantic underpin-
ning to ensure that this representation only can be manipulated as intended. For
example, suppose that E(m, k) means that m is encrypted under the key k. It is
up to a process, including an attacker, to be well-behaved and only decompose
E(m, k) when the key k is already known.

To model nonce it is necessary to generate new values for every session of a
protocol. However, both CSP and VSPA models can only be used to model
a fixed number of constant symbols and are therefore unable to model nonce
generation in general. Instead, the analysis typically takes place on a model of
the protocol, which is parameterised by the nonces used in each session and this
gives the flavour of analysing a general setup. In contrast, the calculi below are
all in the π-calculus tradition and thereby have a restriction operator capable of
producing fresh names. This operator can be used as a natural way of modelling
the generation of fresh nonces.

As for modelling cryptography, Abadi and Gordon [5] argue that in order to
easily model the cryptographic concepts used for security protocols it is necessary
that these concepts are directly treated by the calculus — even when this means
that the calculus becomes less pure. Their Spi-calculus is based on the π-calculus
and it too uses a notion of terms to model encrypted values. However, the actions
of encryption and decryption are “hard-wired” into the semantics, which ensures
that the terms always behave as real (perfect) cryptography.

The Applied π-calculus and its relatives [3, 2, 19] presents a generalisation of
the Spi-calculus. Here, the semantics is parameterised by an equational the-
ory that describe how terms should be interpreted e.g. to ensure that the effect

10 Modelling in Process Calculi

of encryption can be cancelled by decryption only when the right key is used.
Though the flexibility of these calculi may be useful when modelling, the unre-
stricted nature of the equational theory is not without problems. In particular,
determining whether two terms are equal is, in the general case, an undecidable
problem, so seen from the perspective of automated analysis this approach is
not so attractive.

All of the above calculi have the common feature that they use named channels
to communicate. Furthermore, they have separate constructs, such as an if-then
construct, for performing testing the equality of two values. The work done in
this thesis will rely on a close relative of the Spi-calculus called LySa [23], which is
presented in the next section. The overall design goal LySa has been to further
simplify modelling and analysis aspects. In particular, LySa has no named
channels but all communication takes place directly on a global network. Also,
LySa has no explicit testing operation but instead testing of equality takes place
directly in input and decryption operations through means of simple pattern
matching.

To complete this survey of process calculi for security protocols it is appropriate
to mention that a few attempts have been made to use Mobile Ambients based
calculi to model security protocols [115, 36]. They are, however, still in their
infancy and have not yet matured to a point where they have a significant
contribution to security protocols analysis.

2.2 LySa

The process calculus LySa [23] has been designed specifically to model security
aware communication in networking applications. LySa is a process calculus in
the π-calculus tradition and relies on ideas from the Spi-calculus for incorpora-
tion of cryptographic operations. However, LySa further simplifies matters by
two distinct features as discussed below.

Firstly, LySa has no named communication channels and instead communica-
tion takes place on a global network. This corresponds to the scenario in which
security protocols are typical meant to operate. Of course, this also means that
principals cannot perform internal communication between parallel processes be-
cause all communication takes place on the global network. However, LySa has
standard notion of variables with local scope and using this scope to “communi-
cate” values from one place in a principal to another suffices for easy modelling
of many typical security protocols.

Secondly, LySa incorporates pattern matching directly into the language con-
structs where values can become bound to variables: namely into input and into
decryption. This is oppose to having a separate matching construct, such as an
if-then construct, found in most other process calculi. One advantage of this is

2.2 LySa 11

that is makes modelling of protocols more succinct. Another advantage is that
the analysis may become simpler because one does not have to deal with values
that have become bound in one place and later will be filtered by matching in
another place. Using pattern matching in the modelling of security protocols is
by no means novel and has e.g. been used in [88, 10, 62]. LySa is, however, the
first process calculus to fully embrace this concept in its semantics.

2.2.1 Syntax

The basic building block of LySa is values, which are use to represent keys,
nonces, encrypted messages, etc. Syntactically, they are described by expres-
sions E ∈ Expr that may either be variables, names, or encryption expressions.
Variables and names come from the two disjointed sets Var and Name, respec-
tively. The set Var is ranged over by x while the set Name is partitioned into
two subsets. Names can either be ordinary names, which typically are used to
represent principal names, nonces, and symmetric keys, and these are ranged
over by n. Alternatively, names can be key pair names m+ and m− used to
represent key pairs for asymmetric key cryptography. Finally, expressions may
be encryptions of a k-tuple of other expressions. LySa models two forms of
encryptions: symmetric key encryption, {E1, . . . , Ek}E0

, and asymmetric key
encryption, {|E1, . . . , Ek|}E0

. Both the encryption expressions represent the en-
cryption under the key E0. Notice that the encryption key may be an arbitrary
expression though, of course, one has to be careful in choosing a proper key if
the corresponding decryption should succeed.

LySa expressions are, in turn, used to build LySa processes P ∈ Proc according
to the following grammar:

E ::= n | m+ | m− | x |

{E1, . . . , Ek}E0
| {|E1, . . . , Ek|}E0

P ::= 〈E1, . . . , Ek〉.P | (E1, . . . , Ej ; xj+1, . . . , xk).P |

decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}E0
inP |

decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xk|}E0
inP |

(ν n)P | (ν± m)P | P1 | P2 | !P | 0

The process 〈E1, . . . , Ek〉.P denotes synchronous, polyadic communication of a
k-tuple of values onto the global network. When the message has been success-
fully sent the process continues as P .

The process (E1, . . . , Ej ; xj+1, . . . , xk).P denotes input from the global network
of a k-tuple of values. Input incorporates a simple form of pattern matching
and the input only succeeds when the matching does. The pattern matching
succeeds whenever the first j values of the k-tuple received are component-wise

12 Modelling in Process Calculi

identical to E1, . . . , Ej . On successful matching the remaining k − j values of
the received tuple are component-wise bound to the variables xj+1, . . . , xk. The
input then continues as the P , which is also the scope of the variables. Notice
that a semi-colon is used to syntactically distinguish between the expressions
that are used for matching and the variables that become bound when the input
succeeds.

Decryption has two forms depending on whether it attempts to decrypt the ex-
pression E using symmetric key cryptography or asymmetric key cryptography.
Either way decryption too incorporates pattern matching and for it to succeed E
must be an encrypted k-tuple where the first j values are component-wise iden-
tical to E1, . . . , Ej . Furthermore, E must have been encrypted with the same
form of cryptography as it is decrypted with and the encryption key must match
E0. For symmetric key cryptography, this means that the encryption key must
be identical to E0. For asymmetric key cryptography, the encryption key and
E0 must form a key pair, m+ and m−, but it does not matter which is which.
In this way LySa models both public key encryption and private key signatures
a la RSA [122].

The process (ν n)P generates a fresh name n and restricts the scope to be
the process P , only. Similarly, (ν± m)P generates two fresh names m+ and
m−, which form a key pair with their scope restricted to be P , only. Parallel
composition is written P1 | P2 and parallel processes may synchronise through
communication or perform internal actions independently. The process !P acts
as an arbitrary number of process P composed in parallel while 0 is the inactive
process, which does nothing.

Example 2.1 The process below shows a simple nonce handshake between two
principals called A and B, which are represented by the topmost and bottommost
process in the parallel composition, respectively. The principals are assumed to
initially share the key K.

(ν n) 〈A,B, n〉.(B,A; x).decrypt x as {n; }K in 0

|
(A,B; y).〈B,A, {y}K〉.0

First, principal A generates a fresh nonce called n. Principal A then outputs
〈A,B, n〉 stating first the names of the (intended) sender and receiver and finally
the message content being the nonce n. The principal B, is ready to receive a
triple and uses pattern matching to ensure that the two first values are indeed
A,B. On receiving the triple sent by A, the variable y becomes bound to the
name n. This value is then sent back to A encrypted under the symmetric key
K. On reception, principal A checks that the message has the right format and
binds the encrypted nonce to x.

Finally, A uses the decryption construct to the check that the received value
is indeed encrypted with the key K and that it contains the nonce n. Notice

2.2 LySa 13

that the semi-colon is placed after the nonce, thereby performing a match of n
against the content of the encrypted value in x. The fact that no variables are
placed after the semi-colon means that no variables will become bound by this
decryption.

The two processes representing the principals are terminated by the inactive
process. In more elaborate examples, these continuation may be substituted by
more interesting behaviour on the part of the principals, which will then follow
a successful nonce-handshake. �

Example 2.2 The process below represents a simple protocol between two prin-
cipals A and B, which uses asymmetric key cryptography. Notice that here the
replication operator has been used to indicate that multiple protocol sessions
can take place concurrently.

!(ν± K) 〈A,B,K+〉.(B,A; x).decrypt x as {|; xm|}K− in 0

|
!(A,B; y).(νmess) 〈B,A, {|mess|}y〉.0

First, principal A generates a fresh key pair K+ and K−. It sends K+ to
principal B while K− is kept private to principal A due to the scoping rules of
the restriction operator. On reception, principal B invents a new message which
it encrypts under the public key received in the variable y. This message is sent
to A that decrypts it using K−. On successful decryption A has the message
stored in the variable xm. �

It is handy to define a number of auxiliary functions that extracts various infor-
mation from syntax. Whenever a syntactic category has been introduces there
will be a corresponding function to extract the elements in this category from
syntax. For example, the function name(P) gives the set of all names in Name in
the processes P . The syntactic categories are written with a capital first letter.
The function that extracts the elements uses the same name as the syntactic
category but written in all lowercase letters. For example, all variables from the
set Var that appear in an expression E are found by var(E).

Several of the construct in LySa are said to be binders — either of names or
of variables. A binder introduces new names or variables and these will have a
scope. For example, the prefix (ν n) in the process (ν n)P is a binder of the
name n, which has the scope of the process P . Also, the process (ν± m)P
serves as a binder of names, but this construct binds the two names m+ and
m−. Whenever an occurrence of a name is not bound by any binder, it is said to
be free. The function fn(P) makes this notion of free names clear by collecting
all the free names in the process P and is defined in Table 2.1. Apart from
the handling of the novel key pair restriction, (ν± m)P , the definition of fn(P)
is standard. Correspondingly, the bound names in a process is given by the

function bn(P), which is defined to be bn(P)
def
= name(P) \ fn(P).

14 Modelling in Process Calculi

fn(n)
def
= {n}

fn(m+)
def
= {m+}

fn(m−)
def
= {m−}

fn(x)
def
= ∅

fn({E1, . . . , Ek}E0
)

def
= fn(E0) ∪ . . . ∪ fn(Ek)

fn({|E1, . . . , Ek|}E0
)

def
= fn(E0) ∪ . . . ∪ fn(Ek)

fn(〈E1, . . . , Ek〉.P)
def
= fn(E1) ∪ . . . ∪ fn(Ek) ∪ fn(P)

fn((E1, . . . , Ej ; xj+1, . . . , xk).P)
def
= fn(E1) ∪ . . . ∪ fn(Ej) ∪ fn(P)

fn(decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}E0
inP)

def
= fn(E) ∪ fn(E0) ∪ . . . ∪ fn(Ej) ∪ fn(P)

fn(decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xk|}E0
inP)

def
= fn(E) ∪ fn(E0) ∪ . . . ∪ fn(Ej) ∪ fn(P)

fn((ν n)P)
def
= fn(P) \ {n}

fn((ν± m)P)
def
= fn(P) \ {m+,m−}

fn(P1 | P2)
def
= fn(P1) ∪ fn(P2)

fn(!P)
def
= fn(P)

fn(0)
def
= ∅

Table 2.1: Free names; fn(P).

Input and decryption are binders because they introduce variables xj+1, . . . , xk.
Correspondingly, the function fv(P) can be defined to collect the free vari-
ables in a process P . This definition of this function is straightforward but
for completeness it is given in Table 2.2. The bound variables are given by

bv(P)
def
= var(P) \ fv(P).

2.2.2 Semantics

Following π-calculus tradition, the semantics of LySa is given as a reduction
semantics that describes how a process evolves in a step-by-step fashion. This
is made formal by a binary relation over processes called the reduction relation.
The reduction relation holds between a pair of processes, written P → P ′,
precisely when P can evolve into P ′.

An aim of a reduction semantics is that the definition of the reduction rela-
tion itself should be kept simple and only focus on central behavioural aspects.

2.2 LySa 15

fv(n)
def
= ∅

fv(m+)
def
= ∅

fv(m−)
def
= ∅

fv(x)
def
= {x}

fv({E1, . . . , Ek}E0
)

def
= fv(E0) ∪ . . . ∪ fv(Ek)

fv({|E1, . . . , Ek|}E0
)

def
= fv(E0) ∪ . . . ∪ fv(Ek)

fv(〈E1, . . . , Ek〉.P)
def
= fv(E1) ∪ . . . ∪ fv(Ek) ∪ fv(P)

fv((E1, . . . , Ej ; xj+1, . . . , xk).P)
def
= fv(E1) ∪ . . . ∪ fv(Ej) ∪

(fv(P) \ {xj+1, . . . , xk})
fv(decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}E0

inP)
def
= fv(E0) ∪ . . . ∪ fv(Ej) ∪

(fv(P) \ {xj+1, . . . , xk})
fv(decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xk|}E0

inP)
def
= fv(E0) ∪ . . . ∪ fv(Ej) ∪

(fv(P) \ {xj+1, . . . , xk})

fv((ν n)P)
def
= fv(P)

fv((ν± m)P)
def
= fv(P)

fv(P1 | P2)
def
= fv(P1) ∪ fv(P2)

fv(!P)
def
= fv(P)

fv(0)
def
= ∅

Table 2.2: Free variables; fv(P).

The definition of the reduction relation itself relies on the basic concepts of
Plotkin’s Structural Operational Semantics [121]. In particular, the definition
of the reduction relation is described by axioms and inference rules that form
an inductive definition of the relation. However, to make a simple definition of
the reduction relation, will typically require that processes must be on a very
specific syntactic form to match the rules. In a reduction semantics these rigid
requirements are loosened by introduction of an auxiliary relation to conduct
simple, syntactic manipulations of processes and thereby get them on the de-
sired form. Before moving to the definition of the reduction relation itself in
Table 2.5 these auxiliary mechanisms will be explained.

The syntactic manipulations will be introduced in form of a structural congru-
ence, written P ≡ P ′. The idea of this equivalence relation is that two processes
are considered to be equal when they only differ in syntactic aspects that are of

16 Modelling in Process Calculi

P ≡ P

P1 ≡ P2 implies P2 ≡ P1

P1 ≡ P2 and P2 ≡ P3 implies P1 ≡ P3

P1 ≡ P2 implies

〈E1, . . . , Ek〉.P1 ≡ 〈E1, · · · , Ek〉.P2

(E1, . . . , Ej ; xj+1, . . . , xk).P1 ≡ (E1, · · · , Ej ; xj+1, · · · , xk).P2

decrypt E as {E1, · · · , Ej ; xj+1, . . . , xk}E0
inP1 ≡

decrypt E as {E1, · · · , Ej ; xj+1, . . . , xk}E0
inP2

decrypt E as {|E1, · · · , Ej ; xj+1, . . . , xk|}E0
inP1 ≡

decrypt E as {|E1, · · · , Ej ; xj+1, . . . , xk|}E0
inP2

(ν n)P1 ≡ (ν n)P2

(ν± n)P1 ≡ (ν± n)P2

P1 | P3 ≡ P2 | P3

!P1 ≡ !P2

P1 | P2 ≡ P2 | P1

(P1 | P2) | P3 ≡ P1 | (P2 | P3)
P | 0 ≡ P

!P ≡ P | !P

(ν n) 0 ≡ 0

(ν n1) (ν n2)P ≡ (ν n2) (ν n1)P
(ν n) (P1 | P2) ≡ P1 | (ν n)P2 if n 6∈ fn(P1)
(ν± m) 0 ≡ 0

(ν± m1) (ν± m2)P ≡ (ν± m2) (ν± m1)P
(ν± m) (P1 | P2) ≡ P1 | (ν± m)P2 if m+,m− 6∈ fn(P1)
(ν± m) (ν n)P ≡ (ν n) (ν± m)P

P1
α
≡ P2 implies P1 ≡ P2

Table 2.3: Structural congruence; P ≡ P ′

no importance to the way processes may evolve. For example, in LySa parallel
composition is commutative. Rather than making a big deal of this in the def-
inition of the reduction relation, it is handled in the structural congruence by
simply requiring that P1 | P2 ≡ P2 | P1.

The structural congruence is defined as the smallest relation satisfying the rules
on Table 2.3. The purpose of the first half of these rules is to ensure that the
relation is a congruence i.e. that it is an equivalence relation, which distributes
over the syntactic operators such that it also applies to all subprocesses. Next,
parallel composition is defined to be commutative, associative, and have 0 as
a neutral element. The semantics of the replication is also made clear in the
definition of the structural congruence, namely that a replicated process by re-

2.2 LySa 17

P
α
≡ P

P1
α
≡ P2 implies P2

α
≡ P1

P1
α
≡ P2 and P2

α
≡ P3 implies P1

α
≡ P3

(ν n1)P
α
≡ (ν n2) (P [n1 7→ n2]) if n2 6∈ fn(P)

(ν± m1)P
α
≡ (ν± m2) (P [m+

1 7→ m+
2 ,m

−
1 7→ m−

2]) if m+,m− 6∈ fn(P1)

Table 2.4: α-equivalence; P1
α
≡ P2.

peated applications of the rule in Table 2.3 corresponds to an arbitrary number
of process in parallel. The next seven rules describe manipulation of the scope
of the name restriction. Though these rules at first appear fairly harmless it is
worth mentioning that they play an intricate part in the semantics of commu-
nication. The rules for restriction of ordinary names are completely standard
following the π-calculus tradition. The rules for restriction of key pair names
are quite similar, but it is worth noting that scope-extrusion requires both m+

and m− to be free before the scope can be extruded.

Finally, two processes P1 and P2 are structurally equivalent whenever they are

α-equivalent, written P1
α
≡ P2. To be α-equivalent the processes should be

identical except that they may differ in the choice of bound names. For exam-
ple, (ν n1) 〈n1〉.0 and (ν n2) 〈n2〉.0 are α-equivalent because they only differ in
whether the bound name is n1 or n2. The procedure of replacing instances of a
bound name in a process for another name is called α-conversion and, of course,
results in an α-equivalent process.

The α-equivalence is defined in Table 2.4 and applies substitution of one name
for another. It is important to notice that a substitution P [n1 7→ n2] only substi-
tutes free occurrences of n1 in P for n2. It is a general convention in this thesis
that substitutions of syntactic entities respect the scope of binders in this way.
Also notice that the α-equivalence only concerns renaming of bound names while
renaming bound variables does not give α-equivalent processes. The reason for
this choice is that α-conversion of names may be necessary when extruding the
scope to allow the communication of a bound name. Since variables cannot be
communicated directly, no α-renaming of variables is necessary for the semantics
to work satisfactory. On the other hand, no harm would come from additionally
allowing variables to be α-converted and, in fact, this choice was made in [23].

The final auxiliary ingredient in the definition of the reduction relation is sub-
stitution of variables for values. The values V ∈ Val are simply expressions
without variables i.e. values may be built from the grammar:

V ::= n | m+ | m− | {V1, . . . , Vk}V0
| {|V1, . . . , Vk|}V0

18 Modelling in Process Calculi

(Com) 〈V1, . . . , Vk〉.P1 | (V1, . . . , Vj ; xj+1, . . . , xk).P2 →

P1 | P2[xj+1
α
7→ Vj+1, . . . , xk

α
7→ Vk]

(SDec) decrypt {V1, . . . , Vk}V0
as {V1, . . . , Vj ; xj+1, . . . , xk}V0

inP →

P [xj+1
α
7→ Vj+1, . . . , xk

α
7→ Vk]

(ADec) decrypt {|V1, . . . , Vk|}m+ as {|V1, . . . , Vj ; xj+1, . . . , xk|}m− inP →

P [xj+1
α
7→ Vj+1, . . . , xk

α
7→ Vk]

(ASig) decrypt {|V1, . . . , Vk|}m− as {|V1, . . . , Vj ; xj+1, . . . , xk|}m+ inP →

P [xj+1
α
7→ Vj+1, . . . , xk

α
7→ Vk]

(New)
P → P ′

(ν n)P → (ν n)P ′
(ANew)

P → P ′

(ν± m)P → (ν± m)P ′

(Par)
P1 → P ′

1

P1 | P2 → P ′
1 | P2

(Congr)
P ≡ P ′′ P ′′ → P ′′′ P ′′′ ≡ P ′

P → P ′

Table 2.5: The reduction relation; P → P ′.

The reduction relation is defined such that it substitutes a variable x for a value
V whenever x becomes bound to V . The substitution is written P [x

α
7→ V]

and substitutes the variable x for the value V in the process P . Again, the
substitution follows the standard convention of this thesis and only substitutes
free occurrences of x in P . Furthermore, the substitution is capture avoiding
meaning that no names in V will be captured by a restriction of that name. This
is ensured by α-converting restricted names whenever necessary. For example,
assume that the variable x appears free in the process P . Then the substitution
in ((ν n)P)[x

α
7→ n] requires that n is α-converted before the substitution can

occur to avoid confusion between the name in the restriction and the name in
the substitution. Similarly, ((ν± m)P)[x

α
7→ m+] forces both m+ and m− to be

α-converted before the substitution occurs, as does ((ν± m)P)[x
α
7→ m−].

Finally, the reduction relation itself can be introduced. It is defined inductively
as the smallest relation on pairs of processes that satisfies the rules in Table 2.5.
These rules are explained below.

The rule (Com) ensures that communication may only take place if the values
V1, . . . , Vj of output and input are identical. In that case the pattern matching
succeeds and the variables following the semi-colon in the input are substituted
for the remaining values in the output. Notice that the capture avoiding sub-
stitution is used to ensure that no names in Vj+1, . . . , Vk are captured by name

2.2 LySa 19

restrictions in P2. The rules (SDec), (ADec), and (ASig) concern decryption and
all perform matching in a similar fashion. They all require that the expression
being decrypted is an encrypted value of the right kind that uses the appropri-
ates key. The two rules (New) and (ANew) let a process move inside a restriction
but the restriction operator itself can never disappear. Parallel composition is
interleaved as described by the rule (Par) such that one of its branches may
move while the other remains unchanged. Finally, the rule (Congr) ensures the
reduction relation may be applied to any process that is structurally congruent
to the processes found in the other rules.

The definition of the formal semantics gives a precise description of the possible
behaviour of a process. Thus, with the semantics in hand, one has a rigorous
basis for studying properties of the behaviour of systems modelled in the process
calculus. For example, behavioural properties may regard whether a process
can reach a certain state or whether it can make a certain kind of transition.
The next chapter will describe an analysis technology that is able to compute
answers to such questions about the behaviour of a process. Before getting that
far, some comments are given on the relation between LySa and an extension of
the calculus known as LySaNS [34].

2.2.3 Comparison with LySaNS

LySa is a quite striped down calculus. For example, it has a limited set of
cryptographic primitives, its notion of pattern matching is limited to be on
prefixes of sequences, and it does not cater for private communication within
a principal. The design of LySaNS undertaken in [34] set out to investigate
how these limitations may be removed. The result was a calculus with a richer
variety of cryptographic primitives, a much more flexible mechanism for pattern
matching, and a notion of private communication within bounded places. As a
final interesting idea, LySaNS introduces a meta level that describes the scenarios
in which a process will be deployed. It was illustrated in [34] that the analysis
technology, which will be presented in the next chapter, is capable of dealing
also with these auxiliary features.

The reason that LySa, and not LySaNS, is used in this thesis is that LySa provides
a simpler framework and consequently the theory can be presented a bit more
smoothly. Furthermore, LySa suffice to illustrate most of the significant points
about the analysis technique and, hence, there is no need to make an overly
complex presentation.

One point that, however, cannot be made with LySa as presented in this sec-
tion is the notion of deployment scenarios. Instead, the framework for dealing
with deployment scenarios has been “back-ported” to the LySa calculus. This
development is the topic of Chapter 6. Taking advantage of the simple setting
provided by LySa, the theory concerning deployment scenarios is treated more

20 Modelling in Process Calculi

carefully in Chapter 6 than it was in [34].

In relation to the presentation in this thesis, the development of LySaNS may be
seen as an assurance that the techniques presented here can indeed be extended
to deal with a more complex setup than the somewhat simplistic one described
by the LySa calculus.

C h a p t e r 3

Control Flow Analysis

The analysis techniques used in this thesis come from the field known as static
analysis and were originally developed for optimising compilers. These are tech-
niques that works statically, i.e. at compile-time, to calculate some aspect of the
behaviour of a program. Due to their origin, the techniques have several at-
tractive features. For example, they are complexity-wise quite efficient and they
may be used to analyse any program. Because of theoretic and efficiency con-
cerns they rely on computing approximations rather than exact answers. These
approximations are, however, made in such a way that they are safe with respect
to a formal semantics.

In a classic setting, static analysis techniques are divided in to several classes
depending e.g. on whether they compute the flow of data or the flow of control
etc. in a program. When the techniques are reinterpreted in a process calculus
setting it becomes a bit harder to precisely distinguish between data and program
control structures due to the succinct and expressive nature of process calculi. In
this thesis, the static analysis techniques will uniformly be referred to as control
flow analysis.

The specification, proofs, etc. of the analyses will be carried out in a Flow Logic
setting. The presentation of this framework will be in two parts. First, in
Section 3.1 some general concepts of Flow Logic and control flow analysis will
be described. Second, in Section 3.2 a concrete example of a control flow analysis
is given in the form of a fairly standard analysis of the process calculus LySa,
which relies adaption of previously developed techniques [24, 25].

22 Control Flow Analysis

3.1 Concepts in Flow Logic

Flow Logic was first introduced in [108] where it was used for an analyse of the λ-
calculus. Since then Flow Logic has been used for analysis of many different kinds
of languages and good overviews of the approach may be found in [109, 114].

A control flow analysis of a process P works by collecting information about some
aspects of the behaviour of P . This information is stored in a data structure A
containing the analysis components taken from the analysis domain Analysis. In
Flow Logic, the relationship between the analysis components and the syntax of
the process, which is analysed, is made formal by defining a predicate, written
A |= P , that holds precisely when A is a description of the behaviour of the
process P .

In Flow Logic, the definition of an analyse, thus, is the definition of the predicate
A |= P . This predicate is defined structurally on the syntax of the process P by
giving rules of the form

A |= P iff a logic formula over P,A, |=, etc. holds

for each syntactic construct P . The intuition is that the logic formula charac-
terises the way that the behaviour of P is described in the analysis components
A. In general, the formula can be an arbitrary formula in some logic and may
e.g. recursively mention A′ |= P ′ for arbitrary processes P ′. In the general case,
it is therefore necessary to define the analysis predicate co-inductively in the
structure of P .

For practical purposes, however, it typically suffices to use only inductive def-
initions of the analysis predicate. To ensure that the inductive definition is
well-founded, the logic formula is restricted so that it may only recursively men-
tion the predicate A′ |= P ′ for subprocesses P ′ of P . This class of Flow Logic
specifications are sometimes called compositional because the analysis of a pro-
cess will only require the analysis of its parts. Inductively defined Flow Logic
specifications are the only ones considered in this thesis.

3.1.1 Correctness of the Analysis

The aim in a control flow analysis is to attain information about the behaviour
of a process. When this behaviour is described by a formal semantics then the
correctness of the analysis may be stated in terms of whether the analysis relates
to the semantics in a meaningful way.

Using a reduction semantics, or other small-step semantics, the behaviour of a
process can be represented as the set of sequences of reduction steps that the
process can make. This describes the set of all executions of the process as
illustrated at the bottom of Figure 3.1. In the case where this set is finite, one

3.1 Concepts in Flow Logic 23

◦

◦
· · ·

◦ ◦ · · ·

◦
◦
◦ · · ·

· · ·◦
· · ·

Executions

Analysis components
A

Approximation

Abstraction/
concretisation

Figure 3.1: The relationship between the behaviour described by the semantics
and the analysis.

might simply apply the semantics to get this transition system and later inspect
this finite graph to see whether it fulfils certain properties. This is essentially
the idea behind finite state model checking, which can often be made to work
efficiently even when the state space become quite large.

Control flow analysis, on the other hand, provide a general analysis technique
also accounting for the cases where the behaviour of a process cannot be repre-
sented as a finite set. Instead of representing the exact behaviour of the process,
a control flow analysis only describes certain aspects of the behaviour. This
representation may be seen as an abstraction of the actual executions and is
recorded in the analysis components as indicated by the upward errors in Fig-
ure 3.1. Of course, it is then also possible to map this analysis result back to
the semantics and this concretisation is indicated by the downward arrows in
Figure 3.1. Because the analysis only represents certain aspects of the behaviour
of a process the concretisation cannot be made such that it precisely identifies
the process that was analysed. This imprecision means that the analysis only
records approximations to the behaviour of the process that is analysed.

The nature of approximation attained may vary depending on the definition of
the analysis. For the analysis to be useful, it is important that the relationship
between the execution and the approximations is known a priori. The analysis
may, for example, strictly over-approximate the semantic behaviour as depicted
on Figure 3.1. In this case, absence of a particular element in the analysis

24 Control Flow Analysis

components will also mean that the corresponding execution is not part of the
behaviour of the process. It is also possible to make other kinds of approximation,
but this thesis will focus on over-approximations, only. That a given analysis
does indeed have such a strict relationship with the semantics is, of course,
subject to proof.

The view of the analysis depicted in Figure 3.1 lends a great deal from abstract
interpretation [50]. Indeed, Flow Logic borrows both terminology and proof
techniques from abstract interpretation but does not solely rely on these con-
cepts. A strict adherence to abstract interpretation concepts is possible within
a Flow Logic setting as done e.g. in [107] but will not be done systematically in
this thesis. For example, the abstraction and concretisation mappings depicted
on Figure 3.1 will not be formally described but are only to be understood as
the underlying conceptual model of how the analysis works.

That a given analysis does indeed work as depicted in Figure 3.1 is subject to
proof. This is usually done in two steps. First, it is shown that the analysis
is indeed static i.e. that the analysis components A contains information about
the entire execution of a process. This is shown by a subject reduction style
argument stating that

if A |= P and P → P ′ then A |= P ′

That is, if A contains enough information to be an analysis result for P , and
P may evolve and become P ′, then A is also an analysis result for P ′. By
transitivity, A contains enough information to be an analysis result for all the
processes that P may evolve into.

The second part is to show that A indeed contains an over-approximation of
the behaviour P . This is typically done by a more direct proof and the style
may vary depending on what parts of the behaviour the analysis components
are intended to describe. Sometimes this part is considered so obvious that it is
skipped altogether and the proofs are often much easier than the ones for subject
reduction.

3.1.2 Analysis Results

Given a process P , all the analysis components A that satisfies the analysis
predicate A |= P are called the analysis results for P . It is most often the case
that there are several different A’s that are analysis results the same process P .
One will often be interested in proving a number of properties that characterise
the analysis predicate such as semantic correctness as discussed in Section 3.1.1.
Such a property will often be formulated without discriminating the individual
analysis results i.e. the property hold for all analysis results. This was for ex-
ample the case with the semantic properties sketched in Section 3.1.1 where one

3.1 Concepts in Flow Logic 25

shows that any A that satisfies A |= P has a particular relation to the semantics
of P . Hence, any of these A’s will serve as a description of the behaviour of P .

One of the trademarks of control flow analysis is that an analysis is capable of
providing an analysis result for all processes. For a particular analysis specifi-
cation this is, of course, subject proof. For a given Flow Logic analysis specifi-
cation, the existence of analysis results amounts showing that for all processes
P there exists an analysis result A such that A |= P . One might proceed by a
proof in the structure of processes but this can be non-trivial because the same
analysis components may be used to analyse different syntactic constructs of P .
The classical route is to instead consider the structure of the domain of analysis
results as discussed below.

The analysis domain, Analysis, is usually equipped with a partial order v such
that (Analysis,v) form a complete lattice. Hence, one can use the entire arsenal
of techniques known from lattice and order theory, see e.g. [51], to reason about
the relation between of analysis components.

An often useful result to consider the relationship between the analysis results
for a given process P i.e. the set {A | A |= P}. Often one can observe that this
set is closed under greatest lower bound with respect to the ordering v, in which
case the set is called a Moore family. Conceptually, being closed under greatest
lower bound means that the information shared between different analysis results
for P will in itself be an analysis result for P . This closure property seems to
be an underlying reason of why many of the results about the analysis work out
smoothly. However, the Moore family property is often not directly be needed
in the proofs of these results. In addition, a Moore family has a number of
nice properties. For example, a Moore family is never empty and, hence, if the
analysis results for P form a Moore family for all processes P then there exists
an analysis result for all processes.

3.1.3 Verbose and Succinct Flow Logics

The most common format of a Flow Logic specification is the one shown above.
In this definition of the analysis predicate, the analysis components A (as well
as P) are implicitly assumed to be universally quantified as is standard when
writing mathematical statements. In particular, the scope of these quantifiers
ensures that an analysis component occurring on the left-hand-side of the iff will
be the same as the ones occurring on the right-hand-side. Consequently, one
may think of the analysis components as a global data structure that is nested
through the definition of the analysis predicate. Flow Logic specifications of this
form are called verbose.

Another kind of Flow Logic specification records information about a process

26 Control Flow Analysis

locally. These Flow Logics specifications are defined by rules of the form

A |= P : A′ iff a logic formula holds

such that A′ holds information about the process P , only. Flow Logic speci-
fications of this form are called succinct. Any succinct components mentioned
recursively in the right-hand-side formula is implicitly assumed to be existen-
tially quantified. The scope of these quantifiers is the right-hand-side, only,
such that the succinct components will be kept local to this formula and are
not known in the entire analysis. Any succinct Flow Logic specification may be
converted into an equivalent verbose form by introduction of a labelling scheme
as illustrated e.g. in [114]. Succinct Flow Logic specifications can often be used
for a more elegant presentation than their verbose counterparts.

The next section will present a control flow analysis of LySa and illustrate the
various concepts in Flow Logic at work.

3.2 A Control Flow Analysis of LySa

LySa is a process calculus designed to model security issues in networking appli-
cations. The control flow analysis presented in this section aims at describing the
central aspect of such applications, namely, the communication that processes
may engage in. The first thing one has to consider when defining a new control
flow analysis is how to represent the parts of the behaviour of a process that is
of interest. This will be the starting point for the description of the analysis.

3.2.1 Domain of the Analysis

The goal of the analysis is to describe the communication that a process may
participate in. This will be done by introducing an analysis component κ for
recording the tuples that may be communicated. It will prove convenient that
the analysis also records the values that variables may become bound to and this
will be recorded in an analysis component named ρ. The analysis components in
the control flow analysis of LySa are, thus, a pair (ρ, κ) corresponding to what
was abstractly referred to as A in Section 3.1. The precise domains of ρ and κ

are discussed in the following.

To record the communication that takes place during execution of a process it
would be natural to record the tuples of semantics values V ∈ Val , which are
communicated. However, a LySa process may use a combination of restriction
and replication to generate arbitrarily many names during an execution. Thus,
simply recording the semantics values would mean that the analysis components
should be able to record infinite sets of names.

3.2 A Control Flow Analysis of LySa 27

!(ν n)P (ν n′)P ′|! (ν n)P · · ·

◦ · · ·

◦ · · ·

◦
◦

◦

◦

◦

◦

bnc bn′c bnc

Figure 3.2: Canonical representatives of names are used in the analysis and is
denoted by the operator b·c.

A solution to this problem is to partition the names used by a process into
finitely many equivalence classes and record the equivalence classes rather than
the actual names. This partitioning will be made by assigning a canonical name
to each name used in the semantics in such a way that there are only finitely
many canonical names in the execution of any given process. The canonical
representative of a name n will be written bnc and the operator b·c is extended
homomorphically to values and set of values. The analysis components will then
record canonical values taken from the set bValc ranged over by U .

In more detail, the partitioning can be any assignment of a canonical name to
each name in the process, P , that is analysed. This partitioning will be finite
because there are only finitely many names in the syntax of P . Furthermore,
the partitioning must be invariant under reduction so that it stays finite when P
evolves. This is enforced by requiring that every name generated by the same re-
striction will be assigned the same canonical name. In Figure 3.2 it is illustrated
how this assignment of canonical names maps semantics names into the analysis
components. Technically, this requirement is handled by introducing a notion of
disciplined α-equivalence, which will be described in detail in Section 3.2.3.

Since there are only finitely many canonical names but infinitely many semantic
names the assignment of canonical name will not be injective. Thus, two name
that can be distinguished in the semantics might not be distinguishable in the
analysis components. However, this imprecision in the analysis may only cause
the analysis to over-approximate the behaviour of a process. In particular, the

28 Control Flow Analysis

analysis cannot distinguish different names generated at the same replicated
restriction. On the other hand, the partitioning of the name space can always
be chosen such that it does not introduce any approximation for the names that
are not generated by a replicated restriction.

The analysis will record tuples of canonical values corresponding to all the tuples
of values that may be communicated during an execution of a process. These
values will be recorded in the analysis component

κ ∈ P(bValc∗)

Furthermore, for each variable, the analysis will record a set of canonical values
corresponding to the values that the variable may become bound to at run-time.
These will be recorded in the analysis component

ρ : bVarc → P(bValc)

Notice that the set of variables are also partitioned by an assignment of canonical
variables. At this level of exposition such a partitioning is strictly speaking not
necessary. It will, however, be practical for the analysis of arbitrary attacker as
will be explained in Chapter 5.

The domains of the analysis components, as given above, are actually too large.
For example, in an analysis of a process P , the communication component κ
will not contain sequences of arbitrary length but only tuples of the same size
as the communication occurring in P . Also, the arities of encrypted values will
be limited by the arities of encrypted values in P .

It will be practical to define a number of functions that extract the various ari-
ties from the syntax of a process. The function ac(P) finds the set of arities of
all input and output in P while as(P) and aa(P) finds the set of arities of all
encryptions and decryptions in P , in the symmetric and asymmetric case, re-
spectively. These functions may be formally defined in a straightforward manner
similar to the definitions of the functions finding free name and free variables
defined in Section 2.2.2. The actual domain of the analysis components is lim-
ited to only use the arities in the process P , which is analysed. For example,
κ ∈ P(bVal ′ck1 ∪ . . . ∪ bVal ′ckj) where {k1, . . . , kj} = ac(P) and Val ′ only con-
tains encrypted values with arities from as(P) and aa(P).

Notice that the analysis components may still contain infinite sets due to the
fact that it collects sets of recursively defined values. In Chapter 4 it will be
illustrated how these sets may be represented in a finite way using regular tree
grammars.

3.2.2 Definition of the Analysis

The analysis is given in the form a predicate that holds between analysis com-
ponents (ρ, κ) and a process P whenever the analysis components describe the

3.2 A Control Flow Analysis of LySa 29

(AN) ρ |= n : ϑ iff bnc ∈ ϑ

(ANp) ρ |= m+ : ϑ iff bm+c ∈ ϑ

(ANm) ρ |= m− : ϑ iff bm−c ∈ ϑ

(AVar) ρ |= x : ϑ iff ρ(bxc) ⊆ ϑ

(ASEnc) ρ |= {E1, . . . , Ek}E0
: ϑ

iff ∧k
i=0 ρ |= Ei : ϑi ∧

∀U0 ∈ ϑ0 . . . Uk ∈ ϑk : {U1, . . . , Uk}U0
∈ ϑ

(AAEnc) ρ |= {|E1, . . . , Ek|}E0
: ϑ

iff ∧k
i=0 ρ |= Ei : ϑi ∧

∀U0 ∈ ϑ0 . . . Uk ∈ ϑk : {|U1, . . . , Uk|}U0
∈ ϑ

(AOut) ρ, κ |= 〈E1, . . . , Ek〉.P
iff ∧k

i=1 ρ |= Ei : ϑi ∧
∀U1 ∈ ϑ1 . . . Uk ∈ ϑk : U1 . . . Uk ∈ κ ∧
ρ, κ |= P

(AInp) ρ, κ |= (E1, . . . , Ej ; xj+1, . . . , xk).P

iff ∧j
i=1 ρ |= Ei : ϑi ∧

∀U1 . . . Uk ∈ κ : ∧j
i=1 Ui ∈ ϑi ⇒

(∧k
i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ |= P)

(ASDec) ρ, κ |= decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}E0
inP

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀{U1, . . . , Uk}U0
∈ ϑ : ∧j

i=0 Ui ∈ ϑi ⇒
(∧k

i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ |= P)

(AADec) ρ, κ |= decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xk|}E0
inP

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀{|U1, . . . , Uk|}U0
∈ ϑ : ∀U ′

0 ∈ ϑ0 : ∀(bm+c, bm−c) :

{U0, U
′
0} = {bm+c, bm−c} ∧ ∧j

i=1 Ui ∈ ϑi ⇒
(∧k

i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ |= P)

(ANew) ρ, κ |= (ν n)P iff ρ, κ |= P

(AANew) ρ, κ |= (ν± m)P iff ρ, κ |= P

(ARep) ρ, κ |= !P iff ρ, κ |= P

(APar) ρ, κ |= P1 | P2 iff ρ, κ |= P1 ∧ ρ, κ |= P2

(ANil) ρ, κ |= 0 iff true

Table 3.1: Analysis of LySa expressions, ρ |= E : ϑ, and processes ρ, κ |= P .

30 Control Flow Analysis

behaviour of the process. These predicates will be of the form

ρ, κ |= P

reading “ρ and κ are valid analysis results describing the behaviour of P”. This
analysis predicate is Flow Logic specification of verbose form and is defined
inductively in the structure of P in Table 3.1.

The definition of the analysis for processes uses an auxiliary predicate

ρ |= E : ϑ

to analyse expressions. For an expression E the predicates describes a set of
canonical values, ϑ ∈ P(bValc), that the expression may evaluate to when vari-
ables are bound as described by ρ. This is a Flow Logic predicate of succinct
form and is defined inductively in the structure of expressions also in Table 3.1.

The definition of the analysis predicates in Table 3.1 are explained below. First,
the rules (AName), (ANp), and (ANm) say that names may evaluate to them-
selves. This is expressed by requiring that corresponding canonical names will be
in ϑ. The rule (AVar) says that a variable may evaluate to the values described by
ρ for the corresponding canonical variable. The two rules (ASEnc) and (AAEnc)
evaluate k-ary encryptions and they are very similar. First, they recursively
use that analysis predicate to evaluate all the subexpressions in the encryption.
Next, they require ϑ to contain all the k-ary encrypted values that can be formed
by combining the values that subexpressions may evaluate to. Combined with
the other rules for evaluation of expressions, (ASEnc) and (AAEnc) essentially
expand all variables in the encryption expression E according to ρ.

Next is the analysis of processes, which begins with the analysis of k-ary output
is given in the rule (AOut). First, all the expression are evaluated using the
auxiliary predicate. Second, it is required that all the combination of values
found by this evaluation is recorded in κ, because these are precisely the values
that may be communicated. Finally, the continuation process must be analysed.

The rule (AInp) describes the analysis of pattern matching input. The pattern
matching is dealt with by first evaluating all of the j first expression in the input
to be the sets ϑi for i = 1, . . . , j. Next, if any of the sequences of length k in
κ are such that the first j values component-wise are included in ϑi then the
match is concluded to possibly be successful. In this case, the remaining values
of the k-tuple must be recorded in ρ as possible binding of the variables. Finally,
the continuation process will be analysed. Notice that the continuation is only
analysed if the pattern matching is deemed successful. Thus, a process, P , that
is guarded by a matching construct will not be analysed if P is unreachable in
every execution.

The rule (ASDec) for analysis of symmetric key decryption is quit similar to the
analysis of input. Only, here the values to be matched are found by evaluating

3.2 A Control Flow Analysis of LySa 31

the expression E into the set ϑ and then matching is performed against any k-ary
symmetric key encryption expression in ϑ. Notice that also the key is matched
due to the indices starting from 0 rather than from 1 as in communication. The
analysis is identical to the analysis of input once the successfully matching values
have been determined.

The rule (AADec) has a form similar to (ASDec) but matches against asym-
metric key encryption values. In this rule the key is singled out and the match
deemed successful whenever the key used for encryption and the key used for
decryption form a key pair m+ and m−.

The rules (ANew) and (AANew) only require that the subprocess is analysed.
The reason that these rules are so simple is that the assignment of canonical
name have already taken care of the generation of fresh names produced by
these constructs. The rule (ARep) simply require that subprocess is analysed
while the rule for parallel composition, (APar) requires the analysis of the two
subprocesses. Finally, the rule (ANil) puts no requirement on the analysis com-
ponents and trivially holds.

Example 3.1 As a first, simple example of how the analysis works consider the
following process:

〈n〉.0 | (; x).0

Semantically, the process can make a single communication using the rule (Com)
in the following way

〈n〉.0 | (; x).0 → 0 | 0[x
α
7→ n]

where the name n is sent over the network an becomes bound to the variable x.

The requirement that the analysis put on analysis components may be found by
expanding the analysis definition from Table 3.1

ρ, κ |= 〈n〉.0 | (; x).0 iff ρ, κ |= 〈n〉.0 ∧ ρ, κ |= (; x).0 (APar)

iff ρ |= n : ϑ1 ∧ ∀U1 ∈ ϑ1 : U1 ∈ κ ∧ ρ, κ |= 0 ∧ (AOut)
∀U2 ∈ κ : U2 ∈ ρ(bxc) ∧ ρ, κ |= 0 (AInp)

iff bnc ∈ κ ∧ ∀U2 ∈ κ : U2 ∈ ρ(bxc) (AN)

Next, consider some assignments to analysis components

ρ1(bxc)= {bnc} ρ2(bxc)= {bnc, bn′c} ρ3(bxc)= {bnc, bn′c}

κ1 = {bnc} κ2 = {bnc, bn′c} κ3 = {bn′c}

It is clear that the pair (ρ1, κ1) satisfies the analysis predicate because precisely
bnc is in κ1 as well as in ρ1(bxc). Furthermore, also the pair (ρ2, κ2) satisfies the
analysis predicate. Even though the additional junk element bn′c is in κ2 and
ρ2 the analysis predicate still holds. However, the pair (ρ3, κ3) does not satisfy
the analysis predicate because bnc is not in κ3.

32 Control Flow Analysis

In conclusion, according to the analysis (ρ1, κ1) and (ρ2, κ2) are valid analysis
results that describe the behaviour of the process while (ρ3, κ3) is not. This corre-
sponds nicely with the intuition that the analysis computes over-approximations
to communication and variable bindings that takes place during the execution
of a process. The pair (ρ3, κ3) is not an over-approximation of the behaviour of
P because it does not record the fact that n may be sent on the network. �

Example 3.2 Recall the simple nonce handshake of Example 2.1. A valid
analysis result for this process, i.e. a ρ and κ satisfying

ρ, κ |= (ν n) 〈A,B, n〉.(B,A; x).decrypt x as {n; }K in 0 |
(A,B; y).〈B,A, {y}K〉.0

is ρ and κ such that

ρ(bxc) = {{bnc}bKc}
ρ(byc) = {bnc}
κ = {bAcbBcbnc, bBcbAc{bnc}bKc}

The analysis reveals, for example, that in all executions of this process, y may
at most be bound to the nonce n and x to the encrypted value {n}K . Chapter 5
will furthermore show how the analysis result looks when the process is under
attack from arbitrary attackers. �

The examples illustrate that the analysis is capable of providing non-trivial anal-
ysis results. The subject of the next section is to show that these results always
correspond to the semantics behaviour of the processes. Another feature of the
analysis defined in Table 3.1 is that it provides an analysis result for every LySa
process. One could go ahead and show this by proving that the set of analysis
results for an arbitrary LySa process form a Moore family. However, as it turns
out, the implementation of the analysis given in Chapter 4 has as a corollary
that an analysis result does exist for any LySa process. Consequently, it will not
be necessary to show this property of the analysis by a separate proof.

3.2.3 Correctness of the Analysis

The analysis of LySa defined in Table 3.1 statically predicts some aspects about
the behaviour of a process. This section clarifies how the analysis relates to the
semantics of LySa. The main result that will be shown in this section is that the
analysis components ρ and κ do indeed statically predict all variable bindings
and messages sent during the executions of a process. The most challenging part
in attaining this result is to show that the analysis does indeed capture the entire
behaviour of the process. This part is singled out in a subject reduction lemma.
Also a number of other lemmata are given that should help the understanding
of the analysis as well as serve as the technical foundation for the main results.

3.2 A Control Flow Analysis of LySa 33

The first result illustrates that the analysis does indeed only distinguish processes
up to the assignment of canonical names.

Lemma 3.3 (Invariance of canonical names) If ρ, κ |= P and bnc = bn′c
then ρ, κ |= P [n 7→ n′].

Proof The lemma is a direct consequence of the fact that the analysis only
records canonical names. The proof proceeds by straightforward induction in
the definition of the analysis with the only interesting case being the rule (AN)
though it too is straightforward because bnc = bn[n 7→ n′]c = bnc. �

Similar lemmata can be shown about public key names and variables. In essence,
this means that the assignment of canonical representatives becomes a param-
eter for controlling the precision of the analysis: if two elements have the same
canonical representative, the analysis cannot tell them apart. Thus, the more
distinct canonical names there are in a process, the more precise the analysis
result may become.

A problem for the analysis is that the semantics described in Section 2.2.2 allows
free α-conversion. In particular, the α-conversion may change a bound name
that would cause the canonical name to be changed as well. This interferes with
the idea that canonical names should be assigned such that only finitely many
of them are used in the execution of a process. To remedy this, α-conversion
will be required to behave in a disciplined manner with respect to assignment of
canonical names. Since the canonical names are only introduced for the analysis,
this impediment will be enforced such that it does not reduce the expressive
power of α-equivalence.

Definition 3.4 (Disciplined α-equivalence) Two processes P1 and P2 are

disciplined α-equivalence whenever P1
α
≡ P2 using the rules in Table 2.4 with

the extra requirement that bn1c = bn2c, bm
+
1 c = bm+

2 c, and bm−
1 c = bm−

2 c.

Obviously, disciplined α-equivalence is a subrelation of ordinary α-equivalence.
It will be a further requirement that for any canonical name bnc there will be
an infinity of names that has bnc as their canonical representative. Thus, disci-
plined α-equivalences is as expressive as ordinary α-equivalences. In particular,
a semantics that uses disciplined α-equivalence will be able to make the same
kind of steps as a semantics that uses ordinary α-equivalence. The only differ-
ence between the two semantics is that bound names may be different. Thus,
the two semantics will be equivalent up to renaming of bound names.

In the following, the semantics using disciplined α-equivalence will be used. Since
the disciplined α-equivalence cannot modify canonical names then the analysis
results for two α-equivalent processes are the same:

34 Control Flow Analysis

Lemma 3.5 (Invariance of α-equivalence) If ρ, κ |= P and P is disciplined
α-equivalent with P ′ then ρ, κ |= P ′.

Proof The proof processes by induction in the definition of α-equivalence in
Table 2.4. The cases for the equivalence follow by the induction hypothesis. The
remaining cases follow from Lemma 3.3 remembering that substituted names
have the same canonical name as the substitutee. �

The α-equivalence is used by the structural congruence. The analysis cannot
tell structurally congruent processes apart either.

Lemma 3.6 (Invariance of structural congruence)
If ρ, κ |= P and P ≡ P ′ then ρ, κ |= P ′.

Proof The proof is by induction in the definition of P ≡ P ′ defined in Table 2.3.

Cases for equivalence and congruence follow by the induction hypothesis.

Cases for parallel composition follow because logic conjunction used in the
analysis is commutative and associative. Furthermore, logic conjunction has
true as a neutral element and true is equivalent to the analysis of 0, which is the
neutral element for the parallel composition.

Case for replication. Assume ρ, κ |= !P . Then the following calculation
justifies that also ρ, κ |= P | !P :

ρ, κ |= !P iff ρ, κ |= P (ARep)
iff ρ, κ |= P ∧ ρ, κ |= P

iff ρ, κ |= P ∧ ρ, κ |= !P (ARep)
iff ρ, κ |= P | !P (APar)

Cases for restriction are straightforward to check using the fact that the
analysis ignores restriction.

Case for α-equivalence follows from Lemma 3.5. �

The semantics make use of substitution of variables for values. This is mimicked
by the analysis of expressions. Conceptually, the analysis finds all the canonical
values that an expression may evaluate to. Remember that values are expres-
sions without variables. Hence, the analysis of a value simply evaluates to the
canonical value:

Lemma 3.7 (Evaluation of values) The analysis ρ |= V : ϑ holds if and only
if bV c ∈ ϑ.

Proof The proof is by induction in the structure of values. Remembering that
values, V , are expressions without variables, the proof is straightforward. �

3.2 A Control Flow Analysis of LySa 35

Notice that the only-if part holds for an arbitrary ρ. This is because the values
in the lemma do not contain any variables and that ρ only contains information
about variables. That the analysis of expressions mimics the substitution of
variables by the content of ρ is further made clear from the following lemma:

Lemma 3.8 (Substitution in expression) If ρ |= E : ϑ and bV c ∈ ρ(bxc)

then ρ |= E[x
α
7→ V] : ϑ.

Proof The proof proceeds by structural induction over expressions by regarding
each of the rules in the analysis. Whenever one has to do a proof that concerns
substitution the only interesting cases are the ones where the substitution modi-
fies something. In this proof the interesting case, thus, is (AVar). The remaining
cases are straightforward as e.g.

Case (AN). Assume that ρ |= n : ϑ. For arbitrary choices of x and V it holds

that n[x
α
7→ V] = n so it is immediate that also ρ |= n[x

α
7→ V] : ϑ.

Case (ANp), (ANm) are similar.

Case (AVar). Assume that ρ |= x : ϑ i.e. that ρ(bxc) ⊆ ϑ. Then there are two

cases. Either x 6= x′ in which case x[x′
α
7→ V] = x so clearly ρ |= x[x′

α
7→ V] : ϑ.

Alternatively, x = x′ in which case x[x′
α
7→ V] = V . Furthermore assume

that bV c ∈ ρ(bxc) and in which case bV c ∈ ϑ by the analysis. Finally, using
Lemma 3.7 one may conclude that ρ |= V : ϑ as required.

Case (ASEnc), (AAEnc) follow directly using the induction hypothesis. �

The result for expressions carries over to substitution in processes:

Lemma 3.9 (Substitution in processes) If ρ, κ |= P and bV c ∈ ρ(bxc) then

ρ, κ |= P [x
α
7→ V].

Proof The proof is done by straightforward induction applying the induction
hypothesis on any subprocesses and Lemma 3.8 on any subexpression. It relies
on Lemma 3.5 because the analysis is invariant under any disciplined α-renaming
that may occur due to capture avoiding substitution. �

Now that the relationship between the analysis and all the auxiliary components
of the semantics has been clarified the attention can be turned on the reduction
relation itself. As mentioned earlier, the analysis of a given process, also describes
the processes it may evolve to:

Lemma 3.10 (Subject reduction) If ρ, κ |= P and P → P ′ then ρ, κ |= P ′.

Proof The proof proceeds by structural induction in the reduction steps.

Case (Com). Let P = 〈V1, . . . , Vk〉.P1 | (V1, . . . , Vj ; xj+1, . . . , xk).P2 and P ′ =

P1 | P2[xj+1
α
7→ Vj+1, . . . , xk

α
7→ Vk] and assume that ρ, κ |= P and that P → P ′

36 Control Flow Analysis

due to (Com). Expanding the analysis one gets

ρ, κ |= P iff ρ, κ |= 〈V1, . . . , Vk〉.P1 ∧ ρ, κ |= (V1, . . . , Vj ; xj+1, . . . , xk).P2

iff ∧k
i=1 ρ |= Vi : ϑi ∧ ∀U1 ∈ ϑ1 . . . Uk ∈ ϑk : U1 . . . Uk ∈ κ ∧

ρ, κ |= P1 ∧

∧j
i=1 ρ |= Vi : ϑ′i ∧ ∀U ′

1 . . . U
′
k ∈ κ : ∧j

i=1U
′
i ∈ ϑ′i ⇒

(∧k
i=j+1 U

′
i ∈ ρ(bxic) ∧ ρ, κ |= P2)

From the analysis of output and Lemma 3.7 one may conclude that ρ, κ |= P1

and that κ contains bV1c . . . bVjcbVj+1c . . . bVkc. Using the latter, the analysis of
the input and Lemma 3.7 furthermore give that bVic ∈ ρ(bxic) for i = j+1, . . . , k
and that ρ, κ |= P2. By repeatedly applying Lemma 3.9, one may then conclude

that ρ, κ |= P2[xj+1
α
7→ Vj+1, . . . , xk

α
7→ Vk]. Using the rule (APar) one can finally

conclude that ρ, κ |= P1 | P2[xj+1
α
7→ Vj+1, . . . , xk

α
7→ Vk] i.e. that ρ, κ |= P ′ as

required.

Case (ADec). Let

P = decrypt {|V1, . . . , Vk|}m+ as {|V1, . . . , Vj ; xj+1, . . . , xk|}m− inP ′′

and P ′ = P ′′[xj+1
α
7→ Vj+1, . . . , xk

α
7→ Vk]. Assume that ρ, κ |= P and that

P → P ′ because of (ADec). From the definition of the analysis using the rule
(AADec) and Lemma 3.7 it is clear that {|bV1c, . . . , bVkc|}bm+c ∈ ϑ, that bm−c ∈

ϑ0, and that bVic ∈ ϑi for i = 1, . . . , j. Thus, the analysis of pattern matching in
(AADec) succeeds and one may conclude that bVic ∈ ρ(bxic) for i = j+1, . . . , k
and that ρ, κ |= P ′′. Lemma 3.9 then gives that also ρ, κ |= P ′.

Case (ASig), (SDec) are similar.

Case (New). Assume ρ, κ |= (ν n)P i.e. that ρ, κ |= P . Assume also that
(ν n)P → (ν n)P ′ using (New) because P → P ′. Then by the induction hypoth-
esis ρ, κ |= P ′, which by the analysis definition allows to conclude ρ, κ |= (ν n)P ′.

Case (ANew) is similar.

Case (Par). Assume that ρ, κ |= P1 | P2 i.e. that ρ, κ |= P1 and ρ, κ |= P2.
Furthermore, assume that P1 | P2 → P ′

1 | P2 by (Par) because P1 → P ′
1. Then

using the induction hypothesis also ρ, κ |= P ′
1. The analysis then allows to

conclude that ρ, κ |= P ′
1 | P2.

Case (Congr) is a direct consequence of the induction hypothesis and applica-
tion of Lemma 3.6. �

With the use of the subject reduction result, the main result about the analysis
can be proven with only moderate effort. Below →∗ is the reflexive, transi-
tive closure of the reduction relation →. The first result is that the analysis
component κ captures all communication that a process may engage in:

3.2 A Control Flow Analysis of LySa 37

Theorem 3.11 (Messages in κ) If ρ, κ |= P and P →∗ P ′ → P ′′ such that
the reduction P ′ → P ′′ is derived using (Com) on output 〈V1, . . . , Vk〉.P

′′
1 then

bV1c . . . bVkc ∈ κ.

Proof By induction in the length of the reduction sequence, Lemma 3.10 can
be used to conclude that ρ, κ |= P ′. Next, the proof proceeds by induction in
the reduction rules used to derive P ′ → P ′′.

Case (Com) If this rule is applied, it will be for a process of the form

〈V1, . . . , Vk〉.P
′′
1 | (V1, . . . , Vj ; xj+1, . . . , xk).P ′′

2

The analysis holds for this process meaning, in particular, that the analysis of
output holds for the communication of the k-tuple. Using Lemma 3.7 one can
check that then indeed bV1c . . . bVkc ∈ κ.

Case (SDec), (ADec), (ASig). Reductions that uses any of these rules will not
also use the rule (Com) and can therefore be disregarded.

Case (New), (ANew), (Par), (Congr) are all straightforward by applying the
induction hypothesis noting that the analysis also holds for any subprocesses. �

Theorem 3.11 ensures that all the communication that can take place semanti-
cally will be recorded by κ. However, the theorem does not prevent elements
from also appearing in κ without there being any semantic counterpart in the
behaviour of the process being analysed. Thus, the theorem coins the fact that
the analysis components contain over-approximations to the behaviour of a pro-
cess. Theorem 3.11 is essentially a consequence of Lemma 3.10 combined with
the definition of the analysis in Table 3.1. The above proof has been carried out
in some detail to illustrate how the connection is made. The second main result
is a similar theorem about the analysis component ρ. It is stated below though
the proof is skipped because it has the same form as above.

Theorem 3.12 (Values in ρ) If ρ, κ |= P and P →∗ P ′ → P ′′ such that P ′′ is
the result of a substitution of the variable x for the value V then bV c ∈ ρ(bxc).

Thus, Theorem 3.12 ensures that any variable binding that can take place se-
mantically is recorded by the analysis component ρ.

3.2.4 On the Precision of the Analysis

The analysis makes use of approximations, which means that the analysis results
can, in general, be imprecise. The section discusses in pragmatic terms how the
approximations effect the analysis result.

First of all, it should be clear from a number of the results in the previous
section that the analysis cannot tell two names apart if their canonical names

38 Control Flow Analysis

are identical. This approximation may cause imprecise result whenever matching
of two name take place. Semantically, a matching of two names will fail if the
names are different. However, if the two names have the same canonical name,
the corresponding match mimicked by the analysis will succeed, thereby, leading
to an imprecise result. For example, names generated at a replicated restriction,
such as !(ν n)P , cannot be distinguished by the analysis. This may lead to
imprecise results, if a process relies on exact matching of the different names
generated at the replicated instances of (ν n) . The analysis will, on the other
hand, be capable of distinguishing names generated at restrictions that occur at
different places in the syntax of the process that is analysed.

In LySa pattern matching takes place at input and at decryption. The analysis
of this matching is carried out in a fairly precise manner such that the process
following a matching construct only is analysed if the matching may succeed.
However, imprecision may still occur in connection with matching because the
analysis records variable binding in ρ without any regard to the context in which
the variables are used. This is best illustrated by an example.

Example 3.13 The first parallel branch in the process below sends a message
mess1 together with a copy of the messages signed with the key K−. The
second branch receives a pair and checks whether the second half of the pair is
a signed version of the first; if that is the case then the message is sent out on
the network. The third branch also sends a pair, which may be received by the
second branch. However, semantically this pair does not pass the match in the
decryption because there is no signed message. Consequently, mess2 will never
be sent as a one-tuple on the network.

〈mess1 , {|mess1 |}K−〉.0 | (; y, x).decrypt x as {|y; |}K+ in 〈y〉.0
| 〈mess2 , garbage〉.0

However, the following is the best analysis result for the process.

ρ(bxc) = {{|bmess1 c|}bK−c, bgarbagec}

ρ(byc) = {bmess1 c, bmess2 c}

κ = {bmess1 c {|bmess1 c|}bK−c, bmess2 c bgarbagec,

bmess1 c, bmess2 c }

Notice, in particular, that the analysis reports that mess2 may be sent as a
one-tuple on the network. This happens because the matching at decryption
succeeds semantically and, consequently, the analysis requires all elements in
ρ(byc) to also be in κ. �

The problem illustrated in Example 3.13 is that the variables are recorded in
too crude a way by the analysis. It is easy to come up with more sophisticate
schemes to record the binding of variables that will improve the way that the

3.2 A Control Flow Analysis of LySa 39

analysis handles these situations. The difficult part is, however, to do this with-
out significantly increasing the computational complexity of the analysis. For
example, [34] suggests a compromise that allows you to syntactically indicate
for which matchings the analysis should spend extra efforts.

Changing the analysis is not the only way around the problem. Often, it is
possible adapt the LySa process in such a way that it still models the same
application but without getting the imprecise results. For example, the problem
in Example 3.13 can solved by utilising that the decrypt construct for validating
signatures can both validate a signature and extract its content at the same time.
Hence, it suffices to send only the signed message and leave out the message in
clear. That is, the first part of the process in Example 3.13 may instead be
modelled as

〈{|mess1 |}K−〉.0 | (; x).decrypt x as {|; y|}K+ in 〈y〉.0

Now, the analysis can correctly report that y will only become bound to messages
that have been signed by K−. Consequently, only these messages will be sent
on the network. It is, of course, hard to say how often similar modifications can
be found to solve various practical modelling issues. However, the imprecision
in the analysis results that arise on the account of crude way variable bindings
are recorded turn out not to be a problem for surprisingly many of the practical
applications on which the analysis has been deployed.

Finally, another deliberate approximation is that the analysis of communication
does not take into account that communication is synchronous. That is, seman-
tically there need to be two parties present for the communication to succeed.
The reason for ignoring this is that the analysis is tailored for a setup where
an attacker is present. This attacker will always be ready to participate in any
communication. Consequently, there is no reason to spend effort on detailed
analysis of whether communication may succeed, because in a setup containing
an attacker, it always will. Analysis of a setup where the attacker is present is
the topic of Chapter 5. First, however, Chapter 4 describes how the analysis can
be implemented.

40 Control Flow Analysis

C h a p t e r 4

Implementation

The goal for an implementation of an analysis is to compute the analysis result
for a given process. For the analysis of LySa given in Chapter 3 this means that
given a process P the implementation will compute ρ and κ such that ρ, κ |= P .

The overall layout of the implementation consists of two steps that must be
carried out whenever a process P is analysed:

(1) generate a formula; apply a function G : Proc → Formula to P ,

(2) find a solution that satisfies the formula; apply a function S : Formula →
Solution to G(P).

This implementation strategy is typical for implementations of static analy-
ses [109, Chapter 6]. Often the formula is referred to as a constraint (on the
analysis components) and for this reason these static analysis techniques are also
known as constraint based analysis.

To attain an implementation of a specific analysis the two function G and S
must be given. This chapter describes how to attain these functions to provide
an implementation of the analysis of LySa. The implementation described here
is meant as a proof-of-concept implementation that aims only at illustrating that
the analysis can indeed be implemented and that an analysis result is computable
in reasonable time for realistic examples. Thus, considerations with regard to
low level optimisation of run-time, software engineering principals, etc. are not
the focal point of this presentation. Instead, the focus will be on attaining G and

42 Implementation

S in a correct manner with respect to the original formulation of the analysis in
Table 3.1.

The development of a constraint solver, S, is quite an extensive undertaking.
The easiest way forward is, therefore, to use an already developed solver as the
function S. This is also preferable from a complexity point of view because
solvers developed purely for the purpose of solving constraints are usually man-
ufactured by people who pay much attention to complexity aspects of their tools.
Deciding on which solver to use relies on several considerations such as:

• what solvers are available,

• how close is the constraint format to the analysis specification, and

• what techniques are available to prove the implementation correct.

Considering the specification style of the analysis, it is most natural to look for
solvers that are based around some kind of logical formalism. This choice is
likely to make the reasoning about the correctness of the implementation easier
than if one has to relate to a completely different framework.

A main challenge in implementing the analysis of LySa is that it is specified over
infinite set of terms built from names and encryption. Therefore, the chosen
solver needs to be able to deal with infinite set of terms but unfortunately such
tools are limited in supply. The options include tools for solving systems of set
constraints [7] such as Bane [12] and Banshee [13]. Another option is Mona [102],
which provides checking of satisfiability of fairly powerful logic over first order
terms built by a successor operation [83]. It is, however, not a priori clear that
these tools cater for an encoding of the analysis of LySa.

Alternatively, one may consider Prolog inspired tools based around Horn clauses
where predicates may range over arbitrary sets of terms. Prolog based tools
have long been used for protocol analysis [93] but these tools do, however, not
have a general guarantee of termination. A recent stand of work [18, 2, 19, 20]
shows that termination of Horn clause based tools need not be a problem for a
large class of relevant examples. This development, however, requires quite an
amount of hand-crafting of the solving engine used.

The implementation made here takes another direction that will guarantee ter-
mination. It uses the Succinct Solver [112] and encodes the analysis domains
in a finite way such that termination is guaranteed. The main motivation for
choosing this approach is that it has already proven a viable and efficient tool
for the implementation of a control flow analysis of the Spi-calculus [111]. It is
plausible that the analysis of LySa may be implemented using a similar strategy
because LySa is a close relative of the Spi-calculus and the two analyses are
relatively similar. Thus, the implementation presented in this chapter will be an
adaption of technique presented in [111] into the LySa setting and any significant

4.1 From Succinct to Verbose 43

differences will be noted whenever it is appropriate. With the implementation of
the analysis of LySa it is illustrated that the technique of [111] can be ported to
other settings and that it scales well to application on large, practical examples.
Furthermore, a number of optimisations will be presented that relies on manip-
ulation of labels (which are introduced in Section 4.1). These optimisations are
all novel contributions of this thesis.

The input to the Succinct Solver is a formula in Alternation-free Least Fixed
Point logic (ALFP). This logic may be regarded as an extension of Horn clauses
or as a fragment of first order predicate logic. When the ALFP formula is
interpreted over a finite, unstructured universe the Succinct Solver will compute
interpretations of predicates that satisfy the formula. The Succinct Solver may
thereby be regarded as the solving function S.

To obtain a formula generation function, G, one can use the definition of the
analysis predicate in Table 3.1 by viewing it as a function that takes the process
on the left-hand-side of the iff as an argument and returns the formula on the
right-hand-side. However, the formulae in Table 3.1 are not ALFP formulae
interpreted over a finite universe. To instead obtain a generation function that
produces ALFP formulae one has to find a formulation that only uses features
available in ALFP. This will basically be done by encoding the analysis com-
ponents as predicates and transforming the analysis accordingly. The encoding
will, however, be somewhat involved and to make presentation easier, the defi-
nition of the generation function, G, will be derived in a number of steps in the
following sections.

4.1 From Succinct to Verbose

The analysis of LySa in Table 3.1 is Flow Logic specification in succinct form
due to the succinct component ϑ in the analysis of expressions, ρ |= E : ϑ. The
succinct components are implicitly existentially quantified in the formulae on the
right-hand-side of the iff in the definition of the analysis predicate. Consequently,
as it stands this formula is a second order formula; but actually it is a first order
formula in disguise. To find this first order formula, one may change the Flow
Logic predicate from being in succinct style into a verbose form as discussed in
Section 3.1.3.

To obtained a verbose Flow Logic predicate, the first step is to instrument the
syntax with labels l ∈ Lab that identifies the points in the syntax where the
analysis uses the succinct components. For the analysis of LySa, it means that
each applied instance of an expression will need to be labelled. The labels are
written as superscripts such that El means that l is the outermost label and E
is the remaining labelled expression.

The functions lab(El) and lab(P) are defined to give the set of labels in an

44 Implementation

(VN) ρ, ϑv |= nl iff bnc ∈ ϑv(l)

(VNp) ρ, ϑv |= (m+)l iff bm+c ∈ ϑv(l)

(VNm) ρ, ϑv |= (m−)l iff bm−c ∈ ϑv(l)

(VVar) ρ, ϑv |= xl iff ρ(bxc) ⊆ ϑv(l)

(VSEnc) ρ, ϑv |= {El1
1 , . . . , E

lk
k }l

E
l0
0

iff ∧k
i=0 ρ, ϑ

v |= Eli
i ∧

∀U0 ∈ ϑv(l0) . . . Uk ∈ ϑv(lk) :
{U1, . . . , Uk}U0

∈ ϑv(l)

(VAEnc) ρ, ϑv |= {|El1
1 , . . . , E

lk
k |}l

E
l0
0

iff ∧k
i=0 ρ, ϑ

v |= Eli
i ∧

∀U0 ∈ ϑv(l0) . . . Uk ∈ ϑv(lk) :
{|U1, . . . , Uk|}U0

∈ ϑv(l)

(VOut) ρ, κ, ϑv |= 〈El1
1 , . . . , E

lk
k 〉.P

iff ∧k
i=1 ρ, ϑ

v |= Eli
i ∧

∀U1 ∈ ϑv(l1) . . . Uk ∈ ϑv(lk) : U1 . . . Uk ∈ κ ∧
ρ, κ, ϑv |= P

(VInp) ρ, κ, ϑv |= (El1
1 , . . . , E

lj
j ; xj+1, . . . , xk).P

iff ∧j
i=1 ρ, ϑ

v |= Eli
i ∧

∀U1 . . . Uk ∈ κ : ∧j
i=1Ui ∈ ϑv(li) ⇒

(∧k
i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ, ϑ

v |= P)

(VSDec) ρ, κ, ϑv |= decrypt El as {El1
1 , . . . , E

lj
j ; xj+1, . . . , xk}E

l0
0

inP

iff ρ, ϑv |= El ∧ ∧j
i=0 ρ, ϑ

v |= Eli
i ∧

∀{U1, . . . , Uk}U0
∈ ϑv(l) : ∧j

i=0 Ui ∈ ϑv(li) ⇒
(∧k

i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ, ϑ
v |= P)

(VADec) ρ, κ, ϑv |= decrypt El as {|El1
1 , . . . , E

lj
j ; xj+1, . . . , xk|}E

l0
0

inP

iff ρ, ϑv |= El ∧ ∧j
i=0 ρ, ϑ

v |= Eli
i ∧

∀{|U1, . . . , Uk|}U0
∈ ϑv(l) :

∀U ′
0 ∈ ϑv(l0) : ∀(bm+c, bm−c) :

{U0, U
′
0} = {bm+c, bm−c} ∧ ∧j

i=1Ui ∈ ϑv(li) ⇒
(∧k

i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ, ϑ
v |= P)

(VNew) ρ, κ, ϑv |= (ν n)P iff ρ, κ, ϑv |= P

(VANew) ρ, κ, ϑv |= (ν± m)P iff ρ, κ, ϑv |= P

(VRep) ρ, κ, ϑv |=!P iff ρ, κ, ϑv |= P

(VPar) ρ, κ, ϑv |= P1 | P2 iff ρ, κ, ϑv |= P1 ∧ ρ, κ, ϑ
v |= P2

(VNil) ρ, κ, ϑv |= 0 iff true

Table 4.1: Verbose analysis of labelled LySa expressions ρ, ϑv |= El and pro-
cesses ρ, κ, ϑv |= P .

4.1 From Succinct to Verbose 45

expression and a process, respectively. A function that assigns labels to an
expression or a process is known as a labelling.

Definition 4.1 (Unique expression labelling) A labelling, uel, is a unique
expression labelling whenever

lab(uel(E1)) = lab(uel(E2)) implies E1 = E2

for all expressions E1 and E2.

That is, uel assigns every expression a unique label because the uniqueness
requirement also holds for all subexpressions. The homomorphic extension of
a unique expression labelling to processes is also called a unique expression
labelling. Notice, however, that identical expression in a process P may have
the same label in uel(P). This is as oppose to a unique labelling of processes:

Definition 4.2 (Unique labelling) A labelling, ul, is a unique labelling when-
ever

lab(ul(P1)) = lab(ul(P2)) implies P1 = P2

for all processes P1 and P2.

Notice that a unique labelling is also a unique expression labelling but not nec-
essarily the other way round.

All the succinct components ϑ ∈ P(bValc) will be replaced by one verbose
component ϑv : Lab → P(bValc) that, conceptually, maps each label to the
succinct component that is used in the analysis at that point in the syntax. The
verbose analysis will be given as predicates

ρ, ϑv |= El and ρ, κ, ϑv |= P

that use no succinct components. These analysis predicates are defined in Ta-
ble 4.1.

The following lemma show that the verbose analysis defined in Table 4.1 is, in
fact, equivalent to the original succinct analysis defined in Table 3.1. To establish
this result, it is only required that processes are labelled by a unique expression
labelling and not by the stricter unique labelling.

Lemma 4.3 (Succinct analysis vs verbose analysis) The verbose analysis
in Table 4.1 is equivalent to the original analysis in Table 3.1 under a unique
expression labelling uel:

(1) ∃ϑv : ρ, ϑv |= uel(E) if and only if ∃ϑ : ρ |= E : ϑ.

(2) ∃ϑv : ρ, κ, ϑv |= uel(P) if and only if ρ, κ |= P .

46 Implementation

Proof The biimplication is shown by taking each direction separately. Both
these proofs proceed by induction in the expressions and processes.

Case ⇒. For part (1) assume ρ, ϑv |= El. Then it is easy to prove that also
ρ |= E : ϑv(l) because the definitions of the verbose analysis and the succinct
analysis are almost identical. For part (2), whenever a ϑ is needed for the analysis

of some subexpression E take ϑ
def
= ϑv(l) with l being the label assigned to E by

uel. It is again easy to show that the succinct analysis then holds because the
two analyses are very similar.

Case ⇐. Assume that ρ, κ |= P because the formula given by the analysis
definition in Table 3.1 holds. Whenever E is an expression in P and l is the

label assigned to E by uel take ϑv(l)
def
= ∩ ϑ for all ϑ’s such that ρ |= E : ϑ

appears in the formula leading to conclude that ρ, κ |= P . Notice that all of
these ϑ’s will satisfy precisely the same formula, namely the one in Table 3.1 for
ρ |= E : ϑ. Consequently, ϑv(l) also satisfies this formula.

Case (AN). Let l be the label assigned to n by uel and assume that ∃ϑ : ρ |=
n : ϑ. This means that ϑv(l) also satisfies (AN) i.e. that bnc ∈ ϑv(l). This is
precisely what is needed to conclude that ρ, ϑv |= uel(n).

Case (AVar) where uel(x) = xl. Assume ∃ϑ : ρ |= x : ϑ. Then it holds that
ρ(bxc) ⊆ ϑv(l). This is what is needed to conclude that (VVar) for xl.

Case (ASEnc). Let

uel({E′
1, . . . , E

′
k}E′

0
) = {El1

1 , . . . , E
lk
k }l

E
l0
0

Assume that ∃ϑ : ρ |= {E′
1, . . . , E

′
k}E′

0
: ϑ i.e. that

∧k
i=0 ∃ϑi : ρ |= E′

i : ϑi ∧ ∀U0 ∈ ϑ0 . . . Uk ∈ ϑk : {U1, . . . , Uk}U0
∈ ϑ

By the induction hypothesis then also ρ, ϑv |= Eli
i for i = 0, . . . , k. Furthermore,

ϑv(li) ⊆ ϑi by definition of ϑv. The analysis of {E′
1, . . . , E

′
k}E′

0
therefore implies

∀U0 ∈ ϑv(l0) . . . Uk ∈ ϑv(lk) : {U1, . . . , Uk}U0
∈ ϑv(l)

which is the remaining part in (VSEnc) needed to conclude that

ρ, ϑv |= {El1
1 , . . . , E

lk
k }l

E
l0
0

The case (AAEnc) is similar.

The cases for processes proceed by induction and uses that ϑv(l) is a subset
of the corresponding ϑ used in ρ |= E ′ : ϑ when El = uel(E′). In the cases
(AOut), (AInp), (ASDec), and (AADec) part (1) of Lemma 4.3 is furthermore to
put use. �

4.2 From Infinite to Finite 47

4.2 From Infinite to Finite

The analysis is specified over the infinite set of values, Val , that, for example,
contains arbitrarily deeply nested encryptions. This poses a problem for the
implementation strategy, since the analysis should be transformed into ALFP
formulae interpreted over a finite universe. This problem is addressed by encod-
ing sets of values into tree grammars and give a new analysis that represents the
sets by a finite number of grammar rules.

Example 4.4 As an example of where infinite sets occur in the analysis result
consider the following labelled LySa process:

P
def
= 〈nl1〉.0 | !(; x).〈{xl2}l4

kl3
〉.0

The process sends the values n, {n}k, {{n}k}k, {{{n}k}k}k, . . . over the network
and in doing so it binds variables x to each of these values. Consequently,
the analysis ρ, κ, ϑv |= P specifies that ρ(bxc) must contain the infinite set
{bnc, {bnc}bkc, {{bnc}bkc}bkc, {{{bnc}bkc}bkc}bkc, . . .}. �

The transformation of the analysis into a finite representation goes in two steps.
Step one concerns the way that sets of values are manipulated in the analysis
in Table 4.1 while the second step concerns the representation of sets as tree
grammars.

For step one, recall that the analysis components ϑv(l) tracks the values that
the expression El may evaluate to. The analysis, furthermore, collects sets of
values in ρ and κ. Observe that the values in ρ and κ are manipulated in entire
sets that correspond to the sets in ϑv. For example, if one value from ϑv(l) is
required to be in ρ(bxc) then all the values from ϑv(l) are required to be in
ρ(bxc).

From the above observation it is clear that there is no need to duplicate the
actual values both in ϑv, ρ, and κ. Instead, the values can be kept in ϑv, and
ρ and κ can be modified accordingly to contain pointers to ϑv. The pointers
will be labels and the values pointed to by a label l are thus the set ϑv(l). For
example, ρ : bVarc → P(bValc) can be represented by ρf : bVarc → P(Lab)
such that

ρ(bxc) =
⋃

l∈ρf (bxc)

ϑv(l)

The definition of the analysis has to be modified accordingly. For example, the
rule for the analysis of variables can the be rewritten to

ρf , ϑv |= xl iff ∀l′ ∈ ρf (bxc) : ϑv(l′) ⊆ ϑv(l)

which is equivalent to (VVar) in Table 4.1 though one has to apply ϑv to find
the actual values that ρf describes.

48 Implementation

Modifications similar to those of ρ can be made to the analysis component for
communication by letting κf ∈ P(Lab∗). In the resulting analysis, sets of values
will only appear in ϑv and the further development will concentrate on mak-
ing a finite representation the infinitely many values that may appear in this
component. Attaining this finite representation will be the second step of the
transformation to a finite analysis. To prepare for this development some theory
of terms is reviewed in the next section, which is mostly inspired by [47].

4.2.1 On Terms, Tree Languages, and Tree Grammars

A (single sorted) signature, Σ, is a finite set of function symbols that each are
associated with a non-negative natural number called its arity. Signatures will be
written using the notation {fi, gj , · · · , hk} meaning that the signature contains
the function symbols f through h and that f has arity i, g has arity j, etc.

Terms are built by applying function symbols to other terms and sometimes also
to elements from some arbitrary set X. The set of terms over a signature Σ and
a set X is defined inductively as the smallest set, T (Σ, X), such that

T (Σ, X) = X ∪ {f(t1, · · · , tk) | fk ∈ Σ ∧ t1 ∈ T (Σ, X) ∧ · · · ∧ tk ∈ T (Σ, X)}

If the arity of a function symbol f is 0 then the element f() is called a constant
and is often written simply as f . The set of terms generated solely by applying
function symbols to other function symbols, i.e. T (Σ, ∅), is called the set of
ground terms or the free term algebra over Σ.

A set of ground terms may be regarded as formal language over terms. In
this context terms are typically referred to as trees and therefore these formal
languages are known as tree languages. A tree language can be represented by
a tree grammar, which is a finite structure (N,Σ, R, S) where N is a set of non-
terminals, Σ is a signature, R is a finite mapping of rules, and S ∈ N is a start
symbol.

In general, the rule mapping, R, of a tree grammar maps terms over non-
terminals into terms over non-terminals. A regular tree grammar requires that
R is a mapping from non-terminals, only. Regular tree grammars can be nor-
malised by further requiring that R will only map into terms formed by function
symbols applied directly non-terminal. In this case, the rule mapping has the
functionality R : N → P(B(Σ, N)) where

B(Σ, N)
def
= {f(A1, · · · , Ak) | fk ∈ Σ ∧A1 ∈ N ∧ · · · ∧Ak ∈ N)}

If an element u is in R(A) then the pair (A, u) is called a rule in the grammar
and is often written as A → u. Sometimes A will be referred to as the head of
the rule while u is the body of rule.

4.2 From Infinite to Finite 49

A (normalised regular) tree grammar (N,Σ, R, S) can be used to generate a set
of ground terms. The set generated by starting from a non-terminal A, for which
there is a rule A → u in R, is found by recursively substituting bodies of rules
into u until a ground term is found. This set is denoted L((N,Σ, R, S), A) and
is defined inductively as the smallest set satisfying

L((N,Σ, R, S), A) = {f(t1, . . . , tk) | f(A1, . . . , Ak) ∈ R(A) ∧
t1 ∈ L((N,Σ, R, S), A1) ∧ . . . ∧
tk ∈ L((N,Σ, R, S), Ak)}

Notice that L((N,Σ, R, S), A) is indeed a subset of T (Σ, ∅). Because the rule
mapping R is the only component of the grammar that is mentioned explicitly
by the above definition the set is sometimes written L(R,A) instead of the more
elaborate L((N,Σ, R, S), A). The tree languages generated by the tree grammar
(N,Σ, R, S) is the set of ground terms found by starting at the start symbol i.e.
the set:

L((N,Σ, R, S))
def
= L((N,Σ, R, S), S)

Readers familiar with tree automata may find it interesting to recall that lan-
guages generated by a normalised, regular tree grammar, so-called regular tree
languages, are equivalent to recognisable tree languages i.e. languages recognised
by a bottom-up tree automaton. These languages are closed under union, inter-
section, and complementation [47, Theorem 5].

4.2.2 Tree Grammars for the Analysis

The domain of canonical values, bValc, used in the analysis consists of ground
terms over a signature formed by canonical names and encrypted valued. In par-
ticular, these values are used in the analysis component ϑv : Lab → P(bValc),
which contains sets of ground terms. Each of these sets constitute a tree lan-
guage. To get a finite representation of the analysis result the idea is to represent
these sets by tree grammars. Conceptually each set ϑv(l) will be represented by
a unique tree grammar (Nl,Σl, Rl, Sl) such that ϑv(l) is precisely the language
generated by the grammar i.e. L((Nl,Σl, Rl, Sl)). Next, the components in these
grammar will explained in more detail.

Signature The signature used in the grammar will consist of names and en-
cryptions. Names will be regarded as constants (i.e. 0-ary function symbols)
and encryptions as k-ary function symbols senc and aenc denoting values under
symmetric key encryption and asymmetric key encryption, respectively. To ob-
tain a finite signature, consider only the terms used in the analysis of a process
P . These will all be from the signature

ΣLySa
def
= {bnc0 | n ∈ name(P)} ∪

{senck+1 | k ∈ as(P)}} ∪ {aenck+1 | k ∈ aa(P)}}

50 Implementation

Often terms senc(A0, A1, · · · , Ak) and aenc(A0, A1, · · · , Ak) over ΣLySa will be
expressed using the more familiar notation {A1, · · · , Ak}A0

and {|A1, · · · , Ak|}A0
,

respectively.

Non-terminals The tree grammars will represent sets of values, ϑv(l), that
describe the possible evaluation of applied instances of a term of the form E l. A
non-terminal will therefore be needed for each expression and for this purpose
it is natural to use the label at that expression. Hence, the set of non-terminals
will be the sets of labels Lab.

Rule Mappings The rule mapping of the different grammars in the analysis
result will all abide by the convention that L((Lab,ΣLySa, Rl′ , Sl′), l) will repre-
sent the set ϑv(l). Thus, the information stored in the different rule mappings
will be overlap — though not every label needs to be used in every grammar. In
order to save space, the rule mappings of grammars will be stored in one common
component named γ. This optimisation does not introduce any approximation
because the information stored in γ will be precisely the information stored in
the rule mappings of all the grammars.

Start Symbol A grammar (Lab,ΣLySa, Rl, Sl) represents the set ϑv(l). The
start symbol Sl will therefore always be the label l. Thus every grammar in
the analysis result will be of the form (Lab,ΣLySa, Rl, l). Given a LySa process
it is straightforward to find all the components in this grammar except for the
rule mapping Rl. The grammar will therefore often be referred to simply as
Rl. Furthermore, because γ is the common rule mapping, all the grammars will
often be referred to under one as γ.

4.2.3 The Finite Analysis

The finite analysis uses predicates of the form

ρf , γ |= El and ρf , κf , γ |= P

where the evaluation of expressions, ϑv, has been replaced by the tree grammars
in γ. The rules for the finite analysis are given in Table 4.2 and are discussed
below.

The rule (FN) ensures that whenever a name nl is evaluated then a rule l → bnc
is in γ. Next, recall from page 47 that the analysis components ρf and κf

collect labels of expressions rather than the actual values that the expression
may evaluate to. Recall also that rule for evaluating the variable xl has to fulfil
the specification that

∀l′ ∈ ρf (bxc) : ϑv(l′) ⊆ ϑv(l)

4.2 From Infinite to Finite 51

(FN) ρf , γ |= nl iff bnc ∈ γ(l)

(FNp) ρf , γ |= (m+)l iff bm+c ∈ γ(l)

(FNm) ρf , γ |= (m−)l iff bm−c ∈ γ(l)

(FVar) ρf , γ |= xl iff ∀l′ ∈ ρf (bxc) : γ(l′) ⊆ γ(l)

(FSEnc) ρf , γ |= {El1
1 , . . . , E

lk
k }l

E
l0
0

iff ∧k
i=0 ρ

f , γ |= Eli
i ∧ {l1, . . . , lk}l0 ∈ γ(l)

(FAEnc) ρf , γ |= {|El1
1 , . . . , E

lk
k |}l

E
l0
0

iff ∧k
i=0 ρ

f , γ |= Eli
i ∧ {|l1, . . . , lk|}l0

∈ γ(l)

(FOut) ρf , κf , γ |= 〈El1
1 , . . . , E

lk
k 〉.P

iff ∧k
i=1 ρ

f , γ |= Eli
i ∧ l1 . . . lk ∈ κf ∧

ρf , κf , γ |= P

(FInp) ρf , κf , γ |= (El1
1 , . . . , E

lj
j ; xj+1, . . . , xk).P

iff ∧j
i=1 ρ

f , γ |= Eli
i ∧

∀l′1 . . . l
′
k ∈ κf :

(∧j
i=1L(γ, l′i) ∩ L(γ, li)) 6= ∅) ⇒

(∧k
i=j+1 l

′
i ∈ ρf (bxic) ∧ ρ

f , κf , γ |= P)

(FSDec) ρf , κf , γ |= decrypt El as {El1
1 , . . . , E

lj
j ; xj+1, . . . , xk}E

l0
0

inP

iff ρf , γ |= El ∧ ∧j
i=0 ρ

f , γ |= Eli
i ∧

∀{l′1, . . . , l
′
k}l′

0
∈ γ(l) :

(∧j
i=0 L(γ, l′i) ∩ L(γ, li) 6= ∅) ⇒

(∧k
i=j+1 l

′
i ∈ ρf (bxic) ∧ ρ

f , κf , γ |= P)

(FADec) ρf , κf , γ |= decrypt El as {|El1
1 , . . . , E

lj
j ; xj+1, . . . , xk|}E

l0
0

inP

iff ρf , γ |= El ∧ ∧j
i=0 ρ

f , γ |= Eli
i ∧

∀{|l′1, . . . , l
′
k|}l′

0
∈ γ(l) :

∀U0 ∈ γ(l0) : ∀U ′
0 ∈ γ(l′0) :

∀(bm+c, bm−c) :
{U0, U

′
0} = {bm+c, bm−c} ∧

(∧j
i=1 L(γ, l′i) ∩ L(γ, li) 6= ∅) ⇒

(∧k
i=j+1 l

′
i ∈ ρf (bxic) ∧ ρ

f , κf , γ |= P)

(FNew) ρf , κf , γ |= (ν n)P iff ρf , κf , γ |= P

(FANew) ρf , κf , γ |= (ν± m)P iff ρf , κf , γ |= P

(FRep) ρf , κf , γ |=!P iff ρf , κf , γ |= P

(FPar) ρf , κf , γ |= P1 | P2 iff ρf , κf , γ |= P1 ∧ ρ
f , κf , γ |= P2

(FNil) ρf , κf , γ |= 0 iff true

Table 4.2: Finite analysis of labelled LySa expressions ρf , γ |= El and processes
ρf , κf , γ |= P .

52 Implementation

In the finite analysis ϑv has been encoded as tree grammars so the above re-
quirements amounts to

∀l′ ∈ ρf (bxc) : L(γ, l′) ⊆ L(γ, l)

To fulfil this requirement, (FVar) ensures that whenever there is a rule l′ → u

in γ then there is also a rule l → u. For the subset requirement to be fulfilled,
rules for any labels l′′ that are sublabels of u furthermore need to be both in the
grammar starting at l′ and the grammar l. However, because they both use γ
as the rule mapping this will automatically be the case.

The rule (FSEnc) ensures that whenever an encryption expression labelled l is
evaluated, a rule l → {l1, . . . , lk}l0 required to be in the grammar and that all
subexpression are recursively evaluated.

The rule (FOut) evaluates all the expressions and simply records their labels in
κf . The rule (FInp) for input uses these labels when conducting the analysis of
pattern matching. Here, the first j labels are used to test whether the intersec-
tion of the two language generated by the labels are non-empty. In Section 4.3
it will be illustrated that test for non-emptiness of language intersection can be
implemented in an efficient way. Whenever pattern matching succeeds the labels
found in κf are recorded in ρf at the appropriate location.

The rules for decryption treats pattern matching similarly to input and are oth-
erwise straightforward adaptions of corresponding rules in the verbose analysis
in Table 4.1. The remaining rules are also straightforward adaptions.

Example 4.5 Recall the process from Example 4.4, which during execution may
generate arbitrarily deep encryption:

P
def
= 〈nl1〉.0 | !(; x).〈{xl2}l4

kl3
〉.0

The following (ρf , κf , γ) is an analysis result that satisfies ρf , κf , γ |= P :

ρf (bxc) = {l1, l4}

κf = {l1, l4}

γ : l1 → bnc
l2 → bnc
l2 → {l2}l3

l3 → bkc
l4 → {l2}l3

Note in particular, that the grammar for l2 is “created” by copying the bod-
ies, u, of the rules where the head is in ρ(x) into bodies of rules l2 → u.
This creates a circularity in the rule for l2 such that L(γ, l2) is the infinite
set {bnc, {bnc}bkc, {{bnc}bkc}bkc, . . .} i.e. precisely the set that x may evaluate
to in Example 4.4. �

Lemma 4.6 (Verbose analysis vs finite analysis) An analysis result for the
finite analysis in Table 4.2 provides an analysis result for the verbose analysis
in Table 4.1:

4.2 From Infinite to Finite 53

Given ρf , γ, κf then for all l and x let

ϑv(l) = L(γ, l)
ρ(bxc) =

⋃

l′∈ρf (bxc) ϑ
v(l′)

κ = {U1 . . . Uk | l1 . . . lk ∈ κf ∧ U1 ∈ ϑv(l1) ∧ . . . ∧ Uk ∈ ϑv(lk)}

Then

(1) if ρf , γ |= El then ρ, ϑv |= El

(2) if ρf , κf , γ |= P then ρ, κ, ϑv |= P

Proof The proof goes by structural induction on expressions and processes in
the definition of the finite analysis. Mainly, the proof uses the definition of
L(γ, l) to establish the desired result. Below are the details of some of the more
interesting cases:

Case (FN). Assume ρf , γ |= nl. Then bnc ∈ γ(l) by (FN). Then define
ϑv(l) = L(γ, l) ⊇ {f() | f() ∈ γ(l)} ⊇ {bnc}. In other words, bnc ∈ ϑv(l) so
by (VN) then ρ, ϑv |= nl for any choice of ρ and in particular for the one in
Lemma 4.6.

Case (FVar). Assume ρf , γ |= xl. Then ∀l′ ∈ ρf (bxc) : γ(l′) ⊆ γ(l) by
(FVar), which is the same as saying that (

⋃

l′∈ρf (bxc) γ(l
′)) ⊆ γ(l). Concep-

tually this formula states that the bodies of rules in the grammar that have l
as a head must be a superset of the bodies in all the rules with l′ as a head.
Consequently, the tree languages generated grammars are also going to be su-
persets, i.e. (

⋃

l′∈ρf (bxc) L(γ, l′)) ⊆ L(γ, l). With the definitions of ρ and ϑv from

Lemma 4.6 it then follows that ρ(bxc) ⊆ ϑv(l) and consequently that ρ, ϑv |= xl

as required (VVar).

Case (FSEnc). Let E = {El1
1 , . . . , E

lk
k }

E
l0
0

and assume ρf , γ |= El. Then by

(FSEnc) it holds that

(a) ∧k
i=0 ρf , γ |= Eli

i and (b) {l1, . . . , lk}l0 ∈ γ(l)

From (a) and the induction hypothesis it is known that ∧k
i=0 ρ, ϑ

v |= Eli
i ; this is

the first requirement in (VSEnc) to be have an analysis result for E l.

With the use of the definition of L(γ, l), (b) can be used to compute that

{ {U1, . . . , Uk}U0
| U0 ∈ L(γ, l0) ∧ · · · ∧ Uk ∈ L(γ, lk)} ⊆ L(γ, l)

With the definition of ϑv in Lemma 4.6 this is the same as

{ {U1, . . . , Uk}U0
| U0 ∈ ϑv(l0) ∧ · · · ∧ Uk ∈ ϑv(lk)} ⊆ ϑv(l)

or equivalently

∀U0 ∈ ϑv(l0) . . . Uk ∈ ϑv(lk) : {U1, . . . , Vk}U0
∈ ϑv(l)

54 Implementation

The latter is precisely the second requirement in (VSEnc) and consequently it
holds that ρ, ϑv |= El.

The proof for remaining cases in part (1) of Lemma 4.6 are similar to the above
and this concludes the proof of part (1).

Case (FOut) Assume ρf , κf , γ |= 〈El1
1 , · · · , E

lk
k 〉.P . Then from (FOut) it holds

that (a) ∧k
i=1 ρf , γ |= Eli

i , (b) l1 . . . lk ∈ κf , and (c) ρf , κf , γ |= P . Using
Lemma 4.6 part (1) and the induction hypothesis there are also analysis results
for the verbose analysis corresponding to (a) and (c), respectively. From (b) and
the definition of κ in Lemma 4.6 then

{U1 . . . Uk} | U1 ∈ ϑv(l1) ∧ · · · ∧ Uk ∈ ϑv(lk)} ⊆ κ

or equivalently

∀U1 ∈ ϑv(l1) . . . Uk ∈ ϑv(lk) : U1 . . . Uk ∈ κ

This is precisely the last requirement that is needed to use (VOut) for concluding
that ρ, κ, ϑv |= 〈El1

1 , · · · , E
lk
k 〉.P .

Case (FInp). Assume ρf , κf , γ |= (El1
1 , . . . , E

lj
j ; xj+1, . . . , xk).P . Then by the

definition of (FInp) it holds that (a) ∧j
i=1 ρ

f , γ |= Eli
i ,

(b) ∀l′1 . . . , l
′
k ∈ κf : (∧j

i=1 L(γ, l′i) ∩ L(γ, li) 6= ∅) ⇒ (c)

where
(c) ∧k

i=j+1 l′i ∈ ρf (bxic) ∧ ρ
f , κf , γ |= P

The formula (b) may be rephrased using the definition of ϑv to

∀l′1 . . . l
′
k ∈ κf : (∧j

i=1 ∃Ui : Ui ∈ ϑv(l′i) ∧ Ui ∈ ϑv(li)) ⇒ (c)

or equivalently to

∀l′1 . . . l
′
k ∈ κf : ∀U1 ∈ ϑv(l′1) . . . Uj ∈ ϑv(l′j) : (∧j

i=1 Ui ∈ ϑv(li)) ⇒ (c)

Next, first observe that if U ∈ ϑv(l) and l ∈ ρf (bxc) then obviously U ∈
∪l′∈ρf (bxc) ϑ

v(l′); that is U ∈ ρ(bxc) where ρ is as defined in Lemma 4.6. The
formula above then implies that

∀l′1 . . . l
′
k ∈ κf : ∀U1 ∈ ϑv(l′1) . . . Uj ∈ ϑv(l′j)Uj+1 ∈ ϑv(l′j+1) · · · , Uk ∈ ϑv(l′k) :

(∧j
i=1 Ui ∈ ϑv(li)) ⇒ ∧k

i=j+1 Ui ∈ ρ(bxic) ∧ ρ
f , κf , γ |= P

taking advantage of Uj+1, · · · , Uk being free in the hypothesis of the implication.
Finally, by using the definition of κ in Lemma 4.6 and the induction hypothesis
it is clear that

∀U1, · · · , Uk ∈ κ : (∧j
i=1 Ui ∈ ϑv(li)) ⇒ ∧k

i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ, ϑ
v |= P

4.3 The Generation Function 55

Using the definition of (VInp) on this formula together with Lemma 4.6 part (1)

for (a) leads to the conclusion that ρ, κ, ϑv |= (El1
1 , . . . , E

lj
j ; xj+1, . . . , xk).P as

required.

The interesting parts of the cases for decryption are analogue to the case for
input while the remaining cases are straightforward. This concludes the proof
of Lemma 4.6. �

The converse of Lemma 4.6 does not hold in general. That is, an analysis result
for the verbose analysis does not necessarily provide an analysis result for the
finite analysis. The reason is that an analysis result for the verbose analysis
may contain irregular sets of terms that cannot be represented by a regular tree
grammars.

The encoding of analysis results as tree grammars borrows a great deal from [111]
where a similar encoding was presented for an analysis of the Spi-calculus. One
difference between the encoding given here and the one in [111] is that the do-
mains of ρf and κf contain “heads” of tree grammar rules rather than “bodies”
of rules as was done in [111]. This alternative was chosen because LySa contains
pattern matching both at input and at decryption. The alternative encoding
means that the same formula can be used to describe the analysis of pattern
matching both input and decryption, which seems only fair since they are iden-
tical in the original analysis specification in Table 3.1.

4.3 The Generation Function

Having attained an analysis over a finite domain the last step in the develop-
ment of the generation function is to transform the analysis into ALFP. Below
ALFP is described in more detail followed by a description of the transformations
necessary to attain a generation function with the correct kind of result.

4.3.1 ALFP and the Succinct Solver

Alternation-free Least Fixed Point logic (ALFP) is a fragment of first order
predicate logic. An ALFP formula F is built from constants, c, variables, y,
predicate symbols, p, and preconditions, H, according to the following grammar:

T ::= c | y

H ::= ∀y : H | ∃y : H | H1 ∧H2 | H1 ∨H2 |
p(T1, . . . , Tk) | ¬p(T1, . . . , Tk)

F ::= H ⇒ F | ∀y : F | F1 ∧ F2 | p(T1, . . . , Tk) | true

56 Implementation

ALFP formulae are interpreted over a finite, unstructured universe1of constant
symbols c ∈ Uni . An interpretation of a k-ary predicate symbol p is a set
of k-tuples, c1 . . . ck from Unik, for which p holds. The truth of a formula F

is determined with respect to an interpretation I of all the predicate symbols
in F . The Succinct Solver works on formula with no free variables where the
use of negation is subject to a notion of stratification. Given such an ALFP
formula, F , the Succinct Solver computes the smallest interpretation I of all the
predicate symbols in F that makes the formula true. The Succinct Solver may,
thus, be seen as a solving function S, which as takes an ALFP formula and finds
a solution in form of an interpretation of the predicate symbols.

The semantics of ALFP formulae is as expected and a precise definition is given
in [112] where it is also shown that there always exists an interpretation that
makes arbitrary formulae true. This result is shown by proving that the set of
interpretations, which satisfy a given formula, form a Moore family [112, Propo-
sition 1]. The Succinct Solver is able to compute the smallest such interpretation
in a worst-case time bounded by a polynomial that in the size of Uni to a degree
governed by the nesting depth of quantifiers in the formula [112, Proposition 2].
This worst-case complexity is, however, typically much too pessimistic compared
with the actual run-time of the solver.

For the Succinct Solver to be capable of providing a result for the analysis, the
analysis components will be encoded as predicates and the constraints between
them will be expressed by ALFP formula. Already, in the previous sections the
analysis has been transformed to work on global analysis components over finite
domains. Only a little more tweaking is needed before the analysis is expressed
as formulae in ALFP.

4.3.2 Encoding the Analysis as ALFP

Variables The analysis component ρf : bVarc → P(Lab) is a function and as
such it cannot directly be represented as an ALFP predicate. Instead, it will be
represented as the isomorphic predicate ρg ∈ P(bVarc × Lab).

In general, analysis components of the form f : A → P(B) can be represented
isomorphically by the predicate p ∈ P(A×B). For the components where the
domain has changed from functions to predicate representation the following
transformations to the analysis formulae are furthermore used in order to abide
by ALFP syntax:

• Membership, such as b ∈ f(a) is written f(a, b).

• Subset, such as f(a) ⊆ f(b) is expanded to ∀x : f(a, x) ⇒ f(b, x).

1The Succinct Solver does have a notion of structured terms but internally in the solver
they are translated to constant symbols.

4.3 The Generation Function 57

• Quantifications are expanded so e.g. ∀x ∈ f(y) : F becomes ∀x, y :
f(y, x) ⇒ F

Communication Communication and encryption in LySa are polyadic in the
sense that they work on sequences of expressions. For the analysis, this means
that κf contains sequences of labels and that the bodies in the tree grammars
in γ contains sequences of non-terminals. To encode these analysis components
as ALFP predicates, which range over unstructured universes, an additional
transformation is needed.

The basic idea is to let the analysis work over families of predicates with dif-
ferent arities corresponding to the length of the sequence. Though the families
themselves will contain infinitely many predicates, only finitely many of these
will be needed to analyse a specific process.

The network component κf will, for example, be encoded as a family of relations:

κ
g
k = {m | m is in κf and has length k}

such that κg
k ⊆ P(Labk). The component κg represents the entire family of

predicates. The transformation of the finite analysis in Table 4.2 into an analysis
that uses the family of relations is quite simple. The analysis of k-ary output
and k-ary input only refers to sequences in κf of length k. The new analysis of
output and input will simply refer to κg

k instead. Consequently, the analysis of a
process P , which at most communicates messages of length k ∈ ac(P), will only
use the finitely many relations κg

k with k ∈ ac(P).

Encrypted Values and Key Pairs Values in the analysis are represented
by the tree grammar rules in γ : Lab → P(B(ΣLySa,Lab)). The bodies of
the rules are either a canonical name of the form bnc, bm+c, bm−c or a k-
ary encryption of the form {l1, . . . , lk}l0 or {|l1, . . . , lk|}l0

. Following the encod-

ing of ρf , this function could be encoded as an isomorphic predicate of type
P(Lab ×B(ΣLySa,Lab)). However, further encodings are needed to handle the
bodies of the tree grammar that contains sequences of values. Instead, the rules
will be encoded as the predicate γg ∈ P(Lab × (bNamec ∪ Lab)) as described
below.

The canonical names will be represented as elements in Uni and a syntactic con-
vention will enforce that ordinary names, positive key pair names, and negative
key pair names have three separate name spaces. Furthermore, in the analysis of
asymmetric decryption it is necessary to test whether two arbitrary values form
a key pair. For this purpose an auxiliary predicate KP ∈ P(bNamec × bNamec)
is introduces that will hold pairs of names that are known to form a key pair.

The polyadic encrypted values will be encoded by introducing families of aux-
iliary predicates SE and AE for symmetric key encryption and asymmetric

58 Implementation

nei(P)
def
= ∀l1, l2 : (∃u : N(u) ∧ γg(l1, u) ∧ γ

g(l2, u)) ⇒ NEI(l1, l2)

∧∧k∈as(P)

∀l1, l2 : (∃l′1, l10, · · · , l1k, l
′
2, l20, · · · , l2k :

SEk(l′1, l10, · · · , l1k) ∧ SEk(l′2, l20, · · · , l2k) ∧
NEI(l10, l20) ∧ . . . ∧ NEI(l1k, l2k) ∧
γg(l1, l

′
1) ∧ γ

g(l2, l
′
2)) ⇒ NEI(l1, l2)

∧∧k∈aa(P)

∀l1, l2 : (∃l′1, l10, · · · , l1k, l
′
2, l20, · · · , l2k :

AEk(l′1, l10, · · · , l1k) ∧ AEk(l′2, l20, · · · , l2k) ∧
NEI(l10, l20) ∧ . . . ∧ NEI(l1k, l2k) ∧
γg(l1, l

′
1) ∧ γ

g(l2, l
′
2)) ⇒ NEI(l1, l2)

Table 4.3: Axiomatisation of non-empty intersection between sets of terms the
tree grammars γg. This grammar represents terms over ΣLySa for the analysis
of the process P .

key encryption, respectively. In γg the encryption will be recoded as a new
label that refers to SE and AE for the actual values. For example, an ele-
ment (l, l0, l1, . . . , lk) in SEk ∈ P(Labk+2) will represent the k-ary symmetric
key encryption {l1, · · · , lk}l0 that is referred to by the label l in γg. Simi-
larly, a k-ary asymmetric key encryption will be represented as an element in
AEk ∈ P(Labk+2). Only finitely many elements from the families SE and AE
will be needed for the analysis of any given process, P , and their arities will be
subsets of as(P) and aa(P), respectively. Furthermore, SE and AE stand for the
entire families of predicates.

Non-empty Intersection The finite analysis in Table 4.2 tests for non-empty
intersection between two tree languages in γ. The tests are of the form

L(γ, l1) ∩ L(γ, l2) 6= ∅

Following closely the development from the analysis of the Spi-calculus in [111]
these tests are axiomatised by introducing an auxiliary predicate NEI . This
predicate holds for a pair of labels precisely when the intersection of the lan-
guages generated by each of them is non-empty.

The axiomatisation is given as an ALFP formula in Table 4.3 over all languages
generated by the grammars in γg. The predicate is defined on the structure of
terms over ΣLySa used for the analysis of a process P . First, the axiomatisation
specifies that pairs of non-terminals l1 and l2 that both have rules where the body
is the same name will generate languages that have non-empty intersections.

4.3 The Generation Function 59

This formula uses the auxiliary predicate N that holds for all the names in P .
Second, all pairs of rules where the body is a k-ary symmetric key encryption
and the subcomponents also have non-empty intersection will themselves have
non-empty intersections. Similarly, asymmetric key encryptions may give rise to
non-empty intersections.

4.3.3 Generating ALFP

The generation function G is defined below as the conjunction of auxiliary pred-
icates and the function F , which is defined inductively in the structure of pro-
cesses in Table 4.4. The auxiliary predicate N describes the names in a process,
the predicates KP describes key pairs, while non-empty intersections of tree
languages are describes in the predicate NEI. All these predicates have been
discussed in detail in Section 4.3.2. The generation function is then given as

G(P)
def
= ∧V ∈name(P) N(bV c) ∧

∧m+,m−∈name(P) KP(bm+c, bm−c) ∧ KP(bm−c, bm+c) ∧
nei(P) ∧
F(P)

The function F is obtained by taking definition of the analysis predicate for the
finite analysis in Table 4.2 interpreting the left-hand-side as the argument to
the function and the right-hand-side as the ALFP formula produced by F . The
definition of F uses the encoding of the formulae in ALFP as explained earlier.
Note in particular that the analysis of pattern matching in (GInp), (GSDec),
and (GADec) uses the predicate NEI to test for non-empty intersection of two
tree languages.

Example 4.7

Recall Example 4.5 that gives an analysis of the process

P
def
= 〈nl1〉.0 | !(; x).〈{xl2}l4

kl3
〉.0

The actual result computed by the Succinct Solver on G(P) is the following
interpretation of the predicate symbols:

ρg : (bxc, l4), (bxc, l1)
κ

g
1 : (l4), (l1)
γg : (l4, l4), (l2, l4), (l2, bnc), (l3, bkc), (l1, bnc)

SE1 : (l4, l3, l2)
N : (bkc), (bnc)

NEI : (l4, l4), (l4, l2), (l1, l1), (l1, l2), (l2, l4), (l2, l1), (l2, l2), (l3, l3)

The predicates KP and AE does not hold for any elements. �

60 Implementation

(GN) F(nl)
def
= γg(l, bnc)

(GNp) F((m+)l)
def
= γg(l, bm+c)

(GNm) F((m−)l)
def
= γg(l, bm−c)

(GVar) F(xl)
def
= ∀l′ : ρg(bxc, l′) ⇒ ∀u : γg(l′, u) ⇒ γg(l, u)

(GSEnc) F({El1
1 , . . . , E

lk
k }l

E
l0
0

)

def
= ∧k

i=0 F(Eli
i) ∧ SEk(l, l0, l1, . . . , lk) ∧ γg(l, l)

(GAEnc) F({|El1
1 , . . . , E

lk
k |}l

E
l0
0

)
def
= ∧k

i=0 F(Eli
i) ∧ AEk(l, l0, l1, . . . , lk) ∧ γg(l, l)

(GOut) F(〈El1
1 , . . . , E

lk
k 〉.P)
def
= ∧k

i=1 F(Eli
i) ∧ κg

k(l1, . . . , lk) ∧ F(P)

(GInp) F((El1
1 , . . . , E

lj
j ; xj+1, . . . , xk).P)
def
= ∧j

i=1 F(Eli
i) ∧

∀l′1 . . . l
′
k : κg(l′1 . . . l

′
k) ⇒

(∧j
i=1NEI(l′i, li)) ⇒
(∧k

i=j+1 ρ
g(bxic, l

′
i) ∧ F(P))

(GSDec) F(decrypt El as {El1
1 , . . . , E

lj
j ; xj+1, . . . , xk}E

l0
0

inP)
def
= F(El) ∧ ∧j

i=0 F(Eli
i) ∧

∀l′, l′0, . . . , l
′
k : SEk(l′, l′0, . . . , l

′
k) ∧ γg(l, l′) ⇒

(∧j
i=0 NEI(l′i, li)) ⇒
(∧k

i=j+1 ρ
g(bxic, l

′
i) ∧ F(P))

(GADec) F(decrypt El as {|El1
1 , . . . , E

lj
j ; xj+1, . . . , xk|}E

l0
0

inP)
def
= F(El) ∧ ∧j

i=0 F(Eli
i) ∧

∀l′, l′0, . . . , l
′
k : AEk(l′, l′0, . . . , l

′
k) ∧ γg(l, l′) ⇒

∀u0, u
′
0 : γg(l0, u0) ∧ γ

g(l′0, u
′
0) ∧ KP(u0, u0) ∧

(∧j
i=1 NEI(l′i, li)) ⇒

(∧k
i=j+1 ρ

g(bxic, l
′
i) ∧ F(P))

(GNew) F((ν n)P)
def
= F(P)

(GANew)F((ν± m)P)
def
= F(P)

(GRep) F(!P)
def
= F(P)

(GPar) F(P1 | P2)
def
= F(P1) ∧ F(P2)

(GNil) F(0)
def
= true

Table 4.4: The generation function on the syntax of expressions F(E l) and
processes F(P).

4.4 Summary 61

Lemma 4.8 (Finite analysis vs generation function) The formula G(P) is
equivalent to the finite analysis of P in Table 4.2:

Let ρg, κg, γg,SE,AE,KP,N, and NEI be interpretations of the respective predi-
cate symbols. For all l and x let

ρf (bxc) = {l | ρg(bxc, l)}

γ(l) = {bnc | γg(l, bnc) ∧ N(bnc)} ∪
⋃

k∈N0
{{l1, . . . , lk}l0 | ∃l′ : γg(l, l′) ∧ SEk(l′, l0, . . . , lk)} ∪

⋃

k∈N0
{{|l1, . . . , lk|}l0

| ∃l′ : γg(l, l′) ∧ AEk(l′, l0, . . . , lk)}

κf =
⋃

k∈N0
κ

p
k

Then ρg, κg, γg,SE,AE,KP,N,NEI satisfies G(P) if and only if ρf , κf , γ |= P .

Proof First, observe that N holds for all names in P and KP holds for all key
pairs in P . Second, that NEI(l1, l2) is an axiomatisation of L(γ, l1)∩L(γ, l2) 6= ∅
can be seen by expanding the definitions of the latter and, thereby, getting the
first.

The remainder of the proof proceed by structural induction in processes and
expression. The proof involves straightforward unravelling of definitions of set
membership, set inclusion, rewriting of logical formula, and the isomorphic map-
ping between the domains of the analysis components and their predicate repre-
sentation given above. The analysis of pattern matching uses the above observa-
tion on the auxiliary predicate NEI while the analysis of asymmetric encryptions
uses the observation on KP. �

4.4 Summary

This chapter has described how to obtain a generation function, G(P), that
produces an ALFP formula representing the analysis of the LySa process P . The
Succinct Solver may be used to compute an interpretation, I, of the predicate
symbols in this formula, which provides an analysis result for P . This is stated
by the main theorem of this chapter:

Theorem 4.9 (Correctness of the implementation) If I is an interpreta-
tion of predicate symbols that satisfies G(P) then ρ, κ |= P and (ρ, κ) can be
calculated from I.

Proof The theorem follows from a combination of Lemma 4.8, Lemma 4.6, and
Lemma 4.3. These lemmata and their proofs also provide the details of how to
calculate ρ and κ from I. �

62 Implementation

Thus, the generation function provides a way to find analysis results. The fact
that the generated formulae are in ALFP interpreted over a finite universe ad-
ditionally provides easy access to a number of theoretical results. Furthermore,
using the implementation of the Succinct Solver also gives an easy way to obtain
a proof-of-concept implementation of the analysis.

4.4.1 Existence of Solution

Corollary 4.10 (Existence of Solution) For any process P there exists an
analysis result (ρ, κ) such that ρ, κ |= P .

Proof According to [112, Proposition 1] the set of interpretations that satisfies
an ALFP formula forms a Moore family. Because a Moore family is never empty
then there always exists an interpretation that satisfies any ALFP formula. In
particular, there exists interpretations I that satisfies the formula G(P) for any
process P . Using Theorem 4.9 then for any process P there exists a (ρ, κ) such
that ρ, κ |= P . �

A further consequence of a set being a Moore family is that the set contains
a unique least element. The Succinct Solver actually computes this least in-
terpretation, where “least” is defined in [112] with respect to an ordering that
is essentially the component-wise subset-ordering of the interpretations of the
predicates in the ALFP formula. One may wonder whether this least elements
is preserved by the mappings between the various analysis domains.

To explore whether the least element is preserved one could proceed by defining
mappings between the analysis domains and show that these mappings are iso-
morphisms. In this case, the least element is preserved by the mapping because
isomorphisms are order preserving. This strategy could probably be made to
work for the mapping between the domains of the generation function and the
finite analysis corresponding to Lemma 4.8 as well as the verbose and the suc-
cinct analysis corresponding to Lemma 4.3. In the latter case one would have
to consider isomorphisms up to equivalence classes on expressions thereby ac-
counting for the fact that labels are not necessarily unique. On the other hand,
clearly there does not exist an isomorphism between the domains of the finite
and the verbose analysis. For example, any such mapping would not even be
surjective because not every set of terms is regular i.e. no every set of terms can
be described by a regular tree grammar. In [111] it was explored how to show
that a tree grammar encoding similar to the one presented here does preserve
least solution. The proof relies on viewing the analysis specifications as fixed
points of a function and making an induction over the steps of the fixed point
computation. One must then show that in each step in the fixed point compu-
tation does not exceed a corresponding step-wise unfolding of the tree grammar.
A similar path might be explored for the analyses given here.

4.4 Summary 63

The proof strategy discussed above implies a quite heavy proof burden. The
end result of carrying out this proof is, however, of minor technical value. Such
a proof would only eradicate the possibility of coming up with a more precise
implementation with respect to the orderings imposed on the analysis domains.
It is, however, already quite clear from the examples that the implementation
presented here does compute non-trivial results and this suffices for a proof-of-
concept implementation. In this context, it is important to recall that properties
proven about the analysis holds for all analysis results. Hence, the analysis result
found by the implementation will indeed, by Theorem 4.9, have such properties.
Consequently, even if there is no guarantee that the implementation finds the
least analysis result this in no way jeopardises the correctness of the analysis
result found by the implementation.

4.4.2 Complexity

Corollary 4.11 (Time-complexity of the analysis) A finite representation
of an analysis result for ρ, κ |= P may be computed in polynomial time in the
size of the process P .

According to the proof of Theorem 4.9, the interpretation that satisfies G(P)
is a finite representation of the analysis result (ρ, κ). This interpretation may
be computed by the Succinct Solver. Proposition 2 in [112] provides a way of
getting a simple complexity measure for the time it takes to compute a valid
interpretation of an ALFP formula: this time is bounded by a polynomial in the
size of the universe with a degree governed by the nesting depth of quantifiers.

The formula produced by the generation function G(P) is interpreted over a
universe that consists of canonical names, canonical variables, and labels in P .
The number of such elements is bounded by the size of the process P .

Inspecting the formula produced by the generation function G it becomes clear
that the nesting depth of quantifiers is also bounded by the size of the process.
This large nesting depth arises because the reachability analysis is implemented
by means of an implication in the analysis of input and decryption. That is, the
generated formulae for these constructs are of the form

(∀l′, l′1, . . . , l
′
k : . . . ∧j

i=1 NEI(l′i, li) ⇒ ∧k
i=k+1 ρ

g(bxic, l
′
i) ∧ F(P))

where the scope of l′, l′1, etc. includes the formula for the analysis of the process
P . However, the scope is unnecessarily long because l′, l′1, etc. are not used in the
analysis of P . Therefore, the formulae may be transformed into the equivalent

(∀l′, l′1, . . . , l
′
k : . . . ∧j

i=1 NEI(l′i, li) ⇒ ∧k
i=k+1 ρ

g(bxic, l
′
i) ∧R()) ∧

(R() ⇒ F(P))

where R() is a fresh predicated. With these modifications the nesting depth is
no longer governed by the size of the process P . Instead, it is dominated by

64 Implementation

the length of sequences in the polyadic constructs. Thus, using Proposition 2
in [112] it holds that an analysis result may be computed in polynomial time in
the size of P .

Because the degree of complexity polynomial is governed by the length of poly-
adic constructs it can still be relatively high. In the implementation of the
Spi-calculus [111] sequences in the polyadic constructs are encoded as lists by
introducing an auxiliary binary predicate. This encoding trick dramatically
reduces the nesting depth of quantifier to be the number 3. A similar encoding
trick could be done for the generation function presented here. However, the
complexity measure of Proposition 2 in [112] is very pessimistic and the encoding
trick from [111] will not in practice have such a significant effect.

4.4.3 Implementation in Standard ML

The Succinct Solver is implemented in Standard ML of New Jersey [127] and is
available for download from the web [130]. The analysis of LySa described in
this chapter has also been implemented in Standard ML of New Jersey. This
implementation is known as the LySatool and is available from the web [90]. The
core of the LySatool is an SML implementation of the generation function. The
SML source code closely follows the definition of G and Table 4.4 and Table 4.3
with the main discrepancy being that the ellipsis notation (the . . . notation) is
implemented using SML lists. The implementation also makes use of auxiliary
reachability predicates as discussed in Section 4.4.2. The LySatool relies on
the Succinct Solver implementation for the actual computation of the analysis
results.

The LySatool incorporates features that will be presented in the following chap-
ter. The tool has been used to produce the analysis results shown in all the
examples in this thesis. Essentially, the LySatool computes results of a form
corresponding to the on shown in Example 4.7. To increase readability, the
analysis results in the remainder of this thesis will, however, be presented in the
spirit of the finite analysis as in Example 4.5. Consequently, the analysis results
have been hand-edited to suit layout needs.

4.4.4 Tuning Expression Labels

In early versions of the LySatool, such as the ones used to attain the experimen-
tal results in [21, 23, 22, 91], a unique labelling of processes was used. Lemma 4.3,
however, states that as long as processes are labelled according to a unique ex-
pression labelling then the verbose analysis is equivalent to the original analysis.

By choosing a suitable expression labelling, the analysis results may become
smaller and thereby faster to compute. The impact of changing the unique

4.4 Summary 65

labelling to a unique expression labelling that merges labels is illustrated by the
following two examples.

Example 4.12 Take the simple nonce handshake from Example 2.1 and let it
be given the following unique labelling :

(ν n) 〈Al2 , Bl3 , nl4〉.(Bl5 , Al6 ; x).decrypt xl7 as {nl8 ; }Kl9 in 0

|

(Al10 , Bl11 ; y).〈Bl12 , Al13 , {yl14}l16
Kl15

〉.0

The LySatool finds the result shown below when canonical representatives are
assigned to names and variables V such that bV c = V . This convention is used
for the assignment of canonical representatives in all the following examples
unless otherwise clearly stated.

ρ(x) = {l16}
ρ(y) = {l4}

κ = {l2 l3 l4, l12 l13 l16}

γ : l2 → A

l3 → B

l4 → n

l5 → B

l6 → A

l7 → {l14}l15

l8 → n

l9 → K

l10 → A

l11 → B

l12 → B

l13 → A

l14 → n

l15 → K

l16 → {l14}l15

Notice that the tree grammars in γ contain different rules for each of the applied
instances of the same expression such as l2 → A, l6 → A, and l10 → A for the
different instances of the name A. �

According to Lemma 4.3 an equivalent solution may be found by assigning the
same label to two or more identical expression. This is done in the next example.

Example 4.13 Consider again the simple nonce handshake. This time, every
occurrence of the same name and of the same variable have been given identical
labels:

(ν n) 〈AlA , BlB , nln〉.(BlB , AlA ; x).decrypt xlx as {nln ; }KlK in 0

|

(AlA , BlB ; y).〈BlB , AlA , {yly}l16
KlK

〉.0

The LySatool now finds the following analysis result:

ρ(x) = {l16}
ρ(y) = {ln}

κ = {lA lB ln, lB lA l16}

γ : lA → A

lB → B

lK → K

ln → n

lx → {ly}lK

ly → n

l16 → {ly}lK

66 Implementation

Notice that γ is drastically reduced in size because applied occurrences of the
same names are now represented by the same rules in the grammars. �

The positive effect of merging labels does not only appear in the grammar as
illustrated in the above examples. The actual implementation computes a num-
ber of auxiliary predicates as discussed in Section 4.3 and these predicates are
also influenced. For example, the analysis result in Example 4.12 has an the
auxiliary predicate NEI that contains 49 elements while NEI only contains 11
elements in the analysis result for Example 4.13.

It is difficult to quantify the effect of merging expression labels because the
significance of this optimisation very much depends on the process, which is being
analysed. However, typical processes mentions the same identities of principals,
nonces, keys, etc. several times throughout the process. In this case, the merging
of labels has a positive effect on the size of the analysis result and thereby on
the computation time.

C h a p t e r 5

Network Attackers

Applications that involve several principals communicating via a computer net-
work are vulnerable to attacks due to mischievous behaviour from other parties
that have access to the network. This chapter studies how the control flow anal-
ysis from Chapter 3 may be used to analyse the behaviour of applications acting
in a such a setup. The attack setup can be modelled in LySa as the process

P | P•

where P represents the application while P• is some arbitrary attacker. LySa
has been designed such that an attacker in this setup has access to messages
transmitted on the network and may perform all the kinds of manipulations of
these messages, which are possible within the semantics of LySa. However, the
attacker does not have immediate access to the internals of P that, for example,
may keep messages and keys secret by restricting their scope to P , only. The
setup described by P | P• is, thus, essentially the one considered as far back
as Needham and Schroeder [104] and formalised by Dolev and Yao [55]. By
applying the techniques presented in this chapter, the control flow analysis can
be used to analyse the ability of the application to function on an unsafe network
before the application is ever deployed on a real network.

Given a single, specific attacker, P•, the control flow analysis from Chapter 3 can
directly give an account of the behaviour P under attack from P•. This is done
simply by analysing the process P | P•. This idea is basically the one used to
analyse attackers in [86] — though with a very different analysis technique than
the one used here. Instead of considering only a single (well-chosen) attacker,

68 Network Attackers

it is more interesting to consider how P behaves under attack from arbitrary
attackers P•.

5.1 A Hardest Attacker

To get an account of the infinitely many attacker processes P•, the overall idea
is to find one process Phard that represents all P•. However, Phard will not need
to mimic the semantics of all the P•. Instead, the idea is that it mimics how all
P•’s are analysed. More precisely, the aim is to find a process Phard with the
property that

ρ, κ |= Phard implies ρ, κ |= P•

for all P•. This idea originally comes from [110]. The process Phard will be called
a hardest attacker because it is the hardest process that needs to be analysed to
account for all attackers.

Finding such a Phard is difficult for several reasons. First of all it requires some
ingenuity to find a finite process Phard that has the same analysis result as an
arbitrary process P•. Secondly, there are a number of technical difficulties such
as the fact that an arbitrary P• may contain arbitrarily many different names
and variables. Also, communication and encryption in LySa are polyadic so
arbitrary processes may contain arbitrarily large arities. This section handles
these technical difficulties by defining a restricted class of attackers. For this
class of attackers, a hardest attacker is given. The presentation of this restricted
hardest attacker relies on a fairly standard adaption of known techniques to the
LySa setting. Section 5.2 shows that the restricted class of attackers actually
suffices to account for all attackers. This part is a novel contribution of this
thesis.

5.1.1 Restricting the Attackers

The analysis already has a mechanism that creates a finite account of infinitely
many names and variables: namely the assignment of canonical representatives.
To overcome the technical difficulty of there being infinitely many names and
variables, all attackers P• will be analysed such that the assignment of canonical
representatives is fixed a priori. This requirement is not a restriction of the
process P• itself but merely a choice of how to analyse it. To get this to work, it
is paramount that the analysis uses canonical representatives everywhere. This is
the reason that canonical representatives are also used for variables as discussed
on page 28.

The next technical challenge arises because communication and cryptographic
operations are polyadic. This means that an attacker, P•, may communicate
and perform cryptographic operations for arbitrary arities. In principle, the

5.1 A Hardest Attacker 69

hardest attacker, Phard , will have to cover all these arities, which, of course, is
not possible for a finite process. Instead, the attackers will be restricted so that
it is only allowed to perform actions with certain arities. With the restrictions
discussed above, a restricted class of attackers can now be defined:

Definition 5.1 (Restricted Attacker)
An (N ,AC ,AS ,AA)-attacker is an arbitrary process, P•, such that

• for all names n,m+,m− ∈ (fn(P•) \ N) ∪ bn(P•) the assignment of canon-
ical names has bnc = n•, bm

+c = m+
• , andbm−c = m−

• , respectively.

• for all variables x ∈ var(P•) the assignment of canonical variables has
bxc = x•, and

• the arities in P• are bounded such that ac(P•) ⊆ AC , as(P•) ⊆ AS , and
aa(P•) ⊆ AA.

Thus, an (N ,AC ,AS ,AA)-attacker is any process with a particular assignment
of canonical names and variables and limited arities of communication, encryp-
tion, and decryption.

The idea in introducing this restricted class of attackers is to consider the pro-
cess P under attack from processes P• that only use the same arities as P itself.
Furthermore, the processes P• may use the free names that are also used within
P and the canonical assignment of these names is assumed to be given elsewhere.
The names appearing only in P• will be analysed with their canonical represen-
tatives fixed to be n•,m

+
• , and m−

• , respectively. That is, the attack setup is
restricted by

P | P•

where P• is an (fn(P), ac(P), as(P), aa(P))-attacker.

5.1.2 A Restricted Hardest Attacker

A hardest attacker process Phard is defined below in Definition 5.2. This hardest
attacker only takes restricted attackers according to Definition 5.1 into account.
That the attacker Phard indeed has the desired properties with respect to the
analysis is the subject of Lemma 5.3 also given below.

In the definition of Phard the notation x, k. . ., x means a comma separated se-
quence of length k of the variable x. Additionally, the notation Πe∈S P (e) is a
syntactic shorthand for the parallel composition of processes P [e 7→ e′] for every
e′ in the finite set S.

70 Network Attackers

Definition 5.2 (The attacker Phard) A (N ,AC ,AS ,AA)-attacker known as
(N ,AC ,AS ,AA)-Phard is defined to be the process

(N ,AC ,AS ,AA)-Phard
def
= h1(N) | Πk∈AC h2(k) | Πk∈AS h3(k) | Πk∈AA h4(k)

where

h1(N)
def
= 〈n〉.0 | 〈m+〉.0 | 〈m−〉.0 | (; x).〈x〉.0 | Πn′∈N 〈n′〉.0

h2(k)
def
= (; x).〈x, k. . ., x〉.(; x, k. . ., x).0

h3(k)
def
= (; x).〈{x, k. . ., x}x〉.decrypt x as {; x, k. . ., x}x in 0

h4(k)
def
= (; x).〈{|x, k. . ., x|}x〉.decrypt x as {|; x, k. . ., x|}x in 0

and bnc = n•, bm
+c = m+

• , bm
−c = m−

• , and bxc = x•.

The process (N ,AC ,AS ,AA)-Phard may look somewhat odd if you think about
its semantics. However, recall that the semantics of Phard is not what is impor-
tant. The only purpose for this process is that the analysis should not be able to
tell the difference between it and any real attacker. That (N ,AC ,AS ,AA)-Phard

is indeed such a hardest attacker is made clear by the following lemma:

Lemma 5.3 (Restricted Hardest Attacker)
If ρ, κ |= (N ,AC ,AS ,AA)-Phard then ρ, κ |= P• for all (N ,AC ,AS ,AA)-
attackers P•.

Proof Assume that (N ,AC ,AS ,AA) are fixed, but arbitrarily chosen, that
ρ, κ |= (N ,AC ,AS ,AA)-Phard , and that P• is an (N ,AC ,AS ,AA)-attacker.
The proof then proceeds by induction in structure of how P• may look. It
is mostly straightforward to verify that whenever P• is an (N ,AC ,AS ,AA)-
attacker then any immediate subprocess is also an (N ,AC ,AS ,AA)-attacker.
This means that the induction hypothesis may readily be applied on subpro-
cesses. When P• is a restriction, this is, however, not entirely obvious and a
separate argument is given for this case below.

Case P• = 〈E1, . . . , Ek〉.P . First notice that k ∈ AC so (N ,AC ,AS ,AA)-Phard

has h2(k) = (; x).〈x, k. . ., x〉.(; x, k. . ., x) as a subprocess. Notice also that for any
ρ and ϑ such that ρ |= x : ϑ it holds that ρ(x•) ⊆ ϑ since bxc = x•. From the
analysis of h2(k) it then follows that ∀U1 ∈ ρ(x•) . . . ∀Uk ∈ ρ(x•) : U1 . . . Uk ∈ κ.

To establish ρ, κ |= 〈E1, . . . , Ek〉.P according to (AOut) one must find ϑi’s such
that ρ |= Ei : ϑi for all i = 1, . . . , k and that ∀U1 ∈ ϑ1 . . . ∀Uk ∈ ϑk : U1 . . . Uk ∈
κ. If one can furthermore find the ϑi’s such that ϑi ⊆ ρ(x•) then the analysis of
h2(k) given above ensures that U1 . . . Uk are in κ.

The least ϑi’s such that ρ |= Ei : ϑi will have precisely these properties, which
can be proven by induction in Ei. The proof relies on the fact that Ei is not

5.1 A Hardest Attacker 71

an arbitrary expression but one that appears in a (N ,AC ,AS ,AA)-attacker. In
particular, the proof uses that uses bxc = x• for all x ∈ var(Ei) and that there
is an analysis of h1, h3, and h4, which correspond to the expression Ei.

Finally, P is also an (N ,AC ,AS ,AA)-attacker so ρ, κ |= P holds by the induc-
tion hypothesis, which concludes this case in the proof.

Case P• = (E1, . . . , Ej ; xj+1, . . . , xk).P . Again, h2(k) must be a subprocess
of (N ,AC ,AS ,AA)-Phard and from its analysis is given that ∀U1 . . . Uk ∈ κ :
∧k

i=1 Ui ∈ ρ(x•).

Next, take some arbitrary ϑ′
is such that ρ |= Ei : ϑi for i ∈ 1, . . . , j. If some

value Ui happens to be both in κ at the ith place and in ϑi then the above gives
that certainly Ui is is in ρ(bxic) because bxic = x• for i = j+1, . . . , k. Together
with the induction hypothesis this shows that ρ, κ |= P•.

Case P• is decryption. All the interesting parts follows the same lines as
for input. They, in particular, use that h3(k) and h4(k) are subprocesses of
(N ,AC ,AS ,AA)-Phard whenever k-ary symmetric and asymmetric decryption,
respectively, are considered.

Case P• = (ν n)P . Below it is shown that P is an (N ,AC ,AS ,AA)-attacker
and, thus, by the induction hypothesis and (ANew) it holds that ρ, κ |= P•

as required. First notice that the arities used in P• and P are identical. The
interesting part is therefore whether P conforms with the requirement for the
assignment of canonical names even though it does not have the restriction that
P• has.

By assumption P• is an (N ,AC ,AS ,AA)-attacker, which in particular means
that bn′c is required to be n• for all n′ ∈ (fn(P•)\N)∪bn(P•). This requirement
is weakened for P because bn′′c is required be n• only for a subset:

(fn(P) \ N) ∪ bn(P) = ((fn(P•) ∪ {n}) \ N) ∪ (bn(P•) \ {n})
⊆ (fn(P•) \ N) ∪ bn(P•)

Thus, P is an (N ,AC ,AS ,AA)-attacker.

Case P• = (ν± m)P is analogue to the case for (ν n)P .

Case P• = !P and P• = P1 | P2 hold by the induction hypothesis and (ARep)
and (APar), respectively.

Case P• = 0. The analysis ρ, κ |= 0 holds trivially. �

To analyse a process P under attack from arbitrary attackers one can now make
the analysis

ρ, κ |= P | (fn(P), ac(P), as(P), aa(P))-Phard

By Lemma 3.10 and Lemma 5.3, the analysis results (ρ, κ) satisfying this analysis
give an account of the behaviour P under attack from an arbitrary (fn(P), ac(P),
as(P), aa(P))-attacker P•. However, in this setup the attacker is restricted to

72 Network Attackers

only communicate and perform cryptographic operation with the same arities
as the process P being under attack. One may wonder whether the attacker
actually gains any real power from having the ability to perform actions with
other arities. In Section 5.2 it will be shown that this is not the case and that
the analysis result (ρ, κ) found above does contain all the relevant information
about P under attack from arbitrary attackers.

5.2 Handling All Arities

The attack setup that is really of interest is one where P is under attack from
any process P• and not just a setup where arities are limited to certain sets
such as for (N ,AC ,AS ,AA)-attackers. This section will show how to obtain an
analysis that covers the entire behaviour of P | P• without restriction on the
arities in P•.

The overall idea is to develop a new analysis such that there is a finite process
without restrictions on its arities that is a hardest attacker. This new analysis
will itself be parameterised with sets of arities such as AC , AS , and AA. It will
be constructed such that it is identical to the original analysis in Table 3.1 for all
constructs with arities in AC , AS , and AA. The analysis of all other arities will
be collapsed in the analysis result. When using this new analysis on a hardest
attacker, it furthermore becomes clear that the attacker gains no extra power
from having other arities than the ones in AC ,AS , and AA.

To simplify presentation AC ,AS , and AA are joined into one set O by taking
the union of AC ,AS , and AA. The development can easily be reiterated using
separate sets of arities though this becomes unnecessarily cumbersome.

5.2.1 An O-precise Analysis

Let OVal be an extension of the value domain with the addition of marked values.
Technically, a marked value is a pair (◦, V) where ◦ is a distinct symbol that
denotes that V is marked. The operation ◦(V) is used to mark the value V and
ignores double marking i.e. it is idempotent so ◦(◦(V)) = ◦(V). Thus, the value
domain will be extended to be

OVal = Val ∪ ({◦} × Val)

The analysis of all constructs with arities in O will be exactly the same for
O-precise analysis and the original analysis in Table 3.1. Consequently, the O-
precise analysis is defined by the rules in Table 3.1 for all constructs with arities
in O. These rules will now range over bOValc rather than bValc and will be
referred to as prefixed by O rather than A. For example, the rule for parallel
composition will be referred to as (OPar). Constructs with arities o 6∈ O will

5.2 Handling All Arities 73

(OSEnco) ρo |= {E1, . . . , Eo}E0
: ϑo iff ∧o

i=0 ρ
o |= Ei : ϑo

i ∧
∀U ∈ ϑo

0 ∪ . . . ∪ ϑ
o
o : ◦(U) ∈ ϑo

(OAEnco) ρo |= {|E1, . . . , Eo|}E0
: ϑo iff ∧o

i=0 ρ
o |= Ei : ϑo

i ∧
∀U ∈ ϑo

0 ∪ . . . ∪ ϑ
o
o : ◦(U) ∈ ϑo

(OOuto) ρo, κo |= 〈E1, . . . , Eo〉.P iff ∧o
i=1 ρ

o |= Ei : ϑo ∧
∀U ∈ ϑo

1 ∪ . . . ∪ ϑ
o
o : ◦(U) ∈ κo ∧

ρo, κo |= P

(OInpo) ρo, κo |= (E1, . . . , Ej ; xj+1, . . . , xo).P
iff ∀◦(U) ∈ κo :

∧o
i=j+1 U ∈ ρo(bxic) ∧

◦(U) ∈ ρo(bxic) ∧
ρo, κo |= P

(OSDeco) ρo, κo |= decrypt E as {E1, . . . , Ej ; xj+1, . . . , xo}E0
inP

iff ρo |= E : ϑo ∧
∀◦(U) ∈ ϑo :

∧o
i=j+1 U ∈ ρo(bxic) ∧

◦(U) ∈ ρo(bxic) ∧
ρo, κo |= P

(OADeco) ρo, κo |= decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xo|}E0
inP

iff ρo |= E : ϑo ∧
∀◦(U) ∈ ϑo :

∧o
i=j+1 U ∈ ρo(bxic) ∧

◦(U) ∈ ρo(bxic) ∧
ρo, κo |= P

Table 5.1: The additional rules for the O-precise analysis that are applied to
constructs where o 6∈ O. The remaining rules are as in Table 3.1.

be analysed using the new rules defined in Table 5.1. The rational behind these
rules is that values used in constructs with arities not in O will be recorded
as marked values in the analysis components. In the rules (OInpo), (OSDeco),
and (OADeco) the marking is removed when recording a value as received or
decrypted. However, a marked value may have been marked several times for
different reasons. An input or a decryption should only “remove” one of these
marks and, consequently, the marked value will be recorded as well. A subject
reduction result also holds for the O-precise analysis.

Lemma 5.4 (Subject reduction for the O-precise analysis)
If ρo, κo |= P and P → P ′ then ρo, κo |= P ′.

74 Network Attackers

Proof The proof follows the one for Lemma 3.10. The auxiliary results used to
prove Lemma 3.10 may also be extended to the new domain of values OVal .

It is, for example, easy to show that results similar to Lemma 3.7 and Lemma 3.9
hold for the O-precise analysis as well: Let S be a subset of OVal . Then the
following set of values from Val is said to be generated from S:

{V | V ∈ S ∧ V ∈ Val } ∪
{{V1, . . . , Vo}V0

| ◦ (V0) ∈ S ∧ . . . ∧ ◦(Vo) ∈ S ∧ o 6∈ O} ∪
{{|V1, . . . , Vo|}V0

| ◦ (V0) ∈ S ∧ . . . ∧ ◦(Vo) ∈ S ∧ o 6∈ O}

Along the lines of Lemma 3.7 one can then show that

The analysis ρo |= V : ϑ holds if and only if bV c is in the set generated from ϑ.

Similarly, the substitution result in Lemma 3.9 may be extended:

If ρo, κo |= P and bV c is generated from ρ(bxc) then ρo, κo |= P [x
α
7→ V].

The proof of Lemma 5.4 now proceeds by structural induction in P . Using the
above results the cases for all construct without arities as well as constructs with
arities in O follow the proof of Lemma 3.10. The remaining cases are discussed
below:

Case (Com) for o 6∈ O. Let

P
def
= 〈V1, . . . , Vo〉.P1 | (V1, . . . , Vj ; xj+1, . . . , xo).P2

and

P ′ def
= P1 | P2[xj+1 7→ Vj+1, . . . , xo 7→ Vo]

Assume that ρo, κo |= P and that P → P ′ because of (Com). From the analysis
of output in (OOuto) and the extended Lemma 3.7 and it is clear that ◦(bVic) ∈
κo whenever Vi is a name or when the arity of Vi is in O. Alternatively, if the
arity of Vi is not in O then ◦(V ′

i) ∈ κo for any subvalue V ′
i of Vi for which its

arity is in O. That is, any subvalues of Vj+1, . . . , Vo that are names of have
arities in O of will appear marked in κo.

From (OInpo) it is furthermore clear that ◦(bV ′c) ∈ ρ(bxic) and bV ′c ∈ ρ(bxic)
for any marked values bV ′c. This will, in particular, hold for any subvalues V ′

of V1, . . . , Vo. The analysis also gives that ρo, κo |= P1 and ρo, κo |= P2. The

extension of Lemma 3.9 finally gives that ρo, κo |= P2[xj+1
α
7→ V ′

1 , . . . , xo
α
7→ V ′

o]
for all V ′

i generated by these marked and non-marked subvalues. Particular
instances of these generated values will be Vi for i = j+1, . . . , o. Thus, ρo, κo |=
P ′.

The cases of (SDec), (ADec), and (ASig) are similar. �

A process Phard defined as in Definition 5.2 can be used as hardest attacker also
for the O-precise analysis. In fact, because the O-precise analysis merges the

5.2 Handling All Arities 75

analysis results for all constructs with arities o 6∈ O only one of these arities are
needed to get a hardest attacker for all processes.

Lemma 5.5 (Hardest attacker for the O-precise analysis)
Take o 6∈ O and let O′ = O ∪ {o}. Then

ρo, κo |= (N,O′, O′, O′)-Phard implies ρo, κo |= P•

for all (N ,AC ,AS ,AA)-attackers P• and all sets AC ,AS , and AA.

Proof The proof proceeds by induction in the structure of P•. For all constructs
with arities in O the proof follows the one for Lemma 5.3.

Constructs with arities o 6∈ O will be analysed according to the rules in Table 5.1.
To see that their analysis follows from the analysis of Phard first notice that Phard

will have instances of h2(o), h3(o), and h4(o) for some o 6∈ O. The analysis of
these processes will be exactly as the analysis of processes with any other arity
that is also not in O; in particular the arity o′. The remaining part of the proof
uses this and goes along the same lines as the proof of Lemma 5.3. �

Lemma 5.4 and Lemma 5.5 give that the O-precise analysis can be used to
analyse the behaviour of a process P together with any arbitrary attacker. One
way forward, would be to implement the O-precise analysis and use this as the
basis for analysing security critical networking applications. The next section,
however, shows that the additional marked values that appear in the analysis
result for Phard have no significance. Thus, the ordinary analysis may well be
used instead.

5.2.2 Relationship with the Ordinary Analysis

The ordinary analysis defined in Table 3.1 and the O-precise analysis coincide
for all constructs with arities in O. When analysing arities o 6∈ O, the O-precise
analysis adds marked values to represent these larger arities. In this section, it is
shown that when analysing the hardest attacker (N , O ∪ {o}, O ∪ {o}, O ∪ {o})-
Phard the O-precise analysis only contributes with marked values that do not
influence the remaining elements in the analysis result. That is, the ordinary
analysis with the hardest attacker (N , O,O,O)-Phard is not influenced by the
analysis of extra arities. Thus, the attacker gains no extra power from being
able to communicate and perform cryptographic operations with the extra arities
that are not in the set O.

To compare the analysis results of the ordinary analysis and the O-precise anal-
ysis the function ro : P(OVal) → P(Val) is introduced. The function ro removes
any marked values from its argument and is point-wise extended to the domains
of the analysis components.

76 Network Attackers

Lemma 5.6 (No extra power) Let P be a process and take O ⊇ ac(P) ∪
as(P) ∪ aa(P); o 6∈ O; and N ⊇ fn(P). Then

∃ρo, κo : ρo, κo |= P | (N,O,O,O)-Phard | (N, {o}, {o}, {o})-Phard

using the O-precise analysis if and only if

∃ρ, κ : ρ, κ |= P | (N,O,O,O)-Phard

using the ordinary analysis. Furthermore, ρ = ro(ρo) and κ = ro(κo).

Proof First note that the O-precise analysis and the ordinary analysis coincide
for constructs with arities in O. Notice also that this part of the analysis does
not rely on marked values. Hence it is immediate that

∃ρo, κo : ρo, κo |= P | (N,O,O,O)-Phard

if and only if
∃ρ, κ : ρ, κ |= P | (N,O,O,O)-Phard

with ρ = ro(ρo) and κ = ro(κo), noting that arities in P are by definition in O.

The biimplication in Lemma 5.6 is now shown in two steps:

Case ⇒. Assume ρo, κo |= P | (N,O,O,O)-Phard | (N, {o}, {o}, {o})-Phard .
Then by (OPar) also ρo, κo |= P | (N,O,O,O)-Phard so the above gives that
with ρ = ro(ρo) and κ = ro(κo) the desired result, ρ, κ |= P | (N,O,O,O)-Phard ,
holds.

Case ⇐. Assume that the ordinary analysis holds for P | (N,O,O,O)-Phard .
The above result gives that this process can also be analysed by the O-precise
analysis though additional marked values are allowed to be added to the analysis
component for this analysis. If there always is a way to add marked values to
ρ and κ such that the O-precise analysis also holds for (N, {o}, {o}, {o})-Phard

then Lemma 5.6 follows by (OPar).

Take ρo, κo to be as ρ and κ except that marked version of all values in ρ(x•)
and in κ have been added to ρo and κo everywhere. Clearly ro(ρo) = ρ and
ro(κo) = κ. Now it remains to be shown that these ρo and κo satisfies ρo, κo |=
(N, {o}, {o}, {o})-Phard .

First consider the analysis of the expressions in (N, {o}, {o}, {o})-Phard . These
expressions are either variables that evaluate to ρo(x•) or encryptions that by
(OSEnco) and (OAEnco) evaluate to marked versions of what their subexpres-
sions evaluate to. That is, the analysis of expressions at most evaluate to marked
versions of values in ρo(x•). These marked values have by definition been added
to the analysis components ρo and κo.

The analysis of output similarly require that marked values of its subexpressions
should be in κo but again this is the case by definition of κ. Finally, the analysis

5.2 Handling All Arities 77

of input and decryption at most requires that for marked values ◦(U) then U

should be in ρo(x•). All the marked values by definition have the property that
their unmarked versions are in ρo(x•). �

To summarise, Lemma 5.6 is useful because the ordinary analysis uses a re-
stricted hardest attacker that is limited by the arities in the process P , which
is under attack. In contrast, the O-precise analysis has a hardest attacker that
accounts for all arities. However, Lemma 5.6 states that the result found by the
ordinary analysis may be seen as the part of the result found by the O-precise
where the marked values have been pruned from the analysis result. That is,
any direct evidence of constructs with arities not in O have been removed from
the analysis result of the ordinary analysis. Lemma 5.6 furthermore states that
this pruning of the analysis result does not affect the parts of the analysis result
where arities are in O. This means that a hardest attacker, which can use other
arities than the ones in O, gains no extra power with respect to elements that
has arities in O.

5.2.3 Summary

To analyse a process P under attack from arbitrary attackers, let O = ac(P) ∪
as(P) ∪ aa(P) and perform the analysis as

ρ, κ |= P | (fn(P), O,O,O)-Phard

Lemma 5.5 together with Lemma 5.6 with tells that the analysis result (ρ, κ) will
be a finite account of P under attack from an arbitrary attacker P•. This attacker
is analysed using a particular assignment of canonical names and variables in
P•. Lemma 5.6 furthermore says that (ρ, κ) have been pruned from elements
with arities not in O and that these elements are irrelevant for the part of the
analysis result remaining in (ρ, κ).

Many texts rely on a presentation of network attackers that links back to Dolev
and Yao [55]. In these presentations the network attacker is described by its
capabilities rather than being described as an arbitrary process composed with
the application as it was done here. Such capabilities of an attacker will e.g. be
the capabilities to send, receive, decrypt, and encrypt messages. This kind of
presentation can also be made using control flow analysis as illustrated in [23].
There, the attacker is given as a Dolev-Yao style attacker where the capabilities
of the attacker are specified over the analysis components. It is shown that
this Dolev-Yao style formulation is equivalent to using a hardest attacker. This
result is closely related to similar results in [56] and [42]. They both show that a
syntactic Dolev-Yao attacker is semantically as powerful as any arbitrary process
within their respective formalisms, which are VSPA [59] and Multi Set Rewriting
systems [43], respectively.

78 Network Attackers

5.3 Implementing the Analysis of Attackers

Implementing an analysis that considers P under attack from arbitrary process
is now straightforward. An analysis result may be computed by solving the
formula

G(P | (fn(P), O,O,O)-Phard)

where O = ac(P) ∪ as(P) ∪ aa(P). In the interest of keeping the formula small,
it is assumed that the results in Section 5.2 can be generalised to arbitrary sets
of arities as discussed on page 72. Then the formula

G(P | (fn(P), ac(P), as(P), aa(P))-Phard)

may be used instead.

The process given to the generation function G will have labels added. When
these labels come from a unique expression labelling the implementation is known
to compute a sound result. In the following, it will be illustrated that the
requirement that the labelling must be a unique expression labelling is stronger
than needed when analysing the attacker. Instead, the same analysis result can
be found even though labels are not uniquely assigned to all expressions. By
reducing the number of labels, the size of the tree grammar computed by the
implementation is also reduced, which, in turn, allows for faster computation of
the analysis result.

5.3.1 Tuning Labels in Phard

The verbose analysis requires that labels are added to Phard . When these labels
are assigned by a unique expression labelling then the same label will at most
be assigned to identical expressions. The labels are, in turn, used in the analysis
to keep the evaluation of various expression separated in ϑv.

Conceptually, the knowledge of the attacker knowledge may be thought of as
being represented by ρ(x•). In particular, this knowledge will include all applied
expressions in Phard . Hence, it may seem superfluous that some of these expres-
sions are required to have distinct labels when all their values end up in ρ(x•)
anyway.

The hardest attacker will instead be labelled with the label l• at every expression
in Phard . The following result shows that this optimisation does actually not
effect the values in ρ and in κ.

Lemma 5.7 (Labelling Phard by l•)
Let P uel

hard be version of (N ,AC ,AS ,AA)-Phard where labels have been added

according to a unique expression labelling. Furthermore, let P l•
hard be a version

5.3 Implementing the Analysis of Attackers 79

of (N ,AC ,AS ,AA)-Phard where every expression is labelled with l•. Then

∃ϑv : ρ, κ, ϑv |= P uel
hard if and only if ∃ϑv ′ : ρ, κ, ϑv ′ |= P l•

hard

Proof The biimplication is shown in two steps:

Case ⇒. Assume that ρ, κ, ϑv |= P uel
hard and define ϑv ′(l•)

def
= ρ(x•). Then also

ρ, κ, ϑv ′ |= P l•
hard .

The proof relies on the following observations: For all the non-variable expres-
sions El in P uel

hard the analysis gives that

ρ, ϑv |= El and ϑv(l) ⊆ κ1

where κ1 is the set of all sequences of length 1 in κ. The analysis of input and
output of the variable x in h1(N) furthermore gives that

κ1 ⊆ ρ(x•) and ρ(x•) ⊆ κ1

i.e. that κ1 = ρ(x•), which by definition is equal to ϑv ′(l•).

To show that ρ, κ, ϑv ′ |= P l•
hard follows from ρ, κ, ϑv |= P uel

hard one may proceed
by unfolding the definition of both analyses and show that the latter implies the
first. The formula are almost identical so the only difficult part is the places
where they differ. This basically amounts to showing for all non-variable ex-
pression El• in P l•

hard that ρ, ϑv ′ |= El• and ϑv ′(l•) ⊆ κ1. Both follow from the

above observations. Furthermore, for all variables xl• in P l•
hard , one must show

that ρ, ϑ′
v |= xl• i.e. that ρ(x•) ⊆ ϑv ′(l•). This is obvious from the definition of

ϑv ′(l•).

Case ⇐. Assume ρ, κ, ϑv ′ |= P l•
hard . For all labels l ∈ lab(P uel

hard) let ϑv(l)
def
=

ϑv ′(l•). Then ρ, κ, ϑv |= P uel
hard holds because the definition of the analysis of the

two processes are identical. �

Example 5.8 Below is given a variation of the simple nonce handshake where
the key K is restricted to keep it out of reach of the attacker. Furthermore,
the reply from principal B contains a message, which principal A decrypts and
stores in the variable z.

(ν K) (
(ν n) 〈A,B, n〉.(B,A; x).decrypt x as {n; z}K in 0

|
(A,B; y).(νmess) 〈B,A, {y,mess}K〉.0)

Let the process by labelled such that all names and variables V have the label
lV and the encryption expression has label le. With the attacker labelled by l•

80 Network Attackers

the following analysis results holds:

ρ(x) = {le, l•}
ρ(y) = {ln, l•}
ρ(z) = {lmess}
ρ(x•) = {lA, lB , ln, le, l•}

κ = {l•} ∪ {lA lB ln, lB lA le, l• l• l•}

γ : lA → A

lB → B

ln → n

lK → K

lmess → mess
le → {ly, lmess}lK

lx → A

lx → B

lx → n

lx → {ly, lmess}lK

lx → n•
lx → m+

•

lx → m−
•

lx → {l•, l•}l•

ly → A

ly → B

ly → n

ly → {ly, lmess}lK

ly → n•
ly → m+

•

ly → m−
•

ly → {l•, l•}l•

l• → A

l• → B

l• → n

l• → {ly, lmess}lK

l• → n•
l• → m+

•

l• → m−
•

l• → {l•, l•}l•

The analysis reveals that an attacker may learn all names in the process except
the key K and mess. Furthermore, the variables x and y may become bound to
anything the attacker knows because the attacker may send messages where the
two first values match A and B. These messages are represented by the triple
l• l• l• in κ because A and B both are in the language generated from l•. Notice,
however, that the analysis guarantees that the variable z may at most become
bound to the name mess. Thus, the analysis guarantees that no attacker will be
able to spoof this message. �

5.3.2 Tuning Input Variables

Notice in Example 5.8 that all the rules that have the head l• are also appear in γ
with lx and ly as head. This happens because the knowledge of the attacker gets
bound the variables x and y in input and their applied instance are labelled lx
and ly, respectively. The duplication of the attacker’s rules in the tree grammars
is a general problem because variables bound in input always gets bound to all
that the attacker knows.

In the following, variables bound at input will be referred to as input variables.
The optimisation presented in this section aims at reducing the size of the tree
grammars by modifying the way input variables are analysed. The idea is that
the analysis of all input variables should be same as the analysis of variables in
the hardest attacker P l•

hard . In this way, the attackers knowledge will not need
to be duplicated unnecessarily when input variables are analysed.

Variables at the hardest attacker P l•
hard will all be labelled by l• and have the

canonical variable x•. To ensure that an input variable x is analysed in the same

5.3 Implementing the Analysis of Attackers 81

way as variables in P l•
hard it enough to label all instances of x with l• and require

that bxc = x•. This notion may be lifted to processes such that P xl•
• denotes

the process that is as P except that all instances of an input variable in P are

• assigned the canonical variable x•, and

• labelled with l•.

The analysis of such a modified process, P xl•
• , will give an analysis result that is

equivalent to the analysis result for P in the sense that κ and ρ(x•) will be the

same in the analysis of P and of P xl•
• . Of course ρ and ϑv will in general not be

identical in the two analyses because canonical variables and labels are different
in the two processes. This result is stated in Lemma 5.9 and only holds it the
hardest attacker P l•

hard is also present.

Unfortunately, there is a minor technical difficulty because variables can also
be bound at decryption. These variables will in the following be referred to
as decryption variables. The problem that occurs is that an input variable may
have that same canonical representative as a decryption variable. The decryption
may become bound to other values than those occurring in the knowledge of the
attacker. Consequently, the analysis may change if the canonical assignment of
a decryption variable is modified such that it is assigned the canonical variable
x•. However, this is only a problem if the canonical assignment mixes binding
forms.

An assignment of canonical variables is said to respect binding forms of a process
P if for all input variables xi in P and all decryption variables xd in P the

assignment has bxic 6= bxdc. The analysis of P and P xl•
• will then be equivalent

as long as the canonical assignment respects binding forms:

Lemma 5.9 (Tuning input variables)
Let P be a process and P l•

hard be (fn(P), ac(P), as(P), aa(P))-Phard with all ap-
plied expressions labelled by l•. If the canonical assignment of variables respects
binding forms then

∃ρ, ϑv : ρ, κ, ϑv |= P | P l•
hard if and only if ∃ρ′, ϑv ′ : ρ′, κ, ϑv ′ |= P xl•

• | P l•
hard

Furthermore, ρ(x•) = ρ′(x•).

Proof

Case ⇐. Let ρ(x•)
def
= ρ′(x•) and for all input variables xli

i in P let

ρ(bxic)
def
= ρ′(x•) and ϑv(li)

def
= ϑv ′(l•)

Then the definition of ρ′, κ, ϑv ′ |= P xl•
• is identical to ρ, κ, ϑv |= P so clearly the

former implies the latter.

82 Network Attackers

Case ⇒. Let ρ′
def
= ρ and ϑv ′(l•)

def
= ρ(x•). The proof then proceeds by induction

in P considering the rules of the verbose analysis in Table 4.1. Below are three
cases that sums up the interesting part of the proof:

Case (VOut). Assume ρ, κ, ϑv |= 〈El1
1 , . . . , E

lk
k 〉.P i.e. that ρ, κ |= Eli

i and
ϑv(li) ⊆ κk ↓i; writing κk ↓i for the set of element that occur at the ith place in
a message of length k in κ.

One can show that the analysis of the corresponding expression E
′l′i
i in P xl•

•

gives ϑv ′(l′i) ⊆ ϑ(li). The only interesting case in this proof is the case were Ei

in an input variable and this case is given below as case (VVar).

It is now straightforward to verify that given that the above analysis holds then
an identical formula were subsets of ϑv(li) is used instead will also holds. Thus,

there also is analysis of the corresponding output in P xl•
• . A similar argument

can be given for the other rules where applied expression appear.

Case (VInp). Assume ρ, κ, ϑv |= (El1
1 , . . . , E

lj
j ; xj+1, . . . , xk).P i.e. for all i =

1, . . . , j it holds that ρ, ϑv |= Ei and

∧j
i=1 ϑ(li) ∩ κk ↓i 6= ∅ implies ∧k

i=j+1 κk ↓i⊆ ρ(bxic) and ρ, κ |= P

To prove that the above also gives an analysis the corresponding construct in

P xl•
• first notice that ϑv ′(l′i) a subset of ϑv(li) when l′i is the label of the corre-

sponding expression of the pattern match in P xl•
• . Thus, the above implication

will be satisfied at most for the same values as in the analysis of P xl•
• .

Second consider the conclusion in the above implication. Because xi is a variable

bound by input then bxic = x• in P xl•
• . The analysis of xi in P xl•

• , thus, amounts
to showing that κk ↓i⊆ ρ′(x•). This holds because the analysis of Phard gives
that ρ(x•) = κk ↓i; in particular from the analysis of h2(k).

For the proof of (VVar) below it is furthermore useful to note that this also means
that all variables xi that may be bound by input in P have that ρ(x•) ⊆ ρ(bxic)
in the analysis of P .

Cases (VSDec) and (VADec) are straightforward because the assumption
that the canonical assignment respects binding forms ensures that the canonical

variables bound in decryption are the same in P and P xl•
• .

Case (VVar) where xli
i is a variable bound by input. To be proven is that

ρ′, ϑv ′ |= xl• i.e. that ρ′(x•) ⊆ ϑv ′(l•). This holds by definition of ρ′ and ϑv ′.

This case is an evaluation of an applied expression so it is furthermore necessary
to show that ϑv ′(l•) ⊆ ϑv(li): Assume ρ, ϑv |= xli

i i.e. that ρ(bxic) ⊆ ϑv(li) and
recall from the proof for input that ρ(x•) ⊆ ρ(bxic). Then ρ(x•) ⊆ ϑv(li) and

because ϑv ′(l•)
def
= ρ(x•) clearly also ϑv ′(l•) ⊆ ϑv(li). �

Example 5.10 Recall the message passing nonce handshake from Example 5.8.
Below the labelling is as in Example 5.8 except for the applied instances of input

5.3 Implementing the Analysis of Attackers 83

variable x and y, which are labelled by l•.

(ν K) (
(ν n) 〈AlA , BlB , nln〉.(BlB , AlA ; x).decrypt xl• as {nln ; z}KlK in 0

|

(AlA , BlB ; y).(νmess) 〈BlB , AlA , {yl• ,mess lmess}le
KlK

〉.0)

Let the assignment of canonical names and variables be the identity function
except that bxc and byc both are assigned x•. The implementation computes
the following analysis result:

ρ(z) = {lmess}
ρ(x•) = {lA, lB , ln, le, l•}

κ = {l•} ∪ {lA lB ln, lB lA le, l• l• l•}

γ : lA → A

lB → B

ln → n

lK → K

lmess → mess
le → {l•, lmess}lK

l• → A

l• → B

l• → n

l• → {l•, lmess}lK

l• → n•
l• → m−

•

l• → m+
•

l• → {l•, l•}l•

In effect, the rules for with lx, ly, and l• as head in Example 5.8 have been
merged in the above into rules with l• as head. As a consequence, occurrences of
lx and ly in the analysis result have been substituted by l•. Notice in particular
that κ and ρ(x•) describe the same sets above and in Example 5.8 as ensured
by Lemma 5.9. The above, however, is significantly smaller. �

The analysis results presented in the remainder of this thesis will use the hardest
attacker Phard labelled by l• as well as optimised input variables unless otherwise
stated.

One could imagine to optimise the implementation further by finding similar
syntactic conditions that leads to optimisations along the same lines. For ex-
ample, it seems only reasonable that a similar trick could be played for output
variables since they too end up in the knowledge of the attacker.

84 Network Attackers

C h a p t e r 6

Deployment Scenarios

When designing a networking application it is necessary to describe how each
principal uses various security primitives, how it communicates, etc. LySa as
presented in Chapter 2 is suitable for modelling at this level of abstraction. How-
ever, at the design time of an application it is not necessarily known precisely
under which conditions the application will be used. One will therefore often
make a number of assumptions about the scenario in which the application is
going to be deployed. The goal of this chapter is to extend LySa with features
that makes such assumptions about deployment scenarios very clear. Further-
more, the control flow analysis from Chapter 3 will be extended such that it
caters for analysis of entire scenarios.

The development presented in this chapter relies in part on the way protocol
scenarios were modelled in [23]. There, a scenario would constitute of many
principals using the application at the same time. This scenario was modelled
by “copying” the LySa process representing each principal and replacing prin-
cipal names, keys, etc. depending on who the principals were communicating
with. This copying was handled by adding indexing constructs, such as Πi∈S P ,
that facilitates a syntactic unfolding of the process P . As an end result, the sce-
nario would be described by a process parameterised by the set in the indexing
constructs. This parameterised process can be instantiated by choosing specific
parameters and the control flow analysis can then be used to analyse such an
instance of a scenario.

In this chapter a more general approach is described. Similar to the above

86 Deployment Scenarios

LySa will be extended with a number of indexing constructs that constitutes a
meta level. However, a meta level process will be such that it describes a set
of processes that it instantiates to rather than there being a simple syntactic
unfolding that gives exactly one process. Second, the control flow analysis will
be extended to cover the meta level as well. This approach can be seen as
an alternative to encoding scenarios using an intricate combination of name
generation and replication. In the view of the author, the use of meta level
constructs captures the notion of a deployment scenarios in a more direct way.

The idea of introducing an analysable meta level was first presented in [34]
though for a somewhat different calculus known as LySaNS, which was discussed
in Section 2.2.3. In this chapter the ideas [34] have been ported to LySa, which
allows for an easy development of an implementation that relies on the one
presented in Chapter 4. The formal foundations of the approach has also been
further explored compared to presentation in [34].

6.1 The Meta Level

The meta level can be used to describe scenarios and is given as an extension of
LySa as presented in Chapter 2. The constructs presented in that chapter will
sometimes be referred to as object level constructs to distinguish them from the
meta level constructs. The only change to the object level syntax is that names
and variables are extended so that they carry sequences of indices from the set
Index ∗. Sequences of indices are written i1 . . . ik or i and are added as subscripts
to names and variables such as in m+

i , nij , and xi.

Meta level processes come from the set MProc that is ranged over by M . The
meta level introduces four new language constructs:

• |i∈S M describes the parallel composition of instances of the process M
where the index i have be substituted by the elements in the set S;

• (νi∈S nai)M describes restriction of all names nai where the index sequence

i = i1 . . . ik is taken from the set S = S1 × . . . × Sk. Furthermore, the
(possibly empty) prefix of indices a have already been defined;

• (ν± i∈S mai) is as above except that is restricts the pairs of indexed names

m+

ai
and m−

ai
; and

• let X ⊆ S inM defines a set identifier X ∈ SetId to have the value of some
finite subset of the index set S ∈ P(Index) ∪ SetId in the processes M .

The let-construct, thus, allows one to declare a set variable X that can be used
at different places in the process M . Consequently, whenever X is instantiated
to a subset of S, this same subset will be used throughout the process.

6.1 The Meta Level 87

The syntax of indexing sets, S, is left unspecified but includes set variables
X. The sets themselves can be any countable set. Note in particular that an
infinite set may be used in a let-construct. In this case, the meta level process
may instantiate to infinitely many processes. Thus, the meta level can be used
to specify arbitrarily large scenarios and is, thus, significantly different from a
simple syntactic unfolding.

Example 6.1 The simple message passing nonce handshake from Example 5.8
may be deployed in a scenario where there a many principals Ai for i in some set
S1 and many principals Bj with j ∈ S2. This scenario may be described using
the meta level constructs as:

let X ⊆ S1 in let Y ⊆ S2 in

(ν K)
|i∈X |j∈Y (ν nij) 〈Ai, Bj , nij〉.(Bj , Ai; xij).decrypt xij as {nij ; zij}K in 0

| |j∈Y |i∈X (Ai, Bj ; yij).(νmessij) 〈Bj , Ai, {yij ,messij}K〉.0

In this scenario each principal Ai will at most initiate a session with each prin-
cipal Bj . Notice that the actual object level processes are identical to that of
Example 5.8 except that indices have been added. �

To summarise, the syntax of meta level processes M ∈ MProc and meta level
expressions ME ∈ MExpr are defined by the following grammar:

mx ::= xi

ME ::= ni | m+

i
| m−

i
| mx |

{ME 1, . . . ,MEk}ME0
| {|ME 1, . . . ,MEk|}ME0

M ::= let X ⊆ S inM | |i∈S M |
(νi∈S nai)M | (ν± i∈S mai)M |
〈ME 1, . . . ,MEk〉.M |
(ME 1, . . . ,ME j ; mx j+1, . . . ,mxk).M |
decrypt ME as {ME 1, . . . ,ME j ; mx j+1, . . . ,mxk}ME0

inM |
decrypt ME as {|ME 1, . . . ,ME j ; mx j+1, . . . ,mxk|}ME0

inM |
(ν ni)M | (ν± mi)M | !M | M1 |M2 | 0

In the meta level syntax let X ⊆ S inM act as a binder of X, |i∈S as a binder of
i, and the indexed restrictions as binders of names. The binders are respected by
substitution such as the ones used in the semantics defined in the next section.

6.1.1 Semantics

A meta level process describes a scenario in which a process may be deployed.
This scenario will constitute of a number of object level processes, each of which
represents an instance of the scenario. This relationship is formalised by an

88 Deployment Scenarios

(ILet)
M [X 7→ S′] V P

let X ⊆ S in M V P
if S′ ⊆fin S

(IIPar)
M [i 7→ a1] V P1 . . . M [i 7→ ak] V Pk

|i∈{a1,...,ak} M V P1 | . . . | Pk

(IINew)
M V P

(νi∈{a1,...,ak} nai) M V (ν naa1
) . . . (ν naak

) P

(IIANew)
M V P

(ν± i∈{a1,...,ak} mai) M V (ν± maa1
) . . . (ν± maak

) P

(IOut)
M V P

〈ME1, . . . ,MEk〉.M V 〈ME1, . . . ,MEk〉.P

(IInp)
M V P

(ME1, . . . ,ME j ; mx j+1, . . . ,mxk).M V

(ME1, . . . ,ME j ; mx j+1, . . . ,mxk).P

(ISDec)
M V P

decrypt ME as {ME 1, . . . ,ME j ; mx j+1, . . . ,mxk}ME0
in M V

decrypt ME as {ME 1, . . . ,ME j ; mx j+1, . . . ,mxk}ME0
in P

(IADec)
M V P

decrypt ME as {|ME 1, . . . ,ME j ; mx j+1, . . . ,mxk|}ME0
in M V

decrypt ME as {|ME 1, . . . ,ME j ; mx j+1, . . . ,mxk|}ME0
in P

(INew)
M V P

(ν na) M V (ν na) P
(IANew)

M V P

(ν± ma) M V (ν± ma) P

(IRep)
M V P

!M V!P
(IPar)

M1 V P1 M2 V P2

M1 | M2 V P1 | P2

(INil) 0 V 0

Table 6.1: The instantiation relation; M V P

6.1 The Meta Level 89

instantiation relation, written M V P , that holds between a meta level process
M and an object level process P precisely when P is one of the instances of the
scenario described by M .

The instantiation relation is defined in Table 6.1. The rule (ILet) ensures that
the meta level process M instantiates to all the object level processes P that can
be found by taking some subset of the set declared in the let-construct. However,
each of the object level processes P must themselves be finite and consequently
only finite subsets are allowed when the let-construct is instantiated. The in-
dexed parallel |i∈S M instantiates to be the parallel composition of processes
for each of the indices in the set S by the rule (IIPAR). Notice that S must be
a finite set for the meta level process to instantiate to an object level process.
Both of the indexed restrictions instantiate to the restriction of names for all
values in S. Again instantiation only works when S is a finite set.

Instantiation of all the object level constructs is performed simply by instan-
tiating their subprocesses. Technically, all names and variables need to be in-
stantiated mapping them from the meta level to the object level. This is done
implicitly by assuming that indices are interpreted as were they syntactically
concatenated to the base component.

Example 6.2 Let the meta level process from Example 6.1 be called M and let

the set S1
def
= {1, 2} and the set S2

def
= {1}. Then

M V (ν K)
(ν n11) 〈A1, B1, n11〉.(B1, A1; x11).decrypt x11 as {n11; z11}K in 0

| (ν n21) 〈A2, B1, n21〉.(B1, A2; x21).decrypt x21 as {n21; z21}K in 0

| (A1, B1; y11).(νmess11) 〈B1, A1, {y11,mess11}K〉.0
| (A2, B1; y21).(νmess21) 〈B1, A2, {y21,mess21}K〉.0

The process M also instantiates to processes where other subsets of S1 and S2

are taken. For example

M V (ν K)
(ν n21) 〈A2, B1, n21〉.(B1, A2; x21).decrypt x21 as {n21; z21}K in 0

| (A2, B1; y21).(νmess21) 〈B1, A2, {y21,mess21}K〉.0

and M V 0. That is, the meta level process instantiates to all the combinations
of (possibly empty) subsets of S1 and S2. Thus, M describes a scenario where
at most the principals A1 and A2 makes a handshake with the principal B1. If

instead one takes S1
def
= N and S2

def
= N then the meta level process describes

a scenario where arbitrarily many principals may use the nonce handshake to
communicate. �

90 Deployment Scenarios

elm(S)
def
=

{

{X} if S = X

S otherwise

elm(S1 . . . Sk)
def
= {e1 . . . ek |

e1 ∈ elm(S1) ∧ . . . ∧ ek ∈ elm(Sk)}

mfn(ni)
def
= {ni}

mfn(m+

i
)

def
= {m+

i
}

mfn(m−

i
)

def
= {m−

i
}

mfn(xi)
def
= ∅

mfn({ME 1, . . . ,MEk}ME0
)

def
= mfn(ME 0) ∪ . . . ∪ mfn(MEk)

mfn({|ME 1, . . . ,MEk|}ME0
)

def
= mfn(ME 0) ∪ . . . ∪ mfn(MEk)

mfn(let X ⊆ S inM)
def
= {ni[X 7→e] | ni ∈ mfn(M) ∧ e ∈ elm(S)}

mfn(|i∈S M)
def
= {ni[i7→e] | ni ∈ mfn(M) ∧ e ∈ elm(S)}

mfn((νi∈S nai))
def
= mfn(M) \ {nae | e ∈ elm(S)}

mfn((ν± i∈S mai))
def
= mfn(M) \ {m+

ae,m
−
ae | e ∈ elm(S)}

mfn(〈ME 1, . . . ,MEk〉.M)
def
= mfn(ME 1) ∪ . . . ∪ mfn(MEk) ∪ mfn(M)

mfn((ME 1, . . . ,ME j ; xj+1, . . . , xk).M)
def
=

mfn(ME 1) ∪ . . . ∪ mfn(ME j) ∪ mfn(M)

mfn(decrypt ME as {ME 1, . . . ,ME j ; xj+1, . . . , xk}ME0
inM)

def
=

mfn(ME) ∪ mfn(ME 0) ∪ . . . ∪ mfn(ME j) ∪
mfn(M)

mfn(decrypt ME as {|ME 1, . . . ,ME j ; xj+1, . . . , xk|}ME0
inM)

def
=

mfn(ME) ∪ mfn(ME 0) ∪ . . . ∪ mfn(ME j) ∪
mfn(M)

mfn((ν ni)M)
def
= mfn(M) \ {ni}

mfn((ν± mi)M)
def
= mfn(M) \ {m+

i
,m−

i
}

mfn(!M)
def
= mfn(M)

mfn(M1 |M2)
def
= mfn(M1) ∪ mfn(M2)

mfn(0)
def
= ∅

Table 6.2: Maximal free names at the meta level; mfn(M).

6.1 The Meta Level 91

6.1.2 Free Names

Having defined the meta level it is of interest to consider which names are free in
the syntax of a meta level process. Furthermore, anticipating the development
later in this chapter, the free names of a meta level process will be crucial for
the analysis of a meta level process that is analysed together with a hardest
attacker; as discussed in Chapter 5 the hardest attacker is parameterised by the
set of free names in the process it attacks.

One can easily compute the free names in any one of the instances, P , of a meta
level process M since this is fn(P). It will, however, be of interest to find all
the names that may be free in any of the instances of M . This can be attained
using then function mfn(M) defined in Table 6.2 that finds a “maximal set of
free names” i.e. the set of names that may be free in some instance of M .

The definition of mfn given in Table 6.2 and coincides with the definition of
fn in Table 2.1 for all object level constructs. This definition ensures that the
indices on names and variables are remembered by mfn. Next, the definition of
mfn(|i∈S M) unfolds the index i: each free name in M has all occurrences of
the index i replaced with every element in e ∈ S. Similarly, indexed restriction
unfolds all the names that may be restricted and removes these from the set of
maximal free names.

Furthermore, if the index set, S, is a set identified, X, then the set identifier
X will be remembered by substituting X into the index of a free name. This
is handled uniformly by applying the auxiliary function elm also defined in Ta-
ble 2.1. Notice that this function also works for sequences of index sets. Later,
when mfn is computed for the let-construct where X is defined, the indices will
be unfolded by replacing each separate occurrence of X in the index of a free
name, ni, with every element in e ∈ S. This is written as ni[X 7→e] to denote that

multiple occurrences of X in i may be substituted by different element from
S. In the definition of mfn(let X ⊆ S inM) the lengths of X, e, and S are the
implicitly assumed to be same as the length of the index i.

Example 6.3 Let M be the process

let X ⊆ {1} in let Y ⊆ {1} in (νi∈X ni) |j∈Y 〈nj〉.0

Taking X = Y = {1} then M V (ν n1) 〈n1〉.0 where there is no free names.
However, taking X = ∅ and Y = {1} then M V 〈n1〉.0 where n1 is free. One
would therefore expect the maximal set of free names to include the n1 even
though the name is not free in all instances.

One may calculate the result of applying mfn to M in the following way:

mfn(〈nj〉.0) = {nj} ∪ ∅

mfn(|j∈Y 〈nj〉.0) = {n′
i′[j 7→e]

| n′
i′
∈ {nj} ∧ e ∈ {Y }}

= {nY }

92 Deployment Scenarios

mfn((νi∈X ni) |j∈Y 〈nj〉.0) = {nY } \ {ne | e ∈ {X}}
= {nY }

mfn(let Y ⊆ {1} in (νi∈X ni) |j∈Y 〈nj〉.0)
= {n′

i′[Y 7→e] | n
′
i′ ∈ {nY } ∧ e ∈ {1}}

= {n1}

mfn(M) = {n′
i′[X 7→e] | n

′
i′ ∈ {n1} ∧ e ∈ {1}}

= {n1}

Thus, n1 is in mfn(M) as expected. �

The development in [34] does not define the function mfn. Instead, processes are
subject to a well-formedness requirement that disallows names to be free in some
instances but not in others. The process in Example 6.3, for example, would not
be well-formed in this respect. Hence, the development described here extends
the class of processes that may be analysed compared to the development in [34].

To show that mfn(M) always finds the free names in all the instances of M a
technical lemma is first needed:

Lemma 6.4 If S2 ⊆ S1 then mfn(M [X 7→ S2]) ⊆ mfn(let X ⊆ S1 inM).

Proof The lemma can be proven by a rather lengthy proof by induction in M .
In particular, the case where M itself is a let-construct let X ′ ⊆ S′ inM ′ has a
lot of subcases depending on whether X, S, X ′, and S′ are equal or not. �

Using this lemma one may prove the main result about the function mfn, namely
that it computes the free names of all instances of a meta level process:

Lemma 6.5 (Instantiating free names) If M V P then fn(P) ⊆ mfn(M).

Proof The proof proceeds by induction in the instantiation M V P . All the
cases that involve object level constructs follow directly by applying the induc-
tion hypothesis because the definition of mfn and fn coincide for these constructs.
The remaining cases are given below.

Case (ILet) Assume that let X ⊆ S inM V P because M [X 7→ S ′] V P for
some S′ ⊆fin S. The induction hypothesis and Lemma 6.4, respectively, give the
two subset relations

fn(P) ⊆ mfn(M [X 7→ S′]) ⊆ mfn(let X ⊆ S inM)

which by transitivity of ⊆ concludes this case.

6.2 The Analysis 93

Case (IIPar). Assume that |i∈{a1,...,ak} M V P1 | . . . | Pk because M [i 7→
a1] V P1 and . . . and M [i 7→ ak] V Pk. First, calculate that

mfn(|i∈{a1,...,ak} M) = {ni[i7→e] | ni ∈ mfn(M) ∧ e ∈ elm({a1, . . . , ak})}

= {ni[i7→e] | ni ∈ mfn(M) ∧ e ∈ {a1, . . . , ak}}

= {ni[i7→a1]
|ni ∈ mfn(M)} ∪ . . . ∪ {ni[i7→ak] |ni ∈ mfn(M)}

Second, calculate

fn(P1 | . . . | Pk) = fn(P1) ∪ . . . ∪ fn(Pk)

From the induction hypothesis it is known that fn(Pj) ⊆ mfn(M [i 7→ aj]) for
j = 1 . . . k. Notice that:

mfn(M [i 7→ a]) ⊆ {ni[i7→a] | ni ∈ mfn(M)}

for any i and a (keeping in mind that neither i nor a are indexing sets X). Ap-
plying this k times leads to conclude that fn(P1 | . . . | Pk) ⊆ mfn(|i∈{a1,...,ak} M)
as required.

Case (IINew) Assume that (νi∈{a1,...,ak}
nai)M V (ν naa1

) . . . (ν naak
)P be-

cause M V P .

First, calculate

mfn((νi∈{a1,...,ak}
nai)M) = mfn(M) \ {naa′ | a′ ∈ {a1, . . . , ak}}

= (. . . (mfn(M) \ {naa1
}) \ . . .) \ {naak

}

Second, calculate

fn((ν naa1
) . . . (ν naak

)P) = (. . . (fn(P) \ {naa1
}) \ . . .) \ {naak

}

From the induction hypothesis it is known that fn(P) ⊆ mfn(M) giving the
desired result.

Case (IIANew) is similar to the case for (IINew). �

6.2 The Analysis

The goal of the meta level analysis is to give an account of the behaviour of
the scenario described by a meta level process. However, a meta level process
M does not have a dynamic semantics as such. Instead, M represents a set
of object level processes that each have a dynamic behaviour. The meta level
analysis will therefore give an account of the behaviour of all the object level
processes that M can instantiate to.

94 Deployment Scenarios

(MLet) ρ, κ |=Γ let X ⊆ S inM iff ρ, κ |=Γ[X 7→S′] M

where S′ ⊆fin Γ(S) and bS′c = bΓ(S)c

(MIPar) ρ, κ |=Γ |i∈S M iff ∧a∈Γ(S) ρ, κ |=Γ M [i 7→ a]

(MINew) ρ, κ |=Γ (νi∈S nai)M iff ρ, κ |=Γ M

(MIANew) ρ, κ |=Γ (ν± i∈S mai)M iff ρ, κ |=Γ M

(MOut) ρ, κ |=Γ 〈ME 1, · · · ,MEk〉.M
iff ∧k

i=1 ρ |= ME i : ϑi ∧
∀U1 ∈ ϑ1 . . . Uk ∈ ϑk : U1 . . . Uk ∈ κ ∧
ρ, κ |=Γ M

...
...

(MN) ρ |= ni : ϑ iff bnic ∈ ϑ

(MVar) ρ |= xi : ϑ iff ρ(bxic) ⊆ ϑ
...

...

Table 6.3: Analysis of meta level processes. The remaining cases of the analysis
where the meta level and the object level overlap are as in Table 3.1 but using
meta level expressions and meta level variables instead of the object level ones.

The behaviour of object level processes can be captured by the control flow anal-
ysis from Chapter 3. The meta level analysis relies on this object level analysis
but extends it to account for the instantiation of the meta level constructs.

A significant challenge for the meta level analysis is that a meta level process
may instantiate to infinitely many object level processes. This may happen if the
indexing set defined by a let-construct happens to be infinite. The solution to
this analysis problem is similar to the solution for analysis of the infinitely many
names that may be generated by a replicated restriction; namely, to impose
a notion of canonicity for indexes in the indexing set. Each indexing set S
will be partitioned by an assignment of finitely many canonical indexes. As
with canonical names the analysis will only differentiate indices with different
canonical representatives.

The analysis of the meta level is defined in Table 6.3 as an analysis predicate of
the form

ρ, κ |=Γ M

6.2 The Analysis 95

Here Γ : SetId ∪ P(Indexfin) → P(Indexfin) is mapping (or a substitution)
linking set identifiers to finite sets. Additionally, it is implicitly assumed that
Γ(S) = S for all S 6∈ SetId i.e. that all indexing sets are mapped to themselves
by Γ.

The analysis of a let X ⊆ S inM declaration updates the environment Γ with
a finite set S′ that has the same canonical names as the set S. Because the
assignment of canonical names makes a finite partitioning of S, clearly such a
finite set, S′, does exist. When an indexed parallel composition, |i∈S M is
analysed, the analysis is required to hold for all processes M where the index
i has been substitute by all the elements in Γ(S). This closely corresponds to
the semantics of the instantiation for indexed parallel composition. The analysis
of indexed restriction ignores the restriction operator for the same reasons that
they can safely be ignored by the object level analysis of restriction. The meta
level analysis of all the object level constructs are precisely as in Table 3.1 except
that they range over indexed names and variables.

6.2.1 On Canonical Indices

At the meta level indices are attached to names and variables. However, at
the object level these indices are merely considered a syntactic concatenation to
a name or a variable. The assignment of canonical representatives for names,
variables, and indices given for the meta level, thereby, carries over to the object
level such that

bnic = bmjc if and only if bnc = bmc and bic = bjc

The idea is that the analysis only distinguish two elements whenever their canon-
ical representatives are different. For example, if two indices a1 and a2 have the
same canonical representatives then the analysis cannot tell processes apart that
only differ in the indices a1 and a2. That this is indeed the case for the analysis
defined in Table 6.3 is captured by the following lemma.

Lemma 6.6 (Invariance of canonical indices)
Let ba1c = ba2c. Then ρ, κ |=Γ M [i 7→ a1] if and only if ρ, κ |=Γ M [i 7→ a2].

Proof The proof goes by induction in the structure of M . As is typically the
case when proving statements involving substitutions, all cases, except the ones
where the substitution modifies the syntax, follow directly from the induction
hypothesis.

The substitution only modifies the syntax for names and variables and here it
is sufficient to notice that the analysis uses their canonical representatives and
that

bni[i 7→ a1]c = bni[i 7→ a2]c as well as bxi[i 7→ a1]c = bxi[i 7→ a2]c etc.

96 Deployment Scenarios

because ba1c = ba2c. Thus, the analysis of M [i 7→ a1] and M [i 7→ a2] will be
equivalent for all M . �

The idea when analysing the let-construct is to conduct the analysis with the
largest possible set of canonical indices. This suffices because it also covers the
analysis of processes where smaller subsets are chosen. This can formally be
stated as the lemma:

Lemma 6.7 (Subset in let-declaration) If bS2c ⊆ bS1c then ρ, κ |=Γ[X 7→S1]

M implies ρ, κ |=Γ[X 7→S2] M .

Proof The proof proceeds by induction in the structure of M .

Case let X ′ ⊆ S inM . Assume that ρ, κ |=Γ[X 7→S1] let X ′ ⊆ S inM i.e. by
(MLet)

ρ, κ |=Γ[X 7→S1][X′ 7→S′] M

for some S′ such that S′ ⊆fin Γ(S) and bS′c = bΓ(S)c. Now assume that
X = X ′. Then the inner substitution of X is overwritten by [X ′ 7→ S′] so

ρ, κ |=Γ[X 7→S1][X′ 7→S′] M iff ρ, κ |=Γ[X 7→S2][X′ 7→S′] M

iff ρ, κ |=Γ[X 7→S2] let X ′ ⊆ S inM

as required. Alternatively assume that X 6= X ′. Then the order of substitutions
does not matter. Using this and the induction hypothesis (IH) one may derive

ρ, κ |=Γ[X 7→S1][X′ 7→S′] M iff ρ, κ |=Γ[X′ 7→S′][X 7→S1] M

implies ρ, κ |=Γ[X′ 7→S′][X 7→S2] M (by IH)
iff ρ, κ |=Γ[X 7→S2][X′ 7→S′] M

which allows to conclude that ρ, κ |=Γ[X 7→S2] let X ′ ⊆ S inM as required.

Case |i∈S M . First notice that if S 6= X then ρ, κ |=Γ[X 7→S1] |i∈S M im-
plies ρ, κ |=Γ[X 7→S2] |i∈S M simply by applying the induction hypothesis for the
analysis of M . Next assume that S = X, which gives that

ρ, κ |=Γ[X 7→S1] |i∈S M iff ∧a1∈S1
ρ, κ |=Γ[X 7→S1] M [i 7→ a1]

From the assumption that bS2c ⊆ bS1c it is known that for every a2 ∈ S2 there
is a corresponding a1 ∈ S1 such that ba2c = ba1c. By Lemma 6.6 then it holds
that ρ, κ |=Γ[X 7→S1] M [i 7→ a2] for all a2 ∈ S2. This together with the induction
hypothesis allows to conclude

∧a2∈S2
ρ, κ |=Γ[X 7→S2] M [i 7→ a2]

which is precisely ρ, κ |=Γ[X 7→S2] |i∈S M as required.

The remaining cases are straightforward and follow by applying the induction
hypothesis because the analysis does not directly use Γ in these cases. �

6.2 The Analysis 97

6.2.2 Correctness of the Analysis

The goal of the meta level analysis is to describe the behaviour of an entire
scenario as described by a meta level process M . This is essentially done by
applying the control flow analysis from Chapter 3 to all object level processes
P , which M instantiates to. This is captured by the following main result about
the correctness of the meta level analysis:

Theorem 6.8 (Correctness of instantiation) If ρ, κ |=Γ M and MΓ V P

then ρ, κ |= P .

Proof The proof proceeds by induction in the structure of M .

Case let X ⊆ S inM . First, calculate

(let X ⊆ S inM)Γ = let X ⊆ Γ(S) inM(Γ \ X)

Next, assume that (letX ⊆ S inM)Γ V P which according to (ILet) in Table 6.1
happens because

(M(Γ \ X))[X 7→ S′] V P

for some S′ ⊆fin Γ(S). Because X is undefined in Γ \ X this is the same as

M(Γ[X 7→ S′]) V P

Next, assume that ρ, κ |=Γ let X ⊆ S inM i.e. from (MLet) that

ρ, κ |=Γ[X 7→S′′] M

where S′′ ⊆fin Γ(S) and bS′′c = bΓ(S)c. Notice that bS′c ⊆ bS′′c so by
Lemma 6.7

ρ, κ |=Γ[X 7→S′] M

From the induction hypothesis it then follows that ρ, κ |= P as required.

Case |i∈S M . Assume ρ, κ |=Γ |i∈S M i.e. from (MIPar) that

∧a∈Γ(S) ρ, κ |=Γ M [i 7→ a]

Furthermore, let Γ(S) = {a1, . . . , ak} for some arbitrary set {a1, . . . , ak}. Next,
assume that (|i∈S M)Γ V P1 | . . . | Pk by (IPar). Noting that (|i∈S M)Γ =
|i∈Γ(S) MΓ and using (IIPar) this means that

MΓ[i 7→ aj] V Pj

for each aj ∈ Γ(S). Since the two substitutions Γ and [i 7→ aj] range over
different domains the order of the substitution of does not matter. Thus, it also
holds that for all aj ∈ Γ(S) that

(M [i 7→ aj])Γ V Pj

98 Deployment Scenarios

The induction hypothesis can be applied k times to establish that

ρ, κ |= P1 ∧ . . . ∧ ρ, κ |= Pk

which by (APar) from Table 3.1 applied k times give precisely ρ, κ |= P1 | . . . | Pk

as required.

Case (νi∈S nai)M . Assume that ρ, κ |=Γ (νi∈S nai)M i.e. that

ρ, κ |=Γ M

Let Γ(S) = {a1, . . . , ak} and note that ((νi∈S nai)M)Γ = (νi∈Γ(S) nai)MΓ.

Next assume that ((νi∈S nai)M)Γ V (ν naa1
) . . . (ν naak

)P , which according to
(IINew) happens because

MΓ V P

The induction hypothesis applies to give that ρ, κ |= P , which by (ANew) from
Table 3.1 is the same as ρ, κ |= (ν naa1

) . . . (ν naak
)P as requires.

The case for indexed restriction of key pairs is similar. The remaining cases for
the object level syntax are straightforward because the substitution Γ does not
modify anything in the object level syntax. �

6.2.3 Network Attackers at the Meta Level

The notion of a network attacker becomes even more interesting when scenarios
are considered. In this context one will not only consider a specific application
under attack but rather consider the attacks that may occur on any instance in
the entire scenario.

Once more, a hardest attacker can be added so the analysis can give an account
of systems under attack. In fact, the hardest attacker Phard from the object
level analysis, which was presented in Chapter 5, can be used directly to give an
account of all the attacks on a scenario described by a meta level process.

To analyse attacks from arbitrary attackers on all the object level processes that
can be instantiated from M , it suffices to perform the analysis

ρ, κ |=[] M | (mfn(M), ac(M), as(M), aa(M))-Phard

Here, ac(M), as(M), and aa(M) are the extensions to meta level processes of
the respective functions that find arities.

First, notice that Phard is an object level process and hence it instantiates to
itself i.e. Phard V Phard . By (MPar), (IPar) and Theorem 6.8, and (APar) it
then holds that

ρ, κ |= P | (mfn(M), ac(M), as(M), aa(M))-Phard

6.2 The Analysis 99

for all the process P where M V P . It is also straightforward to show that if
M V P then ac(P) ⊆ ac(M), as(P) ⊆ as(M), and aa(P) ⊆ aa(M). Further-
more, by Lemma 6.5 it also holds that fn(P) ⊆ mfn(M).

Next, inspecting Definition 5.2 of Phard makes it clear that an analysis of (N,AC ,
AS ,AA)-Phard implies that there is an analysis of any (N ′,AC ′,AS ′,AA′)-Phard

whenever (N ′,AC ′,AS ′,AA′) are subsets of the respective sets (N,AC ,AS ,AA).
In particular, this means that the meta level analysis of M composed with Phard

implies
ρ, κ |= P | (fn(P), ac(P), as(P), aa(P))-Phard

This is precisely the setup used in Lemma 5.3 and Lemma 5.6 and consequently
these results hold as well. Thus, the analysis of M together with Phard accounts
for all attacks on any instances of the scenario.

6.2.4 Implementation

The implementation of the meta level analysis is made by quite simple modifi-
cation to the implementation of the object level analysis, which was described
in Chapter 4.

The generation function on syntax, F , is equipped with an auxiliary parameter Γ
accounting for the environment of assignments to set identifiers. The generation
function G calls F with an empty environment. The generation function F of all
the object level constructs is as described in Table 4.4 except that the canonical
names and the canonical variables now also considers indices.

The extension of the generation function to the meta level constructs closely
follows the definition of the analysis predicate in Table 6.3. The most involved
part is to fulfil the requirement for unique expression labels that must be added
to object level expressions. The challenge in attaining unique expression labels
though the meta level analysis arises because the analysis may modify the syntax
of expressions by the substitution in the rule (MIPar) for the analysis of indexed
parallel composition.

The remedy is to assign indices to the labels on expressions in the meta level
syntax and extend the substitution to encompass labels as well. For example, to
attain unique labels the following scheme can be used. All expressions in a meta
level process are labelled uniquely. Furthermore, indices are added to the labels
corresponding to the indexes bound by indexed parallel compositions in which
the label appear. For example, an expression E that appears inside |i∈S |j∈S

will have a label lij . Whenever the expression is analysed the indices will be
substituted by elements from the appropriate indexing sets.

As an aside, one could mention that a similar strategy could be used to assign
indices to names and variables. This would liberate the user of the LySatool
from the obligation of adding these indices. However, adding these indices by

100 Deployment Scenarios

hand is more flexible and can be used as a means for controlling the precision of
the analysis.

Alternatively, one may wish to have a labelling that uses the same labels for
identical names and variables akin to the labelling discussed in Example 4.13.
To obtain such a labelling one may proceed and assign label lV to an indexed
name or variable V . Here, any indices on V will be interpreted as indices of
the label and substituted accordingly. For example, a name nij will be give the
label lnij and i and j are substituted when the corresponding indexed parallel
compositions are analysed by applying the rule (MIPar).

The use of the attacker’s label l• in the implementation does not change by the
above modifications. The label l• will simply be interpreted as having no indices
and will therefore not be modified by substitution.

6.3 Summary

This chapter has described a syntactic extension to LySa that caters for speci-
fication of deployment scenarios. This syntactic extension is referred to as the
meta level. A meta level process specifies an entire set of object level processes
i.e. of ordinary LySa processes. This set of processes constitutes the deployment
scenario, which conceptually describes how an application is allowed to be used.

Next, an analysis of meta level processes has been developed. This analysis
aims at describing the behaviour of all the object level processes that a meta
process describes. The analysis is an extension of the control flow analysis from
Chapter 3. Correspondingly, the implementation of the meta level analysis is
made by relying on the work of Chapter 4. Finally, the notion of a hardest
attacker presented in Chapter 5 has been lifted to the meta level.

The meta level analysis can now be used to account for the way an application
behaves in the entire scenario, in which the application may be deployed. The
analysis can make this account even when the application is exposed to arbitrary
attacks. A simple example of this is given below:

Example 6.9 Recall the meta level process from Example 6.1 taking S1 and S2

to be the set of natural numbers N:

let X ⊆ N in let Y ⊆ N in (ν K)
|i∈X |j∈Y (ν nij) 〈Ai, Bj , nij〉.(Bj , Ai; xij).decrypt xij as {nij ; zij}K in 0

| |j∈Y |i∈X (Ai, Bj ; yij).(νmessij) 〈Bj , Ai, {yij ,mess ij}K〉.0

Let bNc be the set {1} and label the process with unique expression labels as
discussed in Section 6.2.4. When analysing the above deployment scenario under
attack from arbitrary attackers the implementation of the meta level analysis in

6.3 Summary 101

the LySatool finds the analysis result:

ρ(x•) = {lA1
, lB1

, ln11
, le11

, l•}
ρ(z11) = {lmess11

}

κ = {l•} ∪ {lA1
lB1

ln11
, lB1

lA1
le11

, l• l• l•, }

γ : lA1
→ A1

lB1
→ B1

ln11
→ n11

lK → K

lmess11
→ mess11

le11
→ {l•, lmess11

}lK

l• → A1

l• → B1

l• → n11

l• → {l•, lmess11
}lK

l• → m+
•

l• → m−
•

l• → n•
l• → {l•, l•}l•

Notice that each of the canonical names and variables indexed with the canonical
index 1 represents all the values where 1 could be substituted for any value in N.
For example, the message lA1

lB1
ln11

represent all the sequences in the Cartesian
product

{Ai | i ∈ N } × {Bi | i ∈ N } × {nij | i ∈ N ∧ j ∈ N }

Even though this analysis result may appear to be extremely imprecise it is still
informative. For example, it reveals that mess11 is not it the set ρ(x•). This
means that no attacker can ever attain any of the messages mess ij no matter
how the meta level process is instantiated. �

Example 6.9 is a simple example of how the meta level analysis may be used to
analyse arbitrarily large scenarios that a security aware networking applications
may be deployed in. Chapter 7 gives many more examples of the use of the anal-
ysis and, in particular, comments on how the analysis can be used to guarantee
that the applications are able to tackle classical security problems.

The meta level analysis presented in this chapter bears some resemblance to the
result shown by Comon-Lundh and Cortier [48]. They show that it suffices to
consider a limited number of principals when analysing a protocol. The result
is shown by projecting the behaviour of all principals onto a the limited number
of principals. More precisely is suffices to consider k + 1 principals where k

is the number of different parts that a principal can play in the protocol. One
comment on this is that Stoller has shown that there exists protocols that require
exponentially many different principals [129] so k may be quite large.

The meta level analysis can also be seen as projection of the behaviour of different
principals. However, the projection is onto the canonical values in the analysis
result rather that onto the semantic behaviour as in [48]. The approximations
used here can, therefore, be made as fine or as coarse as you want correspond-
ing to choosing the number for different principals you want to consider. This
can be done without jeopardising the soundness of the (computable) analysis
result. On the downside, the approach presented here can only hope to validate
properties that are defined up to the canonical assignment. The next chapter,

102 Deployment Scenarios

however, shows that this suffices for the properties such as confidentiality and
authentication.

C h a p t e r 7

Security in Networking

Systems

The development that has been presented so far has focused on building the
technology necessary to analyse networking applications that work on insecure
networks. This chapter focuses on how this technology can be used to directly
address the security problems that arise in these systems.

It is important to recall that the analysis works by over-approximating the be-
haviour of systems. Thus, if something (bad) does not turn up in the analysis
result this something will not be a part of the system behaviour. That is, the
analysis can be use to guarantee safety properties. In the context of security,
this means that the analysis can be used to guarantee the absence of attacks.
On the other hand, if the analysis reports an attack there is a priori no way
of knowing whether this is a real attack or whether it is a consequence of over-
approximating. To show that a reported attack really does exist, one must devise
an execution sequence that leads to the attack. In practice, it is often helpful to
inspect the analysis result in order to devise such an attack sequence.

7.1 Confidentiality

One of the most important and simple security properties is confidentiality i.e.
the ability to keep messages secret. Interpreting the notion of confidentiality in
LySa is quite straightforward. For example, one can use the following definition:

104 Security in Networking Systems

Definition 7.1 (Confidentiality) Let P be an arbitrary process and P• be an
arbitrary attacker. The process P preserves confidentiality of a value V if there
are no execution

P | P• →∗ P ′ → P ′′

where P ′ → P ′′ binds V to a variable from P•.

With this definition, it is straightforward to use the analysis to check whether a
process P preserves confidentiality of some value V .

Theorem 7.2 (Analysis of confidentiality) Let P be a process and V be a
value such that as(V) ⊆ as(P) and aa(V) ⊆ aa(P). If

ρ, κ |= P | (fn(P), ac(P), as(P), aa(P))-Phard and bV c 6∈ ρ(x•)

then P preserves confidentiality of V .

Proof The theorem is a corollary of Lemma 5.3 about the analysis of the hardest
attacker and Theorem 3.12 about variable bindings recorded by the analysis: If
V semantically may become bound to some variable of the attacker then bV c
will be in ρ(x•). Conversely, if bV c 6∈ ρ(x•) then no such binding can take place.
Notice that the value V must have an arity used in P because according to
Lemma 5.6 these are the only ones that will be recorded in ρ. �

The notion of confidentiality can easily be extended to meta level processes. A
meta level process M preserves confidentiality of a value V if all instances of M
preserve confidentiality of V . The meta level analysis of M together with Phard

can then be used to check whether M preserves confidentiality of some value.

The analysis result computed by the implementation does not represent ρ(x•)
directly but instead uses a tree grammar encoding of the set. Recall from Sec-
tion 5.3.1 that in the implementation all the applied expressions in the attacker
are labelled by a special label l•. This means that ρ(x•) = L(γ, l•) i.e. that ρ(x•)
is the language generated by starting from l• in the tree grammar γ, which is
computed by the implementation.

It may require some work to figure out whether a particular encrypted value is
in L(γ, l•) i.e. whether a particular encrypted value is confidential. However, as
discussed in Section 4.2.1 the tree grammars in γ are normalised, which makes
it very simple to figure out whether a name n is confidential. One must simply
inspect whether there exists a rule l• → bnc in γ; if not, then n is confidential.

Example 7.3 Recall the public key “protocol” from Example 2.2:

(ν± K) 〈A,B,K+〉.(B,A; x).decrypt x as {|; xm|}K− in 0

|
(A,B; y).(νmess) 〈B,A, {|mess|}y〉.0

7.2 Authentication 105

The intention of the protocol is that the message generated by B is kept confi-
dential when it is sent to A because it will be encrypted with the key K+ and
because K− is confidential.

The implementation of the analysis finds the following analysis result for the
protocol under attack from an arbitrary attacker

ρ(x•) = {lA, lB , lK+ , le, lm, l•}
ρ(xm) = {lm, l•}

κ = {l•} ∪ {lA lB lK+} ∪
{lB lA le, l• l• l•}

γ : lA → A

lB → B

lK+ → K+

lK− → K−

le → {|lm|}l•

lm → mess
l• → A

l• → B

l• → K+

l• → {|lm|}l•

l• → mess
l• → {|l•|}l•

l• → n•
l• → m+

•

l• → m−
•

The analysis result guarantees that the protocol preserves confidentiality of K−

because there is no rule l• → K− in γ. However, the analysis does not guarantee
the confidentiality of mess because the rule l• → mess is in γ.

Inspecting the analysis result a little closer, one finds the rule le → {|lm|}l•
in γ,

which says that, according to the analysis, the message can be encrypted using
any value that the attacker knows. This will indeed also be the case semantically:

If the attacker knows the key pair m+,m− it can output 〈A,B,m+〉 that will
be received by principal B. Principal B replies by sending 〈B,A, {|mess|}m+〉,
which the attacker then may receive. Now, the attacker can use m− to decrypt
mess. �

An example of a protocol that preserves confidentiality has already been given
in Example 6.9 on page 100. By inspection of the analysis result in Example 6.9
it is clear that there are no rules of the form l• → bmessijc in the analysis result.
This means that the meta level analysis guarantees that the protocol preserves
confidentiality of any message mess ij in any instance of the meta level process.

7.2 Authentication

One of the significant challenges in building applications that work on insecure
networks is that messages do not necessarily end up where they are intended
because an attacker can redirect them. Amongst other things, this makes it
difficult to ensure that the correct principals are indeed the ones involved in
a certain communication. For example, on receiving a message with source
address A, one may be tempted to conclude that the message was indeed sent
by principal A. However, if the source address is sent in clear it may very well
have been modified by an attacker and, hence, the conclusion that the message

106 Security in Networking Systems

came from A is void.1

To ensure that principals do communicate in the intended way it is necessary to
authenticate the communication. Authentication properties have been discussed
in the literature at many different levels of abstraction. This starts from the
level of cryptographic primitives as used by message authentication codes [94],
and ranges over e.g. [134, 87, 73], to high level views about the believes of
principals [38].

The authentication property studied in the following comes from [23] and de-
scribes authentication at the level of the individual messages used in communi-
cation. The basic idea is to consider whether messages always have the intended
destination and origin no matter how an attacker interferes with communication.
This property will be referred to as destination and origin authentication.

As already discussed, an attacker can manipulate any messages sent in clear.
The focus when studying destination and origin authentication will therefore
be on the parts of a message that is not immediately under the control of an
attacker. This will, in general, be the part of the messages where cryptography
has been applied to safeguard the message content.

Considering authentication at the message level has both advantages and dis-
advantages. A disadvantage is the that the property does not directly address
the overall aims of a particular network communication. One will therefore need
additional arguments of why a completed communication suffices for a particular
purpose. On the other hand, finding a property that characterises such overall
authentication is not an easy task cf. [65, 66].

When designing a communication protocol, one will typically have a clear inten-
tion of where message are suppose to end up. Thus, an advantage of having a
message level property is that the property is easy to specify. Furthermore, a
violation of the property means that some part of the protocol does not work
as intended. Though this does not necessarily compromise of the overall aims
of the protocol it gives a very clear insight into weak points of the protocol that
would be prudent to address.

7.2.1 Destination and Origin Authentication in LySa

To describe intended destinations and origins in LySa the easiest way is to an-
notate the syntax at the relevant points. The property is concerned with the
messages where cryptography is applied and, hence, the encryption and decryp-

1The protocol used to transmit e-mails is an example of a protocol suffering from this
deficiency. Countless system administrators appear eager to display their lack of understanding
of this problem when they send out e-mails like “You have sent an e-mail containing a virus
to an address in my domain. Please refrain from doing so.” (or are these e-mails indeed
coming from malicious attackers who are trying to undermine the trustworthiness of system
administrators?)

7.2 Authentication 107

tion constructs will be the points of interest. The annotations will first of all
mark each encryption and each decryption as a crypto-point c ∈ CP . Secondly,
each encryption and decryption is annotated with information about its intended
destination and origin, respectively.

More specifically, each encryption is annotated with the destinations where it
is intended to be decrypted. An encryption may potentially be intended to be
decrypted at several decryption points and consequently the destinations are
specified as a set of crypto-points C ∈ P(CP). Syntactically, the annotations
will be placed on encryption expression as

{E1, . . . , Ek}E0
[at c destC] and {|E1, . . . , Ek|}E0

[at c destC]

Correspondingly, decryptions are annotated with the intended points of origin
of expressions, E, that may be successfully decrypted at c:

decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}E0
[at c origC] inP and

decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xk|}E0
[at c origC] inP

Note that because LySa combines decryption and pattern matching it is only
necessary to consider the point of decryption to specify whether the message
E is acceptable for further use in the process P . For a LySa process to ensure
destination and origin authentication all the intentions in the annotations must,
thus, be meet every time a value is decrypted.

Technically, the addition of annotations means that the syntax of the calculus
has changed and therefore it is necessary to (re-)define its semantics as well.
Essentially, the semantics will be defined as in Chapter 2 and it will ignore the
annotations in the syntax.

By directly using the semantics definition from Chapter 2 on the extended syn-
tax, the annotations will be carried on to the semantic domain of values. This
annotated value domain will be referred to as DVal . The semantics will, thus,
carry around annotations on encrypted values but these annotations should be
ignored. To this end, an equivalence relation V1

a
= V2 is defined to be the least

equivalence over DVal that ignores values. For example, {n}K [at c1 destC1]
a
=

{n}K [at c2 destC2] for any c1, c2, C1, and C2. The semantics of the annotated
syntax is then defined by the tables for the reduction semantics in Chapter 2
interpreted over annotated values V ∈ DVal . Furthermore, when two values are
required to be equal in the definition of the reduction relation in Table 2.5 it
will implicitly be assumed they are equal up to

a
=, only. Using this semantics,

the property of destination and origin authentication can be defined as follows:

Definition 7.4 (Authentication) A process P ensures destination and origin
authentication if there are no executions

P →∗ P ′ → P ′′

108 Security in Networking Systems

such that c 6∈ C ′ or c′ 6∈ C when P → P ′′ is derived using (SDec) on

decrypt {V1, . . . , Vk}V0
[at c

′
dest C

′] as {V1, . . . , Vj ; xj+1, . . . , xk}V0
[at c orig C] in P

or using (ADec) or (ASig) with {V ′
0 , V0} = {m+,m−} on

decrypt {|V1, . . . , Vk|}V ′

0
[at c

′
dest C

′] as {|V1, . . . , Vj ; xj+1, . . . , xk|}V0
[at c orig C] in P

That is, a process P ensures authentication if there are no violations of the
property specified in its annotations in any of its executions. It is worth noting
that the destination and origin authentication property given in Definition 7.4
is not concerned with whether a decryption may happen more than once at a
given crypto-point. The definition, thus, states a non-injective property in the
sense of Lowe’s hierarchy of authentication properties [87].

Next, it will be shown how the original analysis from Chapter 3 can be extended
such that it can be used to check whether a process ensures destination and
origin authentication according to Definition 7.4.

7.2.2 Authentication Analysis

The domain of the analysis components ϑ, ρ, and κ in the authentication anal-
ysis will range over canonical annotated values from bDValc rather than over
values from bValc corresponding to what was done for the semantics. The au-
thentication analysis contains an auxiliary error component, ψ, that contains
error messages for the possible violations of the authentication property. These
error messages take the form of a pair of canonical crypto-points. When a pair
(bc1c, bc2c) is in ψ it means that

something encrypted at c1 may violate the authentication property
when it is decrypted at c2.

Note that the authentication analysis requires that crypto-points are subject to
a notion of canonicity. This requirement is made purely for the benefit of the
meta level analysis as will be discussed further in Section 7.2.6.

The authentication analysis is basically the original analysis in Table 3.1 in-
terpreted over the annotated value domain bDValc. Furthermore, the error
component ψ is included in all analysis predicates but is largely ignored. The
only actual changes in the analysis are the ones given in Table 7.1. The rules
(DSEnc) and (DAEnc) ensure that canonical annotations are added to the val-
ues tracked by the analysis. The rule (DInp) is identical the rule (AInp) except
for one modification, namely, the analysis of pattern matching. The semantics
of pattern matching in the extended syntax ignores annotations on values by
the use of

a
=. Correspondingly, the analysis ignores the annotations. This is

7.2 Authentication 109

(DSEnc) ρ |= {E1, . . . , Ek}E0
[at c destC] : ϑ

iff ∧k
i=0 ρ |= Ei : ϑi ∧ ∀U0 ∈ ϑ0 . . . Uk ∈ ϑk :

{U1, . . . , Uk}U0
[at bcc dest bCc] ∈ ϑ

(DAEnc) ρ |= {|E1, . . . , Ek|}E0
[at c destC] : ϑ

iff ∧k
i=0 ρ |= Ei : ϑi ∧ ∀U0 ∈ ϑ0 . . . Uk ∈ ϑk :

{|U1, . . . , Uk|}U0
[at bcc dest bCc] ∈ ϑ

(DInp) ρ, κ, ψ |= (E1, . . . , Ej ; xj+1, . . . , xk).P

iff ∧j
i=1 ρ |= Ei : ϑi ∧

∀U1 . . . Uk ∈ κ : ∧j
i=1 Ui E ϑi ⇒

(∧k
i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ, ψ |= P)

(DSDec) ρ, κ, ψ |= decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}E0
[at c origC] inP

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀{U1, . . . , Uk}U0
[at bc′c dest bC ′c] ∈ ϑ :

∧j
i=0 Ui E ϑi ⇒
(∧k

i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ, ψ |= P ∧
bcc 6∈ bC ′c ∨ bc′c 6∈ bCc ⇒ (bc′c, bcc) ∈ ψ)

(DADec) ρ, κ, ψ |= decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xk|}E0
[at c origC] inP

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀{|U1, . . . , Uk|}U0
[at c′ destC ′] ∈ ϑ :

∀U ′
0 ∈ ϑ0 : ∀(bm+c, bm−c) :

{U0, U
′
0} = {bm+c, bm−c} ∧ ∧j

i=1 Ui E ϑi ⇒
(∧k

i=j+1 Ui ∈ ρ(bxic) ∧ ρ, κ, ψ |= P ∧
bcc 6∈ bC ′c ∨ bc′c 6∈ bCc ⇒ (bc′c, bcc) ∈ ψ)

Table 7.1: Destination and origin authentication analysis of LySa expressions,
ρ |= E : ϑ, and processes ρ, κ, ψ |= P . The remaining rules are defined similarly
to the original analysis in Table 3.1.

enforced by using a special set inclusion operator, bV c E bSc, defined as follows

bV c E bSc if and only if there exists V ′ such that V ′ a
= V and V ′ ∈ S

The rules (DInp), (DSDec), and (DADec) all use bV c E bSc to analyse pattern
matching and thereby ignore the annotations. Additionally, the two rules for
decryption check whether the authentication property may be violated by any
successful decryption. If a violation of the property may occur the encryption
point and decryption points where the violation is found is required to be in the
error component ψ.

110 Security in Networking Systems

7.2.3 Correctness of the Authentication Analysis

It is easy to show that all the results about the semantics and the original
analysis also hold for the annotated semantics and authentication analysis. The
only difference between the two cases is that the latter tracks annotations but in
every practical aspect these annotations are ignored both in the semantics and
in the analysis. The interesting part about the authentication analysis is, thus,
whether it correctly captures violations of the authentication property. This is
stated in the following theorem:

Theorem 7.5 (Analysis of authentication) If ρ, κ, ψ |= P and ψ = ∅ then
P ensures destination and origin authentication.

Proof The theorem can be proven by showing an extended subject reduction
result that says if ρ, κ, ψ |= P and P → P ′ then ρ, κ, ψ |= P ′ and furthermore if
ψ = ∅ then P → P ′ does not violate the authentication property. An induction
in the length of the execution sequences then gives that P ensures authentication
for all executions.

The interesting part of the proof is the cases for decryption. One of these is
given below; the others are analogue.

Case (SDec). Let P be the process

decrypt {V1, . . . , Vk}V0
[at c

′
dest C

′] as {V1, . . . , Vj ; xj+1, . . . , xk}V0
[at c orig C] in P

′′

and assume that ρ, κ, ψ |= P and that P → P ′ by (SDec). The argument that
then also ρ, κ, ψ |= P ′ follows closely the proof of subject reduction for the
ordinary analysis. Notice in particular that semantically the pattern matching
succeeds and similarly the first implication in the rule (DSDec) will be fulfilled.
The analysis of the pattern matching succeeds in particular for the encrypted
value that is decrypted in P . The analysis ρ, κ, ψ |= P thereby gives that

bcc 6∈ bC ′c ∨ bc′c 6∈ bCc ⇒ (bc′c, bcc) ∈ ψ

holds. Next, assume that ψ = ∅. Then the above part of the analysis gives that
bcc 6∈ bC ′c ∨ bc′c 6∈ bCc ⇒ false, which can only hold if

¬(bcc 6∈ bC ′c ∨ bc′c 6∈ bCc)

This directly says that the authentication property will not be violated by the
reduction P → P ′ cf. Definition 7.4. �

7.2.4 The Attacker

To study the attacker, consider the attack setup of P under attack from an
arbitrary attacker P• but this time using the annotated syntax. In this setup

7.2 Authentication 111

also the attacker process P• will be annotated. Because the semantics ignores
the annotation, the choice of annotations of P• has no real semantic consequence.
That is, the choice of annotations will not in any way effect possible attacks on a
process. The annotations of P• will, however, be crucial for determining whether
a particular decryption violates the authentication property or not. The choice
of these annotations will be a matter of striking the balance between reporting
as many errors as possible but not reporting errors that are insignificant.

In the interest of reporting many attacks, the attackers will be equipped with
a unique canonical crypto-point, c•. This crypto-point will be used in all the
at parts of annotations in the attackers. In the interest of not reporting too
many errors all destination and origin annotations will be void by choosing the
set of all crypto-points CP as the set for the dest and orig part of annotations.
These choices, in effect, mean that when a process P is under attack from an
attacker P• only the annotations in P will cause the authentication property
to be violated. That is, the control of the errors that will be reported by the
analysis is left entirely to the annotations in the process P .

The definition of an (N ,AC ,AS ,AA)-attacker from Definition 5.1 will now be
extended to incorporate annotations. It will require that all encryption are an-
notated with [at c destCP] and all decryptions are annotated with [at c orig CP]
such that bcc = c•. Correspondingly, the hardest attacker Phard from Defini-
tion 5.2 will be equipped with such annotations. It is then an immediate corollary
of Theorem 7.5 and the results about the hardest attacker Phard that

Corollary 7.6 (Authentication under attack) If ρ, κ, ψ |= P | Phard and
ψ = ∅ then P | P• ensures destination and origin authentication for all attackers
P•.

That is, P ensures destination and origin authentication no matter which at-
tacker it is composed with.

7.2.5 Implementation

The implementation of the hardest attacker is, in fact, not annotated with the
set of all crypto-points CP because this is an infinite set. Instead the analysis of
Phard uses the set {c•}∪bcp(P)c where cp(P) are the crypto-points in the process
P that is analysed. The formulae generated by G(Phard) where Phard is annotated
with this set is equivalent to the formula generated when the annotations use
CP .

The addition of annotations in the value domain means that the signature used
for the tree grammars in the implementation must also be modified. Rather
than using the signature ΣLySa as discussed in Section 4.2.2 the implementation

112 Security in Networking Systems

of the authentication analysis of the process P will be work over the signature

ΣDLySa
def
= {bnc0 | n ∈ name(P)} ∪

{sencbccbCck+1 | k ∈ as(P) ∧ c ∈ cp(P) ∧ C ∈ P(cp(P))} ∪

{aencbccbCck+1 | k ∈ as(P) ∧ c ∈ cp(P) ∧ C ∈ P(cp(P))}

That is, the signature now contains k + 1-ary function symbols sencbccbCc and
sencbccbCc corresponding to all possible annotations of k-ary encryptions.

The analysis ignores these annotations in the analysis pattern matching i.e. at
the places where the set membership operator Ui E ϑi is used. Inspecting the
definition of the generation function for syntax, F , in Table 4.4 one finds that
these tests are exactly the ones that have been encoded as tests of non-empty
intersections between two tree languages using the predicate NEI. To attain
the effect of ignoring annotations the axiomatisation of NEI simply ignores the
annotations when it is extended to values over ΣDLySa. With these modifications
the implementation of the analysis can be used to check authentication properties
of annotated LySa processes.

Example 7.7 The error in the public key protocol of Example 7.3 may also be
seen as an error of destination and origin authentication. Consider the protocol
once more but this time with authentication annotations added:

(ν± K) 〈A,B,K+〉.(B,A; x).decrypt x as {|; xm|}K− [at a orig {b}] in 0

|
(A,B; y).(νmess) 〈B,A, {|mess|}y[at b dest {a}]〉.0

The annotations formalise the intuition that the encryption at principal B is sup-
pose to be decrypted at the decryption at principal A, only. The implementation
finds that the authentication property may be violated:

ψ = {(b, c•), (c•, a)}

The first error reports that something encrypted at the crypto-point b may be
decrypted at an attacker. The second error reports that something encrypted at
the attacker may end up being decrypted at the crypto-point a. This corresponds
to the problem reported in Example 7.3.

The remaining part of the analysis result is as in Example 7.3 except that an-
notations are included on encrypted values:

ρ(x•) = {lA, lB , lK+ , le, lm, l•}
ρ(xm) = {l•, lm}

κ = {l•} ∪
{lA lB lK+ , lB lA le, l• l• l•}

7.2 Authentication 113

γ : lA → A

lB → B

lK+ → K+

lK− → K−

le → {|lm|}l•
[at b dest {a}]

lm → mess
l• → A

l• → B

l• → K+

l• → {|lm|}l•
[at b dest {a}]

l• → mess
l• → {|l•|}l•

[at c• destCP]
l• → n•
l• → m+

•

l• → m−
•

�

7.2.6 Authentication at the Meta Level

The meta level authentication analysis is identical to the meta level analysis
described in Chapter 6 except that is uses the authentication analysis of Table 7.1
to analyse object level constructs. The meta level authentication analysis is
given as analysis predicates of the form ρ, κ, ψ |=Γ M that includes the error
component ψ.

In order to make the authentication property more refined with respect to the
scenario in which a meta level process may be deployed, the crypto-points are
allowed to be indexed. That is, crypto-points are now of the form ci. The
indexes in i will be substituted whenever the meta level process is instantiated
thereby attaining individual crypto-points for each instantiated process. The
meta level analysis of indexed parallel composition will, however, only analyse
the substitution of indexes in a process up to an assignment of canonical indices.
Indexed crypto-points must therefore respect this canonical assignment and this
is the reason that canonical crypto-points have been used in the object level
analysis.

A meta level process ensures destination and origin authentication if all the
process it instantiates to ensures destination and origin authentication:

Corollary 7.8 (Meta level authentication) If ρ, κ, ψ |=Γ M and ψ = ∅ and
MΓ V P then P ensures destination and origin authentication.

This is a straightforward corollary Theorem 6.8 and Theorem 7.5. In particular,
Theorem 6.8 has to be extended to account for annotated values in the instanti-
ation but this too is straightforward because instantiation will not depend upon
any of these annotations.

The analysis that is implemented in the LySatool (version 2) is precisely this
meta level authentication analysis.

Example 7.9 In Example 5.8 a message was added to the simple nonce hand-
shake from Example 2.1. This was done in order to illustrate that the nonce

114 Security in Networking Systems

handshake reaches the correct locations. The same point can now be made for
the pure nonce handshake by adding annotations:

let X ⊆ N in let Y ⊆ N in (ν K)
|i∈X |j∈Y (ν nij) 〈Ai, Bj , nij〉.(Bj , Ai; xij).

decrypt xij as {nij ; zij}K [at a orig {b}] in 0

| |j∈Y |i∈X (Ai, Bj ; yij).(νmess ij) 〈Bj , Ai, {yij ,mess ij}K [at b dest {a}]〉.0

Here annotations have been added stating that something encrypted at a princi-
pal Bj should only be decrypted at a principal Ai. Taking bNc = {1} the analysis
holds with ψ = ∅ even when the process is under attack. This guarantees that
any instance of the meta level process ensures authentication as specified by the
destination and origin annotations. �

The authentication property specified in Example 7.9 does, however, not say
anything about which instance of a principals the messages reach. The next
section illustrates that adding indices to the crypto-points allows to track such
more refined properties.

7.3 Parallel Session Attacks

Most networking applications will be deployed in scenarios where several copies
or sessions of the applications can run in parallel. Sometimes messages from one
session may be used to launch an attack on another session running in parallel.
These attacks are known in the literature, e.g. [44], as parallel session attacks.

To illustrate the problem, assume that the scenario consists of a number of
parallel sessions:

P1 | . . . | Pp | . . . | Pq | . . . | Pk

Here each Pi represents a session where, for example, the two principals A3 and
B5 are engaged in communication over the network.

Interference between sessions occur when something from one session, say Pp,
interferes with something from another session, say Pq. This interference can
take place directly because some part of session Pp communicates with some
part of session Pq, or indirectly because an attacker redirects something from
session Pp to session Pq.

Interference between sessions is not always a problem because the application
may contain safeguards that filters out undesirable effects of session interference.
However,

a parallel session attack occurs whenever interference between session
causes a security property to be violated.

7.3 Parallel Session Attacks 115

To figure out whether an arbitrary security property is violated as a result of
interference between two sessions is, in general, a difficult problem cf. [60, 4,
62, 28]. However, if the nature of the security property is such that it directly
mentions sessions then it need not be hard to track whether a parallel session
attack occur. For example, in LySa sessions can be modelled such that an index,
i, on a value denotes that the value comes from the ith session. In this setup, an
authentication property such as

[at ci dest {c′i}]

explicitly states that the encryption point ci and the decryption point c′i are
both expected to be within the same session, i. Violations of the above property
that involves other session, i.e. crypto-points with other indices than i, will by
definition be a parallel session attack.

The following sections will elaborate on this idea and discuss how parallel sessions
can be modelled using the meta level of LySa in such a way that indices indicate,
which session a process belongs to. Next, it is shown how the the analysis can
be used to guarantee the absence of arbitrary parallel session attacks on the
authentication property whenever session are modelled in this special way.

7.3.1 A Scenario for Parallel Sessions

To begin with, only a simple model of parallel sessions is discussed. More general
scenarios will be considered in Section 7.3.3. The simple model assumes that a
session of an application can be modelled by the meta level process M in such
a way that the indexed parallel composition

|i∈S M

describes the scenario of parallel sessions. That is, M in itself describes one
session but is parameterised by the index i. The meta level process then describes
a scenario of all the parallel sessions and these sessions are distinguished only
by the indices i taken from the set S. To see this, assume that M V P and
let S be some set {a1, . . . , p, . . . , q, . . . , ak}. The scenario of parallel sessions as
described by |i∈S M then instantiates to

P [i 7→ a1] | . . . | P [i 7→ p] | . . . | P [i 7→ q] | . . . P [i 7→ ak]

as well as subprocesses with fewer parallel composites. In the following the jth

process in this parallel composition will be referred to as session Pj .

Next consider the authentication annotations of the process M . Whenever these
annotations are of the form

[at ci dest {c′i}] or [at c′i orig {ci}]

116 Security in Networking Systems

they specify an intra session property. That is, they require that destination
and origin must be within the same session, which is represented by index i.
Now,

a parallel session attack occurs if an intra session property is violated
by decryption of a value from another session.

For example, let Pp be an arbitrary session containing an intra session property
of the form [at cp orig {c′p}]. If a value Vq, from some other session Pq, is success-
fully decrypted in at cp then the authentication property will be violated. This
happens because crypto-points in the annotations of Vq cannot have the index p
since this index is only available inside session Pp. Note that this violation will
by definition be a parallel session attack.

7.3.2 Analysing Parallel Sessions

The analysis can be used to guarantee the absence of violations of intra session
properties between two arbitrary sessions Pp and Pq described by a meta level
process of the form |i∈S M . This is done simply by choosing the canonical
assignment of indices for the indexing set S such that bpc 6= bqc.

Corollary 7.8 states that the analysis reports a non-empty ψ for any seman-
tic violation up to the assignment of canonical crypto-points. Recall that the
assignment of canonical crypto-points respects the assignment of canonical in-
dices. Because the analysis is performed with bpc 6= bqc, any violation of an
intra session property due to decryption in Pp of a value from Pq, or vice versa,
is reported by the analysis. More precisely, when the analysis reports errors of
the form

(bc′qc, bcpc) ∈ ψ or (bcpc, bc
′
qc) ∈ ψ

it signifies possible parallel session attacks occurring between sessions Pp and
Pq. Conversely, if the authentication analysis holds with an empty ψ then it
guarantees that there are no violations of intra session properties due to inter-
ference between session Pp and Pq. That is, there are no parallel session attacks
between these two session.

Thus, the analysis can be used to guarantee absence of parallel session attacks
for two arbitrary, but fixed, parallel session Pp and Pq where p, q ∈ S of a
scenario described by |i∈S M . In fact, it suffices to conduct the analysis only
once on |i∈S M with bSc fixed such that bpc 6= bqc to account for all parallel
session attacks caused by violations of intra session properties in this scenario.
This follows from the fact that the analysis only distinguishes elements up to
canonicity as discussed below.

Consider the scenario |i∈S M and let S = {a1, . . . , ai, . . . , p, . . . , aj , . . . , q, . . .}.
Then fix the canonical assignment bSc such that bpc = p and bqc = q (and that

7.3 Parallel Session Attacks 117

p 6= q). It is now obvious that the analysis result found under this assignment
of canonical indices will be identical to any isomorphic assignment of canonical
indices to the set S. For example, an isomorphic assignment that has baic = p

and bajc = q for some i and j will give the exact same analysis result. This
happens because the analysis only considers canonical values, which in particular
is coined by Lemma 6.6, which concerns the assignment of canonical indices.

In summary, the analysis is capable guaranteeing the absence of parallel session
attacks between two given sessions described by the scenario |i∈S M . Because
the analysis gives the same result for any isomorphic assignments of canonical
indices, this analysis result will guarantee the absence of arbitrary parallel session
attacks between any two session instantiated over S.

Example 7.10 Below is an encoding of the pure nonce handshake in a scenario
where all principals Ai and Bi share the same key K. The indexing parallel is
used the describe parallel sessions where principal Ai makes a nonce handshake
with principal Bi:

let X ⊆ N in (ν K)
|i∈X (ν ni) 〈Ai, Bi, ni〉.(Bi, Ai; xi).decrypt xi as {ni; }K [at ai orig {bi}] in 0

| (Ai, Bi; yi).〈Bi, Ai, {yi}K [at bi dest {ai}]〉.0

In this scenario the index i on names, variables, or crypto-points signifies that
they belong to the ith session. Taking bNc = {1, 2} the implementation of the
analysis finds that

ψ = {(b1, a2), (b2, a1)}

Thus, the analysis reports possible parallel session attacks because the differing
indices in the pairs signify that something encrypted in session Pp with bpc = 1
may wrongfully be decrypted in another session Pq with bqc = 2 and vice versa.

To see that there really is a violation of the property one must find an execution
that leads to the above violation of the authentication property. This can be
attempted for any two session taking their indexes from N. Below it is done for
the two indices 1 and 2. Consider the following message exchange:

A1 A2 B2 Attacker
1.1 〈A1, B1, n1〉 (; zA1

, zB1
, zn1

).
2.1 〈A2, B2, n2〉 (; zA2

, zB2
, zn2

).
2.1′ (A2, B2; y2) 〈zA2

, zB2
, zn1

〉.
2.2 〈B2, A2, {y2}K [at b2 dest {a2}]〉 (zB2

, zA2
; ze).

1.2 (B1, A1; x1) 〈zB1
, zA1

, ze〉.0

After the last message exchange x1 has become bound to the value of ze i.e. to
{n1}K [at b2 dest {a2}]. The following successful decryption and pattern match
can then take place

decrypt {n1}K [at b2 dest {a2}] as {n1; }K [at a1 orig {b1}] in 0 → 0

118 Security in Networking Systems

This decryption violates the authentication property and it represents a par-
allel session attack because something encrypted at principal B2 is wrongfully
decrypted at principal A1. With the assignment of canonical indices that takes
b1c = 1 and b2c = 2 this accounts for the error (b2, a1) in ψ. With the isomorphic
assignment of canonical indices b1c = 2 and b2c = 1 it furthermore accounts for
the error (b1, a2) in ψ. �

7.3.3 Generalising the Scenario

The above treatment only considers meta level processes where one indexed
parallel is used to describe parallel sessions. The development can easily be
extended to allow definitions of parallel sessions with multiple indexed parallel
compositions.

In general, a session must be characterised by a number of indices, which are
defined by indexing parallel compositions. An intra session property will be any
authentication property that by the indices on crypto-points specifies that des-
tination and origin must come from the same session. Whenever the analysis is
carried out it is paramount that the canonical indexing set for each of these in-
dices contains at least two distinct canonical elements. In that case, the analysis
will be able to distinguish any two arbitrarily chosen parallel sessions.

Example 7.11 Consider again the nonce handshake but this time in a scenario
where each principal Ai may communicate with all principals Bj . This will
be modelled using two nested indexed parallel compositions. A session is now
characterised by being indexed with index ij:

let X ⊆ N in let Y ⊆ N in (ν K)
|i∈X |j∈Y (ν nij) 〈Ai, Bj , nij〉.(Bj , Ai; xij).

decrypt xij as {nij ; }K [at aij orig {bij}] in 0

| |j∈Y |i∈X (Ai, Bj ; yij).〈Bj , Ai, {yij}K [at bij dest {aij}]〉.0

The authentication properties in the process above are intra session properties
because indices ij are the same for the at part, and the orig and dest part,
respectively. Notice that this model of the scenario is very similar to the one for
the message passing nonce-handshake in Example 6.1.

Taking bNc = {1, 2} the analysis holds whenever

ψ ⊇ {(b11, a21), (b11, a12), (b11, a22), (b12, a11), (b12, a21), (b12, a22),
(b21, a11), (b21, a12), (b21, a22), (b22, a11), (b22, a21), (b22, a12)}

Because the indices in all the pairs of crypto-point are pairwise distinct these
error messages represent possible parallel session attacks on sessions where Ap is
trying to communicate to Bq. For example, taking bpc = 2 and bqc = 1 the first
error, (b11, a21), represents interference in a session between Ap and Bq from a
session between Aq and Bq.

7.4 Insider Attacks 119

The protocol can be modified such that each session ij uses its own shared key
Kij . For a version of the process that has been modified in this way, the analysis
holds for ψ = ∅ and thereby it guarantees absence of parallel attacks. �

In conclusion, the meta level analysis can be used to analyse parallel sessions
and to guarantee the absence of parallel session attacks on the destination and
origin authentication property. The approach is restricted to consider parallel
sessions attacks in processes where sessions are modelled using the indexed par-
allel construct. This style of modelling can, in the view of the author, be quite
natural as illustrated, for example, in Section 7.5.

7.4 Insider Attacks

One of the most significant security risk is the one that comes when attacks is
launched by insiders. These attacks are particularly hard to withstand because
insiders are awarded certain credentials that may be used in an attack. In order
to discuss insider attacks it is convenient to distinguish between legitimate princi-
pals that will not launch attacks and illegitimate principals that may do so. Any
communication with an illegitimate principal may, of course, be compromised in
an attack. The interesting point is therefore whether illegitimate principals can
also compromise the security of communication between legitimate principals.

7.4.1 Legitimate Principals

As illustrated in many of the previous examples, principals can be modelled
by using the indexed parallel composition. In the examples seen so far, these
principals only behave as they are suppose to and thereby model legitimate
principals. Furthermore, the restriction operator has been used to model that the
credentials of these legitimate principals, such as keys and nonces, are initially
protected from attackers.

Below is an example of how one of the most classical security protocols, namely
Needham and Schroeder’s public key protocol [104], can be encoded in a scenario
consisting of legitimate principals, only.

Example 7.12 The encoding of Needham and Schroeder’s public key protocol
below models a scenario where principals Ai initiates a session with all principals
Bj . For simplicity the protocol is given without the server that distributes public
keys. Instead, all principals are initially assumed to know the public keys KA+

i

and KB+
j of all the principals.

The first replicated process LySa encoding below models the role of the initiator
Ai initiating a session with Bj while the second replicated process models Bj

responding to a session initiated by Ai. Notice that the scope of the restriction

120 Security in Networking Systems

of the keys spans all the principals. Technically, this means that the public and
private keys of all the principals might have been used anywhere within this
scope. However, inspecting the process below it is clear that the keys are only
used as intended. The restrictions, on the other hand, ensure to none of the keys
are available outsiders.

let X ⊆ N in (ν± i∈X KAi)(ν± j∈X KB j)(
|i∈X |j∈X !(ν naij) 〈Ai, Bj , {|Ai,naij |}KB

+

j
〉.

(Bj , Ai; x1 ij).decrypt x1 ij as {|naij ; xnij |}KA
−

i
in

〈Ai, Bj , {|xnij |}KB
+

j
[at aij dest {bij}]〉.0

| |j∈X |i∈X !(Ai, Bj ; y1 ij).decrypt y1 ij as {|Ai; ynij |}KB
−

j
in

(ν nbij) 〈Bj , Ai, {|ynij ,nbij |}KA
+

i
〉.

(Ai, Bj ; y2 ij).decrypt y2 ij as {|nbij ; |}KB
−

j
[at bij orig {aij}] in 0)

With bNc = {1} the analysis holds for ψ = ∅. That is, destination and origin
authentication for the final message of Needham-Schroeder public key protocol
is ensured in a scenario consisting of legitimate principals, only. �

7.4.2 Illegitimate Principals

Many of the applications that are used in modern distributed systems may,
however, also be used by principals that are not necessarily trustworthy. For
example, an application used within some company may need to deal out cre-
dentials to the employees. However, in a large cooperation it is implausible that
all employees are trusted will all of the companies secrets. Another example is
applications used for secure communication on the internet. Just because cre-
dentials need to be handed out to provide secure communication between two
principals, it does not mean that every principal should have access to all the
secure communication that takes place.

To account for these situations it will be necessary to consider a setup that also
models illegitimate principals. That is, one must consider a setup such as

P | Pil

where P represents the legitimate principals and Pil represents the illegitimate
principals. All these principals may communicate with each other and share
credentials. However, Pil may behave in all sorts of strange ways and try to
launch attacks on P . Hence, the point of interest is to track what happens when
P is under attack from an arbitrary processes, Pil , which acts as the illegitimate
principals.

It has already been discussed how to analyse the behaviour of arbitrary processes.
This is done by introducing a hardest attacker, Phard , and perform the analysis

ρ, κ |= P | Phard

7.4 Insider Attacks 121

The very same technique can be used when analysing setups that include illegiti-
mate principals. Here, the analysis of Phard will correspond to the the behaviour
of all arbitrary processes Pil , which act as illegitimate principals.

In summary, to analyse a setup consisting of legitimate and illegitimate princi-
pals, one only needs to supply the process P that models the legitimate princi-
pals. It is, however, important to stress that P must include any communication
with the illegitimate principals. On the other hand, the illegitimate principals,
Pil , will not need to be modelled explicitly because the analysis of Phard accounts
for their behaviour.

To complete the model of the setup, one must ensure that the credentials of Pil ,
such as keys and certificates, are known to Phard . This can, for example, be
done by letting P send the credentials in clear on the network. Alternatively,
the credentials can be put as free names inside P , because all free names are
initially known by Phard .

The above discussion has taken place using the object level syntax and analy-
sis of LySa. It can, however, readily be lifted to the meta level analysis, the
authentication analysis, etc.

Example 7.13 Consider the scenario from Example 7.12. To model both legit-
imate and illegitimate principals, the set of principals Ai and Bi with i ∈ Z will
be partitioned into two sets. The legitimate principals will have an index i ∈ Z

+

while the illegitimate principals take their index i ∈ Z
−
0 .

The legitimate part of the system can then be modelled as the scenario be-
low. It describes how the legitimate principals Ai and Bj with i, j ∈ Z

+ can
communicate with all other principals:

let X ⊆ Z
+ in (ν± i∈X KAi)(ν± j∈X KB j)(

let Y ⊆ X ∪ Z
−
0 in

|i∈X |j∈Y !(ν naij) 〈Ai, Bj , {|Ai,naij |}KB
+

j
〉. . . .

| |j∈X |i∈Y !(Ai, Bj ; y1 ij).decrypt y1 ij as {|Ai; ynij |}KB
−

j
in . . .

| |i∈Y 〈Ai,KA+
i , Bi,KB+

i 〉.0
| |i∈Z

−

0

〈KA−
i ,KB−

i 〉.0

The last two lines in the scenario ensures that all the credentials of the illegiti-
mate principals are known to the attacker. Note in particular that the private
keys KA−

i and KB−
i with i ∈ Z

−
0 of Ai and Bi, respectively, are given to the at-

tacker. All these credentials enables the attacker to act as illegitimate principals
that may attack the legitimate part of the protocol.

When the protocol is analysed in the above scenario with bZ−
0 c = {0} and

bZ+c = {1} the analysis is no longer able to guarantee destination and origin

122 Security in Networking Systems

authentication. Instead, it reports

ψ = {(a10, c•), (c•, b01), (c•, b11)}

as possible violation of the authentication property. �

The model of illegitimate principals in Example 7.13 lets the attacker play the
role of the illegitimate principals. Whenever a legitimate principal communi-
cates with one of these illegitimate principals it will, therefore, be communicat-
ing directly with the attacker. Recall that the attacker is annotated with the
crypto-point c•. However, in Example 7.13 the messages sent to the illegiti-
mate principals, i.e. to the attacker, have annotations with crypto-points of the
form aij and bij . Consequently, the authentication property may be violated
due to the fact that these annotations do not comply with the way illegitimate
principals are modelled.

To rectify the situation, annotations in a principal that communicates with an
illegitimate principal will have the crypto-point c• added to all annotations in
messages meant for an illegitimate principal. These crypto-points are added
systematically by ensuring that dest and orig annotations have c• added every
time the meta level analysis unfolds an indexed parallel where the canonical
index represents an illegitimate principal.

Example 7.14 (Continued from Example 7.13) The analysis from Exam-
ple 7.13 has bZ−

0 c = {0} as the canonical index for the illegitimate principals.
When c• is added to the annotations where the analysis uses the index 0, some
of the violation in Example 7.13 disappear. However, the analysis is still not
able to guarantee authentication because of the following possible violation of
the authentication property:

ψ = {(c•, b11)}

This violation does, in fact, correspond to the attack found by Lowe [85] where
an illegitimate principal (at c•) can successfully spoof messages to a legitimate
responder (at bij for i, j ∈ Z

+), instead of the message that was suppose to come
from another legitimate principal. �

Hereby, it has been illustrated that the analysis techniques suffice to deal with
open systems that contains arbitrarily many illegitimate principals.

7.5 A Worked Example: The Bauer, Berson,

and Feiertag Protocol

To summarise the development in this chapter, the following section illustrates
how a classical security protocol can be modelled and analysed using LySa and

7.5 A Worked Example: The Bauer, Berson, and Feiertag Protocol 123

its control flow analysis. It will be illustrated how the choice of deployment
scenarios plays a crucial role in the security provided by the protocol.

The protocol that will be regarded is a classic key establishment protocol devel-
oped by Bauer, Berson, and Feiertag more that 20 years ago [15]. According to a
recent survey [29] there are no known attacks on the protocol and, furthermore,
the protocol is the basis one of the key establishment mechanisms in an ISO/IEC
standard [79]. The later indicates that the protocol is still as relevant as ever
for modern networking applications.

The Bauer, Berson, and Feiertag (BBF) protocol aims at establishing a fresh
shared key, K, between two principals A and B. The key establishment makes
use of a server, S, with which A and B initially share long term keys KAS and
KBS , respectively. The protocol has four message exchanges:

1. A → B : A,na
2. B → S : A,na, B,nb
3. S → B : {K,A,nb}KBS , {K,B,na}KAS

4. B → A : {K,B,na}KAS

with the following intend

1. Principal A generates a fresh nonce na, which it sends along with its own
name to principal B .

2. Principal B generates another fresh nonce, nb, and sends both nonces along
with the names of the involved principals to the server.

3. The server generates a fresh key K, which it encrypts under the long
term keys of both principals along with their respective nonces and the
name of the other principal. These two encrypted messages are sent to B
who decrypts the first part of the message, which is encrypted with B’s
long term key. Principal B then checks that the nonce nb is indeed the
nonce used for communication with the principal A also mentioned in the
message. If so, B accepts K as a key shared with A and forwards the
second part of the message to A.

4. Likewise, A decrypts the message with its own long term key and checks
that it contains the nonce na used for communication with the principal
B mentioned in the message. If so, A accepts K as the key used for the
communication that it initiated with B.

7.5.1 A Simple Scenario

As a first step in the modelling of the BBF protocol a very simple scenario is
considered where precisely one principal A initiates a session with precisely one

124 Security in Networking Systems

(νKAS) (ν KBS) (
!(ν na) 〈A,na〉.(; xa).decrypt xa as {B,na; xk}KAS [at a orig {s2}] in 0

| !(A; yn).(ν nb) 〈A,B, yn,nb〉.(; yb, ya).
decrypt yb as {A,nb; yk}KBS [at b orig {s1}] in 〈ya〉.0

| !(A,B; za, zb).(ν K)
〈{A, zb,K}KBS [at s1 dest {b}], {B, za,K}KAS [at s2 dest {a}]〉.0)

Table 7.2: A LySa model of the BBF protocol with only one initiator A and
one responder B.

principal B. These two principals and the server can be modelled as the three
parallel processes in Table 7.2.

In the first line in Table 7.2 the keys KAS and KBS shared between A and
the server, and B and the server, respectively, are restricted. This models that
they are unavailable to outsiders. Notice that, technically, the scope of these
restrictions cover both A and B. This, for example, means that A might use to
the key KBS . By inspecting the first replicated process, which models principal
A, it is, however, evident that A does not use this key. The process in Table 7.2
is, thus, a perfectly sound model of that only B and the server shares the KBS .

The second line in Table 7.2 models the principal A, which generates a new
nonce na and sends its identity and the nonce on the network. Notice that
unlike previous examples the message is not prefixed with source and destination
addresses. This is simply to illustrate that these addresses are not necessary but
merely a choice of how the protocol is modelled.

In the third line of Table 7.2, principal B receives message 1 from principal A.
Upon receipt B generates a fresh nonce nb and sends it off to the server. Notice,
however, that the elements in the message have been rearranged in comparison
to the original protocol. This has been done to allow the server to pattern
match the identities of the principals upon receipt of the message. In LySa
pattern matching can only be performed on the prefix of message and, hence, it
is sometimes necessary to rearrange elements in messages.

In the final parallel process in Table 7.2 the server generates a new key, which it
encrypts in two messages bound for principal B and A, respectively. Again the
elements in the messages have been rearranged in order to allow pattern match
of principal names and nonces upon decryption of these messages.

The security properties that are of interest in a key establishment protocol, such
as BBF, is first of all whether the confidentiality of the session K is preserved.
Second, it is important that the key is delivered to the correct principals and no
one else. The latter property can be seen as an instance of destination and origin

7.5 A Worked Example: The Bauer, Berson, and Feiertag Protocol 125

let X ⊆ Z
+ in (νi∈X KAS i)(νj∈X KBS j)(

let Y ⊆ X ∪ Z
−
0 in

|i∈X |j∈Y !(ν naij) 〈Ai,naij〉.(; xaij).
decrypt xaij as {Bj ,naij ; xk ij}KASi

[at aij orig {s2 ij}] in 0

| |j∈X |i∈Y !(Ai; ynij).(ν nbij) 〈Ai, Bj , ynij ,nbij〉.(; ybij , yaij).
decrypt ybij as {Ai,nbij ; yk ij}KBSj

[at bij orig {s1 ij}] in 〈yaij〉.0

| |i∈Y |j∈Y !(Ai, Bj ; zaij , zbij).(ν Kij)
〈{Ai, zbij ,Kij}KBSj

[at s1 ij dest {bij}],
{Bj , zaij ,Kij}KASi

[at s2 ij dest {aij}]〉.0

| |i∈Z
−

0

〈Ai,KAS i, Bi,KBS i〉.0)

Table 7.3: A LySa model of the BBF protocol where many initiators Ai initiates
key establishment with many distinct responders Bj .

authentication of the encrypted messages that contains the key. More precisely,
the first message encrypted at the server should be decrypted at B, only, and
the second encrypted message should be decrypted at A, only. These intentions
have been made clear by the annotations of the process in Table 7.2.

The authentication analysis is able to guarantee both confidentiality of the ses-
sion key and that the authentication properties hold. Thus, the protocol is
secure as long as it is only used for establishing session keys for communication
from one principal A to one principal B.

7.5.2 Multiple Principals

To investigate whether the BBF protocol is secure when more than two principals
are involved the protocol can be modelled using the meta level constructs. In
particular, one may check for parallel session attacks by modelling sessions using
indexed parallel compositions and letting the indices signify which session is used
cf. Section 7.3.

The model of the BBF protocol in Table 7.2 may be generalised to a scenario
where arbitrarily many principals Ai use the protocol to establish a session key
with principals Bj , which are distinct from any Ai. The “most general” scenario
that one can envision (or at least a very general one) is a scenario where every
principal Ai initiates a session with every principal Bj . This scenario can be
modelled as the meta level process in Table 7.3.

The object level processes in Table 7.3 that describes the behaviour of the in-
dividual principals are precisely as in Table 7.2 except that indices have been

126 Security in Networking Systems

added. The indexed parallel compositions and the indices have be added consis-
tently such that names, variables, and crypto-points used in a session between
Ai and Bj are indexed ij.

The model in Table 7.3 considers both legitimate and illegitimate principals. The
legitimate principals all take their index from the set Z

+ while the illegitimate
principals take their index from Z

−
0 . The key shared between an illegitimate

principal and the server is, consequently, made available to the attacker such
that it may play the part of the illegitimate principal. This accounts for the last
line of the meta level process in Table 7.3.

Taking bZ−
0 c = {0} and bZ+c = {1, 2} the analysis is able to guarantee the

confidentiality of all session keysKi,j with i, j ∈ Z
+ i.e. session keys used between

legitimate principals. Furthermore, all the authentication properties are ensured
for the meta level process.

In conclusion, the BBF protocol will provide confidential and authenticated key
establishment for any use of the protocols between two sets of distinct princi-
pals as long as their communication pattern is a subset of the one described in
Table 7.3. One significant limitation of this scenario, though, is that the key
establishment only works in one direction in the sense that only principals Ai

can initiate a session. The next section considers a more general scenario where
key establishment can be initiated both ways.

7.5.3 Bi-directional Key Establishment

Instead of a scenario consisting of two distinct set of principals as in Table 7.3
consider a scenario that consists only of principals Ii such that each principal
can act both as initiator and as responder of the protocol. In such a scenario,
the key establishment will be used in two directions. Analogously to the scenario
in Table 7.3 each principal Ii will initiate (and respond) to a session with every
other principal Ij . This scenario can be modelled as the meta level process in
Table 7.4.

Once more the basic skeleton of the object level processes are as in Table 7.2.
The first indexed parallel now models Ii both as initiator and as responder.
The server on the other hand meditates communication between two arbitrary
principals Ii and Ij . Throughout, the indices have been added consistently such
that names, variables, and crypto-points used in a session initiated by Ii to Ij
has the index ij. The final indexed parallel in Table 7.3 again models the leaking
of the credentials of the illegitimate principals to the attacker.

Taking once more bZ−
0 c = {0} and bZ+c = {1, 2} the analysis still guarantees

the confidentiality of session keys for the legitimate principals. However, the
analysis no longer guarantees authentication but reports the following possible

7.5 A Worked Example: The Bauer, Berson, and Feiertag Protocol 127

let X ⊆ Z
+ in (νi∈X KS i)(

let Y ⊆ X ∪ Z
−
0 in

|i∈X (|j∈Y !(ν naij) 〈Ii,naij〉.(; xaij).
decrypt xaij as {Ij ,naij ; xk ij}KSi

[at aij orig {s2 ij}] in 0

| |j∈Y !(Ij ; ynji).(ν nbji) 〈Ij , Ii, ynji,nbji〉.(; ybji, yaji).
decrypt ybji as {Ij ,nbji; yk ji}KSi

[at bji orig {s1 ji}] in 〈yaji〉.0)

| |i∈Y |j∈Y ! (Ii, Ij ; zaij , zbij).(ν Kij)
〈{Ii, zbij ,Kij}KSj

[at s1 ij dest {bij}],
{Ij , zaij ,Kij}KSi

[at s2 ij dest {aij}]〉.0

| |i∈Z
−

0

〈Ii,KS i〉.0)

Table 7.4: A LySa model of the BBF protocol where many principals Ii simul-
taneously act both as initiator and as responder.

violations of the authentication properties

ψ = { (s101, a10), (s210, b01), (s102, a20), (s220, b02), (s111, a11), (s211, b11),
(s112, a21), (s212, b21), (s121, a12), (s221, b12), (s122, a22), (s222, b22) }

It turns out that these error messages do indeed represent a semantic violation of
the security properties. This violation appears exactly when two principals, say
Ii and Ij , use the BBF protocol to establish keys in both direction. In the LySa
model in Table 7.4 the elements in messages have, however, been rearranged. The
attack is, of cause, only valid if it can be carried out using the message format of
the original protocol as given in [15]. That this is the case is illustrated by the
following message sequence where M(·) describes the behaviour of the attacker:

1.1 Ii → Ij : Ii,nai

1.2 Ij →M(S) : Ii,nai, Ij ,nbj

2.1 Ij → Ii : Ij ,naj

2.2 Ii →M(S) : Ij ,naj , Ii,nbi

1.2′ M(S) → S : Ii,nbi, Ij ,nbj

1.3 S →M(Ij) : {Kij , Ii,nbj}Kj
, {Kij , Ij ,nbi}Ki

1.3′ M(S) → Ij : {Kij , Ii,nbj}Kj
, garbage

2.3′ M(S) → Ii : {Kij , Ij ,nbi}Ki
, garbage

At the end Ii and Ij share the same key, Kij , both in the session initiated by
Ii and in the session initiated by Ij . This could cause a problem if Ii and Ij
subsequently assumes that the protocol have provided two distinct keys Kij and
Kji because they ran two sessions of the protocol. Naively one could imagine
the following unfortunate message exchange where the first column describes key
that the principals intended to use instead of Kij that they got from the above

128 Security in Networking Systems

attack:

Kij Ii → Ij : {Do you want an ice cream?}Kij

Kij Ij →M(Ii) : {Yes}Kij

Kji Ij →M(Ii) : {Should I give M an ice cream?}Kij

Kji M(Ii) → Ij : {Yes}Kij

It is easy to repair the protocol. One must simply ensure that the two encrypted
messages generated by the server does not have the same format. For exam-
ple, the following message instead of the original message 3 renders the attack
impossible

3. S → B : {K,nb, A}KBS , {K,B,na}KAS

With a similar amendment in the LySa model — taking into account the rear-
rangement of the message format — the analysis is able to guarantee that the
authentication property cannot be violated. Hence, the amended BBF protocol
ensures authentication even when the protocol is used in both directions between
the same two principals.

7.6 Comparison with Related Work

The field of security protocol analysis is vast and widespread. The techniques
presented in this thesis have the benefit of being programming language based and
at the same time being automatic and efficient. This comparison with related
work focuses on comparing how other approaches deal these characteristics and
is organised as follows: Section 7.6.1 discusses related techniques also based on
process calculi; Section 7.6.2 describes other techniques that are somehow closely
related; while Section 7.6.3 gives a brief overview of remaining main trends in
the area of security protocol analysis.

7.6.1 Techniques using Process Calculi

Type systems. Type systems have been used for security protocol analysis
by Abadi [1] for confidentiality and by Gordon and Jeffery [68] and Bugliesi,
Focardi, and Maffei [37] for authentication. On the count of efficiency, a common
remark about these approaches is that type checking in these type systems is
efficient (polynomial time) while type inference is computationally intractable
(exponential time). In comparison, the control flow analysis presented here is
more in the flavour of type inference while retaining a polynomial worst-case
time complexity.

The overall mode of operation in these type system based approaches is to find
a particular communication pattern that is a priori known to imply the desired

7.6 Comparison with Related Work 129

property. The type system is then designed to check whether a given process
conforms with this pattern or not. When checking authentication [68, 37] this
approach has been successful in guaranteeing injective authentication properties
(in the sense of Lowe’s injective correspondence [87]). In comparison, the control
flow analysis simply tracks the behaviour of a process and checks whether this
reports any violations of the property. In this respect, the control flow analysis
may appear to be a little more flexible because it does not restrict its attention to
processes following a particular pattern. On the other hand, the authentication
analysis presented in Section 7.2 is only able to guarantee a non-injective [87]
property.

Another type system based approach [2] by Abadi and Blanchet is shown to
correspond to Blanchet’s protocol analysis based on generating Horn clauses
and solving these using a custom resolution engine [18]. This may be seen as an
implementation of type inference that apparently terminates quickly on many
examples, though termination in general is not guaranteed. Interestingly, this
implementation strategy is close to the one presented in Chapter 4 that uses
ALFP formulae (extended Horn clauses). One striking dissimilarity, though, is
the absence of tree grammar encoding or the likes in Blanchet’s work. Instead,
his resolution engines work directly over infinite set of terms. They rely on
custom resolution schemes that are sometimes able to avoid infinite loops in the
resolution procedure, which otherwise causes non-termination. In later work,
this strategy comes in handy because it can often be used to guarantee injective
authentication properties [19] by using the term language for a simple counting
scheme.

Process equivalences. Many classical analysis techniques for process calculi
rely on relating processes by means of equivalence or refinement relations. In
manual approaches, reasoning with such relations can be used to show quite
strong security properties of protocols [4, 28, 62].

Equivalence and refinement relations are also central to a number of automated
approaches. In information flow analysis [60], for example, security proper-
ties are formulated in terms of process equivalences. This technique has been
adapted to the analysis of security protocols [59, 56] and gives an automatic
validation procedure which is exponential in the size of the processes though a
compositional algorithm [61] often behaves better in practice.

Model Checking. Model checking works by state space exploration. The
state space for cryptographic protocols is, in general, infinite, which means that
termination of approaches based on state space exploration is not guaranteed.
Consequently, model checking techniques cannot guarantee the absence of flaws
because they cannot search through the entire state space. On the other hand,
model checking techniques are often very efficient at finding any flaws that do

130 Security in Networking Systems

exist. Thus, model checking may be seen as complementary to the control flow
analysis techniques described in this thesis.

Within the LySa framework, a first step in combining model checking and control
flow analysis has been taken by Kaplan [81]. He provides a model checking tool,
which checks the destination and origin authentication property also considered
by the control flow analysis in Section 7.2. The overall mode of operation when
combining the two tools is to start by performing the control flow analysis. If
a possible error is reported then the model checker is deployed to search for
an error trace. A further investigation into whether the two approaches can be
combined e.g. such that the control flow analysis result can aid in directing the
state space search would be an interesting topic of future research.

The first process calculi based approaches to apply model checking were the anal-
yses of CSP [86, 124]. There, security properties are formulated using refinement
relations. The refinements are automatically checked by state space exploration
using the FDR model checker, and is only done for a finite scenarios, with few
principals, few runs, etc. This approach, however, sometimes suffices for manual
proofs that show that the obtained results hold for arbitrary scenarios [89]. More
recently [10, 9, 27] have studied state space exploration techniques of systems
where there only are a finite number of protocol sessions. For these systems, the
techniques are guaranteed to terminate even when the system is under attack
from arbitrary attackers. In comparison to the model checking approaches, the
control flow analysis of LySa uses approximations to account also for arbitrarily
long execution sequences.

7.6.2 Other Related Techniques

A closely related approach is [8], which develops reachability analysis for a small
programming language. The paper presents an interesting idea of separating
freshly generated names from old names in the analysis result. In comparison
the analysis presented here merges all freshly generated names into one canonical
name. The focus of [8] is, unlike in this thesis, on theoretical complexity results
etc. Unfortunately, little is said about how the aspects of keeping track of
new and old names impacts the security properties that the analysis is able
to guarantee, which makes it difficult to quantify the actual benefit of their
improvements to the analysis.

A number of other approaches mentioned below go directly for modelling a
protocol at the constraint level. From a technical point of view, they bear
resemblance to the implementation level of a control flow analysis though they
do not benefit from being programming language based.

Similar to the techniques presented here, the techniques of [30] uses approxima-
tions to provide an automated tool that guarantees the absence of attacks on
confidentiality. This work present an idea of recording patterns of how messages

7.6 Comparison with Related Work 131

guard their content, which means that there is no need to explicitly keep track
of the knowledge of the attacker. This technique can to some degree be seen as
merging approximative techniques, which have also been in this thesis, with an
approach more akin to type system such as [1, 68, 37]. It may be worth pursuing
this idea further in a Flow Logic setting, thereby, getting the added bonus of be-
ing programming language based. Other work that also relies on approximation
techniques have evolved around tree automata [63, 69, 46]. From a technical
point of view these approach are comparable with the encoding of the analysis
components using tree grammars, which was presented in Chapter 4.

The above techniques share many technical features with more model check-
ing oriented infinite state techniques using e.g. tree automata [103], automated
rewriting techniques [52, 80, 106] or on-the-fly rewriting [14]. However, as al-
ready mentioned the main distinction from control flow analysis is that these
techniques cannot give guarantees of the absence of flaws and that termination
is not guaranteed. These main characteristics are shared with finite state tech-
niques such as Murφ [54], FDR [86], BRUTUS [45] though, from a technical
point of view, these are further from the approach presented here.

7.6.3 Other Main Trends

On a large scale, the formal study of security protocols are divided into two
categories: symbolic and complexity theoretic. Though the symbolic approach
is much simpler than the complexity theoretic recent results [75, 135] indicate
that the two approaches yield much the same results. In the following only
symbolic approaches are considered.

The use of modal logics in protocol analysis was initiated by Burrows, Abadi,
and Needham with their so-called BAN logic [38]. Many more modal logics have
later appeared, e.g. [6, 67, 131], and they have been a successful manual tool for
developers of protocols. A general criticism is that their logic specification style
can sometimes be hard to relate directly to an operational view of protocols
and, consequently, some errors are overlooked. Work has also been done on
automating analysis using modal logics e.g. by use theorem proving [31]. To
contrast the above approaches, a recent development [58] provides a logic with
a similar purpose but based on precise operational semantics.

Classical logical approaches to protocol analysis is also widely used and include
Dolev and Yao [55] and Woo and Lam [134]. The latter is probably the oldest
semantics based analysis of security protocol and both approaches use manual
reasoning. Similar styles of reasoning has later been partially automated by the
use of theorem proving e.g. by Kemmerer [82], Paulson [120] and Bolignano [26].
Though theorem proving offers some degree of automation it does need human
assistance to operate and it therefore not directly comparable to the techniques
developed here.

132 Security in Networking Systems

In between theorem proving and model checking are tools such as Interroga-
tor [97, 98] by Millen and the NRL protocol checker [93] by Meadows. These
were some the first (semi-)automatic tools for protocol analysis and have over
the years been used to find numerous flaws in protocols. Both tools use a state-
transition model encoded in Prolog together with standard Prolog resolution
engines that perform state space exploration but may require human interaction
to operate. Interestingly, the NRL protocol checker applies encodings of terms
into formal languages in the same spirit as tree grammar encodings used in the
implementation of the control flow analysis in Chapter 4.

Finally, a number of dedicated formalisms have been developed with the sole
purpose of modelling and analysing security protocols. One of these is Multi Set
Rewriting systems [43] where protocols are modelled as a special kind of rewrit-
ing systems over multi-set predicates. This formalism has primarily been used to
show a number of theoretical results about security protocols. Most significant is
probably that analysing properties of security protocols is undecidable [57] even
in the quite restricted setting that is used by most realistic protocols. Recently
rewriting and state space exploration within of MSR has been automated [128].
Another dedicated formalism is Strand Spaces [133] that models protocols as
simple graphs. Reasoning about protocols by hand within this formalism leads
to surprisingly simple proof both of confidentiality, authentication [73], and time-
liness [72] and may to some degree be automated [126, 96, 49].

C h a p t e r 8

Conclusion

8.1 Perspectives

The analysis technique presented in this thesis has as its main characteristics
that it is programming language based and automatable in an efficient way.
These characteristics makes the analysis technology well-suited to be applied in
several different ways. The automated security analysis of LySa can be used in
(at least) the three following ways:

Direct modelling where the problem at hand is modelled directly in LySa and
the existing analysis tool is used for analysis.

Technology transfer that transfers the basic ideas of the analysis into another
application domain e.g. another programming language.

Problem transformation that transforms (part of) a problem domain into
LySa and uses the existing tool to conduct the analysis.

These ways of application are equally well suited for other analysis techniques
that have the same main characteristics. The following sections discuss the three
items in more detail.

134 Conclusion

8.1.1 Direct Modelling

The use of direct modelling is the most short term perspective of the three ways
of application, which are discussed here. When using LySa in direct modelling
it means that LySa is regarded as a modelling language. Hence, whatever parts
of an application that are relevant to the security of network communication
need to be modelled directly using the primitives contained in LySa. Here,
the object level of LySa caters for a precise, formal description of individual
message exchanges, generation of nonces, matching of values, etc. In addition,
the meta level constructs allows a detailed modelling of the scenarios in which
the application is allowed to be used.

Having modelled an application as a LySa process, the control flow analysis
provides a quick way to obtain information about security aspects of the model
as illustrated in Chapter 7. It is, of course, naive to think that this automated
approach will be able to guarantee as strong security properties as the many
related approaches that are based on hand reasoning, for which undecidability is
not an issue. However, by using an automated approach the properties that can
be guaranteed, may be so with much smaller effort: to check a security property
basically amounts to modelling and specifying the desired property; the analysis
tool will do the rest.

The analysis presented in this thesis has already shown its worth as a tool usable
for direct modelling. Indeed, the examples throughout this thesis are samples
of how to use direct modelling. However, these examples have mainly served to
illustrate specific points about the analysis technique. Below is given an overview
of how the analysis has been applied to a number of realistic problems. These
applications support the claim that the analysis technique has a large potential
for tackling real world situations.

In [23] it was illustrated that the authentication analysis can match results
that have previously been reported in the literature for variations of a num-
ber of classical key establishment protocols. These protocols include Need-
ham Schroeder symmetric key [104, 105] and asymmetric key [104, 85], Wide-
Mouthed-Frog [38, 5, 56], Otway Rees [118], Yahalom [38, 119], and Andrews
Secure RPC [125, 38] protocols.

In addition to guaranteeing security properties, the technology can also aid in
discovering flaws. The analysis has been used to find a previously undocumented
flaw [22] in Beller, Chang, and Yacobi’s protocol for authentication of portable
devises in wireless networks [16]. Furthermore, Section 7.5 reported an attack
on Berson, Bauer, and Feiertag’s key establishment protocol [15] that according
to [29] is otherwise considered to be uncompromised.

The control flow analysis has furthermore been applied to the two case studies
from the research project DEGAS. Both case studies turned out to have problems
that were revealed by the analysis [91, 92]. The LySatool has afterwards been

8.1 Perspectives 135

used in the ongoing process of developing suitable amendments to the problems
found.

Finally, [74] presents a extensive study that applies the analysis to a large class
of single sign-on protocols from a recent standard of the OASIS standardisation
consortium [116]. Some instantiations of these single sign-on protocols were
shown to be flawed while others were shown to be correct.

In summary, to analyse software applications by modelling them directly in LySa
has shown to be a viable approach for applications ranging from the most classic
key establishment protocols to modern communication standards. This range
of examples indicates that the analysis technique presented in this thesis are
sufficiently good to analyse many kinds of realistic networking applications.

8.1.2 Technology Transfer

A process calculus is a small, idealised programming language that incorporates
only the primary features of the problem domain that it models. In the devel-
opment of real software applications, on the other hand, full scale programming
languages are used since they incorporate a large range of features that makes
them more practical. In this context, it will be of interest to transfer the anal-
ysis technology to such full scale languages in order to benefit from the results
that the analysis can provide. This form of technology transfer is a much larger
undertaking than using direct modelling and, hence, it represents a more long
term perspective.

A number of characteristics of the analysis technique presented here are encour-
aging for the feasibility of this kind of technology transfer. One may, for example,
expect that the fact that the analysis technique is programming language based
minimises the effort of transferring the technique to a full scale language. This at
least seems justified in comparison with techniques based on completely different
notions than programming languages. In addition, Flow Logic based program
analysis is already known to be capable of handling many different programming
language paradigms including the capability of tackling full scale programming
languages [114, 113].

The fact that the analysis technology is automatable and efficient means that
it will be suitable for incorporation into a development platform. One can, for
example, imagine that the analysis could be a supplement to the conventional
type checking that takes place in the compiler of the development platform.
Indeed, control flow analysis has its roots in compiler construction, which justifies
the feasibility of incorporating the analysis technology in this way.

With the purpose of technology transfer in mind, the development of analysis
technology based on process calculi may be considered a test bed for analysis
ideas. Because the calculi capture the heart of the problem, the development of

136 Conclusion

an analysis for a process calculus may be seen as a feasibility study of whether
the analysis ideas work at all. The most promising analyses will then be the
candidates for technology transfer.

The need for automated security analysis of networking communications directly
in a development platform is perhaps more pressing today than ever before. Re-
cent advances for most development platforms is to provide developers with
large code libraries that give easy access to many advanced programming fea-
tures. This includes, for example, the access to network communication and
cryptographic techniques. The implications of these advances are that even de-
velopers with very little education in network security have access to the basic
building blocks of a cryptographic protocol. Knowing how difficult it is to design
correct protocols it is indeed a frightening perspective that protocols designed
by novices in the field are used in real life applications. Bearing this in mind, one
can certainly justify the effort spent on developing techniques that may assist
developers in building better networking protocols. This is the kind of technique
that has been presented in this thesis.

8.1.3 Problem Transformation

Technology transfer as discussed in Section 8.1.2 is quite a big undertaking be-
cause every idea must be rethought in a new setting, proofs must be redone, the
analysis must be re-implemented, etc. As an alternative to technology transfer,
where one brings the analysis to the problem, one may bring the problem to the
analysis. That is, one can transform the problem into the setting of the analysis
and, thereby, rely on tools and techniques already built.

The following sketches a realisation of problem transformation as performed
in [33]. The overall aim of [33] is to provide developers of networking appli-
cations with analysis tools that can ensure security properties of applications
already in the design phase. For these analysis tools to be feasible for practical
use, it is important that they work efficiently and require a minimal amount of
training to use. Automated analysis techniques fits well with these requirements
because a user does not need to know the internals of the analysis techniques
in order to apply the tools. Inspired by de facto industry standards the work
in [33] considers development of applications anchored in the Unified Modelling
Language (UML) [117]. In this context, problem transformation, thus, consists
of mapping elements of a UML model into LySa where the analysis of security
properties can be conducted.

The overall architecture of the problem transformation is illustrated on Fig-
ure 8.1. (This architecture is used throughout the research project DEGAS.)
An application developer will work in the Development Environment and design
a UML model of the application under development. In order to analyse the
security properties of the networking part of the application the following three

8.1 Perspectives 137

Unified
Modelling
Language

Development Environment

Reflector

Extractor

LySa and
its analysis

Verification Environment

Hidden from the developer

Figure 8.1: Problem transformation that allows UML developers to directly
benefit from the analysis of LySa.

steps are carried out. First, the parts of the UML model that are relevant for
secure network communication are extracted. This is the job of the Extractor,
which produces a LySa process that contains an encoding of the relevant infor-
mation. Second, inside the Verification Environment the control flow analysis
is applied to the LySa process. Third, the analysis result is mapped back to
the Development Environment by a Reflector, thereby, presenting the analysis
result to the developer.

The work in [33] presents a standardised way of modelling security protocols in
UML, which constitutes a so-called UML profile. The primary function of the
profile is to describe how to model elements of the problem domain such as keys,
messages, message sequences, etc. Furthermore, the profile describes how to
specify in UML destination and origin authentication properties similar to the
ones described in Section 7.2. These properties are carried through to the Ver-
ification Environment by the Extractor where they result in annotations of the
LySa process. The error messages generated by the authentication analysis are
then reflected back to the Development Environment using the Reflector. The
error messages is then presented to the developer at the same level of abstraction
that was used to design the application and specify the properties.

An essential point about the architecture in Figure 8.1 is that the Extractor,
the Verification Environment, and the Reflector are all hidden from the devel-
oper. For this to work, it is paramount that the verification procedure does
not require human interaction and this is precisely the trademark of automated
analyses. The developer will thereby only need to consider security properties
and interpretation of the analysis result at the level of abstraction that he is
already familiar with. Thus, the developer can benefit from the analysis with
only minimal effort on his part. In [33] more details are given about how the ar-
chitecture in Figure 8.1 is instantiated, and this is followed up by a step-by-step

138 Conclusion

analysis of a small example protocol.

The overall idea of problem transformation has also been used in a number
of frameworks for security protocol analysis such as Casper [88], CAPSL [53],
CVS [56], EVA [70], and AVISS [11]. These frameworks all provide a domain
specific language for specifying security protocols and use various analysis tools
as back-ends to check security properties. In comparison with [33], these domain
specific frameworks probably cater for easier modelling of a security protocol.
However, the approach described in [33] is, in a sense, more ambitious than
these domain specific approaches because it uses a general-purpose modelling
language. Using a general-purpose language gives easy access to standard tools
e.g. for consistency checking of a model and code synthesis. Furthermore, it pro-
vides a common framework in which other kinds of analyses can be incorporated
using the same overall structure. For example, other research groups within the
DEGAS project have conducted performance analysis on UML models [40, 39].
This means that a developer will only need one common framework that caters
for all aspects in the design of an application. Though only in its infancy, [33] is
an illustrative example of how problem transformation allows existing analysis
tools and techniques to reach beyond their original level of abstraction with only
limited effort.

8.2 Recapitulation

This thesis has presented a contribution in the area of automated analysis of
security in networking systems. The contribution takes its offset in the modelling
of networking systems in process calculi. These idealised models focus their
attention on modelling only the very core of the problem domain.

In this thesis, the process calculus LySa has been presented as such a core model
of security critical networking systems. On top of the process calculus modelling,
a fairly standard control flow analysis has been presented. The feasibility of this
analysis technique has been illustrated through the development of an imple-
mentation of the analysis. Apart from, of course, verifying that it is indeed
possible to implement the analysis this also illustrates that a reasonably efficient
implementation can be made. For example, all the analysis results presented in
examples in this thesis can be computed in well under 5 seconds on a three year
old laptop computer. Furthermore, the polynomial upper bound on the time it
takes to analyse a LySa process indicates that the analysis technology will scale
well to more realistic challenges than the small examples given here.

It has been shown how the analysis technology is capable of dealing with open
systems that are under attack from arbitrary attackers. With this addition, the
analysis can be used to give guarantees about standard security properties of
processes. Of course, extending the repertoire of properties that can be analysed

8.2 Recapitulation 139

is an ongoing line of research. Though the analysis is approximative, it turns
out that there are surprisingly few examples where this is a practical problems.
Then again, the problems that do arise are, of course, a nuisance and further
steps could be taken to get rid of some of these. The challenge in this line of
future work is to increase the precision without sacrificing the low computational
complexity that is attained with the current analysis.

The modelling using process calculi has been extended to include specification
of deployment scenarios. This caters for succinct ways to express the fine details
in the assumptions about the networking scenario in which communication is
intended to take place. Correspondingly, the analysis technology has been ex-
tended to analyse arbitrarily large deployment scenarios. This has again been
attained using approximations. Though these approximations are admittedly
quite rough they turn out to be sufficiently precise to give interesting results
when applied in practice. The explicit modelling of scenarios made in this thesis
contrasts many related analysis approaches where assumptions about the de-
ployment scenarios are made implicitly and often hard-coded into the analysis
framework. This idea for analysing specifications of scenarios might also be use-
ful in other application areas where system specifications need to be analysed.

Finally, short and long term perspectives for the application of the analysis
technique have been discussed. These illustrate that a small step has been taken
towards providing software developers with solid, formally based analysis tools
that may improve the quality of the distributed systems of tomorrow.

140 Conclusion

Notation

Sets, Relations, and Predicates

e ∈ S set membership; e is in the set S
S1 ⊂ S2 strict subset; the elements in S1 are also

in S2 but S1 6= S2

S1 ⊆ S2 subset; the elements in S1 are also in S2

S1 ⊆fin S2 finite subset; S1 ⊆ S2 and S1 is finite
P(S) powerset of S i.e. the set {S ′ | S′ ⊆ S}

R ∈ P(S1 × . . .× Sk) a k-ary relation R is seen as set of k-
tuples

F1 ∧ F2 logic conjunction; F1 and F2

F1 ∨ F2 logic disjunction; F1 or F2

F1 ⇒ F2 logic implication; F1 implies F2

F1 ⇔ F2 logic biimplication; F1 if and only if F2

A k-ary logic predicate p is written p(e1, . . . , ek) whenever p holds for the ele-
ments e1, . . . , ek. A predicate is sometimes viewed as relations and, consequently,
p(e1, . . . , ek) is equivalent to (e1, . . . , ek) ∈ p when p is thought of as a relation.

Maps and Substitutions

Maps, m, are partial functions with the functionality m : Domain → Range.

[] empty map
m(d) value of map m corresponding to d

142 Notation

dom(m) domain of map m
range(m) range of map m
m[d 7→ r] map update:

(m[d 7→ r])(d′) =

{

r if d = d′

m(d′) otherwise

m \ d map restriction:

(m \ d)(d′) =

{

undefined if d = d′

m(d′) otherwise

[d 7→ r] single valued map; short for [][d 7→ r].
m[d1 7→ r1, . . . , dk, 7→ rk] sequence of updates; short for

m[d1 7→ r1] . . . [dk, 7→ rk]

Maps will sometimes be used as substitutions of elements in syntax. Suppose,
for example, that P is a piece of syntax containing syntactic elements d from
the domain D. Suppose also that d is subject to a notion of free and bound
elements in P . Given a map m : D → R then Pm is the same as P except that
all elements d ∈ dom(m) occurring free in P are substituted for m(d).

Sequences

ε empty sequence
e1 . . . ek a sequence of length k for k ≥ 0; juxta-

positioning denotes concatenation
Sk the set of sequences of length k with el-

ements from the set S
S∗ the set all finite sequences with elements

from the set S
e shorthand for a sequence e1 . . . ek of ar-

bitrary length k for k ≥ 0
ee′ concatenation of sequences i.e.

e1 . . . eke
′
1 . . . e

′
k′

when e = e1 . . . ek and e′ = e′1 . . . e
′
k′

8.2 Notation 143

LySa

P ∈ Proc LySa processes
n,m+,m− ∈ Name LySa names
x ∈ Var LySa variables
E ∈ Expr LySa expressions
V ∈ Val values used in the semantics of LySa
Val ⊂ Expr values are expressions without variables

→∈ P(Proc × Proc) reduction relation
≡∈ P(Proc × Proc) structural congruence
α
≡∈ P(Proc × Proc) α-equivalence

name : Proc → P(Name) names in a process
var : Proc → P(Var) variables in a process
lab : Proc → P(Lab) labels in a labelled process
cp : Proc → P(CP) crypto-points in an annotated process

ac : Proc → P(N0) arities of input and output in a process
as : Proc → P(N0) arities of symmetric key encryption and

symmetric key decryption in a process
aa : Proc → P(N0) arities of asymmetric key encryption and

asymmetric key decryption in a process

fn : Proc → P(Name) free names in a process
bn : Proc → P(Name) bound names in a process; defined such

that bn(P) ∪ fn(P) = name(P)
fv : Proc → P(Var) free variables in a process
bv : Proc → P(Var) bound variables in a process; defined

such that bv(P) ∪ fv(P) = var(P)

Meta LySa

X ∈ SetId set identifier
S ∈ P(Index) ∪ SetId index set
a, i ∈ Index indices
a, i, i1 . . . ik sequences of indices
ni,m

+

i
,m−

i
meta level LySa names

xi,mx meta level LySa variables
ME ∈ MExpr meta level LySa expressions
M ∈ MProc meta level LySa processes

V∈ P(MProc × Proc) instantiation relation

mfn(M) : MProc → P(Name) maximal free names; the names free in
any instance of M

144 Notation

The Ordinary Analysis

(AN), (AVar), . . . rules defined in Table 3.1
ρ |= E : ϑ analysis of expressions
ρ, κ |= P analysis of processes
ρ : bVarc → P(bValc) variable bindings
κ ∈ P(bValc∗) network communication
ϑ ∈ P(bValc) evaluation of expressions
bnc, bm+c, bm−c ∈ bNamec canonical names
bxc ∈ bVarc canonical variables
U ∈ bValc canonical values

The Verbose Analysis

(VN), (VVar), . . . rules defined in Table 4.1
ρ, ϑv |= El analysis of labelled expressions
ρ, κ, ϑv |= P analysis of labelled processes
ϑv : Lab → P(bValc) evaluation of expressions
l ∈ Lab labels on expressions

The Finite Analysis

(FN), (FVar), . . . rules defined in Table 4.2
ρf , γ |= El analysis of labelled expressions
ρf , κf , γ |= P analysis of labelled processes
ρf : bVarc → P(Lab) variable bindings
κf ∈ P(Lab∗) network communication
γ : Lab → P(B(ΣLySa,Lab)) tree grammars

The Generation Function

(GN), (GVar), . . . cases defined in Table 4.4
F(El) generates ALFP for expressions
F(P) generates ALFP for processes
G(P) generates ALFP for auxiliary predicates

in conjunction with F(P)
ρg ∈ P(bVarc × Lab) variable bindings

κ
g
k ∈ P(Labk) k-ary network communication
γg ∈ P(Lab × (bNamec ∪ Lab)) tree grammar referring to SEk and AEk

SEk ∈ P(Labk+2) k-ary symmetric key terms

AEk ∈ P(Labk+2) k-ary asymmetric key terms

8.2 Notation 145

The O-precise Analysis

(ON), (OVar), . . . rules defined in as in Table 3.1 and in
Table 5.1

ρo |= E : ϑ analysis of expressions
ρo, κo |= P analysis of processes
ρo : bVarc → P(bOValc) variable bindings
κo ∈ P(bOValc∗) network communication
ϑo ∈ P(bOValc) evaluation of expressions
OVal = Val ∪ ({◦} × Val) unmarked and marked values

The Meta Level Analysis

(MN), (MVar), . . . rules defined in as in Table 6.3
ρ |= ME : ϑ analysis of meta level expressions
ρ, κ |=Γ M analysis of meta level processes
Γ : (SetId ∪ P(Indexfin)) →

P(Indexfin)
assignment of index set identifiers

Destination and Origin Authentication Analysis

(DN), (DVar), . . . rules defined in as in Table 3.1 and in
Table 7.1

ρ |= E : ϑ analysis of annotated expressions
ρ, κ, ψ |= P analysis of annotated processes
ρ, κ, ψ |=Γ M analysis of annotated meta level pro-

cesses
ρ : bVarc → P(bDValc) variable bindings
κ ∈ P(bDValc∗) network communication
ϑ ∈ P(bDValc) evaluation of expressions
ψ ∈ P(CP × CP) error component
V ∈ DVal annotated values
c ∈ CP crypto-point used in annotations

146 Notation

Bibliography

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, 1999.

[2] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types
and logic programs. In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2002), pages
33–44. ACM Press, 2002.

[3] M. Abadi and C. Fournet. Mobile values, new names, and secure commu-
nication. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2001), pages 104–115.
ACM Press, 2001.

[4] M. Abadi and A. D. Gordon. A bisimulation method for cryptographic
protocols. Nordic Journal of Computing, 5(4):267–303, 1998.

[5] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols —
The Spi calculus. Information and Computation, 148(1):1–70, 1999.

[6] M. Abadi and M. R. Tuttle. A semantics for a logic of authentication.
In Proceedings of the 10th Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 201–216. ACM Press, 1991.

[7] A. Aiken. Introduction to set constraint-based program analysis. Science
of Computer Programming, 35(2):79–111, 1999.

[8] R. M. Amadio and W. Charatonik. On name generation and set-based
analysis in the Dolev-Yao model. In CONCUR 2002 – Concurrency The-
ory, volume 2421 of Lecture Notes in Computer Science, pages 499–514.
Springer Verlag, 2002.

148 Bibliography

[9] R. M. Amadio and D. Lugiez. On reachability problems in cryptographic
protocols. In CONCUR 2000 – Concurrency Theory, volume 1877 of Lec-
ture Notes in Computer Science, pages 380–394. Springer Verlag, 2000.

[10] R. M. Amadio and S. Prasad. The game of the name in cryptographic
tables. In Advances in Computing Science (ASIAN 1999), volume 1742 of
Lecture Notes in Computer Science, pages 15–26. Springer Verlag, 1999.

[11] A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna,
S. Mödersheim, M. Rusinowitch, M. Turuani, L. Viganò, and L. Vigneron.
The AVISS security protocol analysis tool. In Proceedings of the 14th In-
ternational Conference on Computer Aided Verification (CAV 2002), vol-
ume 2404 of Lecture Notes in Computer Science, pages 349–353. Springer
Verlag, 2002.

[12] The BANE homepage. http://http.cs.berkeley.edu/Research/Aiken/,
2004. Webpage hosted by Computer Science Division, University of Cali-
fornia, Berkeley.

[13] Banshee. http://banshee.sourceforge.net/, 2004. Webpage hosted by
SourceForge.net.

[14] D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker
for security protocol analysis. In Proceedings of European Symposium on
Research in Computer Security (ESORICS 2003), volume 2808 of Lecture
Notes in Computer Science, pages 253 – 270. Springer Verlag, 2003.

[15] R. K. Bauer, T. A. Berson, and R. J. Feiertag. A key distribution protocol
using event markers. ACM Transactions on Computer Systems, 1(3):249
– 255, 1983.

[16] M. J. Beller, L.-F. Chang, and Y. Yacobi. Privacy and authentication on
a portable communications system. IEEE Journal of Selected Areas in
Communications, 11(6):821–829, 1993.

[17] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process
Algebra. Elsevier Science Inc., 2001.

[18] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In Proceedings of the 14th Computer Security Foundations Workshop
(CSFW 2001), pages 82–96. IEEE Computer Society Press, 2001.

[19] B. Blanchet. From secrecy to authenticity in security protocols. In Static
Analysis, 9th International Symposium (SAS 2002), volume 2477 of Lec-
ture Notes in Computer Science, pages 342–359. Springer Verlag, 2002.

Bibliography 149

[20] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tag-
ging enforces termination. In Foundations of Software Science and Com-
putation Structures (FoSSaCS 2003), Lecture Notes in Computer Science,
pages 136–152. Springer Verlag, 2003.

[21] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Au-
tomatic validation of protocol narration. In Proceedings of the 16th Com-
puter Security Foundations Workshop (CSFW 2003), pages 126–140. IEEE
Computer Society Press, 2003.

[22] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Con-
trol flow analysis can find new flaws too. In Proceedings of Workshop on
Issues in the Theory of Security (WITS 2004), 2004.

[23] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static
validation of security protocols. Journal of Computer Security, 2004.
To appear. Preliminary version available at http://www.imm.dtu.dk/
pubdb/views/edoc download.php/3199/pdf/imm3199.pdf.

[24] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for
the π-calculus with their application to security. Information and Compu-
tation, 168:68–92, 2001.

[25] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Flow Logic for
Dovel-Yao secrecy in cryptographic processes. Future Generation Com-
puter Systems, 18(6):747–756, 2002.

[26] D. Bolignano. Approach to the formal verification of cryptographic pro-
tocols. In Proceedings of the 1996 3rd ACM Conference on Computer and
Communications Security, pages 106–118. ACM Press, 1996.

[27] M. Boreale. Symbolic trace analysis of cryptographic protocols. In Au-
tomata, Languages, and Programming. 28th International Colloquium,
ICALP 2001, number 2076 in Lecture Notes in Computer Science, pages
667–681, 2001.

[28] M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for crypto-
graphic processes. SIAM Journal on Computing, 31(3):947–986, 2002.

[29] C. Boyd and A. Mathuria. Protocols for Authentication and Key Estab-
lishment. Springer Verlag, 2003.

[30] L. Bozga, Y. Lakhnech, and M. Périn. Pattern-based abstraction for ver-
ifying secrecy in protocols. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2003), volume 2619 of Lecture Notes in
Computer Science, pages 299–314. Springer Verlag, 2003.

150 Bibliography

[31] S. H. Brackin. Automatically detecting most vulnerabilities in crypto-
graphic protocols. In DARPA Information Survivability Conference and
Exposition (DISCEX 2000), pages 222–236, 2000.

[32] M. Buchholtz. Implementing control flow analysis for security protocols.
DEGAS Report WP6-IMM-I00-Pub-003, Draft 2003.

[33] M. Buchholtz, C. Montangero, L. Perrone, and S. Semprini. For-LySa:
UML for authentication analysis. In Global Computing: IST/FET Inter-
national Workshop, GC 2004, volume 3267 of Lecture Notes in Computer
Science, pages 93–106. Springer Verlag, 2005.

[34] M. Buchholtz, F. Nielson, and H. Riis Nielson. A calculus for control
flow analysis of security protocols. International Journal of Information
Security, 2(3-4):145–167, 2004.

[35] M. Buchholtz, H. Riis Nielson, F. Nielson, and P. Degano. Models and
techniques for static analysis. DEGAS Deliverable D11, 2003.

[36] M. Bugliesi, S. Crafa, A. Prelic, and V. Sassone. Secrecy in untrusted
networks. In Automata, Languages, and Programming. 30th International
Colloquium, ICALP 2003, volume 2719 of Lecture Notes in Computer Sci-
ence, pages 969 – 983. Springer Verlag, 2003.

[37] M. Bugliesi, R. Focardi, and M. Maffei. Authenticity by tagging and
typing. In Proceedings of the 2004 ACM Workshop on Formal Methods in
Security Engineering (FMSE 2004), pages 1–12. ACM Press, 2004.

[38] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18–36, 1990.

[39] C. Canevet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens. Analysing
UML 2.0 activity diagrams in the software performance engineering pro-
cess. In Proceedings of the Fourth International Workshop on Software
and Performance, pages 74–78. ACM Press, 2004.

[40] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens. Perfor-
mance modelling with UML and stochastic process algebras. IEE Proceed-
ings: Computers and Digital Techniques, 150(2):107–120, 2003.

[41] L. Cardelli and A. D. Gordon. Mobile Ambients. Theoretical Computer
Science, 240(1):177–213, 2000.

[42] I. Cervesato. Data access specification and the most powerful symbolic at-
tacker in MSR. In Proceedings of the International Symposium on Software
Security (ISSS 2002), volume 2609 of Lecture Notes in Computer Science,
pages 384–416. Springer Verlag, 2003.

Bibliography 151

[43] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov.
A meta-notation for protocol analysis. In Proceedings of the 12th Com-
puter Security Foundations Workshop (CSFW 1999), pages 55 –69. IEEE
Computer Society Press, 1999.

[44] J. Clark and J. Jacob. A survey of authentication protocol literature:
Version 1.0. http://www-users.cs.york.ac.uk/∼jac/papers/drareviewps.ps,
1997.

[45] E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with
brutus. ACM Transactions on Software Engineering and Methodology,
9(4):443–487, 2000.

[46] H. Comon, V. Cortier, and J. Mitchell. Tree automata with one memory,
set constraints, and ping-pong protocols. In Automata, Languages, and
Programming. 28th International Colloquium, ICALP 2001, number 2076
in Lecture Notes in Computer Science, pages 682–693. Springer Verlag,
2001.

[47] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata/, 27th September 2002.

[48] H. Comon-Lundh and V. Cortier. Security properties: Two agents are
sufficient. In Programming Languages and Systems. 12th European Sym-
posium on Programming (ESOP 2003), number 2618 in Lecture Notes in
Computer Science, pages 99–113. Springer Verlag, 2003.

[49] R. Corin and S. Etalle. An improved constraint-based system for the ver-
ification of security protocols. In Static Analysis, 9th International Sym-
posium (SAS 2002), volume 2477 of Lecture Notes in Computer Science,
pages 326–341. Springer Verlag, 2002.

[50] P. Cousot and R. Cousot. Abstract Interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 1977), pages 238–252.
ACM Press, 1977.

[51] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[52] G. Denker, J. Meseguer, and C. L. Talcott. Protocol specification and
analysis in Maude. In Proceedings of Workshop on Formal Methods and
Security Protocols, 1998.

[53] G. Denker, J. Millen, and H. Rueß. The CAPSL integrated protocol envi-
ronment. Technical Report SRI-CLS-2000-02, SRI International, 2000.

152 Bibliography

[54] A. D. L. Dill, , A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verifica-
tion as a hardware design aid. In Computer Design: VLSI in Computers
and Processors (ICCD 1992), pages 522 –525. IEEE Computer Society
Press, 1992.

[55] D. Dolev and A. C. Yao. On the security of public key protocols. In 22nd
Annual Symposium on Foundations of Computer Science, pages 350–357.
IEEE, 1981.

[56] A. Durante, R. Focardi, and R. Gorrieri. A compiler for analyzing crypto-
graphic protocols using noninterference. ACM Transactions on Software
Engineering and Methodology, 9(4):488–528, 2000.

[57] N. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Undecidability
of bounded security protocols. In Proceedings of Workshop on Formal
Methods and Security Protocols (FMSP 1999), 1999.

[58] N. Durgin, J. Mitchell, and D. Pavlovic. A compositional logic for protocol
correctness. Journal of Computer Security, 11(4):677–721, 2003.

[59] R. Focardi, A. Ghelli, and R. Gorrieri. Using non interference for the
analysis of security protocols. In Proceedings of DIMACS Workshop on
Design and Formal Verification of Security Protocols. DIMACS, 1997.

[60] R. Focardi and R. Gorrieri. A classification of security properties for pro-
cess algebras. Journal of Computer Security, 3(1):5–33, 1995.

[61] R. Focardi and R. Gorrieri. The compositional security checker: A tool for
the verification of information flow security properties. IEEE Transactions
on Software Engineering, 23(9):550–571, 1997.

[62] C. Fournet and M. Abadi. Hiding names: Private authentication in the
applied pi calculus. In Proceedings of the International Symposium on
Software Security (ISSS 2002), volume 2609 of Lecture Notes in Computer
Science, pages 317–338. Springer Verlag, 2003.

[63] T. Genet and F. Klay. Rewriting for cryptographic protocol verification. In
Proceedings of the 17th International Conference on Automated Deduction
(CADE 2000), volume 1831 of Lecture Notes in Computer Science, pages
271–290. Springer Verlag, 2000.

[64] J. A. Goguen and J. Meseguer. Security policies and security models. In
Proceedings, 1982 IEEE Symposium on Security and Privacy (S&P 1982),
pages 11–20. IEEE Computer Society Press, 1982.

[65] D. Gollmann. What do we mean by entity authentication. In Proceedings,
1996 IEEE Symposium on Security and Privacy (S&P 1996), pages 46–54.
IEEE Computer Society Press, 1996.

Bibliography 153

[66] D. Gollmann. Authentication by correspondence. IEEE Journal on Se-
lected Areas in Communications, 21(1):88–95, 2003.

[67] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryp-
tographic protocols. In Proceedings, 1990 IEEE Symposium on Security
and Privacy (S&P 1990), pages 234–248. IEEE Computer Society Press,
1990.

[68] A. D. Gordon and A. Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. Journal of Computer Security, 12(3-4):435 – 483, 2004.

[69] J. Goubault-Larrecq. A method for automatic cryptographic protocol ver-
ification. In Proceedings of the 15th Workshop on Parallel and Distributed
Processing (IPDPS 2000), Lecture Notes in Computer Science, pages 977–
984. Springer Verlag, 2000.

[70] J. Goubault-Larrecq. Les syntaxes et la sémantique du langage de
spécification EVA. Technical Report 3, EVA, 2001.

[71] X. Guan, Y. Yang, and J. You. Making ambients more robust. In Inter-
national Conference on Software: Theory and Practice (ICS 2000), pages
377–384, 2000.

[72] J. D. Guttman. Key compromise, Strand Spaces, and the authentication
tests. In 17th Conference on the Mathematical Foundations of Program-
ming Semantics (MFPS 2001), volume 45 of Electronic Notes in Theoreti-
cal Computer Science. Elsevier Science Inc., 2001. Paper dedicated to Bob
Dylan.

[73] J. D. Guttman and F. J. Thayer. Authentication tests. In Proceedings,
2000 IEEE Symposium on Security and Privacy (S&P 2000), pages 96 –
109. IEEE Computer Society Press, 2000.

[74] S. Hansen, J. Skriver, and H. Riis Nielson. Using static analysis to validate
the SAML single sign-on protocol. In Proceedings of Workshop on Issues
in the Theory of Security (WITS 2005), pages 27 – 40. ACM Press, 2005.

[75] J. Herzog. Computational Soundness for Standard Assumptions of Formal
Cryptography. PhD thesis, Massachusetts Institute of Technology, 2004.

[76] C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–77, 1978.

[77] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[78] J. E. Hopcroft, R. M. Motwani, and J. D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley, 2001.

154 Bibliography

[79] Information technology - security techniques - key management - part 2.
mechanisms using symmetric techniques ISO/IEC 11770-2. International
Standard, 1996.

[80] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and verifying
security protocols. In Logic for Programming and Automated Reasoning:
7th International Conference (LPAR 2000), volume 1955 of Lecture Notes
in Computer Science, pages 131–160. Springer Verlag, 2000.

[81] N. H. Kaplan. Analysis and reconstruction of attacks on authentication
protocols. Master’s thesis, Informatics and Mathematical Modelling, Tech-
nical University of Denmark, 2004.

[82] R. A. Kemmerer. Analyzing encryption protocols using formal verification
techniques. IEEE Journal on Selected Areas in Communications, 7(4):448–
457, 1989.

[83] N. Klarlund. Mona & Fido: The logic-automaton connection in practice.
In The 11th International Workshop on Computer Science Logic (CSL
1997), volume 1414 of Lecture Notes in Computer Science, pages 311–326.
Springer Verlag, 1998.

[84] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Pro-
ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2000), pages 352–364. ACM Press, 2000.

[85] G. Lowe. An attack on the Needham-Schroeder public-key authentication
protocol. Information Processing Letters, 56(3):131–133, 1995.

[86] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 1996), volume 1055 of Lecture Notes in Computer
Science, pages 147–166. Springer Verlag, 1996.

[87] G. Lowe. A hierarchy of authentication specifications. In Proceedings of
the 10th Computer Security Foundations Workshop (CSFW 1997), pages
31–43. IEEE Computer Society Press, 1997.

[88] G. Lowe. Casper: A compiler for the analysis of security protocols. Journal
of Computer Security, 6(1):53–84, 1998.

[89] G. Lowe. Towards a completeness result for model checking of security
protocols. Journal of Computer Security, 7(2-3):89–146, 1999.

[90] LySa. http://www.imm.dtu.dk/cs LySa/, 2004. Webpage hosted by In-
formatics and Mathematical Modelling, Technical University of Denmark.

Bibliography 155

[91] M. Maidl. Analysing security requirements of the case study “Web-based
micro-business”. DEGAS Report WP7-UEDIN-I01-Int-001, 2002.

[92] M. Maidl and M. Vasari. Design and evaluation of a key exchange protocol
for the Omnys case study. DEGAS Report, 2004.

[93] C. Meadows. The NRL protocol analyzer: An overview. The Journal of
Logic Programming, 26(2):113–131, 1996.

[94] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[95] M. Merro and V. Sassone. Typing and subtyping mobility in Boxed Am-
bients. In CONCUR 2002 – Concurrency Theory, volume 2421 of Lecture
Notes in Computer Science, pages 304–320. Springer Verlag, 2002.

[96] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryp-
tographic protocol analysis. In Proceedings of the 8th ACM Conference
on Computer and Communications Security, pages 166 – 175. ACM Press,
2001.

[97] J. K. Millen. The Interrogator: a tool for cryptographic protocol secu-
rity. In Proceedings, 1984 IEEE Symposium on Security and Privacy (S&P
1984), pages 134–41. IEEE Computer Society Press, 1984.

[98] J. K. Millen. The Interrogator model. In Proceedings, 1995 IEEE Sympo-
sium on Security and Privacy (S&P 1995), pages 251–260. IEEE Computer
Society Press, 1995.

[99] R. Milner. Calculus of Communicating Systems. Springer Verlag, 1980.

[100] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[101] R. Milner, J. Parrow, and D. Walker. A calculus of Mobile processes (I
and II). Information and Computation, 100(1):1–77, 1992.

[102] Mona, 2004. Webpage hosted by BRICS, University of Aarhus.

[103] D. Monniaux. Abstracting cryptographic protocols with tree automata. In
Static Analysis, 6th International Symposium (SAS 1999), volume 1694 of
Lecture Notes in Computer Science, pages 149–163. Springer Verlag, 1999.

[104] R. Needham and M. Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12):993–
999, 1978.

[105] R. Needham and M. Schroeder. Authentication revisited. ACM Operating
Systems Review, 21(1):8–10, 1987.

156 Bibliography

[106] M. Nesi, G. Rucci, and M. Verdesca. A rewriting strategy for protocol
verification. In Final Proceedings of Workshop on Reduction Strategies
in Rewriting and Programming (WSR 2003), volume 86(4) of Electronic
Notes in Theoretical Computer Science. Elsevier Science Inc., 2003.

[107] F. Nielson, R. R. Hansen, and H. Riis Nielson. Abstract interpretation
of Mobile Ambients. Science of Computer Programming, 47(2-3):145–175,
2003.

[108] F. Nielson and H. Riis Nielson. Infinitary control flow analysis: a col-
lecting semantics for closure analysis. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 1997), pages 332–345. ACM Press, 1997.

[109] F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis.
Springer Verlag, 1999.

[110] F. Nielson, H. Riis Nielson, and R. R. Hansen. Validating firewalls using
Flow Logics. Theoretical Computer Science, 283(2):381–418, 2002.

[111] F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic analysis in cu-
bic time. In Theory of Concurrency, Higher Order Languages and Types
(TOSCA 2001), volume 62 of Electronic Notes in Theoretical Computer
Science. Elsevier Science Inc., 2001.

[112] F. Nielson, H. Riis Nielson, and H. Seidl. A succinct solver for ALFP.
Nordic Journal of Computing, 9:335–372, 2002.

[113] F. Nielson, H. Riis Nielson, H. Sun, M. Buchholtz, R. R. Hansen, H. Pile-
gaard, and H. Seidl. The succinct solver suite. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2003), volume 2988 of
Lecture Notes in Computer Science, pages 251–265. Springer Verlag, 2004.

[114] H. Riis Nielson and F. Nielson. Flow Logic: a multi-paradigmatic approach
to static analysis. In The Essence of Computation: Complexity, Analysis,
Transformation, volume 2566 of Lecture Notes in Computer Science, pages
223–244. Springer Verlag, 2002.

[115] H. Riis Nielson, F. Nielson, and M. Buchholtz. Security for mobility. In
Foundations of Security Analysis and Design II FOSAD 2001/2002 Tuto-
rial Lectures, volume 2946 of Lecture Notes in Computer Science, pages
207–265. Springer Verlag, 2004.

[116] Oasis. http://www.oasis-open.org/, 2004. Webpage hosted by Organiza-
tion for the Advancement of Structured Information Standards.

[117] OMG Unified Modeling Language specification. Standard of the Object
Management Group, Inc., 2001.

Bibliography 157

[118] D. Otway and O. Rees. Efficient and timely mutual authentication. ACM
Operating Systems Review, 21(1):8–10, 1987.

[119] L. C. Paulson. Relations between secrets: Two formal analysis of the
Yahalom protocol. Technical report, Cambridge University, 1996.

[120] L. C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, 6(1):85–128, 1998.

[121] G. Plotkin. A structural approach to operational semantics. Technical
Report FN-19, Department of Computer Science (DAIMI), 1981.

[122] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[123] L. Rogers. CERT coordination center: Improving security - Larry
Rogers, applying patches. Published on the CERTr/CC website at
http://www.cert.org/homeusers/apply patches.html, 2001.

[124] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998.

[125] M. Satyanarayanan. Intergrating security in a large distributed system.
ACM Transactions on Computer Systems, 7(3):247–280, 1989.

[126] D. Song. Athena: A new efficient automatic checker for security proto-
col analysis. In Proceedings of the 12th Computer Security Foundations
Workshop (CSFW 1999), pages 192–202. IEEE Computer Society Press,
1999.

[127] Standard ML of New Jersey. http://www.smlnj.org/, 2004. Webpage
hosted by the SML/NJ Fellowship.

[128] M.-O. Stehr, I. Cervesato, and S. Reich. Towards an execu-
tion environment for the MSR cryptoprotocol specification language.
http://formal.cs.uiuc.edu/stehr/msr eng.html, 2004. Webpage hosted
by Department of Computer Science, University of Illinois at Urbana-
Champaign.

[129] S. D. Stoller. A bound on attacks on authentication protocols. In Proceed-
ings of the 2nd IFIP International Conference on Theoretical Computer
Science (TCS 2002), pages 588–600. Kluwer, 2002.

[130] Succinct Solver. http://www.imm.dtu.dk/cs SuccinctSolver/, 2004. Web-
page hosted by Informatics and Mathematical Modelling, Technical Uni-
versity of Denmark.

158 Bibliography

[131] P. Syverson and P. van Oorschot. A unified cryptographic protocol logic.
Technical report, NRL Publication 5540-227. Naval Research Lab, 1996.

[132] D. T. Teller, P. Zimmer, and D. Hirschkoff. Using ambients to control re-
sources. In CONCUR 2002 – Concurrency Theory, volume 2421 of Lecture
Notes in Computer Science, pages 288–303. Springer Verlag, 2002.

[133] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Why
is a security protocol correct? In Proceedings, 1998 IEEE Symposium on
Security and Privacy (S&P 1998), pages 160–171. IEEE Computer Society
Press, 1998.

[134] T. Y. C. Woo and S. S. Lam. A semantic model for authentication pro-
tocols. In Proceedings, 1993 IEEE Symposium on Security and Privacy
(S&P 1993), pages 178–194. IEEE Computer Society Press, 1993.

[135] R. Zunino and P. Degano. A note on the perfect encryption assumption in
a process calculus. In Foundations of Software Science and Computation
Structures (FoSSaCS 2004), volume 2987 of Lecture Notes in Computer
Science, pages 514–528. Springer Verlag, 2004.

