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Abstract—Trajectory prediction is widespread in mobile computing, and helps support wireless network operation, location-based

services, and applications in pervasive computing. However, most prediction methods are based on very coarse geometric information

such as visited base transceiver stations, which cover tens of kilometers. These approaches undermine the prediction accuracy, and

thus restrict the variety of application. Recently, due to the advance and dissemination of mobile positioning technology, accurate

location tracking has become prevalent. The prediction methods based on precise spatiotemporal information are then possible.

Although the prediction accuracy can be raised, a massive amount of data gets involved, which is undoubtedly a huge impact on

network bandwidth usage. Therefore, employing fine spatiotemporal information in an accurate prediction must be efficient. However,

this problem is not addressed in many prediction methods. Consequently, this paper proposes a novel prediction framework that

utilizes massive spatiotemporal samples efficiently. This is achieved by identifying and extracting the information that is beneficial to

accurate prediction from the samples. The proposed prediction framework circumvents high bandwidth consumption while maintaining

high accuracy and being feasible. The experiments in this study examine the performance of the proposed prediction framework. The

results show that it outperforms other popular approaches.

Index Terms—Location-dependent and sensitive, pervasive computing, location-based services, trajectory prediction
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1 INTRODUCTION

PREDICTING the trajectories of mobile users accurately is
beneficial to pervasive computing and locations-based

services (LBSs) because appropriate information can be
processed and fetched to subscribers in advance. This
alleviates system latency and increases the interactivity of
services. Other applications, such as, early reminder system
[1], traffic planning [2], and dead reckoning in GPS [3], also
require accurate prediction of user locations. Trajectory
prediction also supports the operation of mobile networks,
for example, bandwidth management [4], location manage-
ment [5], and routing in mobile ad hoc networks
(MANETs) [6].

Most prediction methods in mobile computing model a
future trajectory as a sequence of cells, location area (LA),

or significant locations (e.g., school and shopping mall),
which usually have a diameter of several kilometers.

These methods can merely provide a coarse trajectory

prediction. Therefore, employing very rough locations in
prediction undermines prediction accuracy, which in turn

restricts the methods’ variety of applications. Some studies
exploit precise spatiotemporal samples for more accurate

prediction, using recently emerging positioning technology
such as GPS and femtocells, whose error is typically less

than 50 meters.
However, to apply precise spatiotemporal samples, we

need more bytes to represent the samples. Thus, the data

size of those spatiotemporal samples is often massive. The
samples can be transmitted to and from a predictor, which
is located at mobile stations (MS) or mobile operator
networks. When these samples are transmitted via net-
works, a large amount of bandwidth usage is introduced.
This bandwidth issue discourages the use of precise
spatiotemporal samples for prediction, and causes the
dilemma of accurate prediction and minimal bandwidth
usage. Some related studies use precise spatiotemporal
samples, but they limit the usage to determining the
parameters in a fixed, predefined motion model for
predicting trajectory [7], estimating MS states for short-
term trajectory prediction (on the order of milliseconds) [6],
or constructing significant locations for coarse trajectory
prediction [1]. Those studies cannot provide a prediction
method for all kinds of moving characteristics and long-
term forecasting (on the order of hours).

To employ precise spatiotemporal information, the 
availability of the information must be considered. There 
are several factors dominating the availability. The first 
factor is the accuracy of positioning technology. The 
primary positioning technology is GPS, whose error is on 
the order of few meters. Some techniques, such as in [3], [8], 
and [9], can maintain accurate positioning when GPS is 
absent. However, positioning incurs extra power consump-

tion, and shortens mobile devices’ battery life. Thus, the 
second factor is the power consumption of mobile devices. 
Many researches have designed low powered components 
for mobile devices, for example, in GPS receiver [10], CPU 
[11], display [12], and networking [13]. Apart from energy 
saving, there have been breakthroughs in battery technol-

ogy that improve both charge capacity and recharging time 
by about 10 times, such as in [14]. The last factor is the 
popularity of mobile applications or LBSs, which encourage 



mobile users to stay online. Some social networking
applications with LBS supported, for example, Facebook
and Google+, have been prevalent, and attracted hundreds
of million users. Longer online duration results in higher
availability of spatial-temporal information.

Concluding all of the three factors we have discussed,
acquiring massive precise spatial-temporal samples for
trajectory prediction is promising. This conclusion moti-
vates us to propose a novel trajectory predictor that utilizes
those samples from MSs. Given spatiotemporal samples for
predictor training and the past trajectory of an MS, this
proposed predictor can accurately predict the future
trajectory of the MS without presuming any motion model.
This predictor attains a higher accuracy than other methods
using the same amount of information. Equivalently, it can
achieve an accuracy level using less network bandwidth. To
utilize massive precise spatiotemporal samples efficiently,
the proposed predictor identifies and extracts the informa-
tion that is beneficial to accurate prediction from the
samples. Our proposed prediction approach and its
novelties are summarized as follows:

1. The proposed approach quantizes MS trajectories
both spatially and temporally to reduce computa-
tion, and the bandwidth usage due to transmitting
spatiotemporal samples. The quantization is adap-
tive to the probability distribution of MS locations
and the duration of staying at those locations so that
important information for prediction is retained.

2. The information that does not significantly contri-
bute to future movement is ignored. That informa-
tion is obtained by learning which historical data are
unimportant for prediction. The amount of data
required to process is then greatly reduced while
prediction accuracy is not sacrificed.

3. After capturing the relevant information for predic-
tion, we perform a transformation so that sample
trajectories with similar probabilistic characteristics
are clustered, and an accurate and efficient predic-
tion is facilitated. This is achieved by nonlinear
support vector machine (SVM) [15].

4. To raise the reliability of the predictor, the proposed
method considers multiple possible future locations
and combines them into final prediction results. If
the reliability of a predicted location is low, it is
excluded from the prediction results to avoid
prediction with huge error, and wastage of band-
width due to sending out unreliable prediction
results from the predictor.

We include extensive experiments showing that the
proposed predictor outperforms other popular predictors
in terms of accuracy and bandwidth usage.

This study focuses on exploiting the most essential
information, i.e., past trajectories, for prediction. It is
possible to take additional contexts into account to enhance
prediction accuracy as in [16], for example, user favorites.
However, it may be costly to define the contexts. Besides, the
interpretation of the context may be subjective and vary with
different people. The remainder of this paper is organized as
follows: Section 2 reviews different types of prediction
methods. Section 3 provides an overview of the proposed

predictor while Section 4 describes the predictor in detail.
The performance of the proposed predictor is evaluated, and
compared with other popular prediction methods in
Section 5. Finally, Section 6 concludes this paper.

2 RELATED WORK

There are a lot of methods for trajectory or movement
prediction. They can be found in many aspects in addition
to mobile computing, such as virtual reality, augmented
reality, computer vision, and robotics. We discuss them in
this section. The prediction methods can be generally
categorized into two approaches: 1) employing determinis-
tic model, and 2) without deterministic model.

2.1 Prediction Employing Deterministic Model

One of the common approaches is modeling trajectory or
movement by fixed and predefined models. Some types of
modeling consider the underlying dynamics or kinematics
of the movement, for example, polynomial predictors in [6]
and [17]. Some studies apply Gauss-Markov process to
model the movement [18], [19]. Noise filtering can be
applied together with these models to increase prediction
accuracy, for example, Kalman filter, unscented Kalman
filter [20], and sequential Monte Carlo method [21].
Considering underlying dynamics can produce precise
prediction. However, the prediction accuracy plummets
when we predict a few hundred milliseconds ahead, and
the movement being predicted is with high frequency (the
movement is unsteady or arbitrary) [17], [22]. Trajectories
can be also forecasted by some common models for time
series data [7], for example, ARMA, ARIMA, and ARFIMA,
weighted sum of the states of moving objects in the past
[23], or an artificial neural network (ANN) [24]. Instead of
modeling trajectory, some studies strive to model transition
probabilities, which represent the probabilities of MSs
transiting from one cell or region to another one. These
probabilities are evaluated according to some predefined
rules or formulae [25]. To exploit even more information,
Samaan and Karmouch [16] take more contexts of mobile
users and locations into account for better probability
estimations, for example, the users’ interests and purposes
of the locations. Predictors employing fixed model are
suitable for specific movement pattern or applications,
for example, in [22] and [23].

2.2 Prediction without Deterministic Model

Neither fixed models for the movement trajectory nor
transition probability can predict MS movements accurately
if the models do not fit the movements. Therefore,
researchers attempt to develop prediction methods or
prediction methods without presuming any model. These
methods are solely based on statistics or past trajectories.
They apply the samples in the past to define an appropriate
model implicitly. The methods are suitable for any kinds of
movement, which exhibit different characteristics due to
unlike underlying dynamics or kinematics.

One of the methods without presuming any movement
model is Markov chain modeling [26]. Most studies apply
first-order Markov chain [5], [27] or second-order one [1],
[4], [28]. It is also possible to estimate the cell residence time



by amending Markov chain to be Markov renewal process
[29]. Markov chain of very few orders may not be able to
capture all characteristics of user movements for prediction.
Thus, some papers suggest the prediction methodologies in
compression, such as Lempel-Ziv-78 (LZ78) [30], which
need not limit the order of Markov chain, and therefore
achieves very high-order Markov chain modeling. These
methodologies were originally designed for retaining
information in lossless compression and not for movement
prediction. However, the higher order of Markov chain we
adopt, the more historic data a predictor requires. Including
more data implies a higher consumption of bandwidth and
computation resources. This consumption may be wasteful
because Markov chain with higher order does not guarantee
a more accurate trajectory prediction [31]. Another issue for
Markov modeling is the definition of discrete cells. Most
studies define the cells according to the location and
coverage of BTSs or access points (APs) [5], [26], [30], [31].
Some papers define the cells as regular square grids [28] or
as meaningful locations, for example, campus and home [1].
Ping-pong phenomenon [27] and road topology [4] can be
also considered in defining cells. Unfortunately, quantizing
positions into discrete cells, which are usually very large,
loses precise information for prediction. The cells can be
made smaller, but it results in an excessive number of cells,
and leads to huge computation. Also, more bytes are
required to represent a cell, and more number of position
samples is needed to represent a trajectory. The data size
involved in prediction increases significantly. The band-
width usage thus becomes vast.

Trajectory similarity matching is another approach past
trajectories to predict mobile user movements. This ap-
proach compares the current trajectory of mobile users with
the sample trajectories in the database that collects MS
movement records. The sample trajectory that is the most
similar to the current trajectory is then matched and
retrieved for prediction. Since the whole trajectory is
examined, this approach has the advantage of high-order
Markov chain modeling, which examines a long history. In
mobile computing, the trajectories are usually in form of
discrete cells sequences. Thus, the trajectories can be treated
as strings, and the matching can be achieved by comparing
the strings [32]. The matching can be also based on
trajectory characteristics, such as length, duration, and
frequency of occurrence [33]. As discrete cells comprise the
trajectories, decision tree learning can be applied to
trajectory prediction [34]. To reduce computation, similar
sequences are clustered and merged into one sequence or
trajectory [32]. However, representing a trajectory as a
discrete cells sequence for matching ignores some spatial
information, which also happens in the Markov chain
modeling. This representation does not include the in-
formation about the spatial relationship among discrete
cells. Some representation is in form of a sequence of exact
position coordinates [35], [36]. Like clustering the sequences
of discrete cells, the sequences of position coordinates can
be clustered. It is accomplished by a clustering algorithm,
for example, K-means. The trajectory matching becomes
comparison between the current trajectory and the centroid
of each cluster. Similar to high-order Markov chain,

trajectory similarity matching approach may waste compu-
tation and bandwidth due to examining too much history.
This approach also assumes that two trajectories will
exhibit similar future outcomes if their overall geometrical
similarity is high. This is not true if each part of the
trajectories contributes to future MS behaviors differently.
Furthermore, this approach treats the whole retrieved
trajectory as the predicted trajectory. This ignores the fact
that, in general, the prediction error along the predicted
trajectory is uneven. Unreliable prediction may ensue from
some portions of the predicted trajectory.

3 THE PROPOSED PREDICTION FRAMEWORK

The proposed prediction framework predicts MS locations
based on the information from sample trajectories captured
from past MS trajectories. Fig. 1 shows the overview of the
framework. The proposed framework is separated into
training and prediction modules. The sample trajectories
and the input trajectory are in form of a sequence of
n� positions or locations. Those trajectories are represented
as fl�n� ; l�n��1; . . . ; l�1g initially, where l�n� is the latest location.
The locations are sampled regularly, for example, every
100 seconds. The training module extracts the information
from the sample trajectories from which we can infer the
future trajectories. The extracted information is then
applied to the online prediction in the framework. The
online prediction, which is executed in the prediction
module, takes the input trajectory and the time instants for
prediction at when the predicted locations are, for example,
for every 100 seconds afterward. The input trajectory is the
current trajectory of an MS. By applying the information
from the training module, predicted locations at the
specified time instants are evaluated.

The training and prediction module can reside at either
an MS (client-based prediction, e.g., tablet PC), or mobile
operator networks (server-based prediction, e.g., an oper-
ator’s application server). If we perform the prediction at
mobile operator networks, the current MS trajectories for
online prediction and the sample trajectories for training are
sent from the MS to the networks. It is because all trajectory
samples are obtained from the MS. Network bandwidth is
then consumed. We call this kind of bandwidth, which is
responsible for receiving data for the training and predic-
tion module, as incoming bandwidth. If we perform the
prediction at MS, the predicted locations are sent out to
mobile operator networks. Bandwidth is then used by
sending out prediction results from the prediction module.
We call this kind of bandwidth as outgoing bandwidth.
Employing precise spatiotemporal samples causes a large

Fig. 1. The prediction framework overview.



amount of data, which can overwhelm both incoming and
outgoing bandwidth. This bandwidth issue is considered in
our proposed framework.

The training module first takes the sample trajectories to
conduct quantization, which is designed to partition an
environment into cells. The environment is an area covered
by mobile services. This quantization is not based on the
coverage of BTS or AP. More popular regions should
contain more tiny cells. This adaptive approach reduces the
data size for representing a trajectory. Computation
resource and bandwidth usage is thus lowered while
important trajectory information is retained. The residence
duration of each cell, which is the duration of staying in a
cell, is also quantized adaptively according to how long
MSs usually stay there. The quantization is performed by
vector quantization (VQ) described in Section 4.1.

The quantized samples are then transformed into
sequences of states. The next step in training is to determine
how long the history or how many past states should be
examined for the prediction. However, this decision
depends on the current situation or state of the MS. For
example, if the MS travels fast and straight, it will likely
continue traveling straight, regardless of how it has traveled
previously. On the other hand, if the MS is currently at a
junction point, more information will be required to predict
the next cell to be visited. More states of MS in the past will
be examined in addition to the current state to determine
the length of the history for prediction. This problem is
equivalent to deciding the most suitable order in Markov
chain modeling, which is called predictor orders. A high
order demands heavy computation and bandwidth usage.
Thus, the proposed method trims the order, while main-
taining accurate prediction. This process is called order
trimming, as Section 4.2 describes.

Order trimming greatly reduces the sample trajectories’
sizes. The trimmed samples are then used in SVM training.
The SVMs are classifiers that can alleviate the overfitting
problem, and evaluate the class membership probabilities
[37], [38]. The proposed predictor employs the SVMs to
estimate the conditional probabilities of all possible output
states, given the states in the past. Prior to SVM training, the
input space of the samples is transformed into a desirable
feature space that separates the samples demonstrating
different future outcomes, and facilitates prediction. This
transformation is achieved by applying kernel trick with the
widespread radial basis function (RBF) [39]. Section 4.3
discusses SVM training in greater detail.

After the training module has extracted all information
regarding prediction from the samples, the information is
applied in the online prediction module. This module
quantizes the input trajectory at the beginning. The module
then predicts possible locations and their corresponding
probabilities using the quantized input trajectory, predictors’
orders, and SVMs. The online prediction process discards
the information unimportant for prediction to speed up the
process, and decreases the bandwidth usage further. The
process then combines the predicted locations into the final
predicted locations. Each of these final predicted locations
refers to one of the input time instants for prediction.
Section 4.4 depicts the online prediction module.

4 METHOD DETAILS

4.1 Vector Quantization

The first process in the training module is to construct a
quantization mapping. The input to this mapping is an
trajectory in its initial form, Traj�, which is mentioned in
Section 3, and in the form of fl�n�; l�n��1; . . . ; l�1g. We denote this
mapping as QLð� j NcellÞ:QLð� j NcellÞ converts every position
of Traj� into one of the predefined discrete cells or locations
where Ncell is the number of the discrete locations. Ncell is a
predefined parameter, and fixed throughout the quantiza-
tion. This parameter influences the square of location
quantization error, Lerr: QLð� j NcellÞ should minimize the
expectation of Lerr, which is denoted as ELerrðNcellÞ, to retain
as much information as possible. Suppose there are Ns

sample trajectories which are Traj�1; Traj
�
2; . . . ; and Traj�Ns,

and the ith sample trajectory is notated as Traj�i ; ELerrðNcellÞ
is evaluated empirically using:

ELerrðNcellÞ ¼
XNs

i¼1

Xn�i
j¼1

��l�i;j �QL

�
l�i;j j Ncell

���2
� XNs

i¼1

n�i

 !
; ð1Þ

where n�i is the number of positions in Traj�i , and l�i;j is the
jth position in Traj�i . Minimizing ELerrðNcellÞ becomes a
classical problem of VQ in lossy data compression. The
positions in every Traj� form the training sample set, and
Ncell refers to the bit per vector in the VQ problem, which is
equal to log2ðNcellÞ. The proposed predictor employs LBG
VQ algorithm [40] to solve the problem due to its
simplicity and popularity, although applying other VQ
algorithms is possible.

The proposed prediction method replaces all positions in
every sample trajectory, Traj�, with the discrete locations
that are specified by QLð� j NcellÞ: Traj� is then shrunk by
combining consecutive identical locations into one discrete
location. Each of the discrete location pertains to a duration
value which is the residence time at the location. This value
is the product of the number of positions combined and the
sampling period for Traj�: Traj� becomes a sequence of
n tuples, fðln; dd�nÞ; ðln�1; dd

�
n�1Þ; . . . ; ðl1; dd�1Þg, where n � n�; li is

the ith discrete location, and dd�i is the duration value for li.
Similar to QLð� j NcellÞ, a quantization mapping, QDð� j NdurÞ,
is used to convert every duration value in the shrunk Traj�

into one of the predefined discrete duration values, where
Ndur is the number of the discrete duration values. Again,
the proposed method minimizes the expectation of the
square of duration quantization error, which is notated as
Derr. Analogous to ELerrðNcellÞ, this expectation, EDerrðNdurÞ,
is found by

EDerrðNdurÞ ¼
XNs

i¼1

Xni
j¼1

��dd�i;j �QD

�
dd�i;j j Ndur

���2
� XNs

i¼1

ni

 !
; ð2Þ

where ni is the number of locations in shrunk Traj�i and dd�i;j
is the jth duration value in Traj�i . LBG is again used to
construct QDð� j NdurÞ. Using QLð� j NcellÞ and QDð� j NdurÞ,
every Traj� is transformed into Traj, which is a sequence
consisting of n states, and expressed as fSn; Sn�1; . . . ; S1g.
The choices of Ncell and Ndur depend on the available
resources for prediction. More resources allow larger Ncell

and Ndur, which lead to lower quantization errors. The



ith state, Si, in the sequence is a tuple composed of a
discrete location, li, and a discrete duration value, ddi: Sn
represents the latest state, and S1 represents the oldest one.
The trajectory prediction problem becomes the estimation of
the next state, Snþ1.

Some notations in this section are used again in the
remainder of this paper. Readers may find a summary of
notations useful. We place the summary in Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TMC.2012.214.

4.2 Order Trimming

Some studies, such as in [30], employ conditional entropy to
consider the appropriate order of a predictor, which is
notated as k, but these studies are not suited to trajectory
prediction utilizing precise spatiotemporal samples. The
conditional entropy treats every state in Traj as a state
completely distinct from others. This treatment is adequate
for lossless compression but not for trajectory prediction. It
is because the extent of distinction or similarity between
two states varies with the difference between their positions
and residence durations. Employing conditional entropy
does not take the similarity into account, and makes k
higher than necessary. Therefore, the proposed method
applies another approach that relates k with prediction
accuracy. This approach makes k small while achieving low
prediction error. Low prediction error is accomplished by
reducing the expectation of the error of an optimal
estimation. The optimal estimation is the mean of the
random variable being predicted, which is the conditional
expectation of lnþ1 and dnþ1, given the sequence of last k
states, fSn; Sn�1; . . . ; Sn�kþ1g. The condition expectation is
E½E½jjS �E½S j Sn; . . . ; Sn�kþ1�jj2��, where S is a vector,
ðs1; s2; s3ÞT , representing lnþ1 and dnþ1 simultaneously, i.e.,
s1 ¼ x coordinate of lnþ1; s2 ¼ y coordinate of lnþ1, and
s3 ¼ dnþ1. Thus, the appropriate k is the smallest integer
such that E½E½jjS �E½S j Sn; . . . ; Sn�kþ1�jj2�� is lower than a
desirable value, which is notated as Emax.

The proposed method uses a greedy approach to
compute k. This method first sets k to be 1, and evaluates
E½E½jjS �E½S j Sn; . . . ; Sn�kþ1�jj2��. The method then checks
if this expectation is lower than Emax. If not, the value of k is
incremented by 1. The proposed method evaluates and
checks the expectation again. This process iterates till a
value of k is discovered such that the expectation is lower
than Emax. This greedy approach is valid only if prediction
accuracy increases with k generally. It can be verified by
proving the following:

E
�
E
�
ðsi �E½si j Sn; . . . ; Sn�pþ1�Þ2

��
� E

�
E
�
ðsi � E½si j Sn; . . . ; Sn�qþ1�Þ2

��
;

ð3Þ

for i ¼ 1; 2; 3, where p; q 2 IN1 and p < q. The proof is
presented in Appendix B, which is available in the online
supplemental material.

To evaluate E½E½jjS �E½S j Sn; . . . ; Sn�kþ1�jj2��, it requires
the probabilities, PrðS j Sn; . . . ; Sn�kþ1Þ and PrðSn; . . . ;
Sn�kþ1Þ, for all the possible values of S and sequences
fSn; . . . ; Sn�kþ1g. However, these probabilities are not
explicitly available because we do not assume any fixed

model. Instead, the proposed method applies the empirical
probabilities based on the available samples. As Section 3
mentions, k depends on the current state of MS, and
therefore we find k for each possible value of Sn. A value,
kmax, is defined, which is the maximum value of k allowed,
and is used to bound computation.

4.3 SVM Training

This section describes how to apply training samples to
SVM. Every trajectory sample is initially in form of a
sequence of regularly sampled position as described in
Sections 3 and 4.1, and transformed into a trimmed Traj
with k states or tuples using VQ and order trimming, which
are introduced in Sections 4.1 and 4.2. Each sample for
SVM training is a trimmed Traj plus its next state, which is
a sequence of kþ 1 states. The training samples then
become fSnþ1; Sn; . . . ; Sn�kþ1g or fðlnþ1; dnþ1Þ; ðln; dnÞ; . . . ;
ðln�kþ1; dn�kþ1Þg. We denote a sample trajectory for SVM
training as Seq in this section. Readers can find some basic
concepts about SVM in Appendix C1, which is available in
the online supplemental material. SVM’s extension to
multiclass classification is introduced in Appendix C2,
which is available in the online supplemental material,
which applies the results in [37] and [38].

It is possible to construct one single SVM to estimate
PrðSnþ1 j XÞ, where X is the sequences of the last k states,
fSn; . . . ; Sn�kþ1g. However, the complexity of the online
prediction would be very high because the complexity
increases with the number of pairwise class membership
probabilities. The pairwise class membership probabilities
are introduced in Appendix C2, which is available in
the online supplemental material, and they are defined
as PrðSnþ1 ¼ i j Snþ1 ¼ i or j;XÞ and PrðSnþ1 ¼ j j Snþ1 ¼
i or j; XÞ, where i and j are any distinct and possible values
of Snþ1. The number of possible values of Snþ1 (or the
number of classes in SVM terminology), Nc, is large in one
single SVM due to a lot of possible values for Snþ1. A large
value of Nc then leads to a large number of pairwise class
membership probabilities and a high complexity. The high
complexity is also applied to SVM training. Therefore,
the proposed method splits the training samples, and
constructs multiple SVMs from smaller training sets. Each
SVM has a smaller Nc, and speeds up the online prediction
and training.

The proposed method groups the samples for SVM
training. The grouping turns a large set of Seq into many
small subsets so that Nc in each subset is small. This method
groups the Seq with the same current location, ln. Each
subset of samples is applied to training an SVM and each of
the SVMs refers to a particular ln. It is efficient because it
only examines one component, Sn, in Seq for grouping.
Besides, there is a high coherence between the next state,
Snþ1, and ln. The number of possible value of Snþ1 is
reduced, and hence smaller Nc. It is better to include more
samples for training each SVM to increase prediction
reliability. Therefore, for each SVM, other Seq with similar
ln to the SVM’s ln are also included. The differences among
all samples’ ln in training the same SVM are defined to be
not larger than R meters. R then becomes a tunable
parameter in our prediction method. However, the lengths
of each Seq in a sample subset may be different because



their values of k, which are determined by order trimming,
are different. These values are adjusted so that all Seq in the
same sample subset have the same k, and SVM training is
then possible. We choose the maximum k among all Seq’s k
in the same subset as the new k for all Seq in the subset.
Every Seq is adjusted according to its new k. After training
every SVM, the proposed method indexes the SVMs using
their ln.

4.4 Online Prediction

The online prediction starts with quantizing and trimming
the input trajectories to the prediction module as discussed
in Sections 3, 4.1, and 4.2. A quantized and trimmed input
trajectory is denoted as Trajtest, which is initially obtained
by quantizing and trimming the input trajectory in Fig. 1.
Trajtest becomes longer, and the number of Trajtest
increases during the prediction process, which will be
discussed shortly in this section. Another input to the
online prediction is the time instants which are the times at
when predicted locations are, and denoted as T . T is
defined as the time which has elapsed since the start of
Trajtest. The online prediction process is performed step by
step as follows:

1. A Trajtest is obtained by quantizing and trimming
the input trajectory to the predict module.

2. The online prediction applies SVM to find out all the
possible values of Trajtest’s next state and their
probabilities.

3. The predictor then discards some of the possible
values which have a low chance of being Trajtest’s
next state to reduce computation.

4. The prediction process continues by extracting the
possible values of Trajtest’s next states which will
occur at the time T . The location values in the
extracted states and their corresponding probability
values are cached.

5. The predictor checks whether the prediction process
should finish. If all the possible values of Trajtest’s
next state are discarded or extracted, go to step 7. If
there is still any possible value of Trajtest’s next state
remaining, go to step 6.

6. The predictor attaches the remaining states to
Trajtest to form a new set of Trajtest, and goes back
to step 2. Trajtest becomes longer, and the number
of Trajtest increases.

7. The cached position and probability values are used
in computing the final predicted location at T . The
predicted location is output as the final prediction
result only if the result is found to be reliable.

Readers may notice that performing the process from
steps 2 to 6 is iterative. We explain more about the steps 2
and 3 in Section 4.4.1. Section 4.4.2 discusses the steps 4, 5,
and 6. The last step is described in Section 4.4.3.

4.4.1 Predict Next States of Trajectories

The proposed predictor evaluates every possible value of
Trajtest’s next state and their corresponding conditional
probability, given the input trajectory to the prediction
module. We represent Trajtest as a sequence of states,
fSnþm; Snþm�1; . . . ; Sn�kþ1g, and m 2 IN0, which is the total

number of predicted states on Trajtest. Initially, there is no
predicted states on Trajtest, and m ¼ 0. The conditional
probability of Trajtest’s next states, Snþmþ1, given the initial
Trajtest, is found by

PrðSnþmþ1 j SSn; SSn�1; . . . ; SSn�kþ1Þ
¼

X
8fSSnþm;SSnþm�1;...;SSnþ1g

PrðSSnþmþ1; SSnþm; . . . ; SSnþ1 j SSn;

SSn�1; . . . ; SSn�kþ1Þ

ð4Þ

where the initial Trajtest is the sequence, fSn; Sn�1;
. . . ; Sn�kþ1g, and fSnþmþ1; Snþm; . . . ; Snþ1g is a possible
future trajectory. The term, PrðSnþmþ1; Snþm; . . . ; Snþ1 j Sn;
Sn�1; . . . ; Sn�kþ1Þ, on the R.H.S. of (4) is evaluated by

PrðSSnþmþ1; SSnþm; . . . ; SSnþ1 j SSn; SSn�1; . . . ; SSn�kþ1Þ

¼
Ymþ1

i¼1

PrðSSnþi j SSnþi�1; . . . ; SSn�kþ1Þ;
ð5Þ

where PrðSnþi j Snþi�1; . . . ; Sn�kþ1Þ on the R.H.S. of (5) is
found by the SVM introduced in Section 4.3.
Snþmþ1 may have numerous possible values. The

computation for probability evaluation, which uses (4)
and (5), and finalizing prediction results, which is
discussed in Section 4.4.3, can be huge. To avoid
numerous states, the proposed method discards state
values which are insignificant for prediction. A discarded
state value, Snþi ¼ s, should have the conditional prob-
ability, PrðSnþi ¼ s j Snþi�1; . . . ; Sn�kþ1Þ, which is one of
the terms in (5), lower than a very small value. This value
is predefined and denoted as Prmin.

4.4.2 Extract Possible Future Locations

The prediction process examines the duration from the start
of Trajtest to one of its states, Snþmþ1, which are introduced
in Section 4.4.1. The duration, Dnþmþ1, is computed by

Dnþmþ1 ¼ dnþmþ1 þ dnþm þ � � � þ dn�kþ1: ð6Þ

If a value of Snþmþ1 satisfies the condition Dnþmþ1 � T , we
will cache the value of lnþmþ1 in Snþmþ1 and its
corresponding probability, which is evaluated by (5) and
(6). All cached data are used in finalizing prediction
results, which is discussed in Section 4.4.3. The cached data
are actually the possible future locations at the time T and
their probabilities.

For every value of Snþmþ1 which satisfies Dnþmþ1 < T ,
the predictor put that value at the front of Trajtest to form a
new Trajtest, which is fSnþmþ1; Snþm; Snþm�1; . . . ; Sn�kþ1g. A
set of new Trajtest is then computed. The online prediction
then goes back to the step 2 of the process, and applies the
new Trajtest. m is incremented by 1 when the step 2 is
performed again. If there is no value of Snþmþ1 which
satisfies DDnþmþ1 < T , the process finalize the prediction
based on the cached data.

4.4.3 Finalize Prediction Results

The online prediction process finalizes prediction results
using all the cached possible future locations at the time
T and their probabilities. The optimal prediction is
the conditional expectation, E½locðT Þ j Sn; Sn�1; . . . ; Sn�kþ1�,
where loc(T ) is the future location at T to be computed. The



evaluation of the expectation is simply the weighted sum of
the cached location based on their corresponding probabil-
ities. Since the prediction process discards some possible
locations in step 3, those probabilities need to be normalized.

However, the expectation may not be a reliable pre-
dictor if the trace of the covariance of locðT Þ, which is
expressed as V arðT Þ, is large. The proposed predictor
rejects unreliable prediction results, and does not send out
those results to networks. Thus, more bandwidth is saved.
More specifically, if Var(T ) is larger than a predefined
value, V armax, the prediction result should not be output.
Instead, the proposed predictor estimates the future
location at the time T to be as same as the last predicted
location. The percentage of rejecting prediction results
increases with T and the randomness of the MS move-
ments typically. In our experiments, it ranges from 5 to
75 percent approximately.

5 RESULTS AND DISCUSSIONS

5.1 Experimental Setup

This study simulates 100 MSs travelling in an environment,
which dimension is 3,500 m � 3,500 m. Each MS is
associated with a movement pattern. Each movement
pattern is a trajectory generated by a mobility model. The
format of the generated trajectories is a sequence of
regularly sampled locations as described in Section 3.
Section 5.2 explains how a movement pattern is generated.
The experiments in our study resemble to collecting
100 MSs’ past trajectories within a period of time for
training predictors and applying the trained predictors
online. Each MS may travel in the environment many times,
and generate many trajectories. The differences among the
trajectories from the same MS are emulated by adding
Gaussian noise to the sample positions in the MS’s move-
ment pattern, which is a trajectory generated by a mobility
model. A large noise value makes a trajectory differ with
others a lot. The noise is sometimes referred as the
uncertainty or randomness of a trajectory. Experiments
under high, medium, and low uncertainty are conducted.
These levels of uncertainty correspond to noise variances of
2,000, 1,000, and 500, respectively. The uncertainty is
composed of the position measurement noise and arbitrari-
ness of MS routes (i.e., an MS may take a route different
from its regular routes occasionally). We assume these two
components are independent, and follow Gaussian dis-
tribution. A total of about 60,000 trajectories are generated
for our experiments. The average duration of a trajectory is
about 8,000 s.

We compare the proposed predictor with other pre-
dictors in this section. For a clear and concise comparison,
we do not include every prediction method or approach.
Our experiments only cover methods or approaches which
are as follows:

1. The methods are easily adoptable in predicting MS
precise trajectories generally, where the trajectories
are not expressed by large cells or regions (on the
order of km2), and not restricted to specific move-
ment patterns.

2. They are able to estimate the future MS locations
that will be visited many minutes later. Methods
that can only predict milliseconds ahead are
excluded because their application in mobile com-
puting is limited.

3. They are popular in mobile computing or other
disciplines. The popularity can be revealed by their
citation rate, or equivalently, how commonly they
are found in other studies.

4. They have been shown to be one of the best among
the methods that share similar approaches. Thus,
other methods which apply similar approaches are
omitted for concise comparisons.

Predictors that apply Markov chain modeling with finite
order are found in many studies in mobile computing [1],
[4], [5], [27], [28], [29]. Among these predictors, we choose
the second-order Markov model as the first predictor in our
comparison because we rarely find a Markov chain
predictor with an order greater than 2. The second predictor
in our comparison is the one in Bhattacharya’s work [30],
which is an enhanced LZ78 method. That work has gained a
high citation rate, and is one of the best among the
predictors employing compression algorithm [26]. The
third predictor is the one applies trajectory similarity
matching. This approach can be easily found in mobile
computing and other areas [32], [33], [35], [36]. It can be
shown that this approach achieves high prediction accuracy
as compared to other machine learning approaches [34].
Among all the predictors from similarity matching ap-
proach, we apply the method in [35] and [36], which is
easily adoptable in predicting MS precise trajectories. The
predictors employing deterministic models, which are
introduced in Section 2.1, are excluded. Those methods
are only appropriate for predicting milliseconds ahead and
specific movement patterns.

The first two predictors and our proposed method need
quantize the positions on trajectories and the residence
durations at these positions, as Sections 2.2 and 4.1 mention.
We name these quantization-based predictors. The number of
the discrete locations and duration values for the quantiza-
tion are notated as in Section 4.1, which are Ncell and Ndur,
respectively. For the third predictor, the input trajectories
for this approach are in form of sequences of positions,
which are sampled regularly and not quantized. This
approach groups the sample trajectories into clusters using
K-means in training. The number of clusters and sampling
period is denoted as Ncluster and Tsample, respectively. For
brevity, we label the first three predictors as “Second-Order,”
“LZ78,” and “Clustering,” and our proposed method as
“Proposed.” All experiments are run on a 64-bit machine
with an Intel Core i7-740QM CPU and 8-GB RAM.
Appendix D, which is available in the online supplemental
material, describes the first three predictors in more detail.

5.2 Mobility Models

This study generates the movement patterns randomly by
three mobility models in [41], [42], and [43] for the
experiments, and we name these models as Kim, Mei, and
Rhee in this paper, respectively. These models are based on
real trajectory traces, and, therefore, they are adopted by



this study. Each model contributes one-third of sample
trajectories to every experiment. These models base on a
phenomenon that an MS tends to be stationary at some
destinations for some time, followed by a long distance of
travel or flight to other destinations, and becomes sta-
tionary again. We distribute 100 destinations randomly in
the environment of the experiments. We assume these
destinations are circular regions. Their radii are also
determined by chance, which are between 5 and 20 m.
Every trajectory randomly starts at one of the destinations.
Appendix E, which is available in the online supplemental
material, shows the formulations of these three models and
their parameter values. These values match with those
parameter values in [41], [42], and [43], which derives from
real-world samples.

5.3 Quantization Distortion

In this section, we examine the quantization distortion due
to quantizing positions and residence duration. This
quantization is essential to quantization-based predictors.
A common and intuitive approach is to quantize the
positions based on evenly distributed cell like the quantiza-
tion in [28], and quantize the durations regularly. We name
this regular approach. It contrasts to the proposed approach,
as Section 4.1 depicts, which quantizes the positions and
durations adaptively according to given statistics. We call
this adaptive approach. These quantized positions and
durations are used in forming states or tuples that comprise
a quantized trajectory. The experiments in this section
compare both approaches’ quantization distortion. The
better approach should attain a lower quantization distor-
tion under similar Ncell and Ndur. The distortion is defined
as the average mean square of quantization error of
quantizing every sample locations taken from all the
trajectories. These locations are sampled at a rate of one
sample per 100 s. We show the results under different
levels of trajectory uncertainty in Fig. 2. The data points in
this figure are obtained by varying Ncell and Ndur from
26 to 210. The distortions of both approaches are plotted
against log2ðNvqÞ, where Nvq is the product of Ncell and
Ndur: log2ðNvqÞ indicates the number of bits for representing
a discrete state in a quantized trajectory.

Fig. 2a reveals that finer quantization decreases the
distortion in general. However, finer quantization cannot
reduce the distortion much when Nvq becomes large. A very
fine quantization has already involved enough number of
discrete values for low distortion, and therefore introducing

more discrete values to the quantization mapping cannot
enhance the quantization significantly. Also, the adaptive
approach outperforms the regular approach under every
level of uncertainty. It is because the adaptive approach
aims to minimize the expectation of the square of quantiza-
tion error, as Section 4.1 explains, but the regular approach
does not.

The influence of the uncertainty level on the regular
approach is not as much as on the adaptive approach.
Fig. 2b examines the adaptive approach closer, and we can
see that the distortion of this approach increases with the
uncertainty level. The adaptive approach is sensitive to
the uncertainty level because the uncertainty affects the
distribution of MS positions and residence durations, on
which this approach depends. Besides, higher uncertainty
means the samples for quantization disperse more, and the
adaptive approach requires a larger Nvq to attain low
distortion.

To provide a fair comparison among the quantization-
based predictors, all of these predictors in every following
experiment in this paper adopt the adaptive approach.

5.4 Accuracy

This section compares the proposed predictor’s accuracy
with other predictors’. Predictions with various prediction
lengths, which are the time differences between the current
and predicted locations, are performed. Prediction lengths
determine the input time instants, T , to the online
prediction, which is introduced in Section 4.4. We tried
the prediction lengths at every 100 s between 100 s and
5,000 s, i.e., 100 s, 200 s, 300 s, . . . , 4,900 s, 5,000 s, in our
experiments. The gap between two consecutive prediction
lengths is called prediction step, which is 100 s in this study.
We also apply various values to the parameters of
quantization-based predictors and clustering predictor.
These values are stated in Table 1.

Fig. 2. Quantization performance of (a) both approaches and (b) adaptive approach.

TABLE 1
Parameter Values of Predictors



Fig. 3 presents the comparison between the accuracy of
the proposed predictor and the others. The accuracy is in
terms of the average square of prediction error in every
prediction performed. The errors at different uncertainty
levels are also investigated. To achieve a fair comparison,
we select the parameter values from Table 1 that lead to
maximum accuracy for each predictor. Those values are
listed in Table 2. The parameter values specific to the
proposed predictor are shown in Table 3.

Fig. 3 shows that the second-order predictor suffers from
low prediction accuracy. However, LZ78 has significantly
lower errors. This observation implies that higher order in
Markov chain modeling reduces prediction errors. It is
contrary to the common argument that second order is
sufficient for prediction and any further order does not
reduce the errors much [1], [28], [31]. As Section 2 mentions,
Markov chain of very few orders cannot capture all
characteristics of user movements for prediction, especially
for small cells which have radii of few meters. On the other
hand, if the cell is huge, for example, a typical GSM cell, a
low order of Markov chain predictor suffices.

We can also observe that LZ78 performs worse than the
other two predictors and is not robust to high uncertainty. It
is because the quantization is fine in some areas. Many
possible sequences pertaining to those areas, which may
appear in online prediction, are not discovered from the
training samples in LZ78. This problem becomes serious
when the uncertainty level is high. Another observation is
that the proposed predictor is more accurate than the
clustering predictor when we observe this figure carefully.
The future MS movement may correlate more to some
segments of a sample trajectory. The most recent part of a
past trajectory usually has a stronger coherence with the
next location to be visited than the other parts. The
clustering method does not consider this coherence, but
this is considered by the proposed method. The feature

space of the proposed predictor reflects the relationship

between the past and future locations better than euclidean
distance does. The proposed method is even more superior
to the clustering method when bandwidth usage is

considered, as the next section discusses.

5.5 Accuracy versus Bandwidth Usage

This section investigates the bandwidth usage for predic-

tion in byte per second (Bps). The bandwidth usage of
predictors is categorized into two types: outgoing and
incoming (from the view of the predictor), which have been

introduced in Section 3. They are discussed in Sections 5.5.1
and 5.5.2, respectively. We plot the minimum required

bandwidth against the average square of prediction error
and show the results in Fig. 4 (for outgoing bandwidth) and

Fig. 3. Prediction error of each predictor.

TABLE 2
Parameter Values for Maximum Accuracy

TABLE 3
Parameters of Proposed Predictor

Fig. 4. Compare the outgoing bandwidth of the proposed predictor with

the (a) second order (b) LZ78, and (c) clustering predictor.



Fig. 5 (for incoming bandwidth). Each of these figures
compares the proposed predictor with one of the other
three predictors, i.e., second order, LZ78, and clustering, at
different uncertainty levels. The data points of the graphs in
these figures are obtained by applying every parameter
value in Table 1. Any protocol overhead is ignored in our
experiments so that the results are independent of adopting
any protocol. If the graph of a predictor is close to the y-axis,
it implies high accuracy. If the graph is near to the x-axis, it
means low bandwidth usage.

5.5.1 Outgoing Bandwidth

In our experiments, a prediction result is represented by
12 bytes: 8 bytes for the predicted position and 4 bytes for
the time instant for this position. The outgoing bandwidth
usage increases with the number of prediction results sent
out from the predictors. To save more bandwidth, the
predictors at MSs do not send out any prediction result
to the server if the current prediction result is as same as the
previous one. At the server side, the previously received
prediction result is used in the current prediction if the
current prediction result is not available.

The average outgoing bandwidth usage is the quotient of
dividing the average amount of data sent from the predictor
at a MS by the maximum prediction length, which is 5,000 s
in the experiments. Those data represent the prediction

results. As we can see Fig. 4, every predictor in the
experiments requires more bandwidth for a higher un-
certainty level while maintaining the same accuracy level. It
is because the difficulty in prediction increases with the
uncertainty level. More information, and thus bandwidth
are required for high accuracy.

We also find that the second-order predictor makes huge
prediction errors in Fig. 4a, which is consistent with the
results in Section 5.4. However, its bandwidth usage is
lower than the proposed predictor’s. This result implies the
second-order predictor is conservative, and tends to
estimate MSs to be stationary, which suspends the
transmission of the prediction results from the predictor.
It is due to the lack of input information for prediction in
low-order Markov chain model.

More input information is available in LZ78. Therefore,
LZ78 is a more aggressive predictor, and more outgoing
bandwidth is consumed, as Fig. 4b shows. However, its
bandwidth usage is still slightly lower than the proposed
predictor’s. LZ78 degrades to be a low-order Markov chain
predictor sometimes, which is similar to the second-order
method. It is because not every possible sequence can be
discovered in training, as Section 5.4 mentions. Therefore,
the graph of the proposed predictor is closer to the y-axis
generally, and the LZ78 predictor is not as accurate as the
proposed predictor is.

In Fig. 4c, it is found that the clustering predictor
achieves the accuracy that the proposed predictor does. It
also demonstrates a lower bandwidth usage than the
proposed predictor does at high error level. However, for
low prediction errors, its required bandwidth surges to a
high level. The absence of quantization in the clustering
predictor causes great bandwidth usage when Tsample is
small. Anyhow, the bandwidth usage is capped at 0.12 Bps.
It is because the maximum output bandwidth must be the
data size for a prediction result per prediction step in our
experiments, which is 12 bytes per 100 s.

5.5.2 Incoming Bandwidth

The average incoming bandwidth usage shown in Fig. 5 is
composed of two parts. The first part is providing input to
the online prediction. This part is simply the quotient of
dividing total amount of MS trajectory data sent to the
predictor at server by the sum of all trajectories’ durations.
The second part is sending data to and from the predictor at
server for training purpose. The training data are MS
trajectory samples, which is sent from MS clients to the
server. For the quantization-based predictors, we also
need to send quantization maps, which are produced by
the training, from server to every client. The number of
MS trajectory samples for training is 10,000 in our study.
The trajectory samples for training are either sequences of
quantized states in quantization-based predictor, or loca-
tions with time stamps in clustering predictor.

We assume that the period of updating the quantization
map and retraining predictors is 1 month in our experi-
ment. It is because the road topologies in the real world are
unlikely to change enormously every day or week. 1 month
is often long enough for an area of a few km2 to accumulate
10,000 sample trajectories (about 333 per day). Therefore,
the total number of MS trajectory for training predictors is

Fig. 5. Compare the incoming bandwidth of the proposed predictor with

the (a) second order (b) LZ78, and (c) clustering predictor.



set to be 10,000. Appendix F, which is available in the online
supplemental material, gives more information about the
bandwidth usage for training predictors. The appendix,
which is available in the online supplemental material,
shows that the bandwidth usage for training predictors is
generally insignificant.

First, we compare the second-order predictor with the
proposed predictor. Fig. 5a indicates the prediction error of
the second-order predictor is much higher regardless of the
incoming bandwidth usage. This huge difference in
accuracy has been already explained in Section 5.4. Second,
the LZ78 predictor is compared with the proposed pre-
dictor. Like the results in Section 5.5.1, Fig. 5b shows that
the LZ78 predictor is not as accurate as the proposed
predictor is. The graph of the proposed predictor is closer to
the y-axis in general. The LZ78 predictor is also noticeably
worse than the proposed one when the uncertainty level is
high. It is because the LZ78 predictor is not robust to high
uncertainty, which has been shown in Section 5.4. In fact,
the comparison among these three quantization-based
predictors’ incoming bandwidth can be solely based on
their accuracy. It is because they have the same amount of
incoming data representing the MS trajectories.

Last, the clustering predictor is examined in Fig. 5c. Its
required input bandwidth is significantly higher than the
proposed predictor, especially for low prediction error,
although these predictors’ accuracies are similar. It is
because the proposed predictor employs VQ to greatly
reduce the amount of the trajectory data sent from MSs. The
results in this section and Section 5.5.1 demonstrate the
positive effect of the quantization on reducing both
incoming and outgoing bandwidth usage. Some readers
may also notice that there is a sudden jump in the
bandwidth usage for the clustering method. The jump ends
at a value of square of error about 20,000, which refers to
Tsample ¼ 100 s. This observation implies that it is much
harder to improve prediction accuracy when Tsample is lower
than a certain value. As learned from the sampling theorem,
we capture most information of a trajectory when Tsample is
low enough, which is as low as about 100 s in our case.
Accuracy improvement thus becomes much harder.

5.6 Computation

This section investigates the computation for online
prediction in each predictor. It is measured in average
amount of time spent per prediction performed. The

computation under different uncertainty level is also
examined. The results can be found in Fig. 6. The second
order and clustering predictor shows low computation in
all circumstances. The second-order predictor need not
retrieve much information for prediction and the clustering
predictor only retrieves a single trajectory for all the
prediction of various prediction lengths. These reasons
justify the low computations. On the other hand, the LZ78
and proposed predictor handle a huge amount of data for
prediction, and they take more time to extract prediction
results from the data. Their computations are also sensitive
to the uncertainty level. It indicates that more data are
involved in these predictors when the uncertainty level
rises. Particularly, the proposed method has the highest
computation. It is caused by the time spent on the
membership probabilities estimation, which is depicted in
Section 4.3, and considering multiple possible future
locations, which is detailed in Section 4.4. Nevertheless, its
computation is well below 1 s, and it is sufficient for online
prediction if the prediction step is larger than 1 s.

If the proposed prediction method is performed at a
mobile device, we may need to consider its average power
consumption at the device due to the computation.
However, we observe that the average power is insignif-
icant as compared to the power due to the mobile device’s
system and OS. More details can be found in Appendix G,
which is available in the online supplemental material.

5.7 Possible Applications

5.7.1 Paging

Some applications need an accurate prediction of the MSs’
visited region or cell instead of exact position. A typical
example is paging. Paging is to identify the cell that an MS is
visiting. The percentage of correct prediction about the cell
to be visited in the future is called paging accuracy. It is
obvious that paging accuracy depends on the size of cells.
In this section, paging accuracy is plotted against the cells’
radii. The results are shown in Fig. 7. Each data point on the
graph is taken from the average of accuracy value at high,
medium, and low uncertainty level. We assume that the cell
sizes are identical, and the cells are located in the
environment evenly. We compare the paging accuracy
with the prediction errors of the predictors in Fig. 3 to
determine the prediction errors consistent with the accura-
cies in real applications.

As we can see from Fig. 7, the paging accuracy agrees
with the results in Section 5.4, in which the second-order
predictor is significantly less accurate than the other three

Fig. 6. Computation of performing prediction for each predictor.

Fig. 7. Average paging accuracy of each predictor.



predictors enormously, and the proposed predictor and
the clustering predictor are the most accurate. Although
the accuracies of the proposed and clustering predictor are
similar for large cells, we can clearly observe a difference
for small cells (at least 10 percent difference). It is because
both predictors achieve a low prediction error, as shown in
Fig. 3, and their difference in accuracy can be only revealed
in environments with small cells, whose radii are less than
100 m. However, when the cells are large, the predictors’
paging accuracies become similar. This observation sug-
gests that an environment with large cells does not demand
a very accurate predictor. Therefore, if the cells are small, an
accurate predictor is important. The required cell size
depends on what kind of area of interest (AOI) the
predictors target, where the radius of AOI is represented
as Cellsize. For example, if we need the predictor estimate
whether or when an MS visits a football pitch, Cellsize
should be as small as 30 m. On the contrary, Cellsize ¼ 500 m
suffices if the AOI is a theme park. Some types of AOI and
their corresponding suitable cell sizes are shown in Table 4.

5.7.2 Information Feeding

In Section 5.7.1, we have introduced an application that is
solely dependent on the predictors’ accuracy. In this
section, we proceed to discuss another application which
is influenced by both the accuracy and bandwidth usage.
Feeding mobile clients information according to their
location is a popular application. Mobile operators can feed
various types of the information, for example, traffic
situation and advertisement. A conventional and passive
approach is sending the information when the MS clients
arrive at the designated AOI. Here, we show a proactive
approach in which the information is sent ahead of the
clients’ arrivals at the AOI, which is similar to the early
reminder application in [1]. This approach is useful if the
clients are more preferable to make some decisions in
advance, and the decisions are relevant to where they are
going to visit or pass through. For instance, it is more
desirable to send an advertisement of a product to a client
before he has purchased another similar product. However,
the price of this approach is a higher bandwidth usage. If
the network predicts the future location of a client wrongly,
it will send out inappropriate information, and need to
resend something suitable afterward. Therefore, an accurate
predictor with low bandwidth plays an extremely impor-
tant role in this approach.

To support the proactive information feeding, we set the
prediction to be server-based. The experiment setup is
basically as same as the one in Section 5.5.2. In addition, the
environment consists of AOIs or cells of regular size and
sharp, which is as same as the AOI setup in Section 5.7.1.
Each AOI is related to a piece of message which is sent to
any client visiting or predicted to visit that AOI. Each
message only pertains to one AOI. The message size is
denoted as Msgsize. The server predicts the cells to be
visited by clients at Tpred seconds ahead, and sends the
message pertaining to those predicted cells. After Tpred
seconds, if the server finds that the prediction is incorrect, it
will transmit the message to the clients according to their
currently located cells. This procedure repeats periodically.
The period of this procedure is denoted as Tperiod. The
experiment results in this section can conclude whether the
results in Sections 5.5.2 and 5.7.1 are applicable to this kind
of applications.

After conducting this set of experiments, we plot the
average bandwidth usage per MS for each predictor
against Cellsize at different Msgsize. The results are
presented in Fig. 8. Several values of Tpred; Tperiod, and
different levels of uncertainty (high, medium, low) are
attempted in the experiments. The average results are
shown in the graphs. The values of Tpred and Tperiod tried
are: Tpred ¼ 1;000 s; 2;000 s; 3;000 s; 4;000 s; 5;000 s, and
Tperiod ¼ 15 min; 30 min; 45 min; 60 min; 75 min; 90 min. The
Cellsize ranges from 30 to 500 m for Msgsize ¼ 140 byte;
1:4 kB; 3 kB. 140 byte is about the size of one SMS, 1.4 kB
can be a long SMS, and 3 kB can be an MMS with image
and sound. The results are consistent with those in

TABLE 4
Suggested Cellsize for Some Types of AOI

Fig. 8. Compare the average bandwidth usage in information feeding

of the proposed predictor with the (a) second order (b) LZ78, and

(c) clustering predictor.



Section 5.7.1. The overall trend for every predictor is that
the bandwidth usage decreases when Cellsize is larger due
to a better accuracy as shown in Fig. 7. When Cellsize is
very large, this trend starts to stop because further
improvement in accuracy is very limited.

The second-order predictor performs significantly worse
than our proposed predictors because of its low accuracy.
The clustering method also performs poor because it suffers
from a high input bandwidth usage as explained in
Section 5.5.2. Only the LZ78 predictor can perform
comparably to the proposed method. However, as the
message size increases, the proposed method outperforms
the LZ78, and the difference becomes increasingly notice-
able. This is because the importance of prediction accuracy
is higher for a large message. There is a bandwidth penalty
for any incorrect prediction, and this penalty is proportional
to the message size. As we can learn from Section 5.7.1, the
proposed predictor is a more accurate predictor. Another
observation is that their difference in bandwidth usage
increases when Cellsize decreases. This again matches with
the results in Fig. 7 where the accuracy difference between
two predictors magnifies when Cellsize is smaller.

5.7.3 Peer to Peer Networking

Another kind of possible applications employing location
prediction is related to increasingly popular social network-
ing applications in mobile version, for example, Facebook
and Google+. The users may share their predicted locations
with their friends or other users in the same peer group. The
usefulness of this kind of applications is mentioned in [1].
For instance, a user schedules a meeting with all the people
in the same peer group at a time and place which will be
convenient to everyone.

The experiment setup is similar to the setup in Sec-
tion 5.7.2. However, the information messages are sent from
one MS client to other MS clients in the same peer group
instead of from the server to each client. The total number of
clients in a peer group is denoted as Gpsize. We set the Gpsize
of every group to be as same as each other in our
experiments. The results are presented in Fig. 9, which are
graphs plotting average bandwidth usage against Gpsize at
different Msgsize. In addition to Tpred; Tperiod and different
levels of uncertainty, we try different values ofCellsize which
are 30, 50, and 100 m, and the average results are shown
in the graphs.

The bandwidth usage increases linearly for every
predictor in Fig. 9. This is because the number of message
sent out by a client is directly proportional to the total
member in the same peer group. Again, the second-order
predictor performs the worst because of its poor accuracy as
shown in Fig. 9a. In Fig. 9b, the LZ78 predictor performs
better, although it is still worse than the proposed method.
The difference in performance is less when the clustering
method is compared with the proposed method as shown in
Fig. 9c. These observations agree with the results in Fig. 7. If
the predictors’ accuracies are similar, the total messages
sent out are similar too. However, we can still notice a trend
that the difference becomes more noticeable when Gpsize
and Msgsize increase. This trend suggests that the proposed
predictor can be significantly better than other predictors
when there are many messages and much data to send. In
that case, even a little enhancement in prediction accuracy
can make a great difference.

To sum up, all the results in Section 5.7 demonstrate
that our proposed predictor is noticeably better than
other predictors when the importance of prediction
accuracy is significant. This phenomenon can be found
in both client-based and server-based prediction. On the
contrary, the LZ78 predictor’s performance is obviously
poorer than the proposed method when prediction accu-
racy is crucial. Also, the clustering method is inadequate
for server-based prediction. The proposed method is, thus,
an amenable and viable predictor, which can perform as
the best generally.

6 CONCLUSION AND FUTURE WORK

This paper presents a predictor that effectively utilizes
massive spatiotemporal samples, and achieves high accu-
racy for bandwidth consumption lower than other predic-
tors. We are now considering more factors in the prediction
other than past trajectories, though this comes at the expense
of more resources, such as networks, computation, and
storage. This study can also be extended by exploring more
applications which employ trajectory prediction.
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