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Abstract

One of the trickiest challenges introduced by cellular communications networks is

mobility prediction for Location Based-Services (LBSs). Hence, an accurate and

efficient mobility prediction technique is particularly needed for these networks. The

mobility prediction technique incurs overheads on the transmission process. These

overheads affect properties of the cellular communications network such as delay,

denial of services, manual filtering and bandwidth.

The main goal of this research is to enhance a mobility prediction scheme in

cellular communications networks through three phases. Firstly, current mobility

prediction techniques will be investigated. Secondly, innovation and examination

of new mobility prediction techniques will be based on three hypothesises that are

suitable for cellular communications network and mobile user (MU) resources with

low computation cost and high prediction success rate without using MU resources in

the prediction process. Thirdly, a new mobility prediction scheme will be generated

that is based on different levels of mobility prediction.

In this thesis, a new mobility prediction scheme for LBSs is proposed. It could

be considered as a combination of the cell and routing area (RA) prediction levels.

For cell level prediction, most of the current location prediction research is focused

on generalized location models, where the geographic extent is divided into regular-

shape cells. These models are not suitable for certain LBSs where the objectives

are to compute and present on-road services. Such techniques are the New Markov-

Based Mobility Prediction (NMMP) and Prediction Location Model (PLM) that

deal with inner cell structure and different levels of prediction, respectively. The

NMMP and PLM techniques suffer from complex computation, accuracy rate re-

gression and insufficient accuracy.

In this thesis, Location Prediction based on a Sector Snapshot (LPSS) is intro-

duced, which is based on a Novel Cell Splitting Algorithm (NCPA). This algorithm

is implemented in a micro cell in parallel with the new prediction technique. The

LPSS technique, compared with two classic prediction techniques and the experi-

mental results, shows the effectiveness and robustness of the new splitting algorithm

and prediction technique.



v

In the cell side, the proposed approach reduces the complexity cost and prevents

the cell level prediction technique from performing in time slots that are too close.

For these reasons, the RA avoids cell-side problems. This research discusses a New

Routing Area Displacement Prediction for Location-Based Services (NRADP) which

is based on developed Ant Colony Optimization (ACO). The NRADP, compared

with Mobility Prediction based on an Ant System (MPAS) and the experimental

results, shows the effectiveness, higher prediction rate, reduced search stagnation

ratio, and reduced computation cost of the new prediction technique.
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Chapter 1

Introduction

1.1 Background and Motivation

With the advancement of wireless communication and computer technologies, cel-

lular communication has been providing versatile, portable and affordable network

services [1–3] more than ever. The number of Mobile Users (MUs) has increased

worldwide and it is estimated recently to be at three billion users [4], the expected

number of mobile subscribers all around the worldwide in 2013 will be 5.9 billion [5].

The third and subsequent generations of communication not only bring new tech-

nical problems, but also raise a new class of interesting applications. This is due to

the change in communication from single medium oriented into multimedia oriented

communication such as image, computing data, Internet services, e-commerce and

video conferences [4,6]. In the last few years, the requirements of mobile usage have

changed. Thus, the growth in wireless and cellular communication technology has

been dramatic as it continually expands to satisfy the MUs’ requirements.

As shown in the figure 1.1 there is a clear shift from landlines to mobile phones;

this started to appear from the beginning of the century. By the end of 2012,

the number of MU holders will be five times more than landline subscribers [5].

Cellular communication planning and optimisation services which are related to the

subscribers are addressed as the main important area of research for cellular network

companies and vendors, too.

The rapid technological development in wireless networks and cellular commu-

1
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Figure 1.1: Global ICT Developments, [5].

nication has led to the emergence of the mobile computing paradigm, where in-

formation is accessible anywhere and anytime. This new paradigm enables almost

unrestricted mobility to the users. This poses a new set of constraints and new

kinds of challenges that need to be considered in the design of network protocols

and information services. At the same time there is the challenge of decreasing the

network resources that are used to deliver the target information to the MU and

avoiding delay time between requesting a service and delivery of the service.

Since the service’s validity that is requested by the MU is based on the time

of requesting, LBSs is one of the most important requirements for guaranteeing

the service’s delivery on-time. This is because any service request may obtain a

different result, depending on the location of MU. Therefore, mobility prediction

for mobile communication systems has been suggested as a solution to anticipate

the next movement of MU, for providing the time required to prepare the proper

services that may be requested by the MU before requesting it.

In a cellular communications network, entities of a cellular communications sys-

tem include:

1. An MU, which is on behalf of a user.

2. A Serving Network (SN), with which the MU contacts.

In 1980 the commercial cellular communications network started, after that the

cellular communication era has undergone major changes according the extraordi-
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nary growth in the cellular industry. Today, the evolution of the cellular communi-

cations era is mainly divided into three generations, which are First (1G), Second

(2G) and Third (3G) generations. Now, the 3G system is deployed in many coun-

tries and researchers are working on it. They seek to produce a generation of cellular

networking which will be heterogeneous and integrate a number of technologies to a

single global paradigm named ”Fourth” generation cellular communications network

(4G). The taxonomy of generations is based on fundamental technology (analogue or

digital) and the services they provide. The evolution of the cellular communications

network is shown in figure 1.2.

Figure 1.2: Evolution of Cellular Communications Network, [23].

Cellular 1G was introduced around 1980. The fundamental technology used

in this generation is an analogue system, which transited directly from original

wire-based telephone systems into cellular systems. In this generation, there were a

number of examples for such systems: Nippon Telephone and Telegraph Corporation

(NTT), Total Access Communication System (TACS) and Advanced Mobile Phone

System (AMPS). In this generation, with low cost of equipment, speech voice services

were targeted by this generation.

Taking into consideration the increase of mobile subscribers and the need for
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raising the network capacity, the 2G cellular communication was introduced at the

end of 1980s. The basic technologies of digital systems are used in the 2G cellu-

lar system. The 2G provided low bit rate services supported - text messaging -

and reliable voice communication. The main technology that 2G added compared

with 1G is digital multiple access technology, such as Time Division Multiple Access

(TDMA) and Code Division Multiple Access (CDMA), which changed the commu-

nication from analogue to digital channels, higher spectrum performance, and better

data service. Roaming was introduced with 2G systems.

However, in this generation there are multiple systems: United States Digital

Cellular (USDC) based TDMA, IS-95 CDMA based on Direct Sequence CDMA

(DS-CDMA) and Global System for Mobile (GSM). The GSM was introduced in

1990 by the European Telecommunication Standard Institute (ETSI) [7].

The 3G standardisation protocol process started in 1995 when the International

Telecommunication Union (ITU) began developing International Mobile Telecom-

munication for the year 2000 (IMT-2000). The main requirements of the IMT-2000

include support for a data rate of 144 Kbps for users in fast-moving vehicles over

large areas and for pedestrians at a rate of 384 Kbps and 2.048 Mbps operations for

office use [8].

The numbers of mobile subscribers has dramatically increased and there is an

urgent need for mobile broadband. The 4G cellular communications network is

developing. The main discussion about 4G systems was in the European Union

and has taken place mostly within the context of the IST Framework Programme

activities [9,10]. The 4G systems will try to increase the data rate to fulfil the wide

demand of MU and multi services. The research community has been changing its

focus in the paradigm of 4G systems to be All-IP [11]. The main motivation for

the changeover to All-IP is to satisfy the transparency between MU and all the

technologies that have been introduced so far (e.g. GSM, General Packet Radio

Service (GPRS), IMT-2000, Wireless Fidelity (Wi-Fi), Worldwide Interoperability

for Microwave Access (Wi-Max) and Bluetooth). Since the cellular systems based on

Wide CDMA (W-CDMA) have a high bit rate and the availability to offer services,

the LBSs is addressed whereas subscribers can access numerous services through a
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single medium.

This proliferation in mobile devices and users’ demands gives rise to LBSs. They

deliver dependent and suitable information relevant to a client’s location which re-

duces redundancy in information. A key feature of LBSs is that any service requested

may need to be offered with different results, depending on the location of the MU.

Location prediction provides time to prepare services that may be needed by the

MU in anticipation of requesting them. Most especially, the services involved with

complex computation may need to extract data and to save time, to ensure that

only desired services are available when requested. The cellular communications

environment is considered as a restricted dynamic environment [12,13]. The restric-

tion in such environments is due to the limitations of the MU in terms of processing

power, memory, storage, capacity, screen resolution and battery performance.

The two key issues that affect network protocols are mobility and wireless link

characteristics. Since mobility has become the norm rather than the exception, a

user’s location information is an additional parameter that needs to be taken into

consideration in protocol design. A cost-effective technique should be deployed to

locate a certain user as well as efficient data structures and algorithms to manage

this fast-changing data.

A practical LBS should provide the mechanism for balancing between accuracy

success rates that are offered for the target services, smallest possible cost and

minimal usage of network resources. The most widely used mobility prediction

techniques today deal with either Markov Chain Model (MCM) or Ant Colony

Optimisation (ACO) to enhance mobility prediction success rate. Examples are the

(PLM [14], NMMP) [15] plus MPAS [16] techniques respectively. Many techniques

have been developed to enhance these techniques. Even with this improvement,

the current MCM and ACO techniques do not meet the requirements for future

generations of LBSs.

The MCMs are used for analysing complex systems and predicting behaviour

under uncertain dynamic conditions. Furthermore, they can yield present and future

states independently of the past states [17,18].

The first ACO algorithm, called the Ant System (AS) [19–22], Dorigo et al.,



1.2. Significance of the Study 6

in [19] was proposed to solve the Travelling Salesman Problem (TSP). It was also

proposed to a new model; namely, to combinative stochastic optimisation that is

based on the ants’ behaviour. This model is useful when it is used in greedy heuristics

to find acceptable results in the early processing and for complex system which needs

to use the distributed computational to deal with the random space variable.

According to these techniques and the increasing requirement for cellular net-

work services, LBSs for next generation cellular systems is increasingly significantly.

Thus, LBSs techniques are proposed to utilise bandwidth, while putting more com-

putation on the network. One of the most important mechanisms used in LBSs,

employs mobility prediction to anticipate the next displacement for an MU. Mobil-

ity prediction also brings more computation and consumption of resources to the

cellular networks. For example, requesting/responding to a new movement takes a

long time. Although some solutions are introduced to enhance the mobility predic-

tion, there has been little in the way of computation analysis.

1.2 Significance of the Study

LBSs are an important matter in cellular systems because they rely on radio waves

to carry communications and limited bandwidth is defined. Radio waves go through

walls and physical borders and they are targeted to cover as large an area as pos-

sible to serve everyone who is inside range. Improper mobility prediction for LBSs

technique can waste the bandwidth and constitutes an overhead of the network

especially in radio waves. Denial of services may occur.

Accurate and fast transmission of digital information and service over the wireless

channel has become increasingly important. Therefore, many services are accessible

in cellular environment. Mobile phone systems have added other applications such

as E-commerce, E-learning, E-business, social networks and mobile TV. The radio

signal transmitted by the Base Station (BS) is shareable to everybody as it uses

either the same network or a public medium (i.e. airwave).

During delivery of the service to the MU, the service uses the downlink channel,

if the network provides inaccurate and huge amounts of information need to be
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filtered. Thus, an overhead to the downlink channel, numbers of MUs served will

dramatically decrease and the bandwidth will be wasted.

Mobility prediction techniques at cell level are fundamental to LBSs. However,

the use of MCM consumes a significant part of the overall system resource. The

computation complexity of MCM when it is run over a large number of MUs, results

in the target service becoming complicated and is always addressed to consume the

bandwidth. Therefore, enhancing these kinds of mobility prediction techniques is a

significant matter in cellular systems because the network has a limited bandwidth.

The mobility prediction process in cellular networks, particularly in wireless

sections, balances sensible LBSs level against bandwidth consumption and denial

of services. Mobility prediction either on a cell or an RA level technique incurs

overheads on the transmission process. The overhead has an outcome on the cellular

network performance in terms of the communication traffic, time delay on getting a

request and the bandwidth. The traffic and LBSs delay are of particular importance

and have become the subject of extensive research interest. Furthermore, the RA

prediction also causes an extra overhead transmission and computation cost leading

to increased cost of transmission. Meanwhile, it assists in handling the regular

movement of MU.

A simulation model is used in this research to examine the performance of the

introduced mobility prediction techniques. An implementation of a real network

would be difficult so proper simulations are chosen. Therefore, real network valida-

tions are still needed. The results of experiments will corroborate the competency

and the robustness of the introduced techniques. Java language is chosen to support

the simulations. It is open source software and is commonly used for evaluating and

developing network related research.

LBSs are already available commercially on mobile operating systems such as

Android, IOS (iPhone) and Windows Mobile. Therefore, this research require soft-

ware for the introduced mobility prediction techniques in mobile devices and network

to allow better comparisons.
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1.3 Research objectives

The aim of this thesis is to design a foundation for utilisation of a competent mo-

bility prediction scheme in a cellular network with low computation, storage usage,

bandwidth consumption and resource depletion that does not use the MU resources.

The mobility prediction techniques are utilised to anticipate the next movement

of an MU. This helps the network to know which area (either cell or RA) will be

visited by an MU, how many MUs will be handled in the new area and will give the

new area enough time to prepare the required resources for an MU. From knowing

the next movement of an MU, the network can deliver the target information that

may be requested in on time fashion, avoid manual filters on mobile device side,

avoid consuming bandwidth and do not go beyond the limits of the mobile user

devices in terms of power limitations and screen size.

To alleviate the weak points of the existing mobility prediction techniques in

LBSs, this thesis proposes an improvement of mobility prediction scheme of LBSs

for 3G/Universal Mobile Telecommunications System (UMTS). The purposes of the

improvement scheme are listed as follows:

1. To achieve mobility prediction on cell level, decreasing the service area.

2. To achieve mobility prediction on RA level.

3. To achieve use between network elements and integrate between them to pro-

duce a LBSs scheme that satisfies network specifications.

4. To increase the prediction success rate for MU next displacement.

5. To reduce the complexity requirements for execution time and usage space on

the network.

6. Prediction of an MU next displacement by the network can be achieved without

the use of the MU’s resources. Therefore, there is no extra communication cost

added and the dynamic restriction environment of the MU is not violated. The

restriction in such environment is due to the limitations of the MU in terms

of processing power, memory, storage, capacity and battery performance.
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7. To avoid manual filtering for a huge number of results that may be delivered

to the MU.

8. To prevent bandwidth wastage and denial of services.

The overall objectives of this study are to

1. Propose a novel cell splitting algorithm. The cell splitting is universal where

it can be applied to all types of cell, it will be used by the mobility prediction

technique at cell level to enhance mobility prediction success rates through

reducing service area to sector instead of cell.

2. Enhance mobility prediction at cell level by using Markov Chain Model (MCM)

to improve mobility prediction.

3. Propose a new mobility prediction technique at RA level using the developed

Ant Colony Optimization (ACO) and analyze the performance of the proposed

technique.

4. Propose a new LBSs scheme to overcome the prediction problems in the current

technique and improve the performance of cellular networks by integration of

cell and RA prediction techniques.

In order for this research to achieve the previous objectives, the following steps

should be accomplished

1. Present a background research study on the concepts of LBSs.

2. Present a background research study on the concepts of 3G. This will allow

a general understanding of the general framework of cellular systems such as

3G/UMTS technology and the basis of next generation 4G.

3. Present the weaknesses and drawbacks in mobility prediction over cellular

networks.
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1.4 Research contribution

In this thesis, a new cell mobility prediction technique is introduced based on the

introduced cell splitting algorithm (NCPA). The new technique employs an adaptive

model similar to the PLM and NMMP techniques in which their prediction is based

on the MCM. In addition, the technique employs NCPA in order to reduce the ser-

vice area and keep the prediction success rate higher to the extent possible. The new

technique is competitive and more efficient in comparison to PLM and NMMP re-

garding measurements such as accuracy success rate of location prediction, memory

usage and execution time. Finally, the Micro cell is considered.

Another contribution of this research is to design and develop a mobility pre-

diction technique based on the developed ACO. It works on RA level for cellular

network systems, satisfies the network requirement of 3G cellular network systems,

is applicable for next generation cellular network systems and employs the features

of 3G to improve the prediction success rate.

In this thesis, a new mobility prediction scheme for Location Based-Services is

introduced based on the integration between cell and RA level prediction. Toward

that end the LBSs have been analysed and the prediction success rate has been

improved. The impact of prediction on LBSs in cellular networks has been shown

and builds a strong background for future enhancement of the LBS techniques and

architectures.

This research has also improved the prediction of a new MU displacement by

sorting between the prediction processes. The mobility prediction works at the RA

level and location prediction will specify the next RA that an MU will visit. Mean-

while, the cell level prediction evaluates all movement probabilities for the next RA

before it is entered by the MU. The integration and enhancement mobility prediction

on different levels improves the LBSs of the 3G cellular communications system in

network access services by utilising the bandwidth, delivering target services, min-

imising the computation cost, consumption of resources and the overall cost of the

location management process. These help achieve more accurate LBSs by avoiding

services manual filter and denial of services.

The contribution of this research can be summarised as follows:
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1. Generating a novel cell splitting to reduce service area by splitting a cell to

sectors.

2. Enhancing the mobility at cell level which is based on MCM.

3. Generating a new routing area displacement prediction for location services

which is based on developed Ant Colony Optimization (ACO).

4. Adopting the above proposed techniques to create a new efficient scheme and

accurate LBSs for next generation cellular networks, with lower bandwidth us-

age and better computation time. Moreover, the introduced scheme is able to

reduce the communication cost between network entities, as well as improving

location based-services efficiency in terms of delay time.

In this research the work done to assist the contribution correctness is summarised

as follows:

1. Validate the simulation of the introduced LBSs mobility prediction with the

current LBSs mobility prediction techniques.

2. Another process forward simulation will be used, which simulates developed

techniques using JAVA language and the cellular networks’ simulation environ-

ment. These are used to measure the validation modelling of the introduced

techniques, run experiments with comprehensive results analysis and compare

the result of the introduced techniques with well-known techniques, in terms

of prediction accuracy rate, resource consumption and complexity.

3. Examine the LBSs mobility prediction techniques by using JAVA language to

investigate the performance of the current and introduced techniques.

4. During the course of this PhD research, the research outcomes and achieve-

ments were presented to external audiences through a number of publications.

1.5 Outline of the thesis

In addition to the introduction, there are six other chapters. Chapter 2 shows the

cellular communications network development architecture, as well as 3G and 4G,
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UMTS architecture is discussed. In addition, the LBSs of cellular networks and

key terminologies significant to the content of the contributions are illustrated. The

LBSs classification, characteristics of the next generation of LBSs, components and

technology are described and explained. Chapter 3 presents MCM, ACO, work

related to LBS mobility prediction techniques over cellular communications network

prediction are investigated in order to assist the conduct of this research.

Chapter 4 demonstrates a new mobility prediction technique based on MCM and

the NCPA, which contains the performance modelling analysis of the introduced

technique. Moreover, a new RA mobility prediction for cellular network systems

based on the enhanced ACO is presented. The integration between cell and RA

prediction levels are also introduced to present a novel LBSs prediction scheme.

Chapter 5 shows research methods and approaches that are followed to achieve

this work. It involves explanation of the simulation model and the cellular network

scenarios used in the thesis. The resulting discussions for enhanced ACO are shown

and the optimal parameters are determined.

In chapter 6, the novel cell splitting is analysed. The chapter also describes the

efficiency analysis of the introduced mobility prediction techniques and the perfor-

mance comparison of the introduced techniques with the techniques that are already

developed. By simulating the software using Java language, it was used to examine

the prediction success rate, computation time and resource consumption. Finally,

chapter 7 depicts and integrates conclusions and suggests future work in this research

area.



Chapter 2

Location Based-Services over

Cellular Networks

This chapter provides a brief background about cellular communications network

types in the sense of brief background discussions about 2G, 3G and 4G, giving an

exposition of 3G as UMTS architecture. Then the benefits and classifications of

LBSs is presented. The chapter asks after the classification and the target market

of such services and application types. What are the technical capabilities? What

are the components and the technologies? What are the solutions for these services

through GPS, cellular communications networks and WiFi? All these are illustrated

in this chapter.

2.1 Cellular Communications Network Generations

The cellular communications network made a huge step in the way people commu-

nicate by making communication easier. This growth in cellular communications

has been remarkable in the last few years in terms of the mobile technologies devel-

opment and the number of the users itself.

The evolution of this technology is reaching the 4G. The previous generations

were developed through aggressive research with the 1G, 2G and 2.5G developing

simultaneously along with the 3G. The 1G was developed to provide the basic voice

communication with mobile ability, while the 2G and 2.5G introduced the concepts

13
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of capacity and coverage. The 3G made the mobile broadband concept a reality for

users by providing higher speeds for data transmission. This evolutionary timeline

continues in developing to reach a new 4G which expands the MU services and

higher data rates to support both low and high speed mobile applications [23].

2.1.1 Second Generation Network

At the end of the 1980s, the MUs were increased in number leading to a serious need

for increasing the capacity of the network. This was achieved by introducing a digital

system that could support services such as low bit rate data and traditional speech.

These systems are considered the 2G cellular systems. The services supported by

the 2G cellular system were added through using digital multiple access technology,

such as Time Division Multiple Access (TDMA) and CDMA. This provided higher

spectrum efficiency, better data services, and more advanced roaming. Standards

for the 2G were deployed and put into use in ETSI called the Global System for

GSM which enabled reliable services throughout Europe to support international

roaming. The support of multiple users was introduced through TDMA technology.

In the years since that time, GSM technology has been continuously improved in

the sense of offering better services to satisfy the needs of the network subscribers.

Based on the GSM system more technologies and new services have been developed,

leading to create new systems known as 2.5 Generation (2.5G) systems [24].

Meanwhile, the United States of America started their own line of development

for their 2G digital cellular systems. In 1991 the first digital system was introduced

called the IS-54 Standard (North America TDMA Digital Cellular). Years later a

new version supporting additional services (the IS-136 standard) was introduced. In

1993, IS-95 (CDMA One Standard) was deployed. The US Federal Communications

Commission (FCC) allowed the 1900 MHz band spectrum to become operational,

namely Personal Communications Service (PCS), allowing GSM1900 to enter the

USA cellular communications network market. In 1990, a smaller scale of the 2G

was defined by the Japanese Personal Digital Cellular (PDC) system, which was

known as Japanese Digital Cellular (JDC) [24].

The main elements of the GSM Architecture reside in the Base Station Sub-
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system (BSS). This built up using Base Transceiver Stations (BTS), Base Station

Controllers (BSC), and the Network Switching Subsystem (NSS) which hold Mobile

Switching Centres (MSC). The Visitor Location Register (VLR) developed during

that time as did the Home Location Register (HLR), the Authentication Centre

(AC), and the Equipment Identity Register (EIR) [23].

2.1.2 Third Generation Network

The evolution in technologies created a need to develop more enhanced cellular

communications networks than the one in the 2G or 2.5G in order to have faster

data rate, higher data capacity and better quality of services. IMT-2000 as specified

by the ITU emerged, involving the newly developed standards and specifications

of the communications system which later came to be referred to as 3G cellular

communications networks. The 3G system solved the differences in the standards

such as in GSM and CDMA by introducing new solutions such as in roaming services.

These standards were grouped into families to solve several issues and expand the

set of services such as voice-video calls, and broadband wireless data transfer within

the cellular environment [23].

The Third Generation Partnership Project (3GPP) worked on a wideband system

based on the Wide CDMA (W-CDMA), referred to as UMTS, using the core of GSM.

This solution improved the data rate in transmission from the mobile device over the

network through different frequencies than 2G with a downlink rate up to 14.4 Mbps

and uplink rate up to 5.8Mbps as in High Speed Packet Data Access (HSPDA) [23].

The 3G quality of services standards also assure subscribers of having available

highest data rate that the operator provides [25]. The architecture of the 3G will

be described in UMTS architecture section.

2.1.3 Fourth Generation Network

The rapid increase in the users’ demands encourages the wheel of development and

research towards new technology to keep turning and deliver new user experiences.

The 4G introduced a new platform that combined all the kinds of known mobile tech-
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nologies such as GSM, CDMA, UMTS, Wi-Fi, and even Bluetooth to deliver what

is called the IMT-Advanced multiservice. Multiservice means integrating all the

cellular services that the user has or would expect to have with highest service qual-

ity as it should [26, 27]. The IMT-Advance services provide fast interactive cellular

services with enhanced data rate access, roaming capability as well as broadband

multimedia. Long Term Evolution (LET-Advance) is one of the IMT-Advanced

items already provided by 3GPP [28, 29]. Another item is WiMAX Multiple-input

Multiple-output communications (WiMAX MIMO) through IEEE 802.16.

2.1.4 UMTS Architecture

UMTS is the 3G system promoted by ETSI and provides a vital link between to-

day’s multiple GSM systems and the ultimate single worldwide system for all cellular

communications network. It is also referred to as W-CDMA and is one of the most

significant advances to the evolution of communications network into 3G networks.

It addresses the growing demands of mobile and Internet applications in the over-

crowded cellular telecommunications sky. It will increases the network speeds and

establishes a global roaming standard.

In order to express the mobility prediction techniques that have been made

for the UMTS network, the author shall introduce its network elements. A sim-

plified architecture of a UMTS system is shown in figure 2.1. UMTS is divided

into three main components: the air interface, Universal Terrestrial Radio Ac-

cess Network (UTRAN) and Core Network (CN), with the corresponding interfaces

among them [30]. The CN, which is responsible for connecting UMTS to external

networks, provides functionalities of switching calls for voice communications and

Packet Switched (PS) services for data connections.

The Node B which is also called BSs and the Radio Network Controllers (RNCs)

are collectively known as the UTRAN [31]. From the UTRAN to the CN, the RNC is

responsible for handling of radio resources of UTRAN, Node B is the lowest element

of UTRAN, which connects to an MU directly. RNC will make a decision where the

traffic will be transmitted. Packet traffic is sent to a new component, serving GPRS

(SGSN) and then to the Gateway GPRS Support Node (GGSN). The functions of



2.1. Cellular Communications Network Generations 17

Figure 2.1: A Simplified Architecture of a UMTS System.

the GGSN are very similar to the normal IP gateway, which transfer the receiving

packets to the appropriate Internet [32]. On the other hand, if there is a voice call

from a subscriber, the RNC will transmit the traffic to the MSC. If the subscriber

is authenticated before, the MSC switches the phone call to other MSC. The call

will be switched to the Gateway MSC (GMSC) if the called end is in the public

fixed phone network. The MU is the terminal of UMTS. It interfaces with the

Figure 2.2: The Architecture and Connections between UMTS Components, [32].

radio interface of UTRAN and user applications. A diagrammatic illustration of the

UMTS’s architecture is shown in figure 2.2.

Figure 2.3 shows the infrastructure of UTRAN. The components that compose

UTRAN are the Radio Network Subsystems (RNS). A UTRAN contains one or

more RNS, each of which is connected to the CN respectively. A RNS can be

divided further into two entities: RNC and BS called Node B in standards. One

RNS contains only one RNC and one or more Node B [33].
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Figure 2.3: UTRAN Architecture, [33].

An RNC is responsible for the resources and transmission/reception in a group

of cells. For each connection between an MU and the UTRAN, there exists an

RNC, namely Serving RNC (SRNC) to control the establishment and the release of

specific radio resources to this connection. If the connection state changes because

of the move of MU, the connection may be handed over to a different RNC, namely

Drifting RNC (DRNC) [33]. The serving RNC decides based on the parameters

given by the MU and UTRAN, whether a handover is necessary and performs the

initial handover. The serving RNC is responsible for the Macro-diversity, the Macro-

diversity determines the threshold for the MU to connect more than one cell and

which cell will be the serving cell.

2.2 Location-Based Services

LBS is the term that is applied to applications which use knowledge of the geograph-

ical location of an MU in order to provide a set of services based on that knowledge.

Many services can be considered LBS such as navigation assistance, emergency loca-

tion detection applications, disaster aid, finding friends in social networking, locating
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point of interest using map applications, etc. In order to use LBS the correct po-

sitioning technology is required, or using a geographical information system that

shows the areas and through mapping the environment the mobile operator serves.

LBS faced a lot of challenges in the past such as insufficient positioning technologies,

limited standards that support it amongst operators and networks, inappropriate

infrastructure such as lack of GPS enabled handsets etc. No business models were

able to support LBS provision etc. Recently, there has been a modification on the

business model by considering location as subject of operators.

LBSs is now supported by most mobile applications. LBS applications design

features are started by collecting positioning data through GIS, and these data are

mapped with sufficient information about the road network and points of interest.

The accuracy and the extensiveness of the mapping have resulted in updating LBS.

Finally, there is the cooperation chain between the whole parties, operators with

their support, handset manufacturers, application developers and content providers

to get the advantage of LBS technology and to be serviceable to the final users [34].

2.2.1 Benefits of Location-Based Services

LBSs are expected to provide a set of advantages and benefits for MUs, these benefits

can be reached through the services served by the cooperation chain mentioned in

section 2.2, enable the MUs to get every relevant material on the internet that aids

him/her in taking decisions by filtering the important information to fit the position

that he /she is located at, as in choosing the best hotel or restaurant in the area.

Another benefit is to provide MUs with instant information that is not usually

known by MU to speed up their activities and decisions. This information can be

served when reaching certain areas - road closures for example.

LBS applications also need less data from the MUs to access services, since LBS

application will have this information by obtaining the position data automatically.

Furthermore, local information will be available for all the MUs who are within

certain areas by sharing and tagging locations. This makes the set of MU movements

with any associated tagged information a very helpful source of information for

service providers and operators to build models that would enhance services.
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2.2.2 Classifications of Location-Based Services

LBS can be classified according to different measures where each one holds many

examples that have different technical specifications. These measures are: target

market (consumer services), purpose of application, and technical features and ca-

pabilities [34].

1. Target Market

LBS applications focus on three types of target markets [35, 36] which are

“publically accessible for the mass market,” “publically accessible for niche

markets”, and for “internal enterprise applications”.

(a) Publically accessible (Mass market): In these applications the con-

sumers are the general public, and served with applications that do not

require previous registration, for example applications that look for clos-

est gas stations or restaurants. These kinds of LBSs must process:

• Scalability: Ability to handle a huge number of requests.

• Performance: Reasonable performance for the locations to be cov-

ered to avoid any network latency.

• Availability: LBSs must maintain highl availability for the MUs

since there is no specific way to know if the is system down, public

MUs will only see no service available which will disappoint MU user

experience.

(b) Publically accessible (Niche market): In these applications the MUs

on target are still the public but with specific interests. For example,

shops can inform previous MUs about any special offers or sales just

when they pass it by. These applications have mainly privacy issues

rather than issues of performance, scalability or availability.

(c) Internal enterprise applications : Usually these applications are ap-

plied inside an organisation or facility. For example, inventory tracking,

personnel tracking and information retrieval. Most of these applications

use certain hardware such as special mobile devices or take advantage of
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the latest smart phones models that use the latest mobile technologies.

In this case the privacy of the employee should be taken into consid-

eration, as well as protecting private internal data in a public mobile

phone network by technical effort which is considered a challenge in such

environments.

2. Purpose of Application

Another measure that used to classify the LBS is the main purpose of the

designed applications. The reason for use would differ from one LBS applica-

tion to another driving more constraints and technical issues. The navigation

applications which are very common for routing are used widely to direct the

MUs from a point of origin to a destination. Entertainment applications also

use LBS as in many social games and social networks, these applications are

designed to locate and tag MUs in different locations. Furthermore, many of

the information service applications which are used to help tourist users to

locate, for example, the closest hotel, bus or train station or best restaurant in

the area would be other uses of LBS. Emergency services are used to inform

potentially affected users of any medical or police emergencies within an area.

Business development aid information services employ the technology as in

management chain and tracking shipment delivery or purchase.

3. Technical Features and Capabilities

Technical features of LBS applications would consider other main classifiers.

A number of examples are described as follow [37]:

(a) Point of retrieving location feature: Cellular communications net-

works used to provide the position of the cellular based on transmission

signals between the MU and the BS. This is considered as cellular network

dependent, and this was before the appearance of GPS-enabled smart

phones. Cellular network providers were responsible for supplying ex-

posed location information to LBS developers. In new smart phones, the

ability to determine their location is valid via GPS and digital compasses.
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Using GPS consumes significant MU power so developers therefore avoid

using it.

(b) Point of requests feature: In most of the LBS the services are reactive

which means that provided after a request from the MU; i.e. the MU send

queries and the application answers it. The other approach is proactive

LBS in which the information is sent to MUs when they are approaching

or entering certain locations.

(c) Point of data and processes recording feature: Usual LBS appli-

cations work on storing or processing MU current or previously recorded

location. As that is the case, the data is considered as a single data

point. But in current LBSs, there are set of records that hold more than

a single data point. For example, the route or location trace information,

combined with speed and direction, all would be stored [38]. The goal of

the extra information is to aid systems in predicting the future location

of MUs, as well as supplying the service providers with all the historical

information that may be needed to enhance services.

(d) Point of MU interaction feature : An LBS application would sup-

port two kinds of MUs’ interaction in the sense of requests of a single

MU application or multiple MU request applications. The first one con-

sidered as “single - target application” where the second one may called

“multiple-target application” which is the current motivation in Web 2.0

and social networking applications.

(e) Point of collecting location feature : LBS applications depend on

different technologies to collect location data which are different in ac-

curacy. For example GPS would not be useful sometimes indoors since

it depends on view of satellites. To overcome such problems other tech-

nologies can be used such as cellular communications network or Wi-Fi.

These technologies are discussed in section 2.2.4.
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2.2.3 Location-Based Services Components

LBS architecture is built up upon several layers, each of which contains number

of components. The first layer is User Interface (UI) which includes; LBS appli-

cation, application server data and smart phone devices. The second layer is LBS

middleware. The third layer holds core LBS features which are: Location Tracking,

Geographic Information System (GIS) provider with data and Location Collection

Services (LCS), see figure 2.4.

Figure 2.4: Diagram Showing Components of an LBS.

The following points explain LBS components and their functionality:

1. User Side (UI) : LBS Application is installed on Smartphone component

and consists of number of sensors connected to a server component that stores

the application’s data.

2. LBS Middleware : Provides medium between LBS application and Core

LBS Features layer. One example of such middleware is the OpenLS specifi-

cations.

3. Core LBS Features : Location Tracking used to store traces of the MU

locations. It works on keeping records of MUs’ locations, current and previ-

ous. It also detects the MUs located within a defined location in addition to

generating MUs’ movement model. The GIS provider is mostly responsible of
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providing geospatial functionality that includes information such as maps, and

visualisation of maps in addition to directory services. This can be found in

“Google Maps”. LCS is used to detect latitude and longitude of specific users

by collecting their location.

2.2.4 Location Collection Techniques

The common idea that is shared by the most, is considering GPS technology as the

only technology for location collection. In fact, there are several other technologies

such as cellular communications network and Wi-Fi which also provide such ser-

vices, each of which has different characteristics and techniques. GPS and Assisted

GPS (A-GPS) are mostly used in outdoor environments in order to get the best

accuracy at the expense of power consumption. However, cellular communications

network-based solutions also provide accurate positions of MUs with less power con-

sumption. Wi-Fi based technologies are mostly considered in the middle of the other

technologies and usually depend on availability of Wi-Fi access points [39].

1. GPS-based Solutions

Two main approaches are used for GPS based technology. In the first one, the

device’s position is triangulated based on signals from a number of satellites

(about four GPS Satellites) based on the known position of the satellites,

the time that messages from the satellites were sent and the time that they

were received. The accuracy of this system involves outputs within about 5

to 10 meters of the true location. They depend only on the satellites with

no aid from any other communications network. Although this is technology

dependent, it sill consumes relatively more power from the receiver side (MU).

This technology also an outdoor location to obtain a clear signal in addition

to taking a relatively long time to lock onto GPS satellite signals.

The second technology depends on the cooperation between GPS satellites

and the cellular communications network which is why it is called the A-GPS.

The servers on the cellular communications network provide information as in

the accurate GPS satellites orbit information. This technology is considered
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more accurate and works well in highly populated areas where the GPS signal

can not always be locked. But the dependency on the cellular communications

network to assist in locating the receiver force him or her to be in the areas

covered by these networks.

2. Cellular Communications Network-Based Solutions

A number of solutions were given for LBS depending on the cellular commu-

nications network. These were based on number of features such as the cell of

origin, time of arrival, the angle of arrival and enhanced observed time refer-

ence. Each feature is used to give one solution which is described as follows:

• Cell of origin (Cell-ID type) : The location of the receiver (MU)

is predicted according to the serving cell. This technology was used to

locate the MU when making emergency calls.

• Time of Arrival (TOA) : The position is calculated by measuring the

distance from serving BS using the propagation time between the receiver

and the station. All this is calculated by the cellular communications

network system and here Absolute Time-stamps are considered.

• Angle of Arrival (AOA) : This technology is used by the BS to es-

timate the location of the MU by estimation the angle of the signals

transmitted by the MU. That could be achieved through the number of

the installed antennas on the BS in each direction, in which the propaga-

tion phase difference between the received signals at each antenna on BS

that is mapped to the MU’s location. The location would be the over-

lapped area covered by each antenna in its direction. Finally, the mobile

device hardware is enough to complete this technique.

• Time Difference of Arrival (TDOA): In this technology the position

of the MU is calculated using the algorithm that measures the time dif-

ference of the received signal by the MU which was transmitted by more

than one base station.

The cellular communication network based solutions described above are wor-
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thy of use in this research because they do not totally rely on MU resources

to determine the MU location.

3. Wi-Fi Based Solutions

This solution basically depends on the recorded identity and signal strength

of the recorded public Wi-Fi access points used by the device. This allows

locating the device using triangulation on relevance to the connected access

points which are stored in a database with their actual location. So this

information is used to calculate the user device location.

2.3 Summary

This chapter has reviewed the cellular communications network generations form

2G, 3G to 4G. In addition, a descriptive example of 3G architecture in UMTS was

included. Definition of the LBS has been described. The benefits of the LBS in

different applications have been discussed. The classifications of LBS as in Target

market, purpose of applications, and technical features and capabilities have been

reviewed. A description of the components that build up LBS architecture has been

discussed as in user layer which contains LBS application and data with Smartphone;

and also the LBS middleware layer and the core LBS features layer. Last but not

least, the location collection techniques have been described in the cases of GPS,

cellular communications network and Wi-Fi.



Chapter 3

LBS Intelligent Mobility

Prediction Techniques

Research related to LBSs mobility prediction for cellular communications networks

is reviewed in this chapter. Well-known mobility prediction techniques designed for

cellular networks are also reviewed. These techniques are either based on stochastic,

probabilistic or hybrid techniques. The MCM and Swarm Intelligence (SI) such as

ACO are presented.

3.1 Introduction

With the development of communication and computer technologies, wireless net-

work devices now provide people with a level of mobility that enables them to

communicate with others anytime and anywhere. The combination of mobility and

networking has led not only to the development of a whole new class of very in-

teresting applications, but has also created a new set of technical problems such as

fragile wireless link, consumption of resources, and denial of services. One of the

most challenging problems introduced by cellular networking is mobility prediction.

The cellular communications network is divided into cells; each cell covers a

specific area within the network. The cell contains BS that response to do com-

munications with MUs residing in the cell. Several cells that are grouped together

belong to an RA. Consequently, the network consists of a set of RAs. When the

27
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MU is at the boundary of either cell or RA and is going to a different one, the

hand-off occurs and the connection in some cases will be lost because there will be

no resources to handle the MU at the new serving area. In contrast, if the resources

at the new serving area are enough, the connection is rarely lost. This is because

when the MU sends a request message for a re-located RA in the new area, the time

will not be enough to finish the hand-off procedure. Finally, if the connection is not

lost during the Hand-off, a service may not deliver on-time to MUs.

If the network has enough information about MU and neighboured, appropri-

ate artificial intelligent systems are employed. These help the network to predict

the next displacement for MU with high accuracy. Then, resources will be saved

and delay time for delivering the services will decrease which improves the network

functionality such as paging, location update and Hand-off.

3.2 Swarm Intelligence

The Swarm Intelligence (SI) is addressed from natural behaviours of living being

crowds. Crowd living supports beings in coping with difficulties that cause big

problems or are not possible for a single being to resolve [40–43]. Thus, SI can be

shown as a collaborative system in which an individual’s knowledge can be utilised

to overcome some of their own lack of awareness. SI has the ability to solve complex

problems by individuals interacting with his neighbours with minimum commu-

nication media costs to characterise a global behaviour. SI does not depend on

centralised control for problem solving.

SI systems in nature are responsive are observed managing phenomena such

as flocking and schooling of bird and fish, respectively [44, 45]. Moreover, it is

responsible for ant’s movement from their colonies towards food and collecting dead

ants. When one of a flock fails to achieve a task, the rest of flock can achieve the

task. Some of the other advantages are summarised as follows:

• Computational effectiveness: The swarm works in a distributed dynamic

for solving problem. Thus, the availability of multiple machine or processors

can work in a swarm for reducing the execution time overhead.
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• Reliability: The remaining flock tasks despite individual failure or a modi-

fying environment can be assigned to the decentralised control, shared infor-

mation, with simplicity for each one of flock. Also, there is no single leader

failure for the SI system.

• Scalability: Flexibility and ability for adding or dropping one of the flock

from the swarm without changing the programmes.

• Self-organising: There is no central leader for a swarm.

• Longevity: Multiple members of a flock resist more than a single agent.

• Low-cost: Simple communications and design require less hardware for solv-

ing complex problems.

These special advantages in SI give humans the ability to utilise same princi-

ples in many applications. Great achievements for SI have actually been shown in

a number of applications including optimisation problem solving (Particle Swarm

Optimisers (PSOs) [46–48] and ACO algorithms [19, 22]; ACOs will be discussed

in this below), mobility prediction [16], RA in communication networks [49], game

programming [50] and multi-robot systems [51].

Based on the previous advantages that have been discussed above, the ACO

will be utilised and enhanced to be more efficient for LBSs mobility prediction over

cellular communications networks.

On the opposite side, genetic algorithms were avoided in the present research

because it is not the ideal algorithm for such problem. Such must have optimal so-

lutions affecting real time with its limitation that its random solutions, convergence

and computational costs for obtaining the solution are very high [52].

Moreover, neural networks algorithms were avoided in this thesis because of the

difficulty in understanding the produced models. Also the “black box” characteristic

of these algorithms, hence, there are no easy rules can be used to show how prediction

was reached [53,54]. In addition, a full discussion for neural network in section 3.5.1.

The following sections discuss the history and modifications of the ACO that

have been made.
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3.3 Ant Colony

Dorigo et al., in [19] proposed ACO which was named as AS [19–22] and was inspired

from ants’ behaviour [55–57]. ACO is used to solve the TSP. The ACO model

is useful when it is used in greedy heuristics to find acceptable results in early

processing and complex systems.

The characteristics of ACO will make the model more sensible as it supports

parallel processing while avoiding the dependence process and gives feedback on

ants’ behaviours in the search. It applied a minimal change to other combinative

stochastic optimisation and it can also apply the same versions to the same problem

without extra modifications to the problem.

The ant is not blind when it searches for food as it finds the shortest path to get

the food to their nest. While moving, it leaves a chemical material of pheromone

along its trail. This pheromone is a medium for communication between the ants.

It presents the shortest path to collect the food rather than depending on the path

itself. While an isolated ant moves randomly, an ant encountering a previous path

can follow it. Hence, the path is reinforced by adding its own pheromone; the next

ants follow the path with the highest pheromone amount. This process is analysed

as a positive feedback loop where the probability of the path being used is increased

by the number of ants which have previously chosen the similar path.

Figure 3.1 explains the ants’ behaviour while seeking for food. The most shortest

path that was crossed is the one for getting food from the source to their nest. As

shown in figure 3.1.a. the ants walk from nest a to the source food directly. Suddenly,

an obstacle crosses the path. Consequently, the crossing makes C side longer than

D side, as shown in figure 3.1.b.

The ants will decide on which direction it will walk through to get the food

source. This direction may be through C or the opposite side D. The beginning

of ants’ walks is arbitrary and drops pheromone on their way. The time needed

towards and backward to the nest from D side is less than C side, therefore, the

quantity pheromone that dropped at D side is more than C side. Thus, the number

of ants walking through D side is more than the opposite side, which makes D side

more attractive for the next ants.
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Figure 3.1: Ants Behaviour through Searching Food, [16].

The ant colonies are considered as artificial systems and the model as a simple

agent with discrete time and ants are not completely blind.

3.3.1 Ant Colony Optimisation Algorithm

AS is described as the first ACO algorithm that was proposed by Dorigo [19] to deal

with NP hard problem optimisation, such as TPS and vehicle routing. The ACO

deals with these problems to find the shortest path in all visited cities once.

The ACO model has been motivated by the natural behaviour of the real ant

colonies through searching for food. The pheromone trails are a type of distributed

numeric information.

Regarding the TPS problem, salesman travelling is described as ants searching

for food away from their nest to find the minimal path to visit each city once during

the trip. This problem could be expressed as a fully connected graph G< N,E

>, where N is the cities and E is the edges between these cities. All edges have

the initial pheromone at the start of the algorithm, each ant starts the trip with

random starting city and must visit all cities only once. After all ants finish the

trips, pheromone must be updated on all edges. The length of the path or the

distance between city i and j is calculated by Euclidean distance that is expressed
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in equation 3.1 [19]:

di,j =
√

(xi − xj)2 + (yi − yj)2 (3.1)

Let bi(t)(i = 1, ........, n) the number of ants in city i at time t and the total

number of ants expressed in equation 3.2 [19]:

m =
n∑
i=1

bi(t) (3.2)

The path probability for the k-th ant from city i to city j expressed in equation

3.3 [19]:

P k
ij(t) =


[τij(t)]

α ∗ [ηij(t)]
β∑

u∈Sk(i)

[τiu(t)]
α ∗ [ηiu(t)]

β
if j ∈ Sk(i);

0 otherwise.

(3.3)

τij(t) is the pheromone intensity of the edge between cities i and j at time t. The

k-th ant at this time chooses the next city in which the time will be t+1. ηij(t) is the

visibility between i and j at time t, and is calculated by the quantity of 1/dij. Sk(i)

unvisited cities for the k-th ant during its trip. There are parameters that control

the relative weight between density and visibility on the trail.

Each ant through its trip lays some pheromones on the ground. The next ant

will follow the path with high probability, and thus support the track with its own

pheromone. The overall pheromone is updated after the ant’s cycle is completed.

The intensity of pheromone is affected by the new laid and evaporation rate. There-

fore, this is calculated by equation 3.4 [19]:

τij(t+ n) = (1− ρ) ∗ τij(t) + ∆τij (3.4)

Whereas ρ is a coefficient, (1-ρ) is the evaporation rate of the pheromone on the

trail between t and t+n. Thus, the value of ρ must be less than one and greater than

or equal to zero, to avoid unlimited pheromone on the trail. The initial pheromone

can be set as a random value that is preferred with a small positive number, and

∆τij can be expressed as in equation 3.5 [19]:
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∆τij =
m∑
k=1

∆τ kij (3.5)

m is the number of ants, ∆τij is the amount of the pheromone per unit on the

path between cities i and j by k-th ant that is calculated by equation 3.6, whereas

Q is a defined constant, Lk is the length of the path between cities i and j made by

k-th ant [19]:

∆τ kij =


Q
Lk

if(i, j) ∈path is generated by ant k−th;

0 otherwise.
(3.6)

3.3.2 Ant Colony Optimisation Modifications

Recent ACO research focuses on premature convergence of the pheromone on which

the search concentrates at early stages. This negatively affects the performance

of ACO and will lead to premature stagnation of the search. Search stagnation

is proposed in [19] as the situation where all ants follow the same path which is

generated by other ants and construct the same path over and over again. In other

words, there are no new paths to be found anymore.

In order to improve the performance and reduce the computation cost, the rela-

tion between solution feature and the distance from good quality or optimal solution

are required [58,59]. The Pheromone Trail Centralisation (PTC) [60,61] MAX-MIN

Ant System (MMAS) helps to avoid premature convergence and improve the overall

performance [62,63]. Moreover, long-term [19,64,65], mid-term [66] and short term

pheromone enhancements are addressed to improve the ACO performance. The fol-

lowing sub-sections summarise the important enhancements that have been made

on ACO which can be utilised in this research.

3.3.2.1 MAX-MIN Ant System

MMAS is introduced by T. Sttzle [67]. It obtains a better search process for the

ACO algorithm by increasing the exploitation of the best solution and avoiding early

search stagnation that occurs during the search [67]. MMAS meets this requirement

by addressing the following keys:
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1. The pheromone is affected by only best ant during a run or iteration of the

processes that is executed after each iteration. This ant is the one which found

the best path in the current iteration or the best path from the beginning of

the processing. On the other hand, the best solution is depicted from the

beginning of the trail.

2. To avoid early stagnation that may occur, they proposed the lower and upper

limit of the pheromone during search, according to an interval [τmin, τmax].

3. The initialisation value of the pheromone trail is set to τmax, that is given a

higher exploration of the best solution at the start of the algorithm.

3.3.2.2 Pheromone Trail Updating

In the MMAS technique, only the best ant is allowed to add pheromone on the

trail after each iteration. Therefore, the pheromone trail update is represented in

equation 3.7 [67]:

τij(t+ n) = (1− ρ) ∗ τij(t) + ∆τ bestij (3.7)

∆τ bestij = 1/ f(sbest), f(sbest) represents the best solution cost of either iteration

or the global solution. Sttzle and Hoos in [60] allowed only one ant to lay down

the trail for MMAS that is based on either best-iteration(sib) or the global best

solution(sgb). Based on these choices, elements which a have high frequency in a

good solution get larger reinforcement of the pheromone. Nevertheless, a judicious

choice between the iteration-best and global-best ant for updating the pheromone

trails depends on which one of them will give the better solution during the search.

When using only sgb, the search gives a solution at the early stage of the search

and may concentrate too quickly around this solution. The ability to explore a

better solution is limited. Consequently, the quality of the solution is decreased

dramatically. This bad feedback is avoided when sib is chosen for the pheromone

trail update since the iteration best-solution may change from one iteration to an-

other. The large and different number of solutions affects the reinforcement of the

pheromone on the trail. Furthermore, the recommendation techniques are used as
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a mixed technique, sib as default and sgb as fixed numbers of iterations for updating

the pheromones.

3.3.2.3 Pheromone Trail Limits and Initialisation

According to the iteration-best and global-best ant for the pheromone trail update,

search stagnation may occur. This takes place at each decision point when the

pheromone trail for one path is considerably higher than all others.

In order to avoid search stagnation occurring, the next solution depends on the

pheromone trails and the heuristic information. In general, heuristic information

is addressed as problem-dependent and with a static result during the algorithm

execution.

Hence, controlling the probabilities for choosing the next solution is the recom-

mended key to achieve the pheromone trails balance during the execution of the

algorithm. Furthermore, MMAS deals with this problem in a way that determines

τmin and τmax on the minimum and maximum pheromone trails’ for all paths τij(t),

τmin ≤ τij(t) ≤ τmax. In order to avoid the pheromone trail exceeding these limits;

each ant will be checked after one complete iteration when the value of τij(t) is

higher than τmax or lower than τmin, τij(t) sets τmax, τmin respectively. In addition,

when imposing the value of τmin > 0 and ηij < ∞ for all paths, the probability of

choosing the next path is never 0.

The appropriate values for the pheromone trail limits are needed to avoid prema-

ture convergence for MMAS. MMAS should converge with each decision point, when

only one of the pheromone trails has τmax, while all other trails have a pheromone

trail τmin. The new solutions are always choosing the solution with maximum

pheromone trail ensuring that it is based on the best-solution (path) which is found

by the execution of the algorithm.

The notion of convergence of the MMAS differs in one slight way. However, it

is an important feature from the concept of stagnation [19]. Hence, stagnation is

addressed as the situation where all ants follow the same path. Also, the convergence

situations of MMAS are avoided because of the pheromone trail limits.
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The maximum pheromone trail is expressed in equation 3.8 [67]:

τmax =
1

1− ρ
· 1

f(sbest)
(3.8)

The maximum possible amount added on the trail after each iteration is 1/f(sbest).

f(sbest) representing the best solution cost of either iteration or the global solution.

After each new solution is found, τmax is updated. Thus, the value of τmax dynami-

cally changes according to the new value of τmax(t).

Based on the best-solution, avoiding heuristic information that affects the solu-

tion construction and depends on the relative difference between upper and lower

pheromone trail limits is useful to extract sensible values for τmax [60, 68]. The

minimum pheromone trail limit can be expressed in equation 3.9 [60,67,68].

τmin = τmax/n (3.9)

Where n is a number of instance cities.

Initial pheromone trail is one of the critical issues in MMAS. The better solution

quality which can be found requires high exploration of the search space, thus the

τ(0) is set to high random number. After the first iteration of MMAS, the lower

and upper limit of the pheromone is calculated. In addition, the trail τ(1), is set to

τmax(1) to increase the possibility of finding out the best solution.

3.3.2.4 Pheromone Trail Smoothing

To improve the performance of the MMAS and reduce the ability of premature con-

vergence that could occur, Sttzle and Hoos, in [60] proposed a mechanism, named

Pheromone Trail Smoothing (PTS). This mechanism made better evaporation con-

trol of the pheromone on the trails and looked after the pheromone trails amount ac-

cording to the maximum pheromone trail limit, PTS represent in equation 3.10 [60].

τij(t+ n) = τij(t) + ρ ∗ (τmax(t)− τij(t)) (3.10)

τij(t + n) and τij(t) are the pheromone trails before and after the smoothing

technique. The PTS mechanism is remarkable when the problem needs long run
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time. PTS increases the space of search and includes solutions with low pheromone

trial.

The advantage of the PTS mechanism is concluded through the control that

offers the evaporation rate. The value of ρ are ρ < 1 and ρ > 0, 1 (the mechanism

will re-initialise the pheromone trail) or 0 (PTS is switched off), this indicates that

the information gathering is not completely ignored, but merely weakened.

3.3.2.5 Pheromone Trail Centralisation

PTC is the mechanism which explained more enhancement for ACO and is consid-

ered as the best solution to control the pheromone trail. In other words, it is the

solution that cannot be further improved [68].

PTC is depicted based on the PTS. PTC is a mechanism that improves and finds

a very high quality solution, avoids a premature convergence, avoids partiality into

the local search and increases the search space through increasing the probability of

selecting a solution with low pheromone limit [61].

The technique is represented in equation 3.11 and 3.12 [61,68]

τij(t+ n) = τij(t) + ρ ∗ (τcen(t)− τij(t)) (3.11)

τcen = 0.7 ∗ τmax (3.12)

Whereas τij(t+n) and τij(t) are the pheromone trails before and after the PTC,

τcen is the central pheromone trail value, which it is empirical tested.

3.3.2.6 A New Minimum Pheromone Threshold Strategy

Wong and See, in [69] proposed a new technique named A New Minimum Pheromone

Threshold Strategy (MPTS). Then, they observed the performance of MMAS on

quadratic assignment problems (QAPs). MMAS solved some QAP successfully.

However, it has a difficulty and a weakness when it deals with a large instance of

the QAP. They presented a new technique to avoid the weakness of MMAS, increase

search diversification and memorise better solutions that were found.

In MPTS, a new pheromone threshold (τmt) is proposed. It is higher than the

minimum pheromone trail limit and lower than the maximum pheromone trail limit
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that is used to monitor the performance of ants in the search process and how to

avoid stagnation of the search process.

The value of τmt is set at the beginning of the algorithm throughout the execution.

It is changed to prevent the search performance from dropping dramatically. The

change is done by dividing the current value of τmt with a factor K after number of

steps which are determined at the beginning of the algorithm.

During the search running, each value of pheromone trail (τij) is compared to

the τmt. When τij is lower than τmt, it is set to τmax. This guarantees the per-

formance of exploration and includes the trial pheromones which have lower value.

It is considered in the next component solution through changing the value of the

pheromone.

In MMAS technique, the setting value is performed only when all ants cannot

discover a better new solution. In other words, this occurs when the stagnation

of the search is addressed. On the contrary, MPTS allows instance re-setting for

pheromone and waiting when all ants arrive to stagnation search state. Avoiding

re-initialisation of all trails at the same time, this leads to memorising some useful

solutions that ants have learnt previously. Meanwhile, it is allowing the algorithm

to find a better new solution.

3.4 Markov Chain Model

In this section, an analytical review of the MCM is presented. The sequences of

MCM’s equations for prediction also are discussed.

MCMs are used for analysing complex systems and predicting behaviour under

uncertain dynamic conditions [70, 71]. Furthermore, they can yield present and

future states independently of the past states [18,72].

In real systems, the state changes from the current state to next state or remains

in the same state. Therefore, the prediction of MCMs is based on a certain proba-

bility distribution [73, 74]. The changes from current state to next state are called

transitions. Each change has a probability which is called the transition probability.

Moreover, there are other examples for MCMs such as a simple random walk and
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weather predictions [75].

The probabilities are essential in real systems that are given the probabilities of

the preceding states that can be expressed by a transition matrix [75,76].

P =

 x x̄

y ȳ


(P )i,j is the probability. If a given state is known to be i, it will be followed

by a state of type j. When a state of the system is known to be S at time 0, the

prediction path can be represented by a vector, whereas the probability of S is 100%

and the complement is 0%.

S(0) =
[

1 0
]

The next state or path of S can be predicted by:

S(1) = S(0) ∗ P =
[

1 0
] x x̄

y ȳ

 =
[
z z̄

]
(3.13)

Here, z indicates the probability of the next state, which could be crossed by the

user. The general rule to predict N paths that will be crossed is:

S(N) = S(N − 1) ∗ P (3.14)

S(N) = S(0) ∗ PN (3.15)

3.5 Mobility Prediction over Cellular Communi-

cations Network

Locating users as they move from one place to another in a cellular computing

environment is the key to providing continuous services with unrestricted mobility.

Therefore, the data management in this environment involves challenges in the need

to process information during the move, to cope with resource limitations and to

deal with heterogeneity. One of the applications of cellular data management is

LBSs which have been identified as one of the most promising areas of research and

development [77].
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Strategies of location management in cellular environments can be classified into

static and dynamic. In the static strategy, the updating operation is reduced ac-

cording to the network topology. This technique suffers some inefficiency especially

for users who are located around the RA boundaries and who cross these boundaries

repeatedly. Moreover, RA sizes are fixed for all MUs as specified by cellular infras-

tructure, without considering their individual mobility and service request pattern.

Dynamic location updates have been developed to address and enhance the effi-

ciency of the static strategy [78]. The updating operation is initiated according to

the user’s movement pattern and the frequency of its requesting service. Location

is among the most important contextual information for mobile applications. Much

of the previous work on LBSs treated location as an additional attribute of the data

tables [79, 80]. In this way, LBS queries can be processed like ordinary queries ex-

cept with additional constraints on the location attribute. Predictive location was

dynamically introduced to predict an MU’s future location based on the current lo-

cation information, the user’s historical mobility pattern and auxiliary information.

Therefore, the mobility realisation and location determination are two factors in

location prediction to determine the location of an MU at a time t.

Francois and Leduc [81] introduced the accuracy of prediction to evaluate mod-

els. Numerous prediction models were introduced to increase the accuracy of the

prediction techniques for users with varying speed that was reported in the liter-

ature. However, none of them can fulfil the optimal prediction success rate and

effective cost requirements. The literature is divided into three sections; namely,

the cell-based techniques, the map-based techniques and prediction techniques that

are based on MCM.

3.5.1 Cell-Based Techniques

In the cell techniques [82–87] a service area is partitioned into several cells. The

cell covering the MU will page his or her device to establish a radio link in order to

track the changes in the location of MUs.

The cells broadcast their identities and the MU periodically listens to the broad-

cast cell identity and compares it with the cell identity stored in its buffer. If the



3.5. Mobility Prediction over Cellular Communications Network 41

comparison indicates that the location has been changed then the MU sends a lo-

cation update message to the network [88].

Prediction techniques that are based on a cell technique can be enhanced by

heuristic methods and neural networks [89, 90]. Liou and Lu [89] divided the cell

into two areas, edge and non-edge. The edge areas have neighbouring cells, while

the remaining areas are considered as non-edge areas. When the MU is in a cell’s

edge area, the information is passed to a neural network which predicts, from the

neighbour’s cells, the next cell that will be visited. Another technique captures

some of the MU activity and paths. These paths are progressively recorded, giving

a history record which is used as an input to a neural network to predict the next

cell that will be visited [90].

The techniques proposed in [89,90] suffered from a long training phase on mobile

movements data which are used to build a knowledge base before making predictions.

Therefore, the MU may change his or her activity, such as movement pattern or

visiting a location he/she has never visited before, thereby bringing new cases which

the techniques have not encountered in training. Hence, the prediction percentages

dramatically decrease.

The techniques that are introduced in [16,91,92] are still based on cell mobility

prediction. The smallest service area will then be represented by the cell. Heteroge-

neous and homogenous network prediction mechanisms were discussed in [92]. The

main drawback of this technique was an extra overhead added to the network and

the anticipated security issues did not take place. In [16, 91], the techniques which

are based on temporal attribute to enhance the prediction success rate used closed

sample, small region and restricted environment such as university urban. A long

training phase was required [91]. The neighbours’ history was not utilised and the

fast mobile reaction for unexceptional mobility habits was also been not handled.

MPAS in [16] used the version of ACO that has been introduced in [19]. The

service area represented by Micro and Pico cell, cell dividing has not used.

The segments of a highway connect a student or employees’ accommodation

with a university campus which is covered by a cell in MPAS. The MPAS predic-

tion process is based on the user’s usual habits such as the students who leave the
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accommodation during working days to go to the university and at weekends when

he or she goes to the stadium instead of the university. If a new user enters the

network, the MPAS prediction handled the MU according to his/her neighbours’

histories. The history of each MU during days was memorised in the BS for each

cell through special architecture which is named the ”history table.” Updating and

processing the history table is handled periodically.

MPAS modelled MU displacements by ant colony going from current cell forward

to one of the neighbour’s cells searching for food. When a MU enters a new cell, the

MPAS predictor is started. It creates movement table with 50 entries. This table is

fed by entries from the history table of the same source and destination cell and the

data for the same mobile identification. The rest of the entries of the movement table

are then fed by other MU’s history. For more details on movement table and precise

mechanism for feeding see [16]. Moreover, each displacement prediction process

for each MU needs to create a movement table to complete the prediction process.

When the prediction process is finished, the MPAS will destroy the movement table

that is related to such prediction displacement.

The MPAS creates a colony of ants of which the members have the same number

of entries in the movement table. Each ant has a number according to the movement

table, i.e. ant1, ant2, ant3 or ant50. Each ant is associated with two variables,

pheromone and visibility. The next cell displacement will result after the pheromone

and visibility manipulations [16]. Finally, the MPAS strengths and weaknesses are

concluded as follows:

MPAS strengths :

1. MPAS based on ACO which has no tedious computation and sequence of

complex equations.

2. MPAS did not need long training before prediction process. As a result, the

learning phase was not required. This differs from the case of Hidden Markov

Models (HMMs) in which long training phase are compulsory.

3. MPAS reacts with MU mobility changing. When the MU changes his or her

route under certain circumstances, the MPAS will handle this situation be-
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cause the prediction process is based on pheromone quantity on each route,

i.e. the old route will not be preferred because the evaporation will decrease

the pheromone on that route, thus the route will be less favourite for future

displacements.

MPAS Weaknesses:

1. The MPAS service area is a cell which has too large a size. Global Position

System (GPS) or Galileo technology will be needed to enhance prediction

success rate [16]. Thus, the MPAS will be costly and complicated.

2. MPAS deals with a small sample in the smallest region, i.e. students, employ-

ees and the university campus. The MPAS presupposes limited activity for

them.

3. Each MU needed to create a movement table for each displacement prediction

introduces an extra overhead computation for MPAS.

4. The movement table contained 50 entries for each MU and his neighbours’

histories which is not enough to provide full knowledge for the MU or about

the other MU behaviours in the cell where the MU is located.

5. MPAS is based on the ant colony’s equations introduced in [19]. The modifi-

cation of ACO was omitted in MPAS. Therefore, search stagnation and con-

suming computation cost were addressed because there was no limitation for

pheromone.

Recommendations for a suitable mobility prediction over next gener-

ation cellular networks :

1. Construct a mobility prediction technique based on the ACO, where the ACO

modifications can be utilised to avoid search stagnation and reduce computa-

tion cost.

2. Find a mechanism or algorithm to reduce the service area to a portion instead

of a cell. This virtually means splitting cells into smaller regions to increase

prediction success rates.
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3. The important thing is how to discover an algorithm for finding the MU loca-

tion when the service area has been reduced. Since the time for finding MUs

will be handled during the mobility prediction technique, a bad finding algo-

rithm will affect the delay time and increase time to complete the prediction

process.

This author in [93], introduced a new Splitting-based Displacement Prediction

Approach for Location-Based Services (SDPA). The model reduced the service area

to be less than the cell, however, this model deals with static splitting which means

that SDPA can split a cell into a number of static regions. Sub-section 3.5.2 shows

more details and comparisons for SDPA.

3.5.2 Map-Based Techniques

The map matching algorithm has been used for mobility prediction. Ren and Karimi

developed the map matching algorithm through using other techniques such as MCM

and Hidden Markov fuzzy logic to improve the mobility prediction for wheelchairs.

In [94], the map matching algorithm has been developed through its dependence

on the MCM and GPS sensor. The distance and the direction between the points

which are recorded by GPS are used. Prediction of the direction of wheelchair users

in sidewalk is considered as the outcome from [94].

Ren and Karimi [95] presented a map matching algorithm that is based on the

GPS and HMM to navigate wheelchair users on sidewalks. The algorithm uses the

data that are recorded from GPS, using HMM to determine the correct segment in

a sidewalk network.

In map matching, using the fuzzy logic and the data gathered from GPS is

considered as one of the techniques that are proposed to navigate the wheelchair

user in sidewalk areas [96]. GPS data and the map of the target area are stored in the

server side and the analysis of the data is performed by the fuzzy logic. Therefore,

the incorrect direction will be eliminated and thus it will advise the wheelchair user

how best to reach a destination [96].

The map matching techniques area proposed in [94–96] suffered from many major

drawbacks. All of them are tested and evaluated for wheelchair only on university
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campus sidewalks and it works only outdoors. These techniques are based on GPS

navigators. Therefore, anyone who needs to use them must have GPS sensors.

However, the GPS sensors lead to extra physical cost bearing in mind that they

may not be applicable for all mobile devices. Moreover, GPS suffers from inaccurate

data on narrow roads, in high buildings, higher-end GPS users is used to improve

the signal, instead of low-end.

In urban areas, the navigation of wheelchairs is difficult because the satellite

signal could be very poor in such areas. This causes a conflict and an odd drawback

for those techniques from the viewpoint of how the wheelchair users can be navigated

in urban areas when the GPS is not accurate in such areas.

Map-Based techniques [97, 98] determine a user location as a point on a road

instead of a cell, using geo-positioning systems such as GPS. A service area is par-

titioned into road segments that assist in determining a specific requested service

such as the nearest restaurant or a park. On the other hand, the destination must

be determined before starting to explain the shortest path to reach the target. If the

target point is not previously determined, the conservative routing algorithm cannot

be used to reach that point. GPS has another drawback as it only works outdoors

because it cannot detect satellite transmissions indoors, especially in steel-framed

buildings [99]. Furthermore, it is not accurate for home or office applications [87].

PLM is a technique obtained from the Map-Based model without some of its

limitations, such as the need to know the endpoint of travel before starting. A

service area is modelled as a graph; the edge indicates a road segment and the

intersection of edges is represented as a vertex [14]. During a user trip travelling

on a road, the network generates a trajectory. The trajectory defines a sequence of

connected road segments or a sequence of connected vertices between two locations,

namely the start point and the end point. The user trajectory is stored in a database

to assist in predicting its future trajectory when it begins a new journey. The

historical trajectory information that is stored can be used to infer the number of

times the user has travelled on each road segment and the trajectory choice at each

intersection. The data are then used to predict the travel of a user.

PLM depends on creating a Dynamic Computational Window (DCW). A DCW
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is defined as a circular clipping window that centres around the user’s current loca-

tion to retrieve information from a database for location prediction [14]. The size

of DCW dynamically changes relatively to the speed of the user. PLM does not

allow a given user to visit each of the trajectories more than once for the whole trip

which means that the user cannot turn around at an intersection. Extra calculation

is needed because the end of travel has not previously been determined.

SDPA [93] has been developed to improve prediction success rate and minimises

consumption of resources and the overall cost of the location management process

comparing with PLM. Also, the SDPA reduces the service area and the number

of predicted routes during the MU trip by dividing the cell into eight equivalent

regions. Thus, the SDPA approach improved the location prediction probability

over PLM. The average complexity that is required for usage space is smaller than

the PLM approach. In addition, these techniques still work on cell level which is

more expensive in terms of message passing and execution times because the SDPA

and PLM are executed in tight time slots. Both of them work at the cell level.

Moreover, SDPA is based on a static algorithm for reducing service area into small

regions instead of cells. This was considered as another drawback.

3.5.3 Markov Chain Model for Prediction

There are many different techniques used to enhance the mobility prediction. MCM

is one of the most commonly used in prediction [100–104].

In [104], the MCM is used to anticipate the next displacement which is based on

the mobility history. The area that is predicted is too large because it contains many

cells (Location Area LR). The new mobile entrance to the network may decrease

the prediction percentage that is already made by the model.

The models which are introduced in [101, 102] enhance the mobility prediction

by using the second order MCM. The enhancements have been applied on the com-

putation process or prediction percentage.

The model which is proposed in [102] introduces an efficient mobility prediction

by using both incoming and outgoing handoff prediction; other parameters are used

such as road topology, handoff area points inside the cell, cell shape structure and
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the average time lasting in each service area segment. The model offers acceptable

results. However, the implementation cost and response time are significant and the

service area is a cell that would be predicted is too large, therefore, the manual filter

may be employed.

Sun et al. in [101], assert that the user’s knowledge is the important key for

the prediction process. The user’s future knowledge is collected from the mobile

side such as a user’s diary, e-mail or instant messaging. The model provides good

prediction percentages when it collects the knowledge, but when no knowledge is

available the prediction dramatically decreases. The obstacle is how the knowledge

can be collected, thus this model poses a conflict for MU privacy.

In [105], the authors introduced a new mobility prediction technique based on

the notion of MU profile. Each MU has many behaviours. Therefore, each one of

them has more than one profile. Thus, the storage overhead was addressed and

profile-based for each MU was handled by the MU equipment. This was considered

as the crucial drawback of this technique because the mobile equipment has limited

resources and power.

The mobility history is considered as the main parameter in the HMM for the

models that are proposed in [100,103,106,107]. These models will be applicable when

the BSs are not managed by the network entity whereas all previous movements of

MU are saved and manipulated. Nonetheless, the main drawback is the computation

cost which the models need. These models suffered from a very long training phase,

time required and slow reaction to a new behaviour of MU.

Other prediction techniques such as Ashbrook and Starner [108] tried to pre-

dict the user’s future movement using a modified k-means clustering algorithm and

MCM. This technique used the modified k-means for discovering a new location

by clustering GPS data and used a single MCM to predict future movement. The

Ashbrook and Starner technique does not consider how the user moves or the paths

taken during a trip, but considers where the user is. For example, when the user

leaves home, the predicted destination is school if this is his/her most frequently

destination from home. But if the user leaves home en-route to a shopping centre

or to another place, this becomes a problem. The wireless signal has been used
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for indoor sensing, such as a home, office and building environment, e.g., RADAR

where it is based on IEEE801.11 wireless Local Area Network (LAN) technology.

It has been developed by a Microsoft research group to use for location sensing in

a small area [109]. The current location services determine through calculation the

location of a user by the radio-frequency signal strength between a base station and

a receiver. There are commercial products which use the same technique. Moreover,

the Naive Bayes technique, the grid technique, the graph technique and the Dakkak

technique are addressed as the important techniques in indoor prediction [110–114],

where the signal is weak or noisy. These techniques are based on one of the fil-

tering models such as the Kalman filter [115–117] the particle filter [118–121] and

upon fractional differentiation [122]. These indoor prediction techniques only work

indoors and each building needed a special recognition hardware to be suitable for

the prediction process.

S. Bellahsene et al. in [15,123] introduced a new mobility prediction architecture

which is based on two nodes of the network: global prediction and local prediction.

The global prediction works on the enhance gateway while the local prediction works

on the base station level. The drawbacks which are addressed in [123] are the delay

of response and the model which does not have a good prediction percentage due to

the movements of MU. This is described by Random-Way point mobility model.

In [15], NMMP is introduced. The model appeared as an enhancement to the

random movement method more than those in [123]. The NMMP model is based on

two prediction levels, namely, the Global Prediction Algorithm (GPA) and the Local

Prediction Algorithm (LPA). The GPA is run by an Enhanced Gateway (EGW)

which is considered as the root of cellular network. The GPA is responsible for

handling the regular user’s movements. The LPA is run by an Enhanced Base

Stations (EBSs) in order to predict the MU’s random movements within a cell.

The NMMP handles different types of MU movements and it has many draw-

backs. The first drawback is the communication cost which is more expensive.

NMMP does, however, solve the PING PONG handover problem (although that

problem had already been solved in [124, 125]). The communication cost consists

of EGW cost, EBSs cost, cell cost and the cost of routers which are used to con-
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nect between all of them. Moreover, the communication cost affects the delay of

response and updating history. A group of cells that are elected to be in the next

displacement belongs to a different EGW router which doubles the communication

cost for all processes needed. This is used to achieve the operations related to the

prediction process such as updating history.

Secondly, the time managements of NMMP are weak. GPA and LPA worked on

different time slots which mean that there is no overlap between the times needed

to achieve both of them. In a sense, the total time for NMMP is the GPA and LPA

times. In other words, the total time is the time performed by both the GPA and

LPA.

3.6 Summary

In this chapter, the research related to ACO has been reviewed. The literature for

the mobility prediction techniques has also been reviewed. Some techniques are

based on stochastic algorithms; others are based on probabilistic algorithms while

others are based on, e.g. ACO, MCM, HMMs and data mining algorithms. The

techniques are based on one assumption, either on HMMs or data mining algorithms.

These techniques would be unnecessary for the cellular communications network if

there was an efficient algorithm to solve that problem in a reasonable amount of

time.

Some researchers tried to design an LBSs mobility prediction technique based

on HMMs, temporal attributes or data mining algorithms in order to provide better

prediction success rates. However, most of the techniques for mobility predictions

are based on previous assumptions which have prediction success rate flaws in terms

of no balance between prediction success rates that has been achieved and their

resource overhead. None of these researchers studied the relationship between pre-

diction and performance (memory usage). Many updates have been developed to

speed up these techniques, but this improvement consumes a significant portion of

the overall system resource. Therefore, the research herein will endeavour to design

a new scheme to provide the mechanism for a better balance between mobility pre-
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diction success rate, memory usage and complexity time appropriate to the cellular

communications environment.



Chapter 4

Cell-Routing Area Multi-Levels

Mobility Prediction

This chapter utilises the knowledge presented in previous chapters to introduce a

Cell-Routing Area mobility prediction scheme, which is based on the combination

between cell and Routing Area. A Novel Cell Splitting Algorithm (NCPA), Loca-

tion Prediction based on a Sector Snapshot (LPSS) and New Routing Area Dis-

placement Prediction for Location-Based Services (NRADP) will be introduced to

accomplish a mobility scheme for cellular communications network such as UMTS

to improve LBSs. The features and processes of those techniques as well as the char-

acteristics, which are not maintained, are described. The developed techniques are

competitive and more efficient in prediction success rate, time complexity, delaying

time and memory usage compared to the Prediction Location Model (PLM), New

Markov-Based Mobility Prediction (NMMP) and Mobility Prediction based on an

Ant System (MPAS) technique.

4.1 Introduction

The most widely used mobility prediction techniques for LBSs over cellular commu-

nications network are based on the problem of either the stochastic or probabilistic

models. For instance, the Markov Chain Model (MCM) is also used for mobility

prediction that is based on stochastic calculation whereas its performance relied on

51
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the difficulty of the stochastic model. The difficulty of the stochastic model affected

MCM whereas the memorisation lossless and the long training phase are addressed

as the challenges. Rather, Hidden Markov Models (HMMs) is more commonly em-

ployed more than MCM [126]. HMMs offer flexible structure that can model complex

problems. On the other hand, because of their flexibility, the accurate solution re-

quires a very long time and training samples [127]. The PLM [14] and NMMP [15]

used MCM to improve their prediction success rates.

The Ant Colony Optimisation (ACO) algorithm is a kind of probabilistic tech-

nique for solving complex computation problems. Many improvements have been

made to the original ACO algorithm to produce an acceptable version for path

prediction. The MPAS [16] is based on the basic version of the ACO to improve

mobility prediction over cellular network. Thus, many challenges were addressed

such as search stagnation, complex computation and memory usage wasting.

In this thesis, a new prediction scheme is introduced which explains how both

developed prediction techniques communicate together. It is a combination of pre-

diction techniques at different levels which means that the first prediction technique,

named as NRADP, works at RA level and LPSS is the second technique which is

turned on through cell level. The striking characteristics of the developed techniques

work on prediction at different levels of a cellular network with different network

components to be used. Consequently, the execution time overlapping is utilised

because both of those techniques are independently executed. In other words, the

LPSS works behind the NRADP. Because these techniques work at different levels,

it can be termed as fair techniques.

The NRADP works at the Routing Area (RA) level to determine which RA the

Mobile User (MU) will visit next. NRADP uses a new developed ACO algorithm

with some enhancements. When the next RA is determined, the LPSS works to

prepare all the movement possibilities that may be done by the MU in that RA.

The LPSS employs MCM similar to the PLM and NMMP techniques in which

their prediction success rate is based on the previous MU movements. In addition,

LPSS adopts NCPA for balancing between prediction success rate and size of service

area.
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NCPA is valid to split any cell types to reduce the serving area in a cellular

communications network, a sector is the portion of cell that is produced from the

splitting technique. Basic arithmetic operations such as summation and multiplica-

tion are used to achieve the technique. Thus the novel technique is dynamistic.

4.2 Problem Definition

In 3G cellular networks, regions are divided into RA, each of which contains a set

of cells; the radius of a cell in a populated area is 250 meters [31], whereas the

non-populated areas are covered by larger size cells. This fact leads to delivery

of a massive amount of information. As a result, this information may degrade

the accuracy of services provided to the user. In such a case, there is a need for

manual filtering. Manual filtering often lets the MUs use their devices whilst moving

through, and interacting with dynamic environments. This is intended to increase

the relevance of the information retrieved by users of mobile information systems

and remove results that are deemed irrelevant to an MU’s location. This process

conflicts with the restrictions of an MU, such as the power consumption, storage

space, screen resolution and battery performance and low computing power and

resources.

Furthermore, the manual filtering would take extra time to improve the precision

of the retrieved information. This time is usually long and sometimes leads to

delivery of incorrect information due to the movement of the user to a new location

which has different information from the previous location. This appears especially

when a large number of results are returned to the MU.

These filters have been implemented in LBS. These problems cannot fulfil the

requirements of LBS in terms of accuracy prediction success rate and cost effective-

ness. However, these problems can be avoided and the requirements of LBS can be

enhanced by four processes. Firstly, the time by which the service is requested by

the user and the time within which the user gets the service are relatively short.

This fits with the period of staying in that location for a specific period, whereas

the proportionality between the two periods reasonably allows the user to benefit
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from the information associated with current location before moving on to a new

location, especially if the MU is in constant motion. Secondly, the volume of results

returned to users of mobile information systems is small. Thirdly, enhancing the

accuracy prediction leads to retrieval of information that is relevant to an MU’s

potential future location. Fourthly, satisfying the previous processes by finding a

technique for reducing the size of service area, therefore, dividing cells into smaller

regions is needed.

4.3 A Novel Cell Splitting Algorithm (NCPA)

This section introduces and describes a novel, efficient algorithm for splitting cellular

cells and locating the MU. Also, the algorithm which is built to handle a certain cell

type will be used in other, different cell types (i.e. pico, micro, macro and rural)

based on the symmetry features.

4.3.1 Splitting Algorithm

In a cellular communications network, the cell is considered as a circle graph. In

this research, the symmetric characteristic of the circle is exploited; where if one

portion of the graph is known, the remaining portion of graph can be predicted. The

proposed algorithm utilises the symmetry by splitting the cell into four quadrants

q = Qi |i∈[1,4]. The quadrant division depends on the angle path. The angle path

(P) is calculated by P =
∑360

θ=0Qi . Where Qi is determined as shown in (equation

4.1)

Qi =



i = 1, when θ in [0, 90];

i = 2, when θ in (90, 180);

i = 3, when θ in [180, 270];

i = 4, when θ in (270, 360);

(4.1)

To split a cell area into n equivalent sectors, apply the following rule: Let (x,y)

be a point in the xy-plane that is selected randomly from a circular region with

radius r and centred at the origin, if the circular region is divided to 2n sector,
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where n=3,4,5,....., named S1, S2, S3, ....., S2n . Also assume that the centred angle

of each sector is:

α =
360◦

2n
(4.2)

Let λ be the number of sectors in each quadrant. Each quadrant is divided into

uniform sectors as follows:

λ =
2n

4
= 2n−2 (4.3)

Then, this rule arranges the sectors in the plane in a way that ensures an easy

relation in determining the location of the MU that has a point (x,y).

Figure 4.1: The Technique for NCPA.

Figure 4.1 shows the NCPA, where number of sectors in each quadrant is equiv-

alent to other quadrants in the same cell. The numbering of sectors is drawn in

a way that assists in generating a general algorithm for an unspecific number of

sectors regardless of any cell types. The numbering direction is depicted, where the

arrows direction indicates how the numbering will be in each quadrant. Precisely,
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numbering in the first and third quadrants proceeds clockwise, while the numbering

in the second and fourth quadrants proceeds counter-clockwise.

Every cell in cellular communications network is virtually divided. Also, the

service area will be presented by a sector, as follows:

NCPA Algorithm for splitting a cell into sectors

Each cell C should undergo the following processes:

1. Determine the radius of cell is r.

2. Compute the quadrant q = Qi |i∈[1,4].

3. Determine number of sectors s in cell C, where s=3,4,5,......

4. Compute central angle for each sector α = 360◦

2n .

5. Find number of sectors in each quadrant λ = 2n

4
= 2n−2.

6. Sectors Numbering.

• Numbering the sectors in odd quadrants proceeding clockwise.

• Numbering the sectors in even quadrants proceeding counter-clockwise.

4.3.2 Locating MU

To determine the sector within which an MU is located, apply the following steps:

Step1: identify the quadrant in which an MU is located:

To determine the quadrant within which an MU is located, the point (x,y) of

that MU is compared with every interval as in the following equation (4.4):

j =



1 when x > 0, y ≥ 0 or x ≥ 0, y > 0;

2 when x < 0, y > 0;

3 when x < 0, y ≤ 0 or x ≤ 0, y < 0;

4 when x > 0, y < 0;

(4.4)

Where j∈ [1, 4] denotes the location of the MU that occupies a point (x,y) with

respect to the intended quadrant.
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Step 2: identify the sector in which an MU is located: Firstly compute the R

as follows: R =
∣∣ y
x

∣∣,0 ≤ R ≤ ∞ , then the values of R will be compared within the

intervals according to equation 4.5 to determine which sector it belongs.

S =



Sλj−(λ−1) if 0 ≤ R < tanα;

Sλj−(λ−2) if tanα ≤ R < tan 2α;

Sλj−(λ−3) if tan 2α ≤ R < tan 3α;

. .

. .

. .

Sλj−1 if tan(λ− 2)α ≤ R < tan(λ− 1)α;

Sλj−0 if tan(λ− 1)α ≤ R ≤ ∞;

(4.5)

Where S represents the sector id.

Using cell splitting in mobility prediction is inspired by [93]. Splitting a cell into

smaller regions reduces the size of service areas in comparison with the original cell

size and the amounts of data that are delivered to MUs and that will be reduced.

These factors assist in improving mobility prediction for LBSs.

In this research, NCPA is used to split a Micro cell into eight equivalent sectors,

whereas a quadrant contains two sectors. LPSS technique, see section 4.4, utilises

NCPA for splitting cells and finding an MU location.

Each MU has (x, y) coordinates, according to these coordinates the sector where

the MU is located will find out, as follows:

NCPA Algorithm for location of MU:

Each MU should undergo the following processes:

1. Determine the point of the MU (x,y).

2. Calculate quadrant number in which the MU is located j, where j=1,2,3,4.

3. Compute R =
∣∣ y
x

∣∣,0 ≤ R ≤ ∞.

4. Compare R with the intervals that are determined in equation 4.5.

5. Find sector identification s, where the MU is located.
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4.4 Location Prediction based on a Sector Snap-

shot (LPSS)

This section presents LPSS. This technique is based on a third generation cellular

network, such as the UMTS.

After introducing High-Speed Downlink Packet Access (HSDPA) technology to

UMTS network, the transmission rates expected from such wireless communications

are up to 10 Mbps [128]. For the implementation of LPSS, no GPS receivers are

required since the control is done by the BS.

The LPSS is a mobility prediction technique which improves the prediction of

locations in LBSs for micro cell based-on NCPA, see section 4.3. The LPSS divides

the Micro cell into eight equivalent regions (sectors). In this technique, an update

message is sent to the network with the current user location whenever a change in

the moving direction of the user is detected. The main contribution of LPSS tar-

gets the LBS’s cost by deploying a MCM that allows intelligent LBSs to minimise

the computation cost, consumption of resources and the overall cost of the loca-

tion management process. The LPSS technique utilises geometrical and topological

techniques allowing users to receive desired services in a timely fashion.

4.4.1 LPSS Sectors Determination

Based on the NCPA which is discussed earlier in section 4.3, each quadrant is divided

into uniform sectors (λ). Knowing that the number of sectors in a cell (2n), where

n can be 3,4,5,.....,. In this research, the number of sectors has been chosen to be

8; whereas n=3; which is the empirical test for splitting the cell into a small region

to be covered. Table 4.1 illustrates this technique. It is notable from the table that

the obtained area from Micro type by using 8 sectors (98214.28571) is smaller than

the extreme area in Pico type (125714.2857).

The LPSS address these problems by dividing each cell into eight equivalent

sectors (small region). This technique reduces the number of relevant services within

the small coverage area of each cell.

Table 4.1, depicts that 8 splitting sectors are chosen to be intermediate between
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Table 4.1: Optimal Area of Sector for LPSS.

Cell Radius Area(m2)

Types (m) No Splitting 2 sectors 4 sectors 8 sectors 16 sectors

Pico 100 31428.57143 - - - -

200 125714.2857 - - - -

Micro 200 125714.2857 62857.14286 31428.57143 15714.28571 7857.142857

500 785714.2857 392857.1429 196428.5714 98214.28571 49107.14286

4 and 16 sectors splitting. Based on 4 sectors, the service area is still large which

leads to sending a huge amount of information/data to the MU. This fact violates

the LBS’s constraints. Meanwhile, even if using 16 sectors will result in a small

service area, a crucial drawback is addressed that the number of decisions being

made will be increased, and this badly affects the prediction success rate.

The geometry used in the NCPA helps to reduce the volume of results returned to

users of mobile information systems, thereby avoiding the need for manual filtering

and improving the precision of information retrieved, increasing the accuracy of

predictions and meeting the characteristics of the mobile device such as the power

consumption, storage space and low computing power and resources.

4.4.2 LPSS Principles

Discussions are now presented in the phases used in the LPSS technique and the

steps that follow. Figure 4.2 shows the flow of LPSS. Pre-launching the LPSS,

environment’s parameters are initialised, such as number of cells, number of sectors

and splitting the cells. In addition, a number of relevant parameters are described

in chapter 5.

To ensure that the accuracy of the results is not affected by previous turns, the

procedure of splitting cells is a predefined step. In this process, a virtual splitting for

each cell in a network is performed in order to produce eight sectors. The splitting

process is done once without the need to recalculate because it is not affected by

natural changes such as closed roads, maintenance and congestion. Consequently,
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Figure 4.2: LPSS Execution Phases.

the splitting is excluded from the computation cost as it has been processed before

running the technique. When the execution is started, the information about the

sectors is stored in the database.

When an MU registers to a network, the current x,y are provided to LPSS

through the History of MU. The specific sector in which the MU is located will

be calculated by using step 1 and step 2 which are described in section 4.3.2. The

output for this step is the sector identification where the MU is located. The MU in

LPSS can be in one of two states, FIRST REGISTRATION and HOME USER. In

the FIRST REGISTRATION state, the historical movement matrix is built by the

neighbours. This information is stored in a database. In the HOME USER state,

although there is a historical movement matrix, there is still a need to update it
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to ensure the matrix is consistent and up-to-date. Transition and probability ma-

trices are built based on the historical movement matrix. Therefore, the historical

movement matrix must be up-to-date for the MU movements. The probabilities

of each sector around the MU are derived based on the transition matrix. In the

meantime, the current state vector for the MU is initialised and then multiplied by

the transition matrix. The result is the probability that the user will be moving to

each sector around the user, i.e. the potential sectors. Finally, the LPSS behaviour

when an MU enters a new RA is illustrated in section 4.6.

4.4.3 LPSS Mechanism

In order to demonstrate the LPSS technique, a set of parameters is defined. Table

4.2 summarises the parameters needed to perform the LPSS technique.

Table 4.2: LPSS Parameters

Parameters Description

j ID of the cell

i The Sector ID where the MU is located,

the current location Lk at current time Tk.

k The sequence time for MU movements,

the next location Lk+1 will be predicted at Tk+1 which is the later time.

To split a cell area into eight equivalent sectors, the NCPA in section 4.3 is used

where n=3, α=45◦ and λ=2 by using equation 4.2 and 4.3 respectively. The eight

sectors in cell Cj will be illustrated as in equation (4.6)

Cj =
8∑
i=1

Seccj ,i (4.6)

Where i =1,2,...,8 is the ID of the sector.

To determine the sector within which a MU an MU is located, longitude (x) and

latitude (y) of the MU are processed by step 1 and step 2 which are described in

section 4.3. As a result, the sector where the MU is located will be determined.
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The dynamic movement of an MU through a period of time to Tk+1 will result

in changing the current location to a new neighbouring sector. After a set of time

interval, the MU will have to be moved through a number of sectors. These sectors

are stored in a database to assist in predicting a new sector to be entered.

When a new MU self-registers, he or she does not yet have a record in the

database. The historical movement of the MU is derived from all MUs, or more

precisely from neighbouring users. Historical data that are stored in the server can

be expressed as in equation (4.7):

H(Seccj ,i, tk) =



Nm,i/Nm Nm+1,i/Nm Nm+2,i/Nm ........ Nm+n,i/Nm

Nm,i+1/Nm+1 Nm+1,i+1/Nm+1 Nm+2,i+1/Nm+1 ........ Nm+n,i+1/Nm+1

. . . ........ ........

. . . ........ ........

N1,n/Nn N2,n/Nn N3,n/Nn ........ Nn,n/Nn


(4.7)

Where Nm is the number of the traversal over sector m, and Nm,i is the number

of times the user has entered sector i when the user had been in sector m. When the

user locates at Seccj ,i at Tk then the available sectors at Tk+1 are Seccj ,i+1, Seccj ,i−1

and the facing sector in the neighbouring cell Seccp,q, where p is the neighbouring

cell ID and q is the facing sector ID. Based on figure 4.3, when the user is located

at Secc1,1, then N1=1,N2,1=N8,1=NSecc2,5,1=1/3.

The historical matrix is periodically updated to achieve consistency. It is also

updated when Nj is incremented by one and N(j, i) is incremented by one. To

reach the probabilistic information for the predicted next state, a transition matrix

is needed as in equation (4.8):
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Figure 4.3: Movement of MU between Sectors in Two Cells.

TP (Seccj ,i, tk) =



P (Seccj ,1, Seccj ,1) P (Seccj ,2, Seccj ,1) ........ P (Seccj ,n, Seccj ,1)

P (Seccj ,1, Seccj ,2) P (Seccj ,2, Seccj ,2) ........ P (Seccj ,n, Seccj ,2)

P (Seccj ,1, Seccj ,3) P (Seccj ,2, Seccj ,3) ........ P (Seccj ,n, Seccj ,3)

. . ........ ........

. . ........ ........

P (Seccj ,1, Seccj ,n) P (Seccj ,2, Seccj ,n) ........ P (Seccj ,n, Seccj ,n)


(4.8)

The current state of an MU after registration in a network can be represented

as in equation (4.9):

Currentstate =
[

1 0 0 0
]

(4.9)

So the next state will be predicted after multiplying equation 4.9 by equation

4.8. The resultant vector is expressed in equation (4.10):

Pr =
[
Pr0 Pr1 Pr2 Pr3

]
(4.10)

Where Pr is the probability that the MU will travel to surrounding sectors, and
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Pr0 + Pr1 + Pr2 + Pr3 =1.

Logically, the values of Pr will give the indication of the next sector to be visited

in the next state since the highest Pr will give the highest probability of the sector.

Generally, to generate more predictable sectors for further states, equation 4.10 will

be multiplied by transition matrix 4.8. In other words, the operation that resulted

in equation 4.10 will be repeated.

4.5 A New Routing Area Displacement Predic-

tion

If the cellular communications network has enough information about the MU and its

neighbours, appropriate artificial intelligent systems are employed. These help the

network to predict the next displacement for an MU with high accuracy, sensible

resources will be saved, delay time for delivering the services will decrease and

improved network functionality such as paging, location update and Hand-off occurs.

This section discusses NRADP, the MU’s behaviour and prediction processes are

modelled by an ant colony. The developed approach works on the RA which means

that every RA is classified as an independent colony and control itself. Variables

pass through them because each one of them needs to know the visibility of his

neighbours. Also, the developed model deals with mobility state for MUs. Hence,

the idle state of the mobility model is handled.

4.5.1 NRADP Principles

The NRADP is based on the responsibility of the RA component instead of using the

MU or cell. This helps avoid the computation power required by MUs. This could

be a significant improvement since power and resource limitations are obstacles for

mobile manufacturing.

The mobility prediction technique at RA should help to avoid the cell side prob-

lems. These problems are identified in the complexity cost and prediction algorithm

to perform in two closer time slots. By including wide areas and extra computational
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resources that may be required for the process in RA, this would occur without any

limitations due to the fact that the process is based on the equipments’ efficiency

at the service provider’s side instead of cell side.

The SGSN manages the RA, and each RA contains one or more cells based on

the radio specifications and geographical features, as shown in figure 4.4.

Figure 4.4: Routing Area Coverage.

The SGSN is responsible for managing and updating the history displacements

for all MUs which are residing in it. Moreover, it handles the NRADP technique to

predict the next displacement for the MU according to the current location, history

displacements and visibility to surround neighbours.

When an MU enters the network, the SGSN uses his and neighbours’ histories to

make a relation between them. Thus, the prediction percentage and handling any

unusual movement is enhanced. In contrast, if SGSN does not contain the history

displacements for the MU, it should use the history of its neighbours.

Each RA is modelled by a colony and each MU is modelled by an ant. An ant

goes from current RA to neighbouring RA looking for food. In the food search

the ant prefers to go through the usual paths or according to the displacement of

his neighbours. The NRADP contains a set of phases, each phase gets and passes

information from the previous and the next phase, respectively. As shown in figure

4.5.
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Figure 4.5: NRADP Execution Phases.

4.5.2 NRADP Visibility and Memorisation

Each RA is handled by one SGSN. The SGSN memorises old movement for all MUs,

making the behaviour of all MUs known to obtain a good prediction percentage.

There are two types of memorisation (visibility), local and global memorisations

where each MU has both of them. Local memorisation memorises how many times

the MU goes from where he resides in an RA to each one of his neighbours’ RAs.

On the other hand, global memorisation describes how many MUs crossed a specific

RA to each one of their neighbours’ RAs, as shown in figure 4.6.

For example, as shown in figure 4.4, suppose that the MU resides in RA A and

moves towards RA B. When the MU enters the RA B, local and global memorisation

would be updated.

For global memorisation, if no MU has previously visited this RA, the global

memorisation will be fed by a new row that represents the MU. But if the RA has

been visited by at least an MU, the counter will be increased by one. Meanwhile,

the counter of local memorisation will be increased by one, if the MU was in the RA
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Figure 4.6: Structure of the Memorisation Entity.

before, a new memorisation row will be added, if this visit is considered as the first

one.

In local and global memorisation, data type of counter field in figure 4.6 is

represented by NUMBER, after a long time of running the algorithm on a huge

number of MUs, the range of the NUMBER increases constantly, after t time a

BIG NUMBER will occur which leads to complex manipulation and increases the

processing time [129,130].

To avoid the BIG NUMBER and keep the counter field for local and global

up-to-date, the counter will be multiplied by weight W, where W between 0 and 1.

Table 4.3 describes the local memorisation data in each RA for each MU and

applying the same way to deal with global memorisation. Also, multiply each neigh-

bour RA by W to keep the same ratio between all neighbours.

Table 4.3: Neighbouring History for Local Visibility.

Mobile ID Current RA Next RA Counter

1 1 2 2000

1 1 3 1000

1 1 4 5000

1 1 5 4500

2 . . .

3 . . .
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4.5.3 NRADP Visibility Manipulation

RA and MU are modelled by colony and ant, respectively. When the MU enters and

the registration is made to a cellular communications network, the network creates

an ant for each MU. Subsequently, the RA where the MU resides starts to manage

the memorisation process, as mentioned in the section 4.5.2.

Memorisation entity is used to calculate the visibility variable (V), it is repre-

sented by a vector (n) and its length based on the number of adjacent RAs ARA.

An element of this vector either local or global represents the ant visibility of an

adjacent RA. In a sense, the local memorisation reflects the MU’s behaviour. On

the other hand, global memorisation reveals all MUs’ behaviours at such RAs. The

local visibility is managed by equation (4.11).

VL =

 X + 1 if the MU exists in Nr;

X = 1 if MU does not exist in Nr before;
(4.11)

The VL is a local visibility, L between 1 and ARA, X is a value that starts from

1 and Nr is a local memorisation table which stores the adjacent RAs. Meanwhile,

the global visibility is represented by equation (4.12)

VG =

 Y + 1 if the MU exists in Mr ;

Y = 1 if MU does not exist in Mr before;
(4.12)

VG is a global visibility, G between 1 and ARA for each MU, Y start from 1,

Mr is a global memorisation table which stores the adjacent RA, where each mobile

affects on this equation.

In order to make a relation between local and global memorisation, Vall is calcu-

lated by equation (4.13)

Vall = P ∗ VL + (1− P ) ∗ VG (4.13)

Where P between 0 and 1.

The combining of local and global memorisations is proposed to achieve the

prediction process based on the MU’s behaviours itself and surrounding neighbours.

Based on equation 4.13, the change in P value should balance the participation



4.5. A New Routing Area Displacement Prediction 69

for both local and global memorisation. In this work the optimal value of P is

empirically tested for achieving optimal prediction success rate, see section 5.6.2.

When an MU visits a new RA; if he depends only on local memorisation, the

failure prediction possibility of new RA will be increased, because the prediction

will depend on the most visited local RAs. Also, pheromone does not have enough

information for prediction. Thus, the neighbours’ behaviours must be considered to

improve the prediction and to avoid the bias of the MU’s usual behaviour. In such a

situation, the P value in the equation 4.13 should be decreased in order to decrease

the participation of the local memorisation.

Meanwhile, if the MU’s behaviour was built only according to the global mem-

orisation, i.e. the behaviour of the neighbours considered as the main source for

predicting the new RAs, the MU will drift from the usual activity and usual dis-

placement. Thus, the P value should be maximised to make a balance between the

local and global memorisation.

Every MU in the cellular communication network affects the local visibility

through his movements, where the local visibility is processed in a way to mem-

orise their behaviour and use it for future displacements. the steps of handling local

visibility are presents as follows:

NRADP algorithm for handling local visibility handling

1. Get MU identification.

2. Get routing area identification where MU resides.

3. Discover neighbours’ routing area in step 2.

4. Determine if the MU has been in the routing area in step 2.

• when the MU has never been in the routing area.

(a) Feed memorisation table by the MU ID.

(b) Set local visibility to the initial value, where VL = 1.

• when the MU previously visited the routing area.
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(a) Increase local visibility by one, where VL=VL+1.

5. After δ t. This is a multiple of time-steps.

(a) Local visibility will be multiplied by weight W, where VL=VL*W.

(b) Repeat step 5a for routing areas that are obtained from step 3.

The algorithm of NRADP global visibility is slightly different in comparison to

the algorithm of NRADP local visibility. Handling of an MU in global visibility is

not based on the MU identification.

4.5.4 NRADP Pheromones and Heuristic Management

The management of pheromone is addressed as one of the important factors to

improve the NRADP prediction process. When each ant needs to move to a new

location, i.e. new RA, this means that it needs to use the probability decision which

is based on pheromone value. The pheromone signifies the knowledge about earlier

experiences of the ant’s own colony and the other colonies in the same network.

4.5.4.1 NRADP Representing Pheromone

To represent pheromone updating in NRADP, pheromone values which are found

in RA must be constantly reduced as a function of time. Nevertheless, while the

MUs are handled in a discrete-time process, discrete-time considers the convenient

way to control the pheromone updating. Additionally, updating and controlling the

pheromone incurs computation cost. Therefore, a new system is required such as

NRADP to control the interval on which this process must be carried out to satisfy

the constraints and the architecture of the cellular networks.

In NRADP, pheromone updating handles the mobility state and speed of the

MU. If the MU has idle state or their speed exceeds speed limits in a cell, the

pheromone is managed by RA to avoid frequent calculation and message passing.

Also, the realisation of computation cost will be needed. Moreover, when an MU has

idle state, the UMTS protocols and the control given to the RA level, the NRADP
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does not conflict with UMTS specifications and no need appears to restructure the

network itself. In contrast, if the MU is in a connected state and his speed is within

the range of cell speed, the pheromone updating control goes to the cell itself because

the distance crossed in the region will not be long compared with when an MU moves

at high speed.

The frequency of pheromone updating is dynamically chosen to classify the MU

for which pheromone is allowed to update. Also, the density of pheromone is not

affected by exceptional cases ensuring that the values are always close to their ideal

values and avoidance of the outdated and unusual pheromone may occur.

4.5.4.2 NRADP Pheromone Limitation and Initialisation

Initialisation pheromone is considered as one of the factors that participate in im-

proving the prediction success rate, through minimising the time needed to calculate

the best quantity of pheromone that would be laid into the RA, which is used in

the future displacement.

The first ACO algorithm [19] has a search stagnation problem; the search focuses

on the early stage of the algorithm running. This means that no area would be

discovered in the future, because all ants will follow the path that is previously

generated with the highest density of pheromone.

In NRADP, the previous intensities of the pheromones for all adjacent neighbours

are required. Suppose that Ph is a vector of pheromone from 1 to A, where A stands

for the number of adjacent RAs. At the first time t(0) of the algorithm running,

each MU lays a random number that represents a pheromone, section 5.6.1 discusses

the value of random number, at t(1) the pheromone lower and upper are calculated,

to avoid search stagnation. This is inspired by MMAS technique [67].

In NRADP any MUs who hold pheromone (τ) which exceeds the limitations,

the upper and lower limits of pheromone are determined on t(1). This MU, should

die by ignoring it from the algorithm. This will lead to prevent the prediction and

avoid any bias which may occur.

The new value of pheromone of an MU dies before being re-calculated. When

the value of τ(t) is greater than τmax set to τmax and when τ(t) is smaller than τmin
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set to τmin.

The value of τmax is calculated in equation (4.14)

τmax =
1

1− ρ
· 1

average(τRA)
(4.14)

Whereas τmax is the maximum quantity of pheromone that lays in RA by each of

the residing MUs, this laying is performed when an MU goes from RA to another one

of his neighbours. ρ is a coefficient, (1-ρ) is the evaporation rate of the pheromone

in the RA between t and t+n. Thus, the value of ρ must be between 0 and 1 to

avoid unlimited pheromone in the RA. The pheromone for each RA is τRA.

The minimum value is represented by equation (4.15)

τmin = τmax/mc (4.15)

Considering mc, the number of MUs residing in such RA at the time when its

value would be calculated.

4.5.4.3 NRADP Pheromone Updating

The pheromones in NRADP are considered as the communication media between

all MUs. Pheromones have two roles: they allow indirect collaboration between

MUs (agents), and they act to communicate individual awareness between MUs to

improve the prediction for future displacements.

The pheromones are considered as ”Stigmergy”. The Stigmergy is defined as

a kind of communication interaction between agents without direct connection be-

tween them. The interaction occurs when one agent changes the environment in

which he resides by any action. Consequently, all other agents response to this

change.

In NRADP, the MU moves to a new RA which is partially based on the amount of

pheromones. The preferable RA is the one that has the higher density of pheromone.

Thus, the amount of pheromone that is to be laid by an MU should be controlled

because it affects the intensity of communications that makes the RA more prefer-

able. Meanwhile, evaporation rate should also be controlled in order to reduce the

intensity of communications. Over time, when no more MUs cross an RA, this
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means that no more pheromones would be laid down and the RA will start to lose

its pheromone progressively.

When a hard hand-off occurs for an MU, the MU changes the RA to another

one. At this time, the MU deposits his pheromone in the RA which has just been

left. The amount of pheromones is deposited in each RA represented by equation

(4.16).

∆τi,j =

 λ ∗Q ∗ tstaying in if λ ∗Q ∗ tstaying in < Q

Q if λ ∗Q ∗ tstaying in >= Q
(4.16)

Whereas ∆ τi,j is the pheromone quantity that would be laid down in the RA by

the MU when he left RA i to RA j. Q is a constant which represents the maximum

quantity of pheromone that would be laid in each RA. The value of Q is greater than

zero > 0. Section 5.6.1 shows the optimal value of Q. tstaying in is the time that has

been spent by the MU in RA i. λ is a constant fraction whose value is 0 < λ < 1.

λ is used to prevent the pheromone amount that has been laid from exceeding the

Q value since this amount proportionally increases over the time.

When the value of ∆ τi,j is less than Q, the MU’s pheromone affects the pheromones

held by an RA proportional to the time spent in that RA. If ∆ τi,j is greater than

or equal to Q, the MU spends a very long time in the RA, which means that the

MU is working or living there. This leads to having a pheromone quantity greater

than Q, therefore the quantity that will be laid down is all Q, to avoid the bias of

the quantity that may lay down and stagnate the search.

Each MU has the same process for laying pheromone. Therefore, the pheromone

quantity that is laid in this RA plays the main role of motivating other MUs to go

towards it.

MUs in cellular communications networks move constantly. This movement

needs a mechanism to forget old predictions, which makes the prediction up-to-

date for the new movements of MUs. In NRADP, the mechanism is the evaporation

process; the pheromone level is decreased after each slot of time.

In NRADP, after δT the evaporation process will take a place to decrease the

pheromone level at each RA in the network; this is represented by equation 94.17)
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τacc RAi
(t+ 1) = τacc RAi

(t) ∗ (1− ρ) (4.17)

Whereas τacc RAi
(t) represents the cumulative pheromones in RA i, (1− ρ) is the

evaporation rate.

A small value of ρ carries out pheromone evaporation slowly and the pheromone

will accumulate more in a RA. A large value of ρ leads to forgetting the behaviour of

other MUs and the prediction turns more towards random. In a case when ρ equals

1, the prediction becomes completely random. The value of ρ affects the prediction

success rate by permitting forgetting the behaviour of the elder MUs and to remove

the biased MUs’ behaviour. Section 5.6.1 illustrates the optimal value of ρ.

4.5.5 NRADP Prediction

When a registration to the network is made for an MU, the SGSN creates an ant

to represent the MU. Whilst, moving the ant will deposit a pheromone on RA, this

would be considered the communication channel between all ants in the cellular

communications network.

At the first entrance of MUs to the network, no pheromone would be found from

any neighbour, that is why the prediction success rate very low. Over the time, each

RA has its pheromone which predicts the most likely RA for future displacement.

Finding the probability of each RA, the previous MU’s visibilities and the inten-

sities of the pheromones for all adjacent neighbours are required. Suppose that Ph is

a vector of pheromone from 1 to A, where A stands for the number of adjacent RAs.

The probability for the MU moving from current RA CRA-th to j RA is expressed

in equation (4.18).

PCRAi,j
(t) =

[τCRAij
(t)]α ∗ [VallCRAij(t)]

β∑
u∈PhA(i)

[τiu(t)]
α ∗ [Valliu(t)]β

(4.18)

Whereas PCRAi,j
is the probability of the MU at RA i at time t to RA j , t is the

time factor, τ is the pheromone level and Vall is the visibility (memorisation) of the

MU. The visibility here, Vall, is obtained from the combination between local and

global visibility. For more details see section 4.5.3.
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Probabilities of all RAs that surround the RA where the MU resides in are cal-

culated in equation 4.18. The highest probability should be taken into consideration

as the next RA that the MU will visit. Hence, the next displacement is expressed

in equation (4.19).

NextRA = max(PCRAi,j
(t)) (4.19)

NextRA is the next displacement.

In the NRADP prediction phase, the next displacement for each MU will be

predicted according to a set of processes. These processes are arranged in a way to

prevent the consistency of prediction environment in cellular communications net-

works and it is shown as follows:

NRADP prediction algorithm for next displacement of an MU

Each MU in NRADP should be processed according to the following steps:

1. Determine MU identification which would be processed.

2. Fetch global and local histories that are related to the MU.

3. Prepare neighboured routing areas’ pheromones and visibilities for the MU

where they reside. Ph would be created.

4. Calculate probabilities for the surrounding routing areas. This is performed

by equation 4.18..

5. Get max probability from step 4 according to equation 4.18, which represents

the next displacement.

4.6 LBSs Mobility Prediction Scheme (Message

Managements between NRADP and LPSS)

In this section, a new mobility prediction technique is investigated. The proposed

technique is based on two complementary prediction techniques at different levels:

the NRADP and LPSS prediction techniques. The former has been implemented in
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the RA level while the latter technique detects the regular RA of the MU accord-

ing to the cellular communications network standardisations. The latter has been

implemented at cell level and works on the back of the RA prediction technique,

NRADP, to prepare all possibilities that could happen by constant movements of

MU in next RA. Figure 4.7 illustrates the message flow of the combined NRADP

and LPSS techniques.

Figure 4.7: Message Flow for the Developed Mobility Prediction Scheme.

If the NRADP fails in providing a correct prediction for the next displacements

of RA because of unexpected directions taken by the MU, the scheme will perform

the location update procedure according to the UMTS standard. In the location

management, the MU informs the network of its location through RA update pro-

cedures. In this case, the prediction is yielded by the LPSS technique. However,

the time between starting and completing the RA update procedure is very small;

the LPSS technique will work only on the nearest cell of the next RA in order to

prepare all movements of the MU in that cell and guarantee that these movements

will be prepared before the MU enters a new RA. Moreover, after the RA update

procedure is finished, the LPSS continues to prepare all movements of the MU for

the rest of cells in the new RA. Figure 4.8 shows the steps when NRADP fails to
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predict next RA.

Figure 4.8: Message Flow for the Developed Mobility Prediction Scheme when

NRADP Failed.

The following steps illustrate the message flows between NRADP and LPSS.

These steps include the success and failure of NRADP.

Step 1: let RAij be the current RA of an MU and RAi+1,j , RAi−1,j, RAi,j+1,

RAi,j−1 are the neighbours (adjacent RAs) of RAij. When the MU moves towards

RAi+1,j, the NRADP detects the regular RA and sends the message to the core

network that is: (RA prediction).

Step 2: core Network will save the predicted RA and send a message (Tick

LPSS) to the LPSS algorithm and the ID of predicted RA (RAi+1,j).

Step 3: the LPSS will prepare all MU displacements in the predicted RA that

may occur by the MU in the RAi+1,j.

Step 4: the update procedure is executed in two situations:

• Normal location update is performed when the MU detects that the location

has been changed.
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• Periodic location update is exercised even if the MU does not move. That is,

the MU periodically reports its ’presence’ to the network.

In both situations, the MU sends the RA Update Request message to the Net-

work.

Step 5: the network will check if the RA that is received by an MU and the

predicting RA are not equal (failed). Steps 6-8 are executed. Otherwise (Successes

procedure), these steps are skipped.

Step 6: the core network generates a new LPSS message to update the database

of LPSS according to a correct RA (RAi,j+1 or RAi,j−1) and sends a message to LPSS

(Update Request message).

Step 7: LPSS delete the old displacements that have been generated in RAi,j+1.

Meanwhile, LPSS apply for the nearest cell of (RAi,j+1 or RAi,j−1).

Step 8: During the RA update procedure, the LPSS continue to prepare all

MUs’ displacements for the rest of the cells in (RAi,j+1 or RAi,j−1).

Step 9: The core network sends RA update message to an MU to accept the

routing area update (Routing Area Update Accept).

Step 10: The MU sends the RA update complete message to the core network

to confirm the relocation of other parameters such as Temporary Mobile Subscriber

Identity (TMSI).

4.7 Summary

New mobility prediction techniques have been proposed based on a well-known ACO

and MCM. These techniques are independently combined to introduce the LBSs

mobility prediction scheme. Message passing between proposed techniques was also

discussed. The standard ACO has been developed to satisfy the compatibility with

cellular communications network structure. Also, a dynamic cell splitting has been

introduced in which the cellular cell splitting and finding the MU location were

achieved. Moreover, the techniques offer the following features, which may prove

advantageous.
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• The RA mobility prediction technique (NRADP) is fair because it is running

at the core network which has the powerful resources.

• The cell mobility prediction technique (LPSS) takes the advantage of using

the novel cell splitting algorithm (NCPA) to improve the prediction success

rate.

• LPSS execution time does not take place because it is running before an MU

enters a new RA. This RA will prepare all possibilities of MU displacements

between sectors before it is entered by the MU.

It is worth considering NCPA technique in which the new splitting may be used

as primitives. There may also be useful analogies to be found in wireless sensor

network or other groups.



Chapter 5

Implementation and Simulation

This chapter shows details of the simulation procedures and evaluation methods

that were commonly used throughout this research. A justification of the imple-

mentation of the Developed Mobility Prediction Techniques for LBSs and network

simulation environments are also provided. The chapter also provides the significant

metrics that are used for measuring, evaluating, characterising and comparing the

performance of mobility prediction techniques over cellular networks. Finally, the

optimal values for the newly developed Ant Colony Optimisation (ACO) parame-

ters are obtained, which it uses in New Routing Area Displacement Prediction for

Location-Based Services (NRADP).

5.1 Simulation Overview

There are three methods for performance estimation: simulation, analytical mod-

elling and measurement. It would not be practical if we used the analytical modelling

technique in this study. This is because of the environment of wireless medium that

varies in terms of time and space. Therefore, simulation was chosen as the most

appropriate approach. Measurements from real systems are excluded because the

implementation of the developed techniques in a real cellular communications net-

work would have consumed too much time and would have been so costly that

simulation would have first been required in any event.

Figure 5.1 provides the structure of the methods for studying the performance

80
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of systems [131].

Figure 5.1: The Methods for Studying the Performance of a System, [133].

The analytical model is used after building the mathematical model. The math-

ematical model must be examined to see how it can be used to study the system

being represented. The analytical solution is a good method for studying the sys-

tem when an analytical solution to a mathematical model is available and when it

is computationally efficient. In addition, the simulation method is used when both

the real systems and their mathematical models are complex.

This research is a technical topic. The performance evolution includes several

methods, i.e. simulation, analytical modelling, and measurements [132]. With all

the above being equally considered, the most suitable way to conduct research for

this study is to adopt a simulation.

As it is usual for primary investigations, the simulation enables change of network

topologies, protocols and parameters in order to be carried out easily and in a

realistic time frame. Simulation provides more flexibility than the real network

implementation. It also involves fewer complications. More control over the network

conditions could be achieved by using simulations.

The research method of this study was simply based on known network simula-

tion tools, data collection from universal datasets, and simulation runs by using a

simulation program developed in the Java computer language.
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The methodology used in this research follows the standard practice for conduct-

ing a performance modelling analysis: construct the mobility prediction model, vali-

date the model, vary modelling parameters, and analyse the results. This is achieved

by: (i) introducing a Novel Cell Splitting Algorithm (NCPA); (ii) generating new

mobility prediction schemes by using different components of cellular networks such

as cell and Routing Area (RA) levels; (iii) investigating the previous mobility pre-

diction techniques that are used in LBSs for the UMTS; and (iv) constructing the

Developed Mobility Prediction Techniques and validating the predictions.

5.2 Network Simulation Tools

The performance can be evaluated, investigated and analysed using simulation tools

or practical real networks [132]. This research is based on the network simulations.

Practical real times are excluded due to the lack of resources to implement the

approach. Therefore, a simulation approach is used instead. In general terms,

simulation allows changes to the network topology, protocols and parameters in

order to be carried out easily and in a realistic amount of time. The research

method is based on simulation models, dataset and collecting data from simulation

runs using Java simulations.

Within the simulation process, data were collected from simulation runs, and

then quantitatively analysed. The analysis and critical evaluation of data were

based on two criteria: (i) the results collected from the developed techniques, and

(ii) the findings from recent literature within the field of the study.

It was difficult to select a suitable simulation environment to simulate such net-

works since there were several points to keep in mind. These involve aspects of

simulation such as the need for software modification and expandability, as well as

the availability of such a simulator. There are several simulation tools that can

be used to simulate cellular and wireless networks. The most well-known tools are

mentioned here.
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5.2.1 GloMoSim

The Global Mobile Information Systems Simulation Library (GloMoSim) [133] is a

scalable simulation environment for wireless and wired network systems. Given that

it is not an open resource, it was not used in this research. Therefore, modifications

in the source code cannot be made. For this reason it was not used as a simulation

tool in this research.

5.2.2 OPNET

The Optimal Network Simulator (OPNET) was based on discrete analytic and hy-

brid simulation modes. OPNET is an object-oriented simulation tool with a hi-

erarchical model structure. OPNET’s UMTS model suite enables one to model

UMTS networks to evaluate end-to-end service quality, throughput, drop rate, end-

to-end delay, and delay jitter through the radio access network and core packet

network [134]. However, as with GloMoSin, it is not open source and it is not easy

to make modifications and expandability when required.

5.2.3 NS-2

The Network Simulator (NS-2) is an open source simulation tool developed by the

University of California at Berkeley [135]. It is a free simulation tool and runs on

different platforms such as Linux and Windows. NS-2 that was built on discrete

simulation modes has supported some wireless modules [136–138]. Therefore, the

present research uses NS-2.

5.2.4 Java Language

In the present research, Java language was chosen to model the proposed tech-

niques. It is a programming language introduced by Sun Microsystems. It is known

as a multiplatform, a platform-independent, and an object-oriented programming

language [139,140].

Multithreading was introduced in Java as a useful technique since it allows the

programmer to structure different parts of the program into different threads. Im-
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plementing the user interface of software as a separate thread is a common example

of such structuring, where multiple threads can communicate via reads/writes of

shared objects [141]. Further discussion on software design using multithreaded

Java is seen in [142]. Java threads can also be run on multiple hardware proces-

sors [143,144] or on a single processor using the thread library [145].

Demand has increased for using Java for high-performance parallel applica-

tions [146]. Java’s clean and type-safe object-oriented programming model and its

support for concurrency [147,148] make it an interesting environment for writing con-

sistent parallel programs [149–152]. For shared memory machines, Java has offered

a common multithreading paradigm [153]. Also, for distributed memory machines,

Java has provided Remote Method Invocation (RMI), which is an object-oriented

translation of Remote Procedure Call (RPC) [153]. There are many advantages

in the RMI model for distributed programming, including the seamless integration

with Java’s object model, heterogeneity and flexibility [154].

5.3 Mobility Models

Mobility model is used to express the behaviours of Mobile Users (MUs) in a network.

These behaviours could be velocity, location, direction, and how those are changing

over time. There are a group of mobility models that use the movement histories

of similar users [155, 156]. Meanwhile, the model has the functionality to control

and monitor the network itself, such as maximum number of users per one cell

and determining which MU needs a registration, re-registration, hand-off, location

update paging and when this will be made.

There are different cellular mobility models to mimic the MU movements in the

real life. The most common mobility models are:

5.3.1 Fluid Flow Model

In this model the MU movement is represented at a macroscopic level [157–160].

This model is used to represent the traffic on highways. The result obtained bear

testimony that [161, 162] the behaviour of traffic generation is similar to a fluid in
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a pipe. But the model is unable to represent individual user movement, including

situations that may occur during movement such as stopping and starting [163,

164]. As a result, this model is not appropriate to represent the MU movements.

Therefore, fluid flows model was not considered applicable for use in the research

conducted for the investigation reported herein.

5.3.2 Trace Based Models

The modelling of MU in Trace Based models are based on the real world activities

that are carried out by the users in the course of their normal or exceptional activ-

ities, recording such information into digital memory. tracing and using that data

to predice future movement. Such traces were gathered, e.g. from a 2003 surveil-

lance of city coaches [165], GPS or by real life simulation. Hence, the trace-based

model contains Real-world Mobility Traces, Artificial Mobility Traces [166–168], and

Activity-based models [169]. Therefore, in the present study, the trace-based models

have been avoided because real MU movements are not described by those models.

Moreover, during MU movement, he/she is reading the post-processed trace,

filing and replying to them, and synchronising the MU movement and the times-

tamp stored in the file.

The Real-world Mobility Traces and Activity-based Model are carried out as

more realistic models and are reusable. Still, they have drawbacks such as commu-

nication cost, time consumption and no free parameterisation. Free parameterisa-

tion is another advantage introduced by artificial mobility trace and no feedback on

driver behaviours such as accident details, risk warnings, or road jam information

are addressed which is a drawback [170].

5.3.3 Random Waypoint Model

The Random Walk Model is the simplest mobility model. It is the most widely

used model because it has the ability to describe individual movement for each MU

according to cell locations [171–173]. Furthermore, this model does not depend on

the previous state which it named as memory-less, nor does it need extra time for
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pre-processing.

The MU stays in a cell or moves to a neighbouring cell according to random

possibility. In a sense, it is a movement from a current location to a new one by

speed and direction that are totally random travel.

Nain et al in [174] studies the variation of random walk modelling. Two draw-

backs are addressed when an MU reaches the boundary of network. The first one is

Random Walk with wrapping, and the second one is Random Walk with reflection.

These drawbacks have been overcome [156]. For further details about the Cellular

Mobility Model, see [158].

The Random Waypoint model [175] has been obtained from the random walk

model, the whole movement of the mobile user is divided into a sequence of pause

and motion period. The mobile user stays at a specific area for a certain time period

before leaving to the next, the levels of randomness are based on his speed, direction

and pause time.

The Random Waypoint is a fine mobility model for simulating different types of

mobile user’s behaviours in urban areas, such as walking, running, biking or driving,

since these behaviours are considered randomised with enabling change of speed and

direction [15,176].

In [176] the cell residence time, speed and the size of serving area for Random

Waypoint were analysed through using different types of distribution, i.e. expo-

nential, uniform, etc. This study was based on real movements of mobile users

in small resolution to validate the characteristics of the Random Waypoint model.

As a result, Random Waypoint has less randomness and is valid in the real world

movements that have been collected [176].

Common sense led to the choice of the mobility model as it respects and satisfies

tracking movement of MUs in real life. To evaluate prediction algorithms, a realistic

model is required. This model does not contain any enhancements such as memori-

sation, which illustrates the real result and evaluates the prediction algorithm.

Some researcher users have relied on their own models or enhanced models.

The accuracy of predictions obtained has been between 74% and 95% [16]. But

the comparison between these works is difficult because they do not reflect real
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user movement. The results obtained give higher prediction accuracy than the real

results since part of mobility models give a prediction percentage.

In this research the Random Waypoint is chosen to obtain the approximate

prediction that will be achieved without using mobility models that are already

enclosed in a prediction. Furthermore, the Random Waypoint model is implemented

in NS-2 which is freely distributed. For more details about NS-2 see section 5.2.3.

5.4 LBSs Implementation Tools

This study suggests NCPA relies on the structure of the cellular cell and the size of

the cell. It is applicable for rural, micro, macro and pico cells. Furthermore, this

research presents new mobility prediction techniques based on the developed ACO

and Markov Chain Model (MCM). The developed ACO algorithm is used to predict

the next RA where the MU will go and stay. Here, the prediction will be based

on the difficulty of the NP hard problem. MCM is used to predict the next sector

displacement for an MU which is based on the random movement of the MU.

The Java software tested the developed technique in action. As compared with

the theoretical, the simulation results prove that the LBS mobility prediction scheme

is appropriate for the cellular environment. Therefore, developed ACO and MCM

are important for this research. They are used to design a new LBS mobility pre-

diction scheme for UMTS. This research compares the performance characteristics

of those models (MCM, ACO, developed ACO) used in prediction techniques by

implementing each algorithm.

5.4.1 Implementation of A Novel Cell Splitting Algorithm

The NCPA contains two functions: (i) splitting any cell type into small regions

named by sector; and (ii) locating the sector where the MU is located at the time.

To implement splitting and locating functions in the cell splitting algorithm, the

standard Java function and math packages are used. Figure 5.2 illustrates the flow

processes for the cell splitting algorithm.

The program creates finding sectors by inputting the cell type to quadrant calcu-
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Figure 5.2: Flow Processes for Cell Splitting Algorithm.

lation, where the quadrant division depends on the angle path. The four quadrants

will be processed in the same way, where each quadrant is divided into uniform

sectors. The output is a set of sectors representing the cell network in a different

way. Based on MU coordination, the cell and quadrant identification within which

an MU is located will be found. Whereas, to identify the sector where the MU is

located depends on comparing operations between all the sectors that are generated

to a certain cell. Section 4.3.2 discusses the steps to find a sector. For convenience

and timing, the NCPA splitting algorithm was divided into two programs, as listed

below.

1. CellSplitting.java (see Appendix C.1 for source code)

CellSplitting is responsible for splitting a cell based on the cell type and the

size of each sector.

2. FindingMobileUser.java (see Appendix C.2 for source code)

FindingMobileUser is based on the MU’s coordination and the sector where

the MU is located will be determined.
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5.4.2 Implementation of Markov Model

MCM is used to provide mobility prediction for an MU at the cell level for a cellular

communications network and, more precisely, for the UMTS network. The De-

veloped Mobility Prediction Technique is a Location Prediction based on a Sector

Snapshot (LPSS), which relies on the cell splitting algorithm. Figure 5.3 illustrates

the MCM prediction processes.

Figure 5.3: Functions Processes for MCM Prediction Technique.

To initialise the environmental parameters is an important phase in simulation,

such as splitting cells, length of matrixes and system states. However, all parameters

had been initialised before the simulation began. When the execution starts, the

information about the sectors are stored in the database by the historical movement

matrix built from neighbours, which is handled to generate transition matrix. Mean-

while, all the probabilities that may face the MU are processed by system states.

This information is stored in a database. The potential, and most desirable, sector

where the MU will go is offered by a prediction diagram. Finally, this allows keeping

the variables up-to-date.

For convenience and timing, the MCM prediction process was divided into three

programs as listed below.
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1. FillMobileTracking.java (see Appendix D.1 for source code)

FillMobileTracking is responsible for filling the historical matrix. It is gen-

erated from MU movements.

2. ReducingProbabilty.java (see D.2 for source code)

ReducingProbabilty is responsible for generating transition matrices.

3. Prediction.java (see Appendix D.3 for source code)

Prediction contains the methods that are responsible for predicting a next

displacement for the MU at the cell level, for updating environment parameters

and for system state.

5.4.3 Implementation of the Developed ACO Optimisation

The introduced routing area mobility prediction NRADP is based on developed

ACO. To implement the developed ACO for mobility prediction, the parameters

management is the core issue that must be addressed to improve the prediction

success rate and avoid the bias for exceptional cases. Pheromone parameter is

important to avoid the search stagnation problem. The search focuses on the early

stage of the algorithm running. Furthermore, visibility is responsible to describe

the MU’s behaviour to their neighbours. That mean keeping up-to-date with MU’s

behaviour. The visibility parameter is processed in a certain way to discard old

memorisations. Figure 5.4 illustrates developed ACO prediction processes.

For convenience and timing, developed ACO process was divided into six pro-

grams, listed below.

1. VariableManipulation.java (see Appendix E.1 for source code)

VariableManipulation shows a set of variables required to program devel-

oped ACO and basic initialisation of parameters.

2. initialPheromone.java (see Appendix E.2 for source code)

initialPheromone is responsible for initialising the pheromone for each RA.

3. ProcessingPheromone.java (see Appendix E.3 for source code)

ProcessingPheromone is responsible for managing pheromone updating
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Figure 5.4: Functions Processes for Developed ACO Prediction Technique.

during the running of the algorithm.

4. LInitialVisibility.java (see Appendix E.4 for source code)

LInitialVisibility is responsible for initialisation of the local visibility.

5. GInitialVisibility.java (see Appendix E.5 for source code)

GInitialVisibility is responsible for initialisation of the local visibility.

6. UpdateVisibility.java (see Appendix E.6 for source code)

UpdateVisibility presents the effectiveness of local and global visibility in

prediction, and the processing to update the visibility.

5.5 Simulation Design

The simulation in this thesis was executed ten times. The results of the ten simu-

lations were then averaged to obtain consistent results and reach a steady state not

influenced by short term differences. The simulation included the input simulation

parameters mentioned in table 5.1 and other parameters mentioned in chapter 6.
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5.5.1 Component of Simulation Model

The UMTS model is based on a Third Generation Partnership Project (3GPP)

release 1999 standard. Figure 5.5 shows the simulation model used in this research.

The model is based on the UMTS system architecture, as shown in figure 5.6.

Figure 5.5: Simulation Model.

Figure 5.6: The UMTS Model Architecture.

The flow control and logical relationships between the components of the simu-

lation model are shown in Figure 5.7:

The following subsections discuss the components of the simulation model that

are used in the simulation scenarios.
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Figure 5.7: Logical Relationship between the Simulation Model Components.
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5.5.2 Configuration and Creation of RNC Node

Radio Network Controller (RNC) is the first node created in the UMTS model.

Taking mobility into consideration, each cell was linked to an RNC. Therefore, each

RNC is responsible for one or more cells and controls their radio resources. Each

RNC node has an address (ID) which must be set before creating a RNC node.

5.5.3 Configuration and Creation of Cell Node

The cell node is the second node created in the simulation. The parameters that

are set in the beginning of creating the cell node are as follows:

1. Number of cells.

2. Determining the coordinators (x-axis and y-axis) for each cell.

3. Determining the radius (R) for signals to define the coverage area for each cell.

4. The ID of RNC to which RNC cell belongs.

By the consideration of mobility, the number of cells relies on the total area of

the simulator. Therefore, another parameter will be the number of cells required.

Furthermore, in this simulator the cell works as a BS. The BSs are portioned into

RA. The RA of an MU is tracked by the Core Network (CN), i.e. by the GPRS

Service Node (SGSN). See Appendix B.1 and B.2 for source code.

5.5.4 Configuration and Creation of MU Node

It is evident from figure 5.6 that there are two MUs. The first MU belongs to the

first RNC, which has two cells. The second MU belongs to the second RNC, which

also includes two cells. The cell and RNC must be determined when the MU is

created (i.e. which cell and RNC the MU belongs to).

5.5.5 Configuration and Creation of VLR/SGSN Node

The fourth node created in simulation is Visitor Location Register (VLR) / SGSN.

Each VLR/SGSN node has an address as the identity (ID), and the identity which
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the serving network belongs to. A set of VLR nodes was created and then portioned

into two groups for the purpose of mobility. Each group belongs to a network called

a home network for that node.

5.5.6 Configuration and Creation of GGSN/HLR Node

The fifth node created in simulation is GGSN. It contains Home Location Register

(HLR). Each HLR node has an address (ID) which must be set before creating a

VLR/SGSN node. Each network has one HLR node.

5.6 Simulation Parameters Setup and Environ-

ment

A simulator was created using Java programming language, see figure 5.8, a visual

representation for the simulation. The movement is recorded to train the program

to learn how the MU moves during different trips. Different samples of data are

used to test the performance of the developed techniques.

In this research the parameters setting are classified into two categories:

1. Cellular communication network parameters, ( see section 5.6.1 for more de-

tails).

2. The developed ACO parameters, (see section 5.6.2 for more details).

The cellular communications network parameters settings are determined before

the simulation begins, whereas the developed prediction technique enhancements

have not been affected.

5.6.1 Cellular Network Parameters

The input parameters of the simulation environment are shown in table 5.1. There

are more relevant parameters which are described in chapter 6 for simulation anal-

ysis. To simulate a cellular network, the simulation needs to be done over a very
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Figure 5.8: A Snapshot for the Simulator.

large coverage area. That is why the parameter setting is set using the parame-

ter assumption, as described in previous researches and standardised over 3GPP

specification- no extra hardware is required- [177–179], as shown in table 5.1. The

various user environments will affect the quality of communication based on the

user environment requirements [125, 180]. The parameters are configured as shown

in table 5.1.

5.6.2 Developed ACO Parameters

This section discusses the parameters that influence the prediction success rate of

the developed ACO, where the parameters need to be setup before the RA mobility

prediction simulation began.

A range for each parameter is defined and this generates different parameter

combinations. The developed ACO is executed according to these combinations.

The process of obtaining the optimal parameters lasted for several weeks. The
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Table 5.1: Input Simulation Parameters.

Parameter Value

User Environment (Parameter setting)

Velocity of MU

Slow Pedestrian 5.6 k/h

Fast Pedestrian 11.2 k/h

Slow Vehicle 44.8 k/h

Fast Vehicle 89.6 k/h

Call origination rates 1.4, 2.8, 5.6 call/h/user

Cell-Base Station (BS)- or Node B Parameter

Number of cells 100

Radius of a cell 250 m

Antenna type Omnidirectional Antennas

Buffer size 3.75 MB

delay time between sent packets 10 ms

Transmission Rate of HSDPA up to 10 Mbps

Downlink Bandwidth 32 kbps (Kilo bit/Sec)

Uplink Bandwidth 32 kbps

Interface (Link) Between RNC and Node B

Downlink Bandwidth 622 Mbit/sec

Uplink Bandwidth 622 Mbit/sec

Downlink Delay 15 ms

Uplink Delay 15 ms

Queue Size 2000 byte

Link Between RNC and Core Network (SGSN, GGSN)

Bandwidth 622 Mbit/sec

Delay 0.4 ms

Queue Size 1000 byte

optimisation used the CRAWDAD’s dataset which is verified by the authors [181].

The same dataset is also used in evaluating the NRADP. The dataset is discussed

in section 5.9.

The experiments in this section were made to obtain the optimal value for each

parameter. The parameters were tested to evaluate the RA mobility prediction
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technique, which include: Parameter-1: the factor which affects the evaporation

rate. Parameter-2: the quantity of the initial pheromone that would be laid on each

RA. Parameter-3: the quantity of the pheromone that would be laid by each MU over

time. Parameter-4: calculating the participation success rate of the local visibility

compared with global visibility. Parameters-5: determining the effectiveness ratio

between pheromone and visibility, represented by α and β.

For parameter 1, the prediction success rate is tested over varied evaporation

rates. Figure 5.9 shows the prediction success rate percentage over the change on

factor ρ. The experiments were carried out on a range of ρ between [0, 1], where its

increment was moved up by 0.1. From the experiments the prediction success rate

was varied from 46.11 to 71.67. The highest prediction success rate was achieved

when the value of ρ was between 0.6 and 0.8, in this range the value of ρ was

large enough to evaporate the pheromone highly. For high evaporation rate, the old

history of MUs would be forgotten from the RA and new displacements for an MU

and his/her neighbours were obtained. Therefore the RA’s history was more likely

to be valid. However, the prediction rates were 71.39 and 70.83 when the value of

ρ was between 0.9 and 1, respectively. That means the prediction success rate went

down when ρ was rear or equal to 1, since the large value of ρ stimulates RAs to

delete newer and valid history and displacements.

Figure 5.9: Prediction Success Rate According to the Different Values of ρ.
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Using ρ between 0 and 0.5 decreased the prediction rates comparing to the use

of ρ between 0.6 and 0.8, because using a small value of ρ would decrease the

evaporation rate considerably. Therefore RAs would accumulate more histories and

old displacements, making all the information in RAs out-of-date.

Figure 5.9 depicts the optimal values of ρ were between 0.6 and 0.8, where the

highest prediction rates were achieved over the change to ρ. These values encouraged

the RA Developed Mobility Prediction Technique to avoid search stagnation, finding

new solutions and prevent the deletion of any new solution.

Figure 5.10: Prediction Success Rate Over Varied Initial Pheromone Quantities.

For parameter 2, the prediction success rate over varied initial pheromone

quantities is examined. Figure 5.10 describes the initial pheromone quantity that

would be laid down on each RA before starting the running of the technique. The

prediction rates between 53% and %88 over varied amounts of pheromone quantity.

The highest prediction success rate was 88 when the amounts of pheromone were

setup to 1. As a result the best amount of pheromone to be laid down was 1 unit.

The use of small amounts of initial pheromone would save computation costs. To

show the effectiveness of pheromone quantity that will lay down during the running

of the algorithm, the next parameter is addressed.

For parameter 3, explains the prediction success rate changing compared to the

pheromone quantity that will be laid. Figure 5.11 and table 5.2 show the prediction
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Figure 5.11: Prediction Success Rate Over Varied Frequent Pheromone Quantities.

Table 5.2: Prediction Success Rate for Frequent Pheromones.

Pheromones Prediction success rate

1 87.3%

100 87.6%

200 87.6%

300 87.6%

. 87.6%

. 87.6%

. 87.6%

. 87.6%

1500 87.6%

rates over the change of pheromone amount that would be laid down by each MU,

using 1 unit of pheromone resulted in a 87.3 prediction rate, the more pheromone

units to be added, the caused prediction rates increases slightly in this manner.

This increase continues until reaching 50 units. At this point the prediction success

rate became flat at 87.65. So any further increment of the pheromone amount would

have no effect on the prediction rate. Therefore, the optimal value for the pheromone

amount would be 50 units addressing the best prediction success rate possible.
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For parameter 4, the significant combination of local and global visibility for

the MU is validated. Figure 5.12 shows the prediction success rate according to the

changing between local and global visibility participations. Based on equation 4.13

two values should be avoided in order to utilise these two concepts, namely 0 and 1.

Figure 5.12: Prediction Success Rate According to the Changing Values of P.

When the value of P equals zero, the local visibility would be eliminated. This

means the RA will use the neighbours’ heuristic information to predict the next

displacement for an MU. Thus, the MU cannot visit any of its favourite RA. In

other words, the MU displacements would be predicted randomly.

On the other hand, the global visibility would be deleted from equation 4.13

when using one as value of P. For example, when an MU located in an RA which

does not contain any local visibility related to this MU, the next displacement would

be based on its local visibility. Discovering new RAs based on pheromone, it has a

low possibility of discovering any new RA that has never been visited before. Hence,

the balancing between local and global visibility should be addressed as a significant

parameter for the mobility prediction technique.

To achieve balancing between local and global visibility, P was set to 0.6. This

value guarantees full participation of both local and global visibility, as well as

obtaining a better prediction rate. See figure 5.12 and table 5.3.

For parameter 5, the prediction success rate is tested over a varied distance
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Table 5.3: Prediction Success Rate Over Varied Values of P

Value of P Prediction success rate

0.1 52%

0.2 60%

0.3 68%

0.4 76%

0.5 84%

0.6 88%

0.7 88%

0.8 88%

0.9 88%

between alpha and beta. Figure 5.13 shows the effect that resulted from varying the

values of alpha and beta in order to determine the best values to gain the highest

prediction rate. As shown in figure 5.13, it was noticed that when both Alpha and

Beta were equalled, the prediction success rate was highest. Therefore, both Alpha

and Beta are going to be chosen according to the results. That is, the values of

Alpha should be chosen to be equal to values of Beta to achieve better prediction

rates.

Figure 5.13: Prediction Success Rate According to the Varied Alpha-Beta.
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After this discussion for determining which value has the greater effect on the

prediction rate. It is noticed that the Alpha with equal value to Beta making the

pheromone weight over the visibility weight shown the better prediction. Thus, the

optimal prediction success rate was almost 72% when using Alpha values equal to

the Beta values.

5.7 Simulation Model

The simulations were done over Pentium IV computers with 2 GB RAM and CPU

speed of 3 GHz. The operating system used was Windows XP, where the LAN speed

was 100 Mbps.

For chapter 6, there were two simulation scenarios. The first scenario was built

to examine LPSS for LBSs, which is based on NCPA to handle different cell types.

The LPSS model was simulated to calculate the prediction success rate and the cost

per unit of time for MUs with different mobility for each requested ratio.

In this scenario, the cellular communications network consisted of 100 cells. The

number of cells in the simulated experiments varies between one, two, three, five,

fifty and one hundred cells with a fixed radius of 250m each (micro cell).

A sectoring antenna is used in cellular communications network cells that cover

only part of BS’s area. Three sectoring antennas are often used to cover and present

one cell, each sector has a ray width of 120 degrees. The sectoring antenna is beyond

the scope of this thesis. Although, the introduced NCPA algorithm is not affected,

it is based on virtual splitting of its cell. In this research Omni antennas; namely,

Omnidirectional antennas are used to cover all the area around a BS and GPS service

is used to obtain the MU’s location.

The movement with different speeds - slow pedestrian speed, fast pedestrian,

slow vehicle and fast vehicle with measures of 5.6 km/h, 11.2km/h, 44.8km/h and

89.6km/h respectively - was recorded to train the program to learn how the MU

moves during different trips. Different samples of data were used to test the per-

formance of the LPSS. In addition, the pause time for each movement lasts for 20

seconds or so. The transmission rate is about 8 Mbps. Those parameters include
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the keys applied by the simulator for 1800 seconds. Each experiment consisted of

10 different iterations to improve accuracy. Each experiment took five hours. In

this design, in addition to the input parameters which were shown in table 5.1, the

following assumptions were used:

1. Network modelling : Cellular Communications Network-Based Solutions

for finding location is used as that in [182]. Each cell has a unique identifier

determined by its x and y coordinates. Numbering starts from the centre cell

and expands radially across the entire network.

2. Request service modelling : Services arrive for MUs according to a Poisson

distribution with mean m=1 per unit of time.

3. Mobility modelling: Mobility modelling: The Way-Point mobility is used,

where the simulation model implements the MUs’ cell residence time with a

Poisson distribution with mean r , where r is a discrete exponential variable

that can take on value 0, 1, 2, ....... . The MU’s displacement in small

resolution is described by a degree of randomness [15].

4. Initial position : The initial position for an MU is chosen randomly where

they belong in a coverage area of the network.

5. Time delaying : The time delay to message exchange between databases is

constant and assumed to be 1 ms.

6. Cycling : The cycle time for the MU is 10 ms.

The second scenario examined the prediction success rate, delay time, search

stagnation and memory usage for NRADP which is based on developed ACO algo-

rithm for LBSs. Chapter 6 analyses more performance metrics. In addition to the

input parameters shown in table 5.1, this scenario used five more assumptions are

summarised as follows:

1. There is one GGSN including 46 RAs.

2. The number of MUs in the mobile network under investigation varied from 1

to 10, according to the scenario.
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3. The MU resides in a different RA during the simulation.

4. An RA is formed of two cells.

5. The real dataset is used which was prepared by CRAWDAD. See section 5.9

for more details.

5.8 Performance Metrics

Performance metrics measure the actual outcomes of the developed prediction tech-

niques for a cellular communications network. The proper measurement of these

metrics is a precondition for evaluation of a cellular communications network’s per-

formance or judgment of performance using different prediction techniques. The

following metrics are considered in this thesis:

5.8.1 Prediction Success Rate

The prediction success rate is the ratio between the number of correct predictions

and the total number of predictions [16].

5.8.2 Memory Usage

The memory usage is defined as the amount of memory allocated to execute a certain

command. The deniability of services over the cellular communications network can

be reduced by the reduction of memory usage that can be achieved.

5.8.3 Execution Time

The execution time is the length of time needed to execute a certain command.

Reducing the execution time by the developed technique can lead to reducing the

delay time between the request and delivery services.
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5.8.4 Search Stagnation

The search focuses on the early stage of the algorithm running. That means no area

would be discovered in the future, because all ants follow the path that is generated

before with the highest density of pheromone.

5.8.5 Prediction Overhead

A cellular communications network’s prediction overhead is a ratio of bits that are

utilised in the components of the network by using the developed techniques. Bits

represent control and management bits that have been used to serve techniques.

5.8.6 Delay Time

The delay time is the average time period required between requesting and delivering

a service for an MU during the simulation running. The MUs that go out of coverage

area or switched off are not included in this metric.

5.9 DataSet

A dataset is a collection of data (observations) presented in a tabular form. Each

column represents a particular variable. Each row corresponds to a given member

of the dataset in question. Each value is known as a datum. The dataset is used

to test the developed techniques to certain problems and whether these proposed

solutions can approximate the reality or overcome current unsolved issues.

In the case of this research, a dataset that contains a trace of MU movements,

where the logs contain cell information such as cell identification, RA identification,

time staying, and visible cells. It is worth mentioning that in this dataset the

Location Area (LA) used is equivalent to RA in UMTS. The dataset is gathered

from 10 MUs’ phones. This dataset was prepared by CRAWDAD and verified by

the authors [181]. CRAWDAD is the community resource for archiving wireless data

at Dartmouth [183].
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5.10 Summary

In this chapter, the implementation used to examine NCPA and Developed Mobility

Prediction Techniques have been described. The implementation software used to

examine and compare the performance characteristics of the current techniques and

Developed Mobility Prediction Techniques. Furthermore, the simulation approach

that was used to examine the mobility prediction techniques for LBSs has been

illustrated. The simulation tool used to create the scenarios engaged to simulate the

cellular network was defined. The result collected by the simulation is quantitatively

analysed to validate the performance of the developed techniques and compare their

performance with the current techniques. Finally, the initial parameters used to

perform the simulation are validated and analysed.



Chapter 6

Results Analysis and Discussion

The previous chapters in this research introduced mobility prediction techniques

over UMTS for LBSs, and a Novel Cell Splitting Algorithm (NCPA) as well. Chap-

ter 5 discussed simulation environment, parameters set up, and metrics that are

used to measure the performance of the techniques developed compared to current

techniques.

This chapter aims to evaluate, investigate and analyse the performance of the

techniques developed. The chapter is divided into three main sections: section 6.1

presents the results that were collected from the simulator, where the NCPA com-

plexity time and stability over different cell types are discussed. The LPSS technique

is analysed based on the results that were gained from the experimental measure-

ments. LPSS is also compared with the current mobility prediction techniques such

as PLM and NMMP as described in section 6.2. Finally, section 6.3 shows an exten-

sive evaluation of the performed analysis for NRADP according to the metrics that

were defined in chapter 5. Some enhancements were suggested and the influences

of such enhancements were evaluated experimentally. In addition, comparison with

MPAS is offered.

6.1 NCPA Computation Performance Analysis

This section demonstrates the computation cost of NCPA in terms of splitting the

network cells and finding the sector ID where the MU is located.

108
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6.1.1 NCPA Splitting Network Cells Complexity

The results shown in this sub-section present only the performance of splitting the

network’s cells, taking into consideration the different cell types (Pico, Micro, Macro,

and Rural). This splitting was preformed once before the mobility prediction scheme

had begun. NCPA is a virtual splitting where closing roads under certain circum-

stances, such that an accident which could be caused by a human or natural being,

would not affect the splitting. Effectiveness appears only when a new component

is added to the cellular network. Specifically, when a new cell is added, the NCPA

splitting is executed to resort the network structure according to the changes.

Figure 6.1: NCPA Time Complexity for Micro Cell Splitting.

Figure 6.1 shows the complexity time needed to split a cellular network, where

the network includes up to 120 Micro cells. The y-axis represents the computation

cost in nanosecond, and the x-axis shows varied numbers of cells from 1 to 120

cells. When the splitting was preformed to generate the sectors based on one cell,

execution was 442041 ns. The execution time increased according to the increment

in the number of cells. The highest execution time was obtained when 120 cells were

used, where the execution time was 871290 ns.

The analysis was carried out to investigate the execution time for NCPA splitting

over different cell types. Table 6.1 summarises the execution time that was needed

to apply NCPA on Pico, Marco, and Rural cell. The execution times were 442041,
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442041, 442041 ns for those cell types respectively. The execution time was 871290

ns when the type of cells was Pico and the number of cells was 120, the execution

time needed for 120 Macro cells was 871290 ns, and it took 871290 ns of execution

time for 120 Rural cells.

Table 6.1: NCPA Time Complexity Needed for Different Cell Types

Cells Number Splitting Time (Nanosecond)

Pico Micro Macro Rural

1 442041 442041 442041 442041

10 594126 594126 594126 594126

20 623974 623974 623974 623974

30 705939 705939 705939 705939

40 740999 740999 740999 740999

50 786957 786957 786957 786957

60 789799 789799 789799 789799

70 791694 791694 791694 791694

80 823438 823438 823438 823438

90 828176 828176 828176 828176

100 831018 831018 831018 831018

110 851391 851391 851391 851391

120 871290 871290 871290 871290

According to the previous discussion, figure 6.1 and table 6.1, NCPA would be

considered more scalable. Low execution time is needed to split the all cells in

a cellular network. In a sense, the complexity time is trivial as even the NCPA

execution was applied before the mobility prediction scheme had begun the run.

Thus, the NCPA splitting is worth using for all cell types. In the present research

Micro cell was used and the next section investigates the complexity time for finding

the MU in Micro cells.
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6.1.2 NCPA Finding MU Location Complexity

This section discusses the results that were obtained from finding the location of the

MU during their constant movements. Sub-section 4.3.2 introduced a new technique

which uses the serving area as a sector instead of a cell, where a cell was considered

the smallest service area in a cellular communications network. Based on NCPA

splitting, the network is built up of sectors. Thus, the time for finding where the

MU is located is an important factor to reduce the delay time in the constraint

environment such as mobility prediction for LBSs.

Figure 6.2: NCPA Time Complexity for Finding MU in Micro Cell Splitting.

Figure 6.2 shows the results of the experiments for the time needed to discover the

location of MU. Again, the location here is a sector, the cellular network’s size varied

from one cell to 120 cells, and the execution time was measured in Nanosecond; the

analysis showing changes in the execution time according to the varied networks’

sizes.

Although a step more in the correct investigation direction, the above description

is an important factor for mobility prediction to reduce computation cost because

NCPA discovering MU algorithm was used during the prediction process. Thus, the

time needed to process it was taken to be worthy of study.

The time that it took NCPA for discovery varied from 3316 ns to 4038 ns at its

maximum. Figure 6.2 depicts a low irregularity in the execution time that refers
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Figure 6.3: Prediction Performance for Sector Snapshot for Location-Based Services.

to the availability of resources on the machine during the experiments of NCPA

execution. The execution time was measured in nanosecond which is a very precise

unit and NCPA has used basic mathematic operations. The conclusion indicated

that using NCPA will improve the performance of the common prediction techniques

significantly.

6.2 LPSS Experiments and Result Analysis

Corresponding to the prediction performance analysis, phase of experiments were

designed to evaluate the proposed technique which included: Phase-1: experiments

to evaluate the prediction accuracy, which is the ratio between the number of correct

predictions and the total number of predictions [81]. Phase-2: experiments to eval-

uate the memory usage reduction. Phase-3: experiments to evaluate the execution

time. Phase-4: experiments to evaluate the prediction success rate over time.

In phase 1, the performance of the LPSS is compared with both NMMP and

PLM techniques in terms of prediction accuracy rate. Figure 6.3 shows that LPSS

improved the prediction success rate compared with both NMMP and PLM. This

improvement is due to the nature of the mobility pattern in which the MU travels

into a series of predicted cells and the changing number of cells visited within a

trip. This conclusion is generally valid, though the improvement may differ with a

different set of assumptions.
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Figure 6.3 shows that the percentage of correct predictions in the LPSS is more

than 95.61%, as the MU moves through one cell, compared with 76.98% and 65.13%

in NMMP and PLM techniques respectively. An increase in the number of cells

leads to a decrease in the correct prediction success rate in both techniques. The

explanation for the achieved results caan be stated as follows: when the MU moves

over more than one cell, the end trip can be reached from different routes, through

different cells due to the size of the cells. So, such prediction will be low. On

the other hand, in one cell, the movement of the MU in the LPSS is kept within

bounds of the sectors within the same cell. So, when the MU leaves the sector and

goes to a neighbouring sector, they are is still within a relatively small area. Thus,

the prediction percentage logically increases. In the NMMP technique, the number

of selection choices is larger than LPSS, which decreases the accuracy of the right

next displacement for MU. On another hand, while using the PLM technique, the

movement of the MU within one cell will involve many intersections in different

routes.

Table 6.2: Prediction Success Rate for LPSS, NMMP, and PLM

Number of Cells LPSS NMMP PLM

1 95.61% 76.98% 65.13%

2 90.54% 76.27% 45.90%

3 86.85% 75.80% 34.05%

5 85.87% 73.13% 28.84%

50 65.38% 60.89% 10.34%

100 62.58% 56.45% 1.50%

Prediction success rate average 81.1365% 69.92% 30.96%

Moreover, in two cells a natural decrease in the prediction rate is shown since

the number of decision points increased due to the area covered, as mentioned in

the previous paragraph. So this decrease ratio in the prediction rate will be almost

the same up to five cells. Sine, each cell has a circular shape with a radius of

approximately 250 m. Therefore, the area of each cell approximately equals 0.2 km2
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and the area of five cells equals 1 km2. LPSS shows a high correct prediction success

rate in areas whose size is approximately five cells. In practice, this area is sufficient

for users’ activities in urban areas as it is a typical size for a city centre, university

campus or small town.

Furthermore, in order to show more behaviour of the techniques on higher res-

olution, the cells are increased from five up to fifty cells. This shows a dramatic

decrease in the prediction rate since both area and the number of decision points

are increased as shown in figure 6.3.

It is acknowledged that the knowledge of the next location of a given user’s

movement is considered as an important factor for mobility prediction. This fact is

satisfied more by LPSS than either NMMP or PLM in high resolution behaviour.

Table 6.2 summarizes this satisfaction by presenting the overall average correct

prediction rate for LPSS, NMMP, and PLM.

In phase 2, the importance of the memory usage reduction is utilised. To test

the effectiveness of the memory usage reduction, different numbers of cells for the

coverage area were studied. The average of memory usage in each technique is used

to test the memory reduction. The LPSS technique requires 14.65 kB for space

storage while NMMP and PLM require 27.77 kB and 121.91 kB respectively.

Figure 6.4: Memory Usage for LPSS, NMMP and PLM.

Figure 6.4 illustrates the differences in total memory usage among the LPSS,

NMMP and the PLM techniques. In comparison with the different techniques, the

proposed LPSS technique performs better in reducing the memory usage. This
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conclusion is generally valid, though the improvement may differ with a different

set of assumptions. This improvement is due to the division of the cell into a set

of sectors, where each sector acts as a serving region that retrieves the information

related to that sector only.

The irregularity in PLM is caused by the concept of using the road segments

which could be affected by closing roads under certain circumstances, such that

an accident which could be caused by a human or animal and such factor as road

jams. All the while, such problems can be seen neither from NMMP nor LPSS, since

NMMP depends on the cell and the LPSS depends on sector of the cell.

Furthermore, the mobility pattern can be used. With it the MU travels into a

series of predicted cells and changes the number of cells that were visited within a

trip. It is noted that whenever the number of cells is increased, the memory usage

will be increased. This is due to the fact that whenever more cells are used, more

computation and memory will be used. This fact will be discussed in Phase 3. In

conclusion, the mobility pattern factor considers the other factors that may reduce

the memory usage.

In phase 3, the execution time is studied in all three different techniques: LPSS,

NMMP, and PLM. Figure 6.5 shows the results of the three techniques in terms of

execution time using the same method that was used in both phases 1 and 2, with

a variation in the number of cells from 1 to 10.

Figure 6.5: The Execution Time for LPSS, NMMP and PLM.

In comparison of the execution of the three techniques, the execution time for
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the proposed LPSS technique performs better. Figure 6.5 summarises the results of

the LPSS execution time compared to the results of the NMMP and PLM execution

times.

The LPSS technique outperforms both NMMP and PLM in every number of

cells, but this is especially apparent when the number of cells increases. For example,

when the number of cells is 1, LPSS technique requires about 4.22 ms, while NMMP

and PLM techniques require 20.89 ms and 52.97 ms respectively. When the number

of cells increases to 10, LPSS requires only 0.322 s, while NMMP and PLM require

about 0.602 and 1.39 s respectively.

The mechanism of the LPSS technique depends on the virtual splitting of the

cell into sectors. This virtual splitting does not affect the built-in database and

structures when there is change in the physical serviced sector. Rather, the PLM

acts as a “roundabout”. The real change in intersections between roads and physical

features lead to costs for updating the database and structures, which are related

to the user predictions. Also, the NMMP technique works on the whole cell area

as a unit without splitting it, which leads to using manual filtering. This is done

because a huge amount of data/information is delivered to the MU. Hence, the three

techniques were designed to serve over low area resolution. As seen in Figure 6.5,

expanding the resolution gives an increase of execution time for the techniques.

Furthermore, PLM has a large number of possibilities when a user wants to

decide the next road. So, the user faces a larger number of possibilities than in the

LPSS technique. The nature of the NMMP prediction technique depends on two

levels of prediction as described earlier, which lead to more possibilities compared

to the LPSS technique.

Finally, the overall number of possibilities in both the NMMP and the PLM

techniques is larger than the possibilities in the LPSS, which decreases the correct

prediction percentage and increases the execution time.

To complete phase 4, the prediction behaviour over period of time is con-

sidered one of the important factors in improving the prediction mechanism. The

outcome of this behaviour provides a good measure for the robustness of the mech-

anism from the MU’s side. This is in addition to the ability to deal with challenges
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such as visiting a new location that has never been visited before, and utilising MU

neighbours’ behaviour. Figure 6.6 shows a description for the prediction success rate

variations over a period of 180 days.

Figure 6.6: Prediction Success Rate According to Time for LPSS, NMMP and PLM.

At this point, two factors are needed to be considered: the robustness and the

variation of the prediction success rate when the algorithm reaches the steady state.

Moreover, there is a very tight relation between those two factors in of the sense

that whenever the variation of the prediction success rate increases, the robustness

will decrease, and vice versa.

The irregularity shown in figure 6.6 for all the techniques is caused from using

the Random Way Mobility Model over low resolution. Moreover, LPSS reached

steady state after 130 days although NMMP reached it after 100 days. This can

be explained in the sense that NMMP has serving area as a cell which makes the

decision point based on that cell while LPSS depends on a sector of a cell. The

number of mobile users in the cell is greater than the sector which would make

building the knowledge in a cell faster than building it in a sector.

Additionally, both NMMP and PLM are working with different procedures that

depend on combination of two levels of prediction and road segments respectively,

leading to prediction states that have never been handled before. This is in addition

to what is noticed in figure 6.6 where there are very clear regressions after reaching

the steady state by both mechanisms. The proposed LPSS mechanism is working

on one level only. This contrasts with NMMP working on two levels, while PLM
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depends on making an extensive number of divisions, as shown in table 6.3. Table

6.3 which summarises the nature of LPSS, NMMP and PLM.

Table 6.3: Nature of Techniques for LPSS, NMMP, and PLM

LPSS NMMP PLM

Number of Levels 1 2 1

Size of Divisions Medium Largest Lowest

Serving Area Sector Cell Raod segements

In this analysis, the performance was evaluated by adopting an evaluation method-

ology to gauge the impact of the enhancement technique on the accuracy prediction,

memory usage, complexity cost, and prediction success rate over time.

6.3 Analysis of NRADP

This section describes the NRADP technique, walking through its details and phases.

NRADP was introduced based on the developed ACO.

Corresponding to the prediction performance analysis, a phase of experiments

was designed to evaluate the NRADP technique. It includes Phase-1: experiments

to evaluate the prediction accuracy for each MU. Phase-2: testing the prediction

success rate for 10 MUs over time. Phase-3: experiments to evaluate the search

stagnation ratio over time. Phase-4: experiments to evaluate the memory usage and

execution time.

In phase 1, The prediction success rate for each MU is tested over time. Figure

6.7 shows the prediction success rate for 10 MUs which use the MPAS and NRADP

techniques. This figure shows that the highest prediction success rate for NRADP

was 89% and the lowest was 48%, while it was 66% and 36% for MPAS. Consequently,

the highest prediction success rate was related to the number of RA displacements.

The highest number of displacements produced the lowest prediction success rate.

There are many factors that affect the prediction success rate. These factors are:

the number of routing displacement, search stagnation and previous knowledge of the

MUs’ behaviour in the surrounding regions. The routing displacement is affected by
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Figure 6.7: Prediction Performance for MPAS and NRADP Techniques for Each

MU.

the number of areas that will be discovered. The core network consists of RAs which,

in turn, consist of at least two cells. MPAS technique depends on the probability

calculation at the cell level, while NRADP works on the RA level. Thus, the number

of displacements for NRADP will be less than that for MPAS. Consequently NRADP

shows better prediction results than MPAS. In addition, search stagnation is handled

only by NRADP which aids in discovering new paths that represents better solutions

for MUs. NRADP also reduces the blindness of a MU. The MU does not follow the

previous discovered paths by other MUs. Therefore, the prediction success rate is

enhanced. It is, on average, 62% for NRADP and 47% for MPAS.

MPAS creates a movement table for each MU whenever a displacement process

carried out to assist the prediction process. Each movement table holds up to 50

records to describe the behaviours of the MU. That was not enough to provide the

MU with the full knowledge about the behaviours of the MUs that reside in the

same cell with respect to surrounding cells. On the other hand, NRADP supported

the existing and fresh knowledge by suggesting equations 4.11, 4.12, 4.13 and 4.16.

In phase 2, the average of prediction success rate for 10 MUs is obtained. Figure

6.8 depicts the prediction success rate over time for both techniques. Each point

in figure 6.8 represents the average prediction success rate for 10 MUs. As figure

6.8 shows, the overall prediction success rate for NRADP was better than MPAS.
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It can also be noted that NRADP has less regression compared to MPAS, i.e. the

NRADP prediction success rate is more stable than that of MPAS.

Figure 6.8: The MPAS and NRADP Prediction Success Rate for 10 MUs over Time.

Both techniques started with insufficient knowledge for next displacement, this is

shown in Figure 6.8. After 20 days both techniques reach enough knowledge which

is represented in the slight improvements in the prediction ratio over time.

MPAS shows a clear irregularity which can be explained from the use of the ant

colony that suffers from the MU blindness, i.e. the mobile user keeping track of the

other solutions that were created from other MUs. It was stated previously that

the prediction rate was affected by many factors. The fourth factor is the weight of

pheromone and visibility. The ACO method was improved to be used in NRADP.

While in NRADP, it is noticed that there is improvement compared to MPAS.

Hence, the developed ACO is used in NRADP. The developed ACO depends on

two factors: pheromone and visibility with two different weights. The improved

version of ACO method depends on both factors by the same weight. Thus, this

enhancement reduces the blindness of MUs. In Addition, for NRADP unnoticeable

regression is shown after 200 days because the Developed ACO constantly explores

new displacements for MU, this is discussed in phase 3 which the search stagnation

is investigated.

In phase 3, the search stagnation was tested over long histories to obtain the

ratio of search stagnation. Figure 6.9 explains the behaviour of MUs according to
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their search stagnation. Each point represents the average value for 10 MUs. The

average value of search stagnation for NRADP was less than that for MPAS.

At the beginning of the prediction process, both techniques had the value of zero

because all paths were considered new for both. As figure 6.9 shows, the value of

search stagnation were increased overtime for MPAS producing increase in MU’s

blindness, which degraded the prediction success rate.

On the other hand, the value of search stagnation was oscillating constantly, i.e.

it will never reach permanent stability state. The reason is that search stagnation

represents the new area that has been visited by MU. This decreased the blindness

of the MUs. NRADP used the MMAS algorithm as in equations 4.14 and 4.15

to guarantee the freshness of the pheromone over time as well as to prevent the

MU from following any path blindly. The MPAS had never taken such cases into

consideration.

Figure 6.9: Search Stagnation Ratio for MPAS and NRADP over Time.

To complete phase 4, the experiments to evaluate the memory usage and

execution time for both MPAS and NRADP were conducted for 10 MUs as shown

in table 6.4. By running the experiments from 1 to 10 MUs, it was found that the

execution time for NRADP was less than one second on average while for MPAS

the execution time exceeded 30 s in average which is considered relatively very slow.

Another factor as in the memory usage also showed that NRADP reserved less

memory for the same range of MUs compared to MPAS, where NRADP consumed
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less than 25 kB on average, while MPAS used more than 29000 kB on average, see

table 6.4.

Table 6.4: Memory and Time needed for NRADP and MPAS in the Prediction

Process

Number of NRADP MPAS

MUs Time(Second) Memory usage(kB) Time(Second) Memory usage(kB)

1 0.166 0.163085938 23.00662388 22467.39814

2 0.173 7.154296875 25.89657223 25289.61484

3 0.285 10.57045898 26.86357463 26233.95328

4 0.383 14.37119141 27.90411758 27250.10754

5 0.477 20.82143555 29.46295347 28772.40437

6 0.517 25.41171875 30.80820682 30086.12552

7 0.567 29.30253906 32.07564077 31323.86231

8 0.685 33.39042969 34.12452401 33324.72446

9 0.678 38.47426758 35.30505776 34477.58841

10 0.793 43.15126953 38.84320876 37932.81552

Average 0.472 22.28106934 30.42904799 29715.85944

Since MPAS is based on building a movement table during each prediction pro-

cess, this means that the memory and execution time would be consumed by the

repeated creation of this movement table and inclusion in the prediction process it-

self. Each movement table needed 6.515893043 s and 1632.065263 kB on average to

be created. On the other side, NRADP does not need such movement tables during

prediction processes since it used numerical variables to represent MUs’ behaviours,

see equations 4.11 and 4.12 and history freshness table is also used. The history

freshness table in NRADP is built before the NRADP took place. Therefore, such

values would not have any effect on the execution time and the memory usage of

the overall prediction process.
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6.4 Summary

This chapter introduced the NCPA analysis for cell splitting and finding MU’s loca-

tion, NCPA splitting tested over Pico, Micro, Macro and Rural cell for reducing a

service area into sectors. Finding where the MU is located in a sector was tested over

Micro cell. The implementations of the NCPA algorithm in terms of time complexity

indicated that NCPA is efficient and usable for using in prediction techniques.

NRADP and LPSS were also investigated. The LPSS analysis was based on a

simple mobility model: the Random Way Point model which does not have any

prediction success rate to investigate the real prediction success rate that is offered

from the introduced technique. NRADP is based on real datasets that are collected

from the real world. The developed prediction technique has improved the prediction

success rate and the performance by reducing the service area to a sector instead of

a cell. This Illustrated that the ability to make a combination between LPSS and

NRADP is because these prediction techniques can be worked independently. Thus,

a mobility prediction scheme is achieved.

Compared with the current mobility prediction technique, the memory usage

overhead and complexity time were reduced. Also, the prediction success rate and

stability achieved compared favourably with current techniques. Experimental re-

sults showed that the developed mobility prediction techniques can be used over

cellular communications networks and that these techniques can avoid the authen-

tication traffic overhead for the network operators, the latency between requesting

and responding to service for an MU, and reduce energy consumption of an MU,

mobile device, as the mobile device’s resources are not used by the developed tech-

niques, saving the limited power of those devices. Generally, the developed LBSs

mobility prediction techniques have the best performance.



Chapter 7

Conclusion and Future Work

This short chapter summarises the most important contributions of this research.

Included are a number of suggestions concerning mobility prediction for Location

Based-Services (LBSs) and cellular communications networks that require more re-

search and improvement.

7.1 Conclusion

A literature review summarised research related to LBSs mobility prediction over

cellular communications network in chapter 2 and 3. The following subjects were

considered: LBSs issues, LBSs benefits and components, mobility states, mobility

prediction, and cellular communications networks such as 2G, 3G and future genera-

tion cellular networks (4G). An extensive literature review was presented concerning

research related to techniques used for the prediction of MU next displacements,

specifically the Markov Chain Model (MCM) and Ant Colony Optimization (ACO).

Extensive investigation into existing LBSs mobility prediction techniques for a

cellular communications network was performed as a step towards improving mobil-

ity prediction techniques. A mobility prediction scheme (Cell-Routing Area Multi-

Levels Mobility Prediction) was developed. It relied on the combination between cell

and Routing Area (RA) level. This scheme is used in the enhancement of the mobil-

ity prediction scheme and for remedies to weaknesses in current mobility prediction

techniques.

124
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An efficient LBSs mobility prediction scheme is suggested based on well-known

probabilistic models and mathematical constructions. Prediction techniques that are

used in the scheme are more efficient in comparison with the best-known techniques

such as Prediction Location Model (PLM), New Markov-Based Mobility Prediction

(NMMP) and Mobility Prediction based on an Ant System (MPAS). The suggested

scheme provides four other characteristics.

1. The introduced Novel Cell Splitting Algorithm (NCPA) can be applied to pico,

micro, macro and rural cells. The method can divide a cell into any number

of sectors based on operator decisions.

2. The developed Location Prediction based on a Sector Snapshot (LPSS) eval-

uates all movement probabilities between sectors in the next RA before the

MU enters it. The average complexity requirements for LPSS are smaller than

PLM and NMMP techniques, a major goal of the project.

3. The New Routing Area Displacement Prediction for Location-Based Services

(NRADP) specifies the next RA that an MU will visit. The NRADP is more

competent when compared with MPAS.

4. The developed scheme is based on two different levels of prediction, LPSS

for the cell level and NRADP for the RA level. The cell and RA prediction

techniques work in such a way that if the RA prediction failed to predict the

next MU’s displacement, the cell prediction would perform the prediction.

The introduced mobility prediction scheme (Cell-Routing Area Multi-Levels Mo-

bility Prediction), provides time to prepare services that may be needed by the user

in anticipation of requesting them. This especially concerns services involved with

complex computation which may need to extract data and to save time, to ensure

that only desired services are available when requested. The cellular communica-

tions environment is considered a restricted dynamic environment. The restriction

in such an environment is due to the limitations of the MU.

The following subsections summarise the contributions and outcomes of this

research.
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7.1.1 LPSS Cell Mobility Prediction

The NCPA was developed and used in the introduced mobility prediction at cell

level (LPSS).

In this research, a dynamic cell splitting NCPA has been introduced. The NCPA

used to accomplish the cellular cell splitting and finding the MU location were

successful. Splitting a cell into smaller regions reduces the size of service areas

compared with the original cell size, the amounts of data that are delivered to MUs

are reduced and balance prediction success rate. These factors assist in improving

LBSs mobility prediction.

As shown in chapter 4, the NCPA is applicable to pico, micro, macro and rural

cells. Efficiencies in determining the location of MU movement is also achieved. As

illustrated in chapter 6, the NCPA time needed 442041 ns for splitting one cell into

eight sectors, while the execution time needed for 120 cells (Pico, Micro, Macro,

and Rural) was 871290 ns. As seen, the execution times are equal to that referred

to NCPA that does not depend on the radius for the splitting. Even though the

NCPA execution time for splitting is insignificant, this operation is executed before

the prediction technique is begun.

In this research, NCPA is used to split a Micro cell into eight equivalent sectors,

with each quadrant containing two sectors. Thus, the time for finding a sector where

the MU is located is an important factor to reduce the delay time in constraint

environment such as mobility prediction for LBSs, whereas the NCPA finding time

used during prediction process. The NCPA time needed for finding a sector where

the MU is located varied from 3316 to 4038 ns in maximum where the cellular

network size was between 1 and 120 cells, respectively.

NCPA analyses showed scalability, low execution time needed to split entire cells

in a cellular and for splitting and finding MU’s location. Thus, NCPA is worthy to

become part of the common prediction techniques, where the performance of those

techniques will significantly improve and assist the techniques to be more dynamic.

In this thesis, the new prediction technique LPSS was introduced based on NCPA

algorithm. The mechanism of the LPSS technique depends on the virtual splitting

of the cell into sectors. This virtual splitting does not affect the built-in database
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and structures when there is change in the physical serviced sector.

Chapter 6 has shown the LPSS is more efficient than NMMP and PLM. The

suggested technique also provides other characteristics. For example, LPSS mini-

mizes the computation cost, consumption of resources, and the over-all cost of the

location management process. Also, the LPSS reduces the service area and the

number of predicted routes during the MU trip. It does so by dividing the cell into

eight equivalent sectors. In addition, the simulation of the three mobility prediction

techniques offers the following three results.

1. The LPSS technique improves the location prediction probability over NMMP

and PLM. The average percentage of correct predictions in the LPSS is more

than 80% compared with 31% and 70% in NMMP and PLM techniques, re-

spectively.

2. The LPSS average complexity requirements for execution time was only 0.059

s, while NMMP and PLM require about 0.14 and 0.42 s, respectively.

3. The LPSS usage space is smaller for the NMMP and PLM techniques. The

LPSS technique requires 14.65 kB for space storage while NMMP and PLM

require 27.77 kB and 121.91 kB, respectively.

4. The LPSS has a very light regression, where it is very clear that a lot of

regressions take place in both NMMP and PLM after reaching the steady

state.

The simulation results have demonstrated that the average prediction success

rate, the memory usage, the execution time, robustness and regression degree of

prediction success rate over time are improved when compared with the NMMP

and PLM techniques.

In addition, the PLM does not allow a given user to visit each of the trajectories

more than once for the whole trip. That means PLM is not a practical technique.

LPSS does not suffer from this problem. Meanwhile, NMMP is based on the depen-

dent hierarchical prediction process. This leads to increasing the messages passing

on the network, delay time and overhead on resource in which it is avoided in LPSS.
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Finally, it is acknowledged that the main factor for LBSs is the knowledge of the

next location of a given user movement. This is satisfied more by LPSS than by

either NMMP or PLM.

7.1.2 NRADP Routing Area Mobility Prediction

The NRADP was presented based on the enhanced ACO. The enhanced ACO was

developed to be compatible for cellular communications network.

In chapters 4 and 6, the NRADP prediction technique is proposed and analysed

to improve the prediction success rate for cellular communications network. This

technique depends on the improved ACO method. Two types of visibility were

defined: local and global. In addition, weight participation for factors, pheromone

and visibility are balanced to enhance the prediction success rate through avoiding

bias in factors selection. Alpha value was 0.5 and beta was 0.5. On the other hand,

the prediction process in NRADP is limited by two thresholds: min and max which

avoid as much as possible the search stagnation while the search stagnation is still

unhandled in MPAS. Furthermore, NRADP works on routing area level rather than

cell level. Thus, it decreases the number of displacements that decreases message

passing and resources consumption. It also works on core network.

The simulation of the two techniques offers the following results.

1. The average execution time for NRADP was less than one second while MPAS

exceeded 30 s which is considered not practical for use in mobility prediction

technique.

2. The NRADP achieved a high prediction success rate, up to 89%, where the

average resource consumed was less than 25 kB compared to 29000 kB for

MPAS.

7.2 Future Work

There are many research issues relevant to the LBSs mobility prediction for cellular

communications network which still need further research. New problems are likely
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to appear with the rapid growth in the technology of cellular networks. This thesis

may be a possible starting point for further work and research in different areas.

The recommendations for future research are divided into two categories.

7.2.1 Recommendations for Future Research Related to Mo-

bility Prediction

Based on the research performed in this thesis, three areas of future research into

LBSs mobility prediction techniques are recommended:

1. In LPSS, the Macro and Rural cells still need more investigation to determine

how many sectors are suitable for both of them.

2. Software optimisation: the software implementation of the LPSS and NRADP

can be further optimised for better performance.

3. NRADP needs more investigation in terms of MU’s number that will affect

the pheromone and visibility.

4. NRADP still needs more investigation for the ACO modifications that have

already been done, and notice which one of these modifications can be applied

in NRADP to improve the prediction ratio.

7.2.2 Recommendations for Future Research Related to Fu-

ture Cellular Network

Based on the research performed in this thesis, three areas of future research into

cellular communications network are recommended:

1. Due to the nature of battery-powered mobile devices, energy consumption

is an important issue for mobile networks. Therefore, investigation of power

consumption and how battery life is affected by use of the proposed techniques

is desirable.
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2. Testing by software simulation has proved that the proposed techniques are

efficient and robust. However, real network validations are still needed. The

results of real experiments would corroborate the effectiveness and robustness

of the proposed techniques.

3. Mobility prediction scheme needs more investigation in terms of message pass-

ing between LPSS and NRADP, as well as to show the effectiveness of scheme

for call admission, update location area, paging and the number of messages

that may be reduced from knowing the next displacement of MU .

In conclusion, this study contributes significantly to LBSs mobility prediction.

This study provides an important research reference for understanding the relation-

ship between mobility prediction and cellular communications network. It provides

a framework for the development of future cellular communication network.
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Appendix B

Network Structure

B.1 Network Simulator

The simulator provides a framework for building a network model, specifying data

input and analysing output data. It is a discrete event simulator targeted at net-

working research. It is a widely used simulation tool for simulating inter-network

topologies to test and evaluate various networking protocols.

The simulation tool supports a trace file that used to trace and analyse the

packets for both wireless and wired networks.

B.2 Cell Structure

//This section explains the variables are defined inside a cell.

public class Cell

{

private int MCC; // Mobile Country Code

private int MNC; // Mobile Network Code

private int LAC; // Routing Area ID

private int CI; // Cell ID

private int signal strength;

private int channel;

private int BSIC; // Base Station Identity Code
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public Cell(int MCC,int MNC,int LAC,int CI,int signal strength,int channel,int

BSIC)

{

this.setMCC(MCC);

this.setMNC(MNC);

this.setLAC(LAC);

this.setCI(CI);

this.setSignal strength(signal strength);

this.setChannel(channel);

this.setBSIC(BSIC);

}

public int getMCC() {

return MCC;

}

public void setMCC(int MCC) {

this.MCC = MCC;

}

public int getMNC() {

return MNC;

}

public void setMNC(int MNC) {

this.MNC = MNC;

}

public int getLAC() {

return LAC;
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}

public void setLAC(int LAC) {

this.LAC = LAC;

}

public int getCI() {

return CI;

}

public void setCI(int CI) {

this.CI = CI;

}

public int getSignal strength() {

return signal strength;

}

public void setSignal strength(int signal strength) {

this.signal strength = signal strength;

}

public int getChannel() {

return channel;

}

public void setChannel(int channel) {

this.channel = channel;

}

public int getBSIC() {
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return BSIC;

}

public void setBSIC(int BSIC) {

this.BSIC = BSIC;

}

}



Appendix C

Useful Source Code for Cell

Splitting

C.1 Cell Splitting

public class CellSplitting {

//These variables are used to determine the limited for each quarter in a cell.

static final int ANGLES90 =90;

static final int ANGLES180 =180;

static final int ANGLES270 =270;

static final int ANGLES360 =360;

//These variables are defined for assisting the splitting algorithm

static int n,x,y,numberOfSector;

static double centerAngel,r,p;

//This function returns the centre angle for each sector, whereas the input pa-

rameter is the total number of sector.

static void setCenterAngel (double n)

{

centerAngel = ANGLES360/ Math.pow(2,n);

}
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static double getCenterAngel ()

{

return centerAngel ;

}

// Find the total number of sectors in each quadrant.

static void setNumberOfsector(double n)

{

numberOfSector=(int)Math.pow(2,n-2);

}

static void setX( int xLocal)

{

x=xLocal;

}

static void setY(int yLocal)

{

y=yLocal;

}

static void setN(int nLocal)

{

n =nLocal;

}

static int getN()

{

return n;

}

public static void main(String [] string)

{

setN(3);
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setX(3);

setY(4);

setR(x,y);

setCenterAngel(getN());

setNumberOfsector(getN());

}

}

C.2 Finding the Location of Mobile User

public class FindingMobileUser {

static final int ANGLES90 =90;

static final int ANGLES180 =180;

static final int ANGLES270 =270;

static final int ANGLES360 =360;

static int qi,s,numberOfSector;

static double centerAngel,r,p;

//This function is to determine which quadrant where the mobile user locates

static int getQuadrant(double angelLocal)

{

if ( angelLocal >=0 && angelLocal <=ANGLES90 )

return 1;

if ( angelLocal > ANGLES90 && angelLocal <= ANGLES180 )

return 2;

if ( angelLocal > ANGLES180 && angelLocal <=ANGLES270 )

return 3;
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if ( angelLocal > ANGLES270 && angelLocal <= ANGLES360 )

return 4;

return 0;

}

static int getNumberOfsector()

{

return numberOfSector ;

}

public static void main(String [] string)

{

// to identify the sector where the mobile user locates

s=(getNumberOfsector() * qi)-(getNumberOfsector() -2);

System.out.print(”s”+s);

}

}



Appendix D

Useful Source Code for Markov

Chain Model Prediction

D.1 Historical Matrix Filling

//This function is used to fill the historical matrix from flat file. The file contains

the movements of a mobile user according a Random Way Point mobility model.

public FillMobileTracking(ArrayList<CellSector> mobile)

{

int i=1,j=0;

CellSector temp,temp1;

MobileTracking newrecord=null;

while(i<mobile.size())

{

if(i==1)

{ //This operation is to add a new record to the matrix if the record does not exist.

temp=mobile.get(0);

temp1=mobile.get(1);

newrecord=new MobileTracking(temp.getCellid(),

temp1.getCellid(),temp.getSector(),temp1.getSector(),1); mobilehistory.add(newrecord);

j++;
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}

else

{ temp=mobile.get(i);

newrecord=mobilehistory.get(j-1);

//When the record existed in the matrix, the following code will perform to increase

the frequency of a movement.

if(temp.getCellid()==newrecord.getNewcell()&&

temp.getSector()==newrecord.getNewSector())

{

newrecord.setFrequency(newrecord.getFrequency()+1);

mobilehistory.set(j-1,newrecord);

}

else

{ mobilehistory.add(new MobileTracking(mobilehistory.get(j-1).getNewcell(),

temp.getCellid(), mobilehistory.get(j-1).getNewSector(),temp.getSector(),1));

j++;

}

} i++;

} }

D.2 Transition Matrix Generation

/*Transition matrix is presented in this section. Constructing transition matrix is

based on the history matrix. The following code presents how the developed tech-

nique deals with the target mobile user whereas the history of the mobile user is

used to build the transition matrix for him/her.*/

public void ReducingProbabilty() {

int i=0,j=1,fre=0;

MobileTracking tempi,tempj;
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while(i<mobilehistory.size())

{

tempi=mobilehistory.get(i);

if(tempi.getStatus()==0)

{

fre=tempi.getFrequency();

tempi.setStatus(1);

mobilehistory.set(i,tempi);

j=1;

while(j<mobilehistory.size())

{

tempj=mobilehistory.get(j);

if(tempi.getOldcell()==tempj.getOldcell() && tempi.getNewcell()==tempj.getNewcell()

&& tempi.getOldocatant()==tempj.getOldocatant()

&& tempi.getNewSector()==tempj.getNewSector()

&&tempj.getStatus()==0)

{

fre+=tempj.getFrequency();

tempj.setStatus(1);

mobilehistory.set(j,tempj);

}

j++;

}

tempi.setFrequency(fre);

mobilehistory.set(i,tempi);

reducedhistory.add(tempi);
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}

i++;

} }

D.3 Prediction and System States

/*This section presents the extraction of system state, determine next state, predict

next sector for mobile user and calculate the prediction rate.*/

package LocationPrediction;

import java.util.ArrayList;

public class Prediction {

int total=0;

int accurte=0;

ArrayList<MobileTracking>mobileMovement=new ArrayList<MobileTracking>();

ArrayList<MobileTracking> TransitionMatrix=new ArrayList<MobileTracking>();

ArrayList<MobileTracking>nextState=new ArrayList<MobileTracking>();

ArrayList<MobileTracking>predictionsets=new ArrayList<MobileTracking>();

//This function obtains the next state of the mobile user.

public Prediction(ArrayList<MobileTracking> predictionsets,ArrayList<MobileTracking>

mobileMovement,ArrayList<MobileTracking> TransitionMatrix)

{

this.mobileMovement=mobileMovement;

this.TransitionMatrix=TransitionMatrix;

this.predictionsets=predictionsets;

}

/*This function is to obtain the prediction percentage for each sector around the

sector where the mobile user locates*/.

public void Highprobability(int oldCell,int oldSector)
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{

int i=0;

while(i<TransitionMatrix.size())

{

if(TransitionMatrix.get(i).getOldcell()==oldCell

&& TransitionMatrix.get(i).getOldSector()==oldSector)

nextState.add(TransitionMatrix.get(i));

i++;

}

if(nextState.size()==0)

{

nextState.add(new MobileTracking(-1,-1,-1,-1,-1));

}

this.getHighestprobability();

}

public void getHighestprobability()

{

MobileTracking temp=null;

for(int i=0;i<nextState.size();i++)

for(int j=1;j<nextState.size();j++)

if(nextState.get(i).getFrequency()<nextState.get(j).getFrequency())

{

temp=nextState.get(i);

nextState.set(i,nextState.get(j));

nextState.set(j,temp);

}

}

//This function obtains the next predictable sector for the mobile user

public int predictionState()

{

int accurate=0;
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int non=0;

MobileTracking temp=null;

int i=0;

while(i<predictionsets.size())

{

this.Highprobability(predictionsets.get(i).getOldcell(),predictionsets.get(i).getOldSector());

if(predictionsets.get(i).getNewcell()==nextState.get(0).getNewcell()

&& predictionsets.get(i).getNewSector()==nextState.get(0).getNewSector())

{

accurate++;

temp=nextState.get(0);

temp.setFrequency(temp.getFrequency()+1);

nextState.set(0,temp);

}

else

non=0;

nextState.clear();

i++;

}

return accurate;

}

}
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Useful Source Code for Ant

Colony Prediction

E.1 Variable Definition and Manipulation

//The important parameters that are used in the Ant Colony Optimisation is de-

clared in this section.

public class VariableManipulation

{

private double Pheromones;

private double Pheromone lay amount;

private double Visibility;

private double Beta;

private double Tau;

private double Alpha;

private double evaporation rate;

private double m; for visiablility

public VariableManipulation(double ph,double phon,double vis,

double beta,double tau,double alpha,double evap)

{

this.setPheromones(ph);

this.setPheromone lay amount(phon);
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this.setVisibility(vis);

this.setBeta(beta);

this.setTau(tau);

this.setAlpha(alpha);

this.setEvaporation rate(evap);

}

public double CalcVisibility(int i)

{

if (i==0)

return 1;

else

return (this.getVisibility()*m);

}

public double CalPheromone()

{

return (this.getPheromones()*(1-this.getTau())+this.Pheromone lay amount);

}

public double getPheromones() {

return Pheromones;

}

public void setPheromones(double Pheromones) {

this.Pheromones = Pheromones;

}

public double getPheromone lay amount() {

return Pheromone lay amount;

}

public void setPheromone lay amount(double Pheromone lay amount) {

this.Pheromone lay amount = Pheromone lay amount;

}

public double getVisibility() {
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return Visibility;

}

public void setVisibility(double Visibility) {

this.Visibility = Visibility;

}

public double getBeta() {

return Beta;

}

public void setBeta(double Beta) {

this.Beta = Beta;

}

public double getTau() {

return Tau;

}

public void setTau(double Tau) {

this.Tau = Tau;

}

public double getAlpha() {

return Alpha;

}

public void setAlpha(double Alpha) {

this.Alpha = Alpha;

}

public double getEvaporation rate() {

return evaporation rate;

}

public void setEvaporation rate(double evaporation rate) {

this.evaporation rate = evaporation rate;

}

}
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E.2 Pheromone Initialisation

//Before the algorithm began the pheromone quantity for each routing area will be

initialised by the following function.

public void initialPheromone(double Pheromone)

{

for(int i=0;i<RNt.Nt.RAs.size();i++)

for(int j=0;j<RNt.Nt.RAs.get(i).Lmemo.size();j++)

RNt.Nt.RAs.get(i).Lmemo.get(j).setPheromone(Pheromone);

}

E.3 Pheromone Updating

/*The process of pheromone quantity updating for each routing area is presented

in this function. The new quantity of pheromone is affected by the old pheromone

quantity and evaporation rate.*/

public double ProcessingPheromone(double originalpheromone,double evaprate,double

pheromonequnt)

{

double temppheromone=0;

temppheromone=originalpheromone*(1-evaprate)+pheromonequnt;

return temppheromone;

}

E.4 Local Visibility Initialisation

//This function execute for each mobile user according to the mobile identification.

public void LInitialVisibility(int Visibility)

{

for(int i=0;i<RNt.Nt.RAs.size();i++)

for(int j=0;j<RNt.Nt.RAs.get(i).Lmemo.size();j++)
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RNt.Nt.RAs.get(i).Lmemo.get(j).setCounter(Visibility);

}

E.5 Global Visibility Initialization

//This function execute for all mobile users.

public void GInitialVisibility(int Visibility)

{

for(int i=0;i<RNt.Nt.RAs.size();i++)

for(int j=0;j<RNt.Nt.RAs.get(i).Gmemo.size();j++)

RNt.Nt.RAs.get(i).Gmemo.get(j).setCounter(Visibility);

}

E.6 The Effeteness between Local and Global Vis-

ibility

//This function execute for each mobile user according to the mobile identification.

public double UpdateVisibility(int LocalVis,int GlobalVis,double P)

{

double Lall=P*LocalVis+(1-P)*GlobalVis;

return Lall;

}


