173 research outputs found

    LOCATION MANAGEMENT FOR PCS NETWORKS USING USER MOVEMENT PATTERN

    Get PDF
    ABSTRACT Location management is essential task in current cellular system. Mobility prediction is widely used to assist handoff management, resource reservation and service pre-configuration. Location management methods are to find out mobile unit current location. Location update and paging have to maintain efficiently to minimize location management cost in cellular network. This paper introduce new user movement pattern according to particular time slot based algorithm reducing location management cost. This algorithm is based on user's daily predefined moving geographical activities pattern, according to time. Paging decision for user is based on this predicted location for any instance of time interval. This predicated value again sort by higher probability of user finding in any cell for that time duration. This prediction information is saved by mobile unit in its memory for every fixed time interval. The results confirm the effectiveness of this method compare to existing method for real time in mobile services and proposed method

    Certifying the Optimality of a Distributed State Estimation System via Majorization Theory

    Get PDF
    Consider a first order linear time-invariant discrete time system driven by process noise, a pre-processor that accepts causal measurements of the state of the system, and a state estimator. The pre-processor and the state estimator are not co-located, and, at every time-step, the pre-processor transmits either a real number or an erasure symbol to the estimator. We seek the pre-processor and the estimator that jointly minimize a cost that combines two terms; the expected squared state estimation error and a communication cost. In our formulation, the transmission of a real number from the pre-processor to the estimator incurs a positive cost while erasures induce zero cost. This paper is the first to prove analytically that a symmetric threshold policy at the pre-processor and a Kalman-like filter at the estimator, which updates its estimate linearly in the presence of erasures, are jointly optimal for our problem

    An Intelligent Mobility Prediction Scheme for Location-Based Service over Cellular Communications Network

    Get PDF
    One of the trickiest challenges introduced by cellular communications networks is mobility prediction for Location Based-Services (LBSs). Hence, an accurate and efficient mobility prediction technique is particularly needed for these networks. The mobility prediction technique incurs overheads on the transmission process. These overheads affect properties of the cellular communications network such as delay, denial of services, manual filtering and bandwidth. The main goal of this research is to enhance a mobility prediction scheme in cellular communications networks through three phases. Firstly, current mobility prediction techniques will be investigated. Secondly, innovation and examination of new mobility prediction techniques will be based on three hypothesises that are suitable for cellular communications network and mobile user (MU) resources with low computation cost and high prediction success rate without using MU resources in the prediction process. Thirdly, a new mobility prediction scheme will be generated that is based on different levels of mobility prediction. In this thesis, a new mobility prediction scheme for LBSs is proposed. It could be considered as a combination of the cell and routing area (RA) prediction levels. For cell level prediction, most of the current location prediction research is focused on generalized location models, where the geographic extent is divided into regular-shape cells. These models are not suitable for certain LBSs where the objectives are to compute and present on-road services. Such techniques are the New Markov-Based Mobility Prediction (NMMP) and Prediction Location Model (PLM) that deal with inner cell structure and different levels of prediction, respectively. The NMMP and PLM techniques suffer from complex computation, accuracy rate regression and insufficient accuracy. In this thesis, Location Prediction based on a Sector Snapshot (LPSS) is introduced, which is based on a Novel Cell Splitting Algorithm (NCPA). This algorithm is implemented in a micro cell in parallel with the new prediction technique. The LPSS technique, compared with two classic prediction techniques and the experimental results, shows the effectiveness and robustness of the new splitting algorithm and prediction technique. In the cell side, the proposed approach reduces the complexity cost and prevents the cell level prediction technique from performing in time slots that are too close. For these reasons, the RA avoids cell-side problems. This research discusses a New Routing Area Displacement Prediction for Location-Based Services (NRADP) which is based on developed Ant Colony Optimization (ACO). The NRADP, compared with Mobility Prediction based on an Ant System (MPAS) and the experimental results, shows the effectiveness, higher prediction rate, reduced search stagnation ratio, and reduced computation cost of the new prediction technique

    Utilizing Massive Spatiotemporal Samples for Efficient and Accurate Trajectory Prediction

    Get PDF
    Trajectory prediction is widespread in mobile computing, and helps support wireless network operation, location-based services, and applications in pervasive computing. However, most prediction methods are based on very coarse geometric information such as visited base transceiver stations, which cover tens of kilometers. These approaches undermine the prediction accuracy, and thus restrict the variety of application. Recently, due to the advance and dissemination of mobile positioning technology, accurate location tracking has become prevalent. The prediction methods based on precise spatiotemporal information are then possible. Although the prediction accuracy can be raised, a massive amount of data gets involved, which is undoubtedly a huge impact on network bandwidth usage. Therefore, employing fine spatiotemporal information in an accurate prediction must be efficient. However, this problem is not addressed in many prediction methods. Consequently, this paper proposes a novel prediction framework that utilizes massive spatiotemporal samples efficiently. This is achieved by identifying and extracting the information that is beneficial to accurate prediction from the samples. The proposed prediction framework circumvents high bandwidth consumption while maintaining high accuracy and being feasible. The experiments in this study examine the performance of the proposed prediction framework. The results show that it outperforms other popular approaches

    DISTRIBUTED ESTIMATION OVER NETWORKS WITH COMMUNICATION COSTS

    Get PDF
    We analyze how distributed or decentralized estimation can be performed over networks, when there is a price to be paid whenever nodes in the network communicate with each other. The work here has application especially in the network control systems. Assume that different nodes in the network can track perfectly or with imperfectly some stochastic processes, while other nodes in the network need to estimate these stochastic processes. The nodes which can observe the stochastic processes can send information directly to the nodes which need to estimate the processes, or information can be sent to intermediate nodes. When each transmission is performed a cost for communication is paid. The goal of the network is to optimize jointly a cost which consists both of a function of the estimation error and a function of the transmission cost. We show here that for some simple topologies the decision to send information over the network is a threshold policy, while the estimators are linear estimators which resemble with the Kalman-filter. For the result dealing with simple topologies we have proved the results using majorization theory. It is also shown here both analytically and numerically that things can immediately become quite complicated. If we take into consideration multidimensional problems or problems with multiple agents and/or transmission noise, the optimal strategies can no longer be found analytically and it can be quite difficult to compute numerically the optimal strategies
    • …
    corecore