1,098 research outputs found

    Radar networks: A review of features and challenges

    Full text link
    Networks of multiple radars are typically used for improving the coverage and tracking accuracy. Recently, such networks have facilitated deployment of commercial radars for civilian applications such as healthcare, gesture recognition, home security, and autonomous automobiles. They exploit advanced signal processing techniques together with efficient data fusion methods in order to yield high performance of event detection and tracking. This paper reviews outstanding features of radar networks, their challenges, and their state-of-the-art solutions from the perspective of signal processing. Each discussed subject can be evolved as a hot research topic.Comment: To appear soon in Information Fusio

    Generic multisensor multitarget bias estimation architecture

    Get PDF
    Current bias estimation algorithms for air traffic control (ATC) surveillance are focused on radar sensors, but the integration of new sensors (especially automatic dependent surveillance-broadcast and wide area multilateration) demands the extension of traditional procedures. This study describes a generic architecture for bias estimation applicable to multisensor multitarget surveillance systems. It consists on first performing bias estimations using measurements from each target, of a subset of sensors, assumed to be reliable, forming track bias estimations. All track bias estimations are combined to obtain, for each of those sensors, the corresponding sensor bias. Then, sensor bias terms are corrected, to subsequently calculate the target or sensor-target pair specific biases. Once these target-specific biases are corrected, the process is repeated recursively for other sets of less reliable sensors, assuming bias corrected measures from previous iterations are unbiased. This study describes the architecture and outlines the methodology for the estimation and the bias estimation design processes. Then the approach is validated through simulation, and compared with previous methods in the literature. Finally, the study describes the application of the methodology to the design of the bias estimation procedures for a modern ATC surveillance application, specifically for off-line assessment of ATC surveillance performance

    Performance Evaluation of Simultaneous Sensor Registration and Object Tracking Algorithm

    Get PDF
    Reliable object tracking with multiple sensors requires that sensors are registered correctly with respect to each other. When an environment is Global Navigation Satellite System (GNSS) denied or limited – such as underwater, or in hostile regions – this task is more challenging. This paper performs uncertainty quantification on a simultaneous tracking and registration algorithm for sensor networks that does not require access to a GNSS. The method uses a particle filter combined with a bank of augmented state extended Kalman filters (EKFs). The particles represent hypotheses of registration errors between sensors, with associated weights. The EKFs are responsible for the tracking procedure and for contributing to particle state and weight updates. This is achieved through the evaluation of a likelihood. Registration errors in this paper are spatial, orientation, and temporal biases: seven distinct sensor errors are estimated alongside the tracking procedure. Monte Carlo trials are conducted for the uncertainty quantification. Since performance of particle filters is dependent on initialisation, a comparison is made between more and less favourable particle (hypothesis) initialisation. The results demonstrate the importance of initialisation, and the method is shown to perform well in tracking a fast (marginally sub-sonic) object following a bow-like trajectory (mimicking a representative scenario). Final results show the algorithm is capable of achieving angular bias estimation error of 0.0034 o , temporal bias estimation error of 0.0067 s, and spatial error of 0.021m

    Message Passing and Hierarchical Models for Simultaneous Tracking and Registration

    Get PDF

    A Robust Localization Solution for an Uncrewed Ground Vehicle in Unstructured Outdoor GNSS-Denied Environments

    Full text link
    This work addresses the challenge of developing a localization system for an uncrewed ground vehicle (UGV) operating autonomously in unstructured outdoor Global Navigation Satellite System (GNSS)-denied environments. The goal is to enable accurate mapping and long-range navigation with practical applications in domains such as autonomous construction, military engineering missions, and exploration of non-Earth planets. The proposed system - Terrain-Referenced Assured Engineer Localization System (TRAELS) - integrates pose estimates produced by two complementary terrain referenced navigation (TRN) methods with wheel odometry and inertial measurement unit (IMU) measurements using an Extended Kalman Filter (EKF). Unlike simultaneous localization and mapping (SLAM) systems that require loop closures, the described approach maintains accuracy over long distances and one-way missions without the need to revisit previous positions. Evaluation of TRAELS is performed across a range of environments. In regions where a combination of distinctive geometric and ground surface features are present, the developed TRN methods are leveraged by TRAELS to consistently achieve an absolute trajectory error of less than 3.0 m. The approach is also shown to be capable of recovering from large accumulated drift when traversing feature-sparse areas, which is essential in ensuring robust performance of the system across a wide variety of challenging GNSS-denied environments. Overall, the effectiveness of the system in providing precise localization and mapping capabilities in challenging GNSS-denied environments is demonstrated and an analysis is performed leading to insights for improving TRN approaches for UGVs.Comment: 15 pages, 9 figures, 2 tables, to be published in The Proceedings of the Institute of Navigation GNSS+ 2023 conference (ION GNSS+ 23
    • …
    corecore