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Abstract:  
Localization problem of mobile robot in an environment of interest is one of research fields 
that are not still completely solved. Many methods to settle this problem are unceasingly 
being examined. Although a lot of researchers have dedicated themselves to this problem, it 
demands new but more accurate method by which mobile robot itself recognizes its own 
position while moving. It tries to find solution by making mention of various localization 
problems with estimation method in this chapter. Robot researchers had to recognize the 
current position information for movement control of mobile robot to last destination. It is 
being adopted from the conventional Kalman filter, which was proposed to reduce 
stochastic noise error, to complicated algorithms in the field of target tracking. The 
localization of the mobile robot occurred in various environments such as indoor, outdoor, 
warehouse, harbors, airports, and offices is based on estimation theories of target tracking 
field. The estimation method to be proposed in this chapter is mentioned with localization 
problem in the text. As the most widely used method for providing the current position of 
mobile robot, odometry is inexpensive method to implement in real time, but has vital 
demerit of accumulation of position error for long distance navigation. Various external 
sensors were used to supplement this problem, but the adopted sensors have also intrinsic 
errors. GPS, used as a global sensor in the outdoors, has a fatal weak point suffering from 
multi-path effects in the surrounding of buildings or trees. In this chapter, method for 
decreasing the above error occurred in localization problem are provided and embodied. 
This error is assumed as bias error. New nonlinear estimation method included in data 
integration method to reduce that error is derived and evaluated through experiment. The 
proposed integration method is provided to take full advantage of characteristics of mobile 
and outdoor environment sensors. 
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1. Introduction 
 

Localization of moving object is one of the main subjects in the area of robotics. In particular, 
the service robot has aimed at providing position information for the running of the robot to 
support man's vital function. In the viewpoint of the robot, it is necessary to recognize the 
position in the given environment to carry out the desired duty in daily life. The robot may 
receive information from not only the sensors that robot has but also devices distributed on 
the ambient environment. There exist various sensing technologies to recognize the current 
position of mobile robot in the given environment. For such case, sensors can be classified as 
the following two categories in the view of information provider: i) Odometry, inertial 
measurement unit (inertial navigation system), ultrasonic sensor, laser range finder, moving 
camera such as stereo camera; ii) Camera array system, radio frequency identification (RFID), 
global positioning system (GPS), starLITE sensor suite, ultrasonic satellite (U-SAT), stargazer, 
laser range finder with reflectors. Odometry is the most widely used method for determining 
the current position of the mobile robot. An odometric sensor is simple, inexpensive, and 
easy to implement in real time. The disadvantage of odometry, however, is the accumulation 
of position errors for long distance navigation. In order to solve this problem, absolute and 
global information to the running robot is needed. As one of the aiding methods for that 
information of a mobile robot, the widely used sensors include starLITE sensor suite, vision 
system, GPS, and RFID. Differential GPS (DGPS) method has been developed to reduce the 
odometry error in real time. Nevertheless, the DGPS accuracy cannot be guaranteed all the 
time in environments where partial satellite occlusion and multi-path effects between 
buildings can prevent normal GPS receiver operation. Therefore, for the localization of 
mobile robot, it is indispensable to consider each characteristic of the used sensors because 
each sensor receives data with different method. It can be considered as registration error of 
mobile sensors. Data registration problem can be settled down by pre-processing of sensor 
data [9], [21]. In this chapter, sensor data transformed from local coordinate reference system 
to global coordinate reference system is used as inputs of integration filter.  
Information fusion of various sensors enables one to obtain better information than 
independent that of each sensor. Sensor data fusion is indispensable for localization of a 
mobile robot in the given environment. Data fusion techniques are used to employ a number 
of sensors and to fuse the information from all of these sensors and environment. But, sensor 
data or information may be of different types. In that case, integration can be used as a 
special form of data fusion after sensor registration. Various integration methods using 
dead-reckoning and external information have been in the literature [1], [2], [5], [11], [14], 
[15], [18]-[20]. Nebot and Durrant-Whyte [16] presented the design of a high-integrity 
navigation system for use in large autonomous mobile vehicles. Decentralized integration 
architecture was also presented for the fusion of information from different asynchronous 
sources. The integration includes a complementary fusion [2], [8], a centralized integration 
[2], [13], and a distributed integration method [4], [6], [7], [22]. For integrating information of 
DGPS and odometric data, a complementary integration approach is proposed [2], [3], [19]. 
The used integration filtering method uses odometry data as system state and DGPS data as 
measurements. It needs difference between two sensor data as input variables of filter. The 
extended Kalman filter (EKF) [2] is used as integration filter to estimate sensor data error. In 
addition, the filtering output is resent to odometry system to correct robot position. However, 
even after data integration, the undesirable result may be obtained. This is due to multi-path 
phenomenon of the DGPS sensor [8], [16], [19]. Novoselov et al. [17] presented the algorithm 

based on the Schmidt-Kalman filter for mitigating the effects of residual biases on sensor 
attitude error and measurement offset and scale errors. Huang and Tan [12] investigated the 
characteristics of DGPS measurements under urban environments. In addition they 
proposed novel DGPS noise processing techniques to reduce the chances of exposing the EKF 
to undesirable DGPS measurements due to common DGPS problems such as blockage and 
multipath. When one of several sensors provides bad information in multi-sensor structure, 
the proposed mechanism detects a sensor fault from integrating result and compensates 
information by bias estimation. The used bias estimation was originated by Friedland [10]. In 
[10], the estimation mechanism is composed of two parts: bias-free filter and bias filter. The 
estimation of the bias is decoupled from the computation of the bias-free estimate of the state. 
Therefore, the aim of this study is to use each characteristic of sensor data and to develop an 
integration structure dealing with those data for the localization of mobile robot in spite of 
sensor data fault or bias error. 
This paper is organized as follows. In Section 2, for localization of mobile robot two different 
integration sensors and their characteristics are described. The problem is formulated to 
integrate information from odometry sensor and ambient environment, and integration 
structure is proposed in Section 3. It is also proposed an integration method with bias 
estimation to compensate bias error. The problem with data fault phenomena is mentioned 
and recovered. Outdoor robot Yamabico is used to verify the proposed mechanism in Section 
4. Section 5 concludes the paper. 

 
2. Localization without Bias Compensation 
 

For the localization of mobile robot using odometry and DGPS sensors, an integration 
mechanism taking use of characteristics of sensor data is needed. This section will, therefore, 
focus on the integration method of two sensors. It is worthwhile to note that integrated 
localization depends on characteristics of sensor data. So, the integration problem can be 
stated as how to best extract useful information from multiple sets of data with different 
characteristics being available. 

 
2.1. Characteristics of Sensors 
First, odometry system equation as dead-reckoning and DGPS for the localization aid are 
briefly discussed, respectively. Odometric sensor is a positioning sensor which estimates 
both position and orientation of the mobile robot by integrating the measurement of driving 

wheel rotations. The robot’s position is defined as Tkkkkx )]()()([)(   and its 

error covariance is denoted as  )(kx . Then, the robot position and its estimated error 

are represented as follows: 
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the service robot has aimed at providing position information for the running of the robot to 
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and recovered. Outdoor robot Yamabico is used to verify the proposed mechanism in Section 
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ih   is the nonlinear measurement function, im
i k )(  is the observation 

noise, mmm N 1 , and N is the number of sensors. In order to obtain the 

predicted state )1|(ˆ kkx , the nonlinear function in (4) is expanded in Taylor series 

around the latest estimate )1|1(ˆ  kkx  with terms up to first order, to yield the 
first-order EKF. The vector Taylor series expansion of (4) up to first order is 
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is the Jacobian of the vector f evaluated with the latest estimate of the state. 

 
2.3. Complementary Integration without Bias Compensation 
For integrating information of DGPS and odometric data, a complementary integration 
approach is proposed [2], [3], [19]. The complementary configuration is shown in Fig. 2 [2]. 
According to the complementary integration scheme, the odometry sensor data is used as 
system information and DGPS data is used as measurements. It needs difference between 
two sensor data as input variables of filter. An EKF is used as integration filter to estimate 
sensor data error. In addition, the key in the suggested filter design is that filter output is 
resent to odometry system to correct robot position.  
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Fig. 2. Configuration of complementary integration. 
 
For the integration filtering, the covariance matrix and state estimate equations are as 
follows: 
i) Time update (prediction)  

                         )]1|1(ˆ[)1|(ˆ  kkxfkkx , 

             )1()1()1|1()1()1|(  kQkfkkPkfkkP xx .              (8) 
ii) Measurement update 
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where nkx )(  is the state vector at time k, f and hi is a nonlinear functions, 

nk )(  is the process noise, )(kz i im  is the observation vector at ith local 
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i k )(  is the observation noise, and N is the number of sensors. db )(  

denote constant bias vectors and enter linearly. dnB   and dm
i

iC   denote how 
to bias vector enters into the dynamics and sensor model. In order to obtain the predicted 
state )1|(ˆ kkx , the nonlinear function in (10) is expanded in Taylor series around the 
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is the Jacobian of the vector f evaluated with the latest estimate of the state. 

 
3.2 Estimation with Bias Compensation 
In this paper, two-stage estimator by Friedland [10] is used. The estimation mechanism is 
composed of two parts: bias-free filter and bias filter. The estimation of the bias is decoupled 
from the computation of the bias-free estimate of the state. 
A. Bias-free estimator 
The estimation progress of bias-free filter is as follows: 
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6) Receive measurement data 
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from the computation of the bias-free estimate of the state. 
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B. Bias estimator 
The procedure for calculating estimate of bias filter in the presence of bias error is as follows: 
1) Update Ux matrix 

)()()()( kBkVkFkU xx   
2) Compute T matrix 

)()()()( kCkUkhkT xx   
3) Compute Vx matrix using the bias-free Kalman gain Kx 
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4) Compute bias covariance matrix 
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5) Compute bias Kalman gain 
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8) Compute state estimate in the presence of bias error 
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C. Complementary Integration with Bias Compensation 
First, the integration configuration proposed in this paper is shown in Fig. 4. According to 
the suggested integration scheme, the odometry sensor data is used as system information 
and DGPS data is used as measurements. It needs difference between two sensor data as 
input variables of filter. An EKF is used as integration filter to estimate sensor data error. In 
addition, the key in the suggested filter design is that filter output is resent to odometry 
system to correct robot position. In the suggested filter, contrary to the standard 
complementary integration, the integration filter is used for mitigating the effect of biases, 
since there is undesirable DGPS bias error in DGPS problems such as multipath phenomenon 
under urban environments. The proposed mechanism detects a data fault from the 
integrated result and compensates information by bias estimation. 
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Fig. 4. Complementary integration with bias compensation. 

 
4. Experiment and Results 
 

4.1 System Configuration 
In order to verify the integration method proposed in Section 3, position data of a Yamabico 
robot was received in outdoor environment. Fig. 5 depicts a configuration of the hardware 
system including three sensors and Yamabico robot for outdoor experiment. The used 
Yamabico robot was manufactured for outdoor experiment. The size of two wheels is bigger 
than those of indoor Yamabico robot. Air pressure of these wheels has to be checked before 
outdoor experiment. 
For the experiment take into accounting characteristic of sensors, the parking lots and the 
surrounding of overcrowded buildings was selected as the experiment place. Data 
acquisition time of three different sensors equipped to the robot is different from each other. 
The sampling period of DGPS was 1sec. The sampling period of odometric sensor was about 
5msec. Data from each sensor were received using a program considering these data 
receiving delay. Data communication between two sensors and laptop computer is 
transferred via RS232C.In this paper, an RTK-GPS as a measure for accuracy of DGPS was 
used. Data acquisition of the DGPS & Odometric receiver was carried out from the parking 
lots to the surrounding of building with the RTK-GPS.  
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the suggested integration scheme, the odometry sensor data is used as system information 
and DGPS data is used as measurements. It needs difference between two sensor data as 
input variables of filter. An EKF is used as integration filter to estimate sensor data error. In 
addition, the key in the suggested filter design is that filter output is resent to odometry 
system to correct robot position. In the suggested filter, contrary to the standard 
complementary integration, the integration filter is used for mitigating the effect of biases, 
since there is undesirable DGPS bias error in DGPS problems such as multipath phenomenon 
under urban environments. The proposed mechanism detects a data fault from the 
integrated result and compensates information by bias estimation. 
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than those of indoor Yamabico robot. Air pressure of these wheels has to be checked before 
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4.2 Experiments and Simulation 
A comparison of data received was carried out through computer simulation. Data 
registration was implemented using position data obtained from outdoor experiment. 
Basically, sensor data must transform to the global coordinate reference system. However, 
sensor data is not always transformed in all part. According to place or environment, a part 
of data can be lost. In such case, even if the coordinates is transformed, it can use no 
information in the interval where data was lost. Hence, in order to take full advantage of 
information, it is necessary to integrate considering data fault. In the parking lots without 
objects to its surrounding, the receiving condition of DGPS sensor is good. But, on the 
contrary, in the surrounding of the crowded buildings, DGPS data did not provide accurate 
position data due to the multi-path effect. Fig. 6 shows the result integrated by the 
conventional complementary method and the proposed complementary method. In spite of 
integrating two sensor data, in the surrounding of the building, the conventional 
complementary result did not provide accurate position information due to the multi-path 
effect. However, in the proposed method, robot position was corrected using data recovered 
by the bias estimation when the DGPS data can’t be trusted. In order to detect bias error by 
the DGPS multi-path phenomena, the following normalized innovation square formula was 
used [2] 

)1|(~)()1|(~ 1   kkrkSkkr  

where r~ denotes the innovation vector and S denotes covariance matrix of the innovation 
vector. This value is compared with a threshold value determined by the chi-square 
distribution. In this study, for 95% probability, the theoretical threshold value is 7.81.  
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5. Conclusions 
 

In this paper, bias estimation based data integration method was provided. It is shown that 
the sensor data must be integrated with selection according to the sensing environment. 
Odometry and DGPS data can generally be used to localize mobile robot in outdoor 
environment. In the case there is slip phenomena by multi-path phenomena of DGPS sensor, 
however, the previous integration method can’t solve data fault. The proposed data 
integration method is adequate to this condition. In this paper, the problem of data fault was 
solved by bias estimation. The proposed method, consisting of an estimator taking into 
account bias and a free-bias estimator, recovered the fault data and was used to localize 
mobile robot. 
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