
Decentralised Architectures for

Tracking and Navigation with

Multiple Flight Vehicles

Eric Nettleton

A thesis submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

Australian Centre for Field Robotics

Department of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

2003

The University of Sydney

Copyright in relation to this Thesis

Under the Copyright Act 1968 (several provision of which are referred to
below), this material must be used only under the normal conditions of
scholarly fair dealing for the purposes of research, criticism or review.
In particular no results or conclusions should be extracted from it, nor
should it be copied or closely parahrased in whole or in part without the
written consent of the author. Proper written acknowledgement should be
made for any assistance obtained from this material.

Under Section 35 (2) of the Copyright Act 1968 'the author of a literary,
dramatic, musical or artistic work is the owner of any copyright subsisting
in the work'. By virtue of Section 32 (1) copyright 'subsists in an original
literary, dramatic, musical or artistic work that is unpublished' land of
which the author was an Australian citizen, an Australian protected person
or a person resident in Australia.

The Act, by Section 36(1) provides: 'Subject to this Act, the copyright in a
literary, dramatic, musical or artistic work is infringed by a person who,
not being the owner of the copyright and without the licence of the owner
of the copyright, does in Australia, or authorises the doing fin Australia of,
any act comprised in the copyright'.

Section 31 (1) (a) (i) provides that copyright includes the exclusive right
to 'reproduce the work in a material form'. Thus, copyright is infringed
by a person who, not being the owner of the copyright, reproduces or
authorises the reproduction of a work, or of more than a reasonable
part of the work, in a material form, unless the reproduction is a 'fair
dealing' with the work 'for the purpose of research or study' as further
defined in Sections 40 and 41 of the Act.

Section 51 (2) provides that "Where a manuscript, or a copy, of material of
other similar literary work that has not been published is kept in a library
of a university or other similar institution or in an archives, the copyright
in the material or other work is not infringed by the making of a copy of
the material or other work by or on behalf of the officer in charge of the
library or archives if the copy Is supplied to a person who satisfies an
authorized officer of the library or archives that he requires the copy for
the purpose of research or study'.

* Thesis' includes ' treatise', ' dissertation" and other similar productions.

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowl­

edge and belief, it contains no material previously published or written by another person

nor material which to a substantial extent has been accepted for the award of any other

degree or diploma of the University or other institute of higher learning, except where due

acknowledgement has been made in the text.

Eric Nettleton

February 28, 2003

11

Abstract
Eric Nettleton Doctor of Philosophy
The University of Sydney 2003

Decentralised Architectures for
Tracking and Navigation with

Multiple Flight Vehicles
This thesis is concerned with the development and demonstration of decentralised data fu­
sion (DDF) algorithms in airborne applications. The decentralised architectures described
in this thesis require no central fusion centre and no common communications medium.
Sensor nodes are joined in a decentralised network without any global knowledge of the
network topology or other node capabilities. Each sensor node is able to form a global es­
timate based on local sensor observations and information communicated to it by adjacent
sensor nodes in the network. In a DDF architecture, no sensing, processing or communica­
tion component is critical to the operation of the overall system so a failure of any single
element results in only an incremental decrease in performance rather than catastrophic
system failure. As no node requires knowledge of the global network topology, the system
can be scaled simply by connecting new sensing nodes to the system.

The main contribution of this thesis is the development of decentralised algorithms and
architectures able to deal with asynchronous and intermittent communications characteristic
of real-world sensor nodes communicating over radio networks. The algorithms presented
in this thesis are developed using the information form of the Kalman filter running on a
variety of structured and unstructured decentralised sensor networks. Although this thesis
is primarily concerned with structured communication topologies, that are able to make
complete use of global information, sub-optimal algorithms for use in networks with dynamic
connectivity changes are also proposed. Exact solutions to the delayed and asequent data
problems are developed for the information form of the Kalman filter that enable operation
of DDF algorithms in a broad range of real sensor networks.

The DDF architecture is applied to the problem of tracking multiple ground targets using
a network of airborne sensing platforms. The objective of this problem is for the sensing
nodes on each platform to build a composite global picture of targets in an environment
using both local sensor observations and information communicated from other platforms
in a decentralised manner.

The second important contribution made by this thesis is in the development of algorithms
for multi-vehicle Decentralised Simultaneous Localisation and Mapping (D-SLAM). Closed
form solutions to the SLAM covariance and information matrix for simplified single and
multiple vehicle D-SLAM problems are presented. These show that; i) in general platform

I l l

to platform cross information is zero, and ii) the global map information is simply the sum
of the map information on each platform in the system. Using these properties a D-SLAM
algorithm is developed which enables multiple platforms to build a common global map in
a fully decentralised manner. A constant time communications algorithm is also presented
which ensures that the decentralised algorithm scales as the map size grows large.

This thesis also describes the implementation of these algorithms in a demanding envi­
ronment using multiple uninhabited airborne vehicles (UAVs). The demonstrations of de­
centralised sensing described in this thesis are believed to be the first ever of multiple
cooperative UAVs.

Acknowledgement s

I would like to begin by thanking Professor Hugh Durrant-Whyte for his support, guidance
and endless enthusiasm throughout the past four years. Hugh was always available to give
help and direction whenever it was needed. I would also like to thank my supervisor Dr
Peter Gibbens for his help during this period.

I must give special thanks to all the members of the ANSER project, without whom the
demonstrations in this thesis could never have happened: Salah, for his superhuman man-
agement efforts, Jeremy, for building and flying the aircraft, AH,, with whom I spent many
hours and late nights programming the simulator, Matt for his efforts with the vision sen­
sor, Kim for the GPS/IMU loop, Stuart for the flight controller and Gurce, Alan, Chris,
Graham and Ikramy for the countless hardware (and software) components they designed
and built. Thanks also to the staff at BAE Systems for their help. There was never any
shortage of deadlines - only time. When it finally came together, the demonstrations were
fantastic to see and it was great to be part of the team.

Tb all the other members of the ACFR group, I owe a special thank-you for making my
time here enjoyable. To Professor Eduardo Nebot, Professor Gamini Dissanayake and Dr
David Rye, thanks for the help along the way. To Steve, Ross, Richard and Trevor - the
'Worms* stress relief was fantastic. To Ben, who once took me on a bus ride to a war zone
with the line "How bad can it be?" and Jeff, the outings to the Rose and Observer were
always entertaining. I would particularly like to thank Mike and Stef for the help they gave,
and Anna for keeping everything running so smoothly. To Alex, Fred, Tim, Monica, Jose,
Juan, Ralph, Mark, Andrew, Tomo, Shahram and all the others who have come and gone
from ACFR, you have all helped to make my time here rewarding.

I would like to give my greatest thanks to Maria, whose love and patience has supported me
throughout this thesis (although she would probably use the word 'ordeal'). My parents,
Bill and Pat, and sister Jacqui were also always there giving support, as were my "new"
family, Gordon, Marena and Mila. I thank you all.

I would also like to thank Dave Nicholson, Simon Julier, Sebastian Thrun and Julia Sutcliffe
for the various discussions over the past four years, and BAE Systems for the financial
support.

iv

For Maria

MMN2B-*MMNUR

Contents

Declaration *

Abstract ii

Acknowledgements iv

Contents vi

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 Motivation 2

1.2 Decentralised Data Fusion 3

1.2.1 The Benefits of a Decentralised Architecture 4

1.2.2 The Development of the Decentralised Architecture 6

1.3 Objectives of this Thesis 10

1.4 Contributions of this Thesis 11

1.5 Thesis Structure 12

2 Decentralised Estimation Algorithms 14

2.1 Introduction 14

2.2 Bayesian Estimation 15

2.2.1 Bayes Theorem 15

2.2.2 Log-Likelihoods 16

vi

CONTENTS vii

2.2.3 Distributed Bayesian Estimation 18

2.3 The Kalman Filter 21

2.3.1 Motion and Observation Models 22

2.3.2 The Kalman Filter Algorithm 22

2.3.3 The Extended Kalman Filter 26

2.4 The Information Filter 28

2.4.1 State Update in Information Form 28

2.4.2 Prediction of Information / 30

2.4.3 The Information Filter and Bayes Theorem 36

2.4.4 The Information Filter in Multi-Sensor Systems 38

2.4.5 The Distributed Information Filter 41

2.4.6 The Decentralised Information Filter 43

2.4.7 The Extended Information Filter 47

2.4.8 Information Metrics 48

2.5 The Covariance Intersect Algorithm 49

2.6 Summary 52

3 Algorithms for Decentralised Systems 54

3.1 Introduction 54

3.2 Communication in Decentralised Sensing Systems 55

3.2.1 Communication Topologies 56

3.2.2 Bayesian Communication in Sensor Networks 57

3.2.3 Identification of Redundant Information in Sensor Networks 59

3.2.4 Communication Channel Filters 62

3.2.5 Fully Connected and Broadcast Sensor Networks 67

3.2.6 General Network Structures 68

3.3 Delays and Timing: Temporal Propagation of Information 71

3.3.1 System Definitions 71

3.3.2 Forward Propagation of State 72

3.3.3 Backward Propagation of State 73

3.3.4 Notation for Time Invariant Systems 74

CONTENTS viii

3.3.5 Definition of Estimates and Information States 75

3.3.6 Forward Time Propagation 75

3.3.7 Backward Time Propagation 76

3.3.8 Delayed Data 77

3.3.9 AsequentData 82

3.4 Channel Algorithms 85

3.4.1 Management of Communication 87

3.4.2 Structure of the Communication Algorithm . 88

3.4.3 Information Flow . 90

3.4.4 Computing the Common Information 90

3.5 A Practical Decentralised Node Algorithm 91

3.5.1 Sensor Preprocessing 92

3.5.2 Local Filter '. 93

3.5.3 Channel Filter 94

3.5.4 Channel Manager 95

3.5.5 Timing 98

3.5.6 Data Association 99

3.6 Unstructured (Dynamic) Network Topologies 101

3.6.1 Limitations of Structured Topologies 101

3.6.2 Broadcast With CI Update 101

3.6.3 Broadcast With Hybrid CI/IF Update 104

3.6.4 Dynamic Tree Structure 106

3.7 Summary I l l

4 ANSER Project: Implementation of a Decentralised System 112

4.1 Introduction 112

4.2 The ANSER Project 113

4.2.1 The Flight Vehicle 113

4.3 Sensing Equipment and Hardware 116

4.3.1 GPS 116

4.3.2 Inertia! System 116

CONTENTS ix

4.3.3 Camera 117

4.3.4 SIS: Vision/Laser System 118

4.3.5 Radar 119

4.3.6 Processing and Communications 120

4.4 Implementation of the Decentralised Architecture 122

4.4.1 Communications , 122

4.4.2 The Decentralised Filter 123

4.5 ANSER Simulator - 125

4.5.1 SimCompiler 126

4.5.2 Flight Simulator 126

4.5.3 Mission Planner 128

4.5.4 Sensor Server 129

4.5.5 DDF .' 130

4.5.6 Picture Compilation 131

4.5.7 Time Server 131

4.6 Summary 131

5 Decentralised Tracking 133

5.1 Introduction 133

5.2 Problem Definition 134

5.3 The Vision Sensor 136

5.3.1 Sensor Model . 136

5.3.2 Feature Extraction 138

5.4 Vision/Laser Sensor: SIS 140

5.5 Track Formulation B 141

5.5.1 Process Model 141

5.5.2 Sensor Preprocessing 142

5.5.3 Artificial Targets 145

5.5.4 Track Maintenance 147

5.5.5 Data Association 148

5.5.6 Communication Strategy 149

CONTENTS x

5.5.7 Data Fusion 150

5.6 Implementation 151

5.6.1 Offline Implementation 151

5.6.2 Offline Implementation Results , 152

5.7 Real-Time Implementation 163

5.7.1 Results of First Real-Time Flight Test - Multiple Aircraft DDF . . . 164

5.7.2 Results of Second Real-Time Flight Test - Single Vehicle DDF . . . 175

5.7.3 Results of Third Real-Time Flight Test - Multiple Vehicle DDF . . . 176

5.8 Summary 179

6 Simultaneous Localisation and Map Building 183

6.1 Introduction 183

6.2 Problem Definition 185

6.2.1 The Augmented State 188

6.2.2 Process Model 189

6.2.3 Observation Model 191

6.2.4 Feature Initialisation in State Space 193

6.2.5 Feature Initialisation in Information Space 195

6.3 Closed Form Solutions 196

6.3.1 Platform Models 197

6.3.2 Solutions to the Riccati Equation 199

6.3.3 State Space Solution 200

6.3.4 Information Space Solution for a Single Platform 203

6.3.5 Information Space Solution for Multiple Platforms 204

6.4 Map Information 207

6.4.1 The Information Map 207

6.5 Algorithms for Decentralised SLAM 209

6.5.1 Decentralised Information Space Formulation 209

6.5.2 Decentralised Hybrid Space Formulation 212

6.5.3 Information Space SLAM Vs Hybrid Space SLAM 212

6.6 Scalable Communication with Large Maps 213

CONTENTS xi

6.6.1 Extracting the Submap to Communicate 214

6.6.2 Channel Update 215

6.6.3 Fusing Information from Other Nodes at the Local Filter 215

6.7 Simulation 216

6.7.1 Results 218

6.8 Summary 227

7 Conclusions and Future Work 229

7.1 Introduction 229

7.2 Summary of Contributions 229

7.2.1 Decentralised Architectures 229

7.2.2 Delayed and Asequent Data 230

7.2.3 Decentralised Tracking - 230

7.2.4 Decentralised SLAM 231

7.3 Further Research 232

7.3.1 System Complexity 232

7.3.2 Real Time Decentralised SLAM 232

7.3.3 Decentralised Control 233

7.3.4 Dynamic Networks 233

7.4 Summary 233

A Normalised Innovation: The Information Gate 234

Bibliography 237

List of Figures

1.1 Two Brumby Mk.III UAVs 1

1.2 Fully connected decentralised network with peer to peer architecture 4

1.3 Fully connected decentralised network with bus architecture 5

1.4 The OXNAV modular, decentralised mobile robot 8

2.1 Centralised log-likelihood data fusion architecture 17

2.2 Distributed log-likelihood data fusion using the independent likelihood archi­
tecture 18

2.3 Distributed log-likelihood data fusion using the independent opinion pool
architecture . 19

2.4 Distributed log-likelihood architecture with global information at the sensor 20

2.5 Decentralised log-likelihood architecture 21

2.6 A distributed information filter form of the independent likelihood architecture 42

2.7 A distributed information filter architecture with an estimate of local infor­
mation at the sensor 43

2.8 The independent opinion pool architecture in its information filter form . . 44

2.9 A decentralised information filter 45

2.10 Covariance Intersect updates 51

3.1 Communicated information sets in the three classes of topology. 63

3.2 Fully connected (broadcast) network topology 68

3.3 Linear peer to peer tree topology 69

3.4 General peer to peer tree topology 69

3.5 Ideal observation timing 78

3.6 Delayed observation timing 78

xii

LIST OF FIGURES xiii

3.7 Delayed data information example 81

3.8 Asequent observation timing 82

3.9 Asequent data example * 84

3.10 Structure of a general communication channel algorithm 88

3.11 Structure of a decentralised node 92

3.12 Data flow from sensor observation 93

3.13 Flow of information for incoming channel data in a structured network. . . 96

3.14 Flow of information for outgoing channel data 97

3.15 Asynchronous channel filter timing 99

3.16 Target ordering at different nodes 100

3.17 A single node in a dynamic tree configuration 107

3.18 Structure of a dynamic tree network 108

3.19 Joining two trees together 110

4.1 The four Brumby Mk.III airframes 114

4.2 The original Brumby Mk.I airframe 114

4.3 Brumby Mk.III airframe 115

4.4 A GPS antenna embedded in the Brumby Mk.HI wing 116

4.5 Inertia! Science ISIS IMU 117

4.6 A Sony CCS-SONY-HR vision sensor 118

4.7 Typical images from the camera payload 119

4.8 Millimetre wave radar and scanner fitted to the Brumby Mk.III nose 120

4.9 Functional diagram of the systems on the Brumby platform 121

4.10 Communications topology used in ANSER project 123

4.11 Virtual channels 124

4.12 Structure of decentralised filter software 125

4.13 Structure of the ANSER simulator 127

4.14 A typical screenshot from the flight simulator GUI 128

4.15 The ANSER simulator sensor server 129

4.16 The decentralised tracking simulator 130

4.17 The ANSER simulator graphical display in playback mode 132

Mk.HI

UST OF FIGURES xiv

5.1 A single platform tracking multiple ground targets 134

5.2 Multiple platforms performing decentralised tracking 136

5.3 Principal point, image and sensor axes for the vision payload 137

5.4 Image, sensor and body axes for the vision payload 138

5.5 Image showing extracted feature 138

5.6 Height estimate and error bounds 140

5.7 Preprocessed vision observations 146

5.8 Peer-to-peer communications topology used for offline implementation. . . . 152

5.9 Map generated by aircraft 1 and 2 when acting independently 153

5.10 Map generated by aircraft 3 and 4 when acting independently 154

5.11 Map generated by aircraft 1 and 2 when acting in DDF network 155

5.12 Map generated by aircraft 3 and 4 when acting in DDF network 156

5.13 Close up of DDF network map on aircraft 1 157

5.14 x position error of a typical target for 4 aircraft acting individually vs DDF
network 158

5.15 y position error of a typical target for 4 aircraft acting individually vs DDF
network 158

5.16 z position error of a typical target for 4 aircraft acting individually vs DDF
network 159

5.17 x position variance of a typical target for 4 aircraft acting individually vs
DDF network 159

5.18 y position variance of a typical target for 4 aircraft acting individually vs
DDF network 160

5.19 z position variance of a typical target for 4 aircraft acting individually vs
DDF network 160

5.20 Maximum, mean and minimum target errors in # 161

5.21 Maximum, mean and minimum target errors in y 161

5.22 Maximum, mean and minimum target errors in z 162

5.23 Peer-to-peer communications architecture for real-time tracking 165

5.24 Map generated by aircraft 1 in real-time tracking 166

5.25 Map generated by aircraft 2 in real-time tracking 167

5.26 Map generated by ground nodes 1 and 2 in during real-time tracking 168

5.27 x axis position error for a typical target during real-time tracking 169

LIST OF FIGURES xv

5.28 y axis position error for a typical target during real-time tracking 170

5.29 z axis position error for a typical target during real-time tracking 170

5.30 x axis position variance for a typical target during real-time tracking 171

5.31 y axis position variance for a typical target during real-time tracking 171

5.32 z axis position variance for a typical target during real-time tracking 172

5.33 Maximum, mean and minimum target errors in x during real-time tracking 172

5.34 Maximum, mean and minimum target errors in y during real-time tracking 173

5.35 Maximum, mean and minimum target errors in z during real-time tracking 173

5.36 1 aircraft, 2 node DDF network 175

5.37 Real-time maps generated at aircraft and ground node 177

5.38 2 aircraft, 5 node DDF network 178

5.39 Real-time results: Map at ground node connected to aircraft 3 179

5.40 Real-time maps generated at the vision and SIS nodes on aircraft 3 180

5.41 Real-time maps generated at the vision and ground nodes of aircraft 4 . . . 181

6.1 The SLAM problem 186

6.2 Continuous time SLAM covariance matrix 202

6.3 Multiple platforms using SLAM have a common map 208

6.4 The D-SLAM simulation world 217

6.5 Error and 2a bounds for vehicle states under the N2 communication strategy 219

6.6 Error and 2a bounds for vehicle states under the constant time communica­
tion strategy 220

6.7 Error and 2a bounds for vehicle states under the no communication strategy 221

6.8 Error and 2a bounds for a typical feature under the N2 communication strategy222

6.9 Error and 2a bounds for a typical feature under the constant time commu­
nication strategy 223

6.10 Error and 2a bounds for a typical feature under the no communication strategy224

6.11 Covariance ellipse for a feature under the different communication strategies 225

6.12 The mean variance in x, y and <j> from all vehicles over the period of the
simulation for different maximum map sizes 226

List of Tables

4.1 Brumby performance characteristics 115

4.2 ISIS IMU specifications 117

5.1 Vision sensor noise statistics 139

5.2 SIS noise statistics 140

5.3 Node configuration for post-processed data 152

5.4 Configuration for the 4 node real-time DDF flight 164

5.5 Configuration for the 2 node real-time DDF flight 176

5.6 Configuration for the 5 node real-time DDF flight 178

6.1 Number of elements to communicate in D-SLAM 218

xvi

Chapter 1

Introduction

The aim of this thesis is to develop and demonstrate algorithms for decentralised data fusion

(DDF). The algorithms are applied to tracking and feature based'navigation problems and

are demonstrated in real-time on multiple uninhabited flight vehicles of the type shown in

Figure 1.1. This implementation environment is arguably the most demanding arena in

which to demonstrate this research due to the dynamics and complexity of flight vehicles.

The DDF algorithms are developed in an information theoretic framework, and presented

initially in a general form applicable to any distributed sensing network. These algorithms

are then applied to the specific problem of fusing data from a network of airborne sensors.

This requires algorithms to deal with rapid data rates, high degrees of uncertainty and

intermittent communication between sensor platforms. Algorithms are developed for two

central problems; picture compilation in which the network of sensors is required to track

Figure 1.1: Two Brumby Mk.III uninhabited air vehicles (UAVs) capable of carrying a
combination of vision and either radar or laser payloads for terrain sensing. These UAVs
are used for demonstrating the decentralised data fusion algorithms described in this thesis.

1.1 Motivation 2

a number of moving ground targets, and Simultaneous Localisation and Mapping (SLAM)

in which the network of sensors is required to build a map of terrain landmarks whilst

simultaneously using these to determine self location. Both of these problems are addressed

in a fully decentralised form. Both simulated and real-time results are of the implementation

of DDF algorithms are described. The real-time results in particular describe the first ever

use of multiple cooperative uninhabited air vehicles (UAVs).

1.1 Motivation

The goal of the work described in this thesis is to realise practical decentralised data fu­

sion algorithms in real-world multi-sensor data fusion problems. Large, arbitrary networks

of heterogeneous intelligent sensor nodes are envisaged. Sensors nodes should exchange

information with each other, fusing communicated information with locally observed infor­

mation to obtain a global picture of the environment of interest. It should be possible to

add or remove sensors from the network on-line. It should be possible to scale the network

from a few sensors to many thousands. The network should be organic and not require any

centralised fusion site, centralised communication medium or any other vulnerable feature.

The. sensors should be modular and interoperable; there should be no need for other sensors

in the network to know how or where a remote sensor gets its information, and a node

should be able to change the source of that information without affecting the underlying

fusion algorithm of other nodes in the network.

The DDF algorithms described in this thesis go a long way to achieving these goals and

vision of network sensing capabilities. A key feature of these algorithms is that they have

a sound mathematical basis in ideas of information filtering and information fusion. The

resulting algorithms and sensor architectures are broadly applicable to a large number of

tasks ranging from map building to tracking and from environment monitoring to security

systems, with application in a variety of civilian and military contexts.

There has been a growing realisation over the past decade in the advantages of using sen­

sor network architectures over equivalent centralised or hierarchical structures [10,30,31].

Sensor networks offer a degree of flexibility and robustness not possible in more rigid or­

ganisations. Sensor networks also offer the possibility of building scalable, modular, and

survivable "systems of systems".

1.2 Decentralised Data Fusion 3

The essential algorithms described in this thesis originated over a decade ago. Since this

time, the algorithms have been refined, evaluated in simulation and demonstrated in a

number of reasonably benign applications including the tracking of people in office environ­

ments [85] and in mobile robot navigation [68,93]. A key objective of this thesis is to take

these essential algorithms and develop them for the far more challenging application of de­

centralised airborne sensor networks. This is possibly the most demanding domain in which

to develop these methods. It requires solutions to some important problems in data regis­

tration, intermittent and limited communication between sensor sites, and in substantive

real-time algorithms for very high data rate sensing devices.

Interest in the use of uninhabited air vehicles (UAVs) is growing at a phenomenal pace. A

large number of military systems have been or are being developed. Civilian applications

in areas such as geological surveying, search and rescue, bush fire fighting and agricultural

monitoring are also being discussed. In military circles, there is a great deal of talk about

"network centric warfare". For these reasons the deployment of DDF methods on air vehicles

is both timely and appropriate. The system developed in this thesis is one of the first ever

developed explicitly for use by multiple UAVs. The DDF methods show how problems

of tracking and map building can be deployed and scaled on one and then many UAVs

in a complete and scalable network. The results of the application of the DDF algorithms

developed in this thesis are the first ever on a true network of UAV systems and demonstrate

the first ever cooperative use of multiple UAVs.

1.2 Decentralised Data Fusion

A decentralised data fusion system comprises a network of sensor nodes each incorporating

a sensor together with local processing and communications capabilities. Each node runs

its own local data fusion algorithm and communicates information to other nodes in its

neighbourhood. Nodes fuse incoming information with local estimates to produce a global

picture of the state of the world. This strategy results in a network of sensor nodes in which

the fusion process is decentralised.

A general decentralised data fusion system can be characterised by three basic constraints:

1. There is no single central fusion centre and no node should be central to the operation

of the network.

1.2 Decentralised Data Fusion 4

Figure 1.2: A decentralised data fusion structure. Each sensor node incorporates a sensor,
local processor and communications capabilities. In the structure communication is on a
node-to-node basis and the network topology is arbitrary.

2. There is no common communications facility - communications must be kept on a

strictly node-to-node basis.

3. Each node has knowledge only of its immediate neighbours - there is no global knowl­

edge of the network topology.

These constraints combine to ensure that there is no single element that is critical to the

operation of the network. If any node or communication link should fail, the result is a

gradual degradation in network performance rather than catastrophic failure. Figures 1.2

and 1.3 illustrate two possible architectures for a decentralised system.

1.2.1 T h e Benefits of a Decentralised Archi tec ture

The conventional structure for multi-sensor systems requires that all sensors send obser­

vation information back to a single central point for fusion. This has some advantages in

that all information is known at a single point and so, in principle, fusion is based on the

best possible information. However centralised structures also have a number of undesirable

characteristics: Using a centralised resource for fusion creates both computational and com­

munication bottlenecks as the system increases in size. This limits the ability of a system

to scale to large numbers of sensors. A second key problem is that a central fusion site

1.2 Decentralised Data Fusion 5

Figure 1.3: A second realisation of a decentralised data fusion architecture. In this structure
communication is takes place on a common communications medium (a radio network or a
bus). A sensor node may, in principle, talk to any other node in the system. However, the
node structure is still such that fusion occurs in a decentralised manner at sensor sites and
not at any common fusion centre.

makes the whole system vulnerable to catastrophic failure of the fusion processor. The lack

of robustness of centralised architectures is increasingly important as systems become more

dependent on the availability of robust and reliable information. A final problem is the

rigidity of centralised structures to changes in sensor configurations. Centralised structures

do not easily allow sensors to be changed or used in synergistic combination as requirements

and tasks vary.

The decentralised system architecture described in this thesis offers a number of advantages

over conventional centralised or hierarchical architectures:

• Scalability: Eliminating the central fusion centre and any common communication

facility ensures that the system is scalable as there are no limits imposed by centralised

computational bottlenecks or lack of communication bandwidth.

• Survivability: Ensuring that no node is central and that no global knowledge of the

network topology is required for fusion means that the system can be made survivable

to the on-line loss (or addition) of sensing nodes and to dynamic changes in the network

structure.

• Modularity: As all fusion processes must take place locally at each sensor site and

no global knowledge of the network is required a priori, nodes can be constructed and

programmed in a modular fashion.

1.2 Decentralised Data Fusion 6

Together these characteristics give decentralised architectures substantial advantages over

more conventional data fusion structures.

Interest in the use of networks of modular, locally intelligent, sensors has grown substantially

in the last five years. It is recognised that such ad hoc opportunistic structures are better

able to deliver the robust and flexible capability required of advanced data fusion systems.

This theme has especially, been pursued by the defence establishment through the concept

of Network-Centric "Warfare [1,66].

A major hurdle in developing network-centric systems is to develop appropriate data fusion

algorithms that allow information acquired at a sensor node to be communicated and fused

in an efficient and consistent manner. This is the central contribution of this thesis. The

algorithms described here are based on the use of information-theoretic concepts of data

fusion. The algorithms are based on the development of information-filtering and decen­

tralised estimation undertaken by a number of researchers over the past decade. In this

thesis, these are further developed to address issues of communication and computation in

real systems with real-time constraints. The algorithms are also demonstrated and evalu­

ated on a network of airborne sensors; one of the most demanding of all network-centric

sensor applications.

1.2.2 The Development of t h e Decentralised Archi tec ture

The potential benefits of decentralised or network-centric systems have been recognised for

some time. Research in distributed data fusion algorithms has generally concentrated on

hierarchical [51] or parallel systems [22]. These methods generally allow the estimation

process to be distributed on a number of local sensor processes often at different physical

locations. Algorithms have generally focused on distributing Kalman-filter type estimation

algorithms [29,47,50]. Of note are track-to-track fusion methods espoused by BarShalom

and co-workers [4,27]. These are of special interest as state tracks from different sensors

are necessarily correlated by virtue of the common process being tracked. More recent work

has extended these ideas to use full posterior track models [26]. However, all these methods

and algorithms continue to require a single central fusion point where sensor data or tracks

are fused to create a common representation. Use of a central point for the fusion algorithm

immediately reduces the robustness, scalability and flexibility of the system. More general

1.2 Decentralised Data Fusion 7

work in sensor networks is compiled in recent conferences such as IPSN [46], Although these

are "sensor network" conferences, work has focused on communication and data hopping

rather than data fusion. The few data fusion algorithms presented generally still require

a central fusion site. An interesting example of this is the work being undertaken in the

DARPA SensIT programme in which the fusion algorithm is centralised but the fusion site

itself hops between sensor nodes [64].

A different approach was developed by the robotics group at Oxford University over a

number of years from the late 1980's. Here, the decentralised constraints enumerated in

Section 1.2.1, especially the lack of a central fusion site, served as the starting point for the

development of network data fusion algorithms. The algorithms employed were based on

the use of the information form the Kalman filter. The information form has a number of

valuable properties in multi-sensor estimation problems that make it particularly suited to

decentralisation. These are elucidated in Chapter 2 of this thesis.. The initial DDF work

undertaken at Oxford demonstrated a practical decentralised tracking system which used

multiple cameras to track people and small robots moving through an environment [85-88].

This implementation demonstrated the basic decentralised information fusion algorithm and

importantly its equivalence to results produced by a centralised (Kalman-filter based) data

fusion system. Initial algorithms required the network to be fully connected; clearly im­

practical in large networks. The work of Grime [42,43] made explicit the information form

of the Kalman filter and used this to solve the problem of communicating in tree-topology

networks. This work employed a structure called the Channel Filter to maintain an esti­

mate of common information between connected nodes. This was a significant conceptual

step in identifying the computation of common information as a key problem in network

communication. This result was used to demonstrate the operation of decentralised data

fusion systems on a model process control plant comprising over 150 distributed sensors.

The decentralised data fusion architecture has been explored and extended in a number

of directions [36,83,91]. Building on the work of Grime, Utete showed that there is no

finite or general solution for optimally identifying common information in sensor networks

of arbitrary topology [99-101]. Ways of overcoming this were explored including the use of

the distributed Bellman-Ford algorithm to generate spanning trees through which informa­

tion flow can be managed. Recently however, other researchers in the area have eschewed

optimality and developed communication algorithms which use a conservative estimate of

1.2 Decentralised Data Fusion 8

common information to maintain consistency [81,82]. Such algorithms are especially useful

in networks which are subject to highly dynamic changes in communication topology.

The problem of organisation in decentralised systems was addressed by Ho [49]. This work

considered how to best configure a decentralised network using nodes with a fixed number

of communication links. The performance of all nodes was tracked to determine the effect

of different topologies on information flow. For example, in a star connected topology the

centre node typically has better results at any given time than the points as it receives

information in a more timely manner.

Sonar Sensing
Nodes

Drive System
Nodes

Figure 1.4: The OXNAV indoor mobile robot was a fully modular, decentralised system.
The vehicle is constructed of a number of modular cages (nodes), each containing a sensing
or actuation system plus power, processing and communication facilities.

The DDF research at Oxford culminated in the development of the OxNav indoor robot

shown in Figure 1.4. The vehicle was constructed of modular cages, where each cage con­

tained a specific part of the vehicle sensing or actuation system plus sufficient power, pro­

cessing and communication facilities to perform local decentralised algorithms. There was

1.2 Decentralised Data Fusion 9

no central processing point where control or navigation algorithms were implemented. The

key developments of this project are detailed below.

• The development of modular hardware system was investigated by Burke [20,21]. The

system comprised different hardware modules, each containing an actuator or sensor,

with integral processor and decentralised software, connected to other nodes via a

high-speed serial line. Using these modules, different vehicles could be built simply

by grouping modules for motion, steering, and sensing in different configurations.

The communication of information between modules resulted in each having a local

estimate of global information, which in turn allowed the steering and drive actuation

modules to implicitly coordinate platform motion.

• Research into model distribution in decentralised systems was performed by Berg [11-

14]. This concept allows the decentralised network to distribute system models

throughout the nodes in the network.

• Manyika used the information-theoretic formulation of the decentralised system for

estimation, classification and sensor management [68-70]. The sensing modules on

the OxNav vehicle used the DDF information not only to estimate feature/target

locations, but to determine which feature/target each sensor should look at in order

to maximise information gain.

• The decentralised control problem was investigated by Mutambara [74-76]. This work

enabled the OxNav vehicle to calculate trajectories and then follow them using the

network of independent actuation modules in a DDF network. Although there was

no central processor or global network knowledge, the DDF information allowed the

modules to coordinate the actions of the entire vehicle.

The decentralised architecture developed for the OxNav was also used by Deaves to inves­

tigate communication management strategies in bandwidth limited problems [33]. A key

result of this research was that an information-theoretic approach to communications man­

agement out-performs an ad hoc or round-robin approach. The use of information utilities

to manage communication in multi-sensor systems was also investigated by Chu [30].

1.3 Objectives of this Thesis 10

1.3 Objectives of this Thesis

The work in this thesis is part of the Autonomous Navigation and Experimental Research

(ANSER) project between the University of Sydney and BAE Systems which aims to demon­

strate DDF algorithms on multiple uninhabited aircraft. The specific objectives of this work

are:

1. The development of a robust asynchronous decentralised algorithm that is applicable

to a variety of different network topologies.

2. The application of the DDF algorithm to the problem of tracking targets from multiple

sensing platforms.

3. The application of the DDF algorithm to multiple platform Simultaneous Localisation

and Map Building (SLAM).

Previous work on decentralised architectures, discussed in Section 1.2.2, has been hmited

to more easily managed ground-based applications. These problems were further simplified

by using synchronous hardware such as transputers for communication. One of the key

objectives of this thesis is to take the step of developing the decentralised algorithms into a

form which is readily applicable to complex asynchronous systems and real world problems.

A fundamental problem in distributed or decentralised sensor networks involving intermit­

tent and asynchronous communication is how to temporary align data prior to fusion. This

thesis provides a comprehensive analysis of this problem, and shows how the DDF algorithm

can deal with problems of delayed and asequent data transmission. In turn this provides

practical solutions to problems of data latency, intermittent and burst communication in

sensor networks.

Understanding the structure of communication turns out to be the driver in designing

a general purpose architecture for a decentralised sensor node. Within the scope of the

ANSER project, this is accomplished in this thesis. The architecture allows for sensor data

pre-processing, local prediction and estimation, anonymous communication in a network,

time alignment and local assimilation of communicated information. The general node

structure is applicable to any decentralised network topology although only restricted sub­

sets of these are employed in the implementations described in this thesis.

1.4 Contributions of this Thesis 11

The decentralised algorithms and architectures developed in this thesis are applied to two

main problems. The firBt is the classic "tactical picture compilation" problem in which

a group of flight vehicles are required to track a number of potentially mobile ground

targets within the operating environment. In this case, the location of the flight vehicles

is independently obtained from an on-board GPS/INS system. The sensors observe the

bearing or range and bearing to targets. A set of filters are established, one for each target,

which are used to estimate the position and velocity of the targets. A fully decentralised,

multi-sensor multi-air vehicle solution to this task is developed and demonstrated in this

thesis. The second application is to the increasingly important problem of map-building

and navigation in the absence of GPS or an a priori navigation map. This process is

known as Simultaneous Localisation and Mapping (SLAM) [35]. It has the potential to

provide navigation solutions for platforms operating in unknown GPS-denied environments.

The key element in the SLAM problem is the fact that the landmark location estimates

generated by the SLAM algorithm are all highly correlated by virtue of the fact that they

are estimated from a common vehicle trajectory. The application of decentralised data

fusion methods to this problem has a number of features. First it shows the efficacy of

the information filter in managing the complexity of exchanging highly correlated target

sets between platforms. Second it demonstrates the pay-off in navigation performance that

can be obtained by effective sharing of map data between platforms. This thesis presents

one of the first effective solutions to the multiple-platform SLAM problem. A combination

of theoretical and practical results are used to explore this problem and to demonstrate

effective solutions.

1.4 Contributions of this Thesis

The contributions of this thesis are:

• The development of, and exact solution to, both the delayed and asequent data prob­

lems for the decentralised information filter.

• The development of a modular sensor architecture permitting scalable asynchronous

communication in general networks. A new algorithm for fusion in dynamic tree

topologies is also proposed.

1.5 Thesis Structure 12

• The development and real-time demonstration a decentralised algorithm for tracking

ground targets from multiple UAVs.

• Closed form solutions to simple, single degree of freedom, SLAM problems are pre­

sented, in covariance and information form, and for single and multiple vehicles. These

elucidate the structure of the SLAM problem for multiple platforms.

• A decentralised solution to the multiple vehicle SLAM is presented. This includes

methods for managing communication in the light of increasing map dimension.

1.5 Thesis Structure

Chapter 2 presents the mathematical background for the estimation algorithms that are

used in this thesis. The fundamental concept of information and its application to multi-

sensor estimation is developed.

Chapter 3 considers the structure of decentralised systems and details the algorithms de­

veloped for such architectures. A general architecture for a decentralised node is presented

and each of its component modules is described. The structure and implications of different

communication topologies is also discussed. Communication policies for different network

structure are described.

Chapter 4 describes the ANSER system including flight vehicles, sensors, on-board proce­

ssors and ground station. The mapping of the algorithms and architecture presented in

Chapter 3 to the ANSER system is also described.

Chapter 5 first describes the decentralised tracking or picture compilation problem. Track

models are introduced and presented in full decentralised form. Results of running the de­

centralised picture compilation system on real data are presented. Results of demonstrating

the algorithms in real-time in-flight on multiple flight vehicles are described.

Chapter 6 describes the decentralised multi-vehicle SLAM problem. Closed form solutions

to simple variations of this problem are presented and used to develop an understanding of

the role of information in building and communicating navigation maps. An algorithm is

developed for decentralised SLAM. This algorithm is demonstrated in simulation.

1.5 Thesis Structure 13

Chapter 7 draws some key conclusions and proposes a number of future directions for

research in decentralised systems. The research undertaken in this thesis has gone a long way

to realising practical network-centric data fusion systems. In particular the general structure

of sensor nodes and communication policies has been elucidated. However, the results are

also limited to fairly restrictive estimation algorithms. Key challenges in the future will be

to extend these ideas to incorporating more diverse and hetrogeneous information.

Chapter 2

Decentralised Estimation

Algorithms

2.1 Introduction

This Chapter describes the algorithms used in decentralised data fusion and discusses their

properties. The Chapter begins with an overview of Bayesian estimation in Section 2.2.

Bayes Theorem is presented in Section 2.2.1 then converted to its log-likelihood form in

Section 2.2.2. This log-likelihood form is then used to develop distributed and decentralised

estimation algorithms in Section 2.2.3.

The Kalman filter is briefly introduced in Section 2.3, then presented in its information or

inverse covariance form in Section 2.4. The information form of the Kalman filter forms the

basis of the decentralised estimation algorithms developed in this research. Section 2.4.3

illustrates the relationship between the information filter and Bayes Theorem by deriving

the former directly from the latter. The multi-sensor information filter is then introduced

in Section 2.4.4, and applied to distributed and decentralised architectures in Sections 2.4.5

and 2.4.6 respectively. The Extended Information Filter (EIF), used in non-linear estimation

problems, is then presented in Section 2.4.7. As the concept of information is a key element

in the decentralised architectures of this work, Section 2.4.8 introduces various information

metrics which are used to quantify the 'knowledge1 contained in an estimate.

The Chapter concludes with a discussion of the Covariance Intersect algorithm in Sec-

2.2 Bayesian Estimation 15

2.2 Bayesian Estimation 16

P(x | Zfc) can "now be interpreted as the likelihood of the state x conditioned on Z , the

set of all k observations. P(z(k) | x) is the likelihood function for the kth observation, and

P(x | Z*"1) is the prior distribution of the likelihood of the state x. The prior is simply the

likelihood the state x conditioned on Zfc~"*, the set of observations up to k — 1. The current

observation can now be fused with the prior distribution in a simple manner. This process

can be applied recursively at future times by using the posterior P(x | Zfe) as the prior for

the next observation. In most circumstances, the prediction of state requires application of

a prediction equation which in turn invokes a convolution of posterior with a probabilistic

motion model.

It is straight-forward to extend the use of Bayes Theorem to the fusion of observations from

different sensors at a common time. Consider, for example, two observations z* and Zj from

two sensors i and j respectively. It is assumed that these two observations are conditionally

independent given the true state being observed

P (z i , z i | x) = P (z i | x) P (z j | x) .

In Bayes theorem, this information is fused as

P(x | z^Zj) = C.P(x)P(Zi | x)P(z; | x). (2.5)

Practically, individual observation models as functions of both z and x are stored in the

form P(ZJ | x). When a specific observation is made, these models are instantiated with a

measured value of z and so generate a function, a likelihood, on x alone. Equation 2.5 then

describes the simple product of three functions, defined on x, appropriately normalised to

yield the posterior P(x | z,- = ^,Zj = Zj).

2.2.2 Log-Likelihoods

The natural logarithm of a probability density is termed the log-likelihood. In particular

l(x) 4 logP(x), 2(x | z) 4 logP(x | z), (2.6)

are the log-likelihood and conditional log-likelihood respectively. It is often more convenient

to work with log-likelihoods rather than the probability distributions as:

2.2 Bayesian Estimation 17

1. Multiplication and division operations become simple addition and subtraction. This

can reduce the computation required in a fusion algorithm considerably.

2. The log of a distribution is closely related to the amount of 'information' that a

distribution contains. Information metrics will be discussed in detail in Section 2.4.8.

As the number of sensors in a data fusion system increases, the log-likelihood formulation

of the Bayesian update becomes significantly more attractive as the additive update is

computationally simple. Figure 2.1 illustrates a simple centralised log-likelihood data fusion

architecture where multiple sensors send their observations to a centralised processor. The

central data fusion unit stores the likelihood functions P(z | x) for each sensor in the form

of an array. Once an observation is made, these likelihood functions are instantiated with

an observation P(zi(&) | x) resulting in a likehhood on the underlying state x.

Figure 2.1: Centralised log-likelihood data fusion architecture. Raw observations are trans­
mitted directly to the central fusion algorithm.

2.2 Bayesian Estimation 18

2.2.3 Distributed Bayesian Estimation

It is straightforward to construct a distributed Bayesian data fusion architecture exploiting

the additive log-likelihood update. The simplist of these architectures, known as the inde­

pendent likelihood model, is illustrated in Figure 2.2. In this architecture, the likelihood

models for each sensor are stored locally at the sensor site. When an observation is made,

these likelihoods are instantiated producing a likelihood function on the underlying state

x. The log of these likelihoods is communicated to the central processor where they are

summed and normalised to produce a posterior incorporating information from all sensors.

This architecture has the singular advantage that all sensors talk to the central processor

only in terms of the common underlying state x. The specifics of the observation and the

model of the sensor itself are hidden from the central fusion centre. To a degree, some of

the computational effort required to generate the necessary likelihoods is also undertaken

away from the central processor. However, there is in general a. cost in the substantially

increased amount of total communication required. Figure 2.1 requires the communication

of an observation, Figure 2.2 requires the communication of a likelihood function.

Figure 2.2: Distributed log-likelihood data fusion using the independent likelihood architec­
ture. The sensors compute the log of the sensor likelihood function locally and communicate
this to the central fusion algorithm.

Figure 2.3 illustrates another distributed architecture employing Bayes Theorem in its log-

likelihood form. This architecture, known as the independent opinion pool, has each sen­

sor maintaining its own models and communicating the log of their local posterior (log-

2.2 Bayesian Estimation 19

posterior) to the central fusion point. The log of the global posterior Z(x | Z&) is therefore

available at the central processor, while each sensing node i has a local log-posterior Z(x | %i)

conditioned only on local observations.

Figure 2.3: Distributed log-likelihood data fusion using the independent opinion pool archi­
tecture. The central processor has a global log-posterior conditioned on all observations in
the system, while the local log-posterior at each sensing node is conditioned only on local
observations.

Maintaining a local log-posterior endows each sensor site with the information necessary

to become a little more 'intelligent'. In particular, this information may allow a degree of

smart signal processing including frame-to-frame data association, sensor control and power

management. The limitations are that each node in this architecture has access only to its

own local information. Figure 2.4 shows an architecture in which each sensor site has access

to the global posterior log-likelihood. Here the sensors, as before, transmit log-likelihoods

to a central fusion point, where the summation yields the global log-posterior. However, in

this case, the resulting global log-posterior is then transmitted back to the sensors, which

can locally determine the contributions from the rest of the system by simply subtracting

their local log-posterior from the global log-posterior. The subtraction is important as it

avoids double-counting of local information. In this architecture, each sensor site ends up

with the same global posterior information and so can make local decisions based on global

information. Importantly, all communications between sensors and fusion centre are in the

2.2 Bayesian Estimation 20

form of a common state-space.

logPtxlirD-tooPOtRzn,)

Figure 2.4: A distributed log-likelihood data fusion architecture which has the global log-
posterior available to the sensing modules.

A major flaw with all these architectures is that they rely on a single site where information

from all sensors is fused. This imposes communication and computational bottle-necks in

the system. More fundamentally it also makes the system as a whole vulnerable to failure of

the fusion centre leading to catastrophic failure of the system as a whole. Figure 2.5 shows

a fully decentralised architecture formed by replicating the function of the central fusion

processor locally at each sensor site. In this architecture, each sensor now communicates

log-likelihood data to all other nodes rather than to a central processor. Each sensing node

sums its own posterior log-likelihood with the contributions communicated by remote nodes.

Provided the initial conditions at each node are the same and each node implements the

same motion or prediction model, each sensor site will end up with the same global posterior

likelihood. Failure of any one sensor site in this architecture will result in a commensurate

reduction in system performance, but failure of any component will not lead to catastrophic

failure of the system as a whole.

This basic structure underlies the decentralised architecture and decentralised data fusion

algorithms developed in this thesis. The practical realisation of such architectures and al­

gorithms requires considerable attention be paid to issues of communication, timing and

consistency in the computation of the log-posterior. Nevertheless, the process of com-

%M The Kalman Filter 21

Figure 2.5: A decentralised log-likelihood architecture in which each node has a local log-
posterior conditioned on global information. No node is critical to the operation of the
network.

municating and summing log-likelihoods drives the essential properties of modularity and

network scalability inherent in the methods described in this thesis.

2.3 The Kalman Filter

The Kalman filter is a recursive linear estimation algorithm which serves to minimise the

mean squared error between the estimated and true value of a continuous valued state

x [19,38,56,57]. The Kalman filter is one of the most widely used estimation algorithms,

not least because it is easy to implement on a digital computer in a simple recursive form.

The statistical foundations of the Kalman filter enable the results of the algorithm to be

compared and quantified. An explicit description of the process and observations in the

algorithm also enables it to be used with a variety of different models.

The Kalman filter is Bayesian and may be derived from Bayes Theorom on the assumption

that all distributions are Gaussian and all models linear. In this case, the Kalman filter

is essentially a recursive means of computing the mean and variance of the posterior dis­

tribution. The Kalman filter is derived here only to define and explain the notation used

subsequently in this thesis.

2.3 The Kalman Filter 22

2.3 The Kalman Filter 23

2.3 The Kalman Filter 24

2.3 The Kalman Filter 25

If the state estimate and covariance at time k — 1 are given by

2.3 The Kalman Filter 26

0.8719

0.3088

2.3 The Kalman Filter 27

2.4 The Information Filter 28

2.4 The Information Filter 29

2.4 The Information Filter 30

2.4 The Information Filter 31

2.4 The Information Filter 32

As the update stage of the Information filter is additive, the algorithm can be considered as

an 'information accumulator*. The update Equations 2.35 and 2.36 demonstrate this as they

clearly add new information from observations to the information estimate. In contrast, the

prediction cycle removes information from the system. Adding or increasing information in

information space is therefore equivalent to reducing covariance in state space. This follows

logically as the two algorithms are inversely related.

Algebraically, the information filter has a simple update stage, but a complex prediction

phase, in exact contrast to the Kalman filter. Indeed, the information filter and Kalman

filter algorithms are known to be dual [3], Inspection of the prediction phase of the infor­

mation filter allows us to identify "information innovations" (E(fc) and other terms which

have an exact counterpart in the Kalman filter update stage).

It would seem therefore that the information filter and Kalman filter have comparable

2.4 The Information Filter 33

computational complexity. While this is outwardly true, the two algorithms scale differently

with increasing numbers of observations, that is in their application to multi-sensor systems.

Crucially, the simple additive nature of the information filter update makes it extremely

simple to fuse information from many sensors with very little computational overhead.

Conversely, fusing many observations in the Kalman filter update stage is very complex and

scales as the square of the number of observations (fundamentally because the innovations

are correlated through a common prediction [9]). On the other hand, the complexity of

the prediction stage is invariant to the number of observations made. So while information

prediction is more complex than state prediction, it does not get any harder as the number

of sensors grows.

The information filter is well known and is described (at least in inverse covariance form) in

a number of texts (notably [3,71]). However it has not found wide-spread use. There are a

number of possible reasons for this. First, is the fact that the state space is usually of higher

dimension than observation space. While this is true in single sensor estimation problems,

it is clearly not true in multi-sensor problems where the combined sensor state space is

usually much larger. A second problem is the spread of a false assumption that "it is always

cheaper to communicate innovations" in multi-sensor problems. While the sensor dimension

is usually smaller than the state dimension, the problem is that innovations between different

sensors are correlated and so it is not sufficient to communicate the innovation alone. While

information quantities are always of state dimension, they are all that are required to

compute a consistent estimate. A third reason is probably that engineers fear using an

information quantity rather than a state. States have physical interpretations; position

velocity, etc. Information states are not so easy to imagine as they axe scaled by the

information matrix. The information state-space is not metric; the difference between two

information states is not the distance between them in any physical sense. However, the

information filter is an algorithm and the information states are quantities from which true

states can be deduced (if required). If one can five with this, there is much to be gained by

the exploitation of the algorithm.

The information filter turns out to have a number of other advantageous properties of value

in multi-sensor estimation problems. In particular, it turns out to be quite closely related to

log-likelihoods and related information measures. It has strong relations with inverse-time

niters (smoothers) which helps in time-alignment and delayed data problems. It makes

2.4 The Information Filter 34

initialisation simple by allowing assignment of zero information (infinite covariance). These

properties will be described and used at appropriate points in this thesis.

Example 2 Consider the information form of Example 1. The initial state at time k~\

is written

2.4 The Information Filter 35

2.4 The Information Filter 36

Conversion of the information back to state space yields

2.4 The Information Filter 38

The derivation of the information filter from Bayes theorem highlights the close relationship

between the information states and the underlying probability distributions. Indeed, the

second derivative of the log-likelihood is known formally as the Fisher Information. The

first derivative of the log-likelihood is known as the Score Function and maybe used in

the calculation of relative entropy. The derivation from the log-likelihood form of Bayes

theorem also goes to show why the update equation for the information filter is a simple

linear sum.

The derivation of the information filter might also be considered in terms of a moment

generating function for the simple Gaussian case. The first and second derivatives being

the first and second moments respectively. This opens the way for consideration of more

general distributions, either continuous or discrete, being treated in a similar information

form. Indeed, the information filter is no more than a special case of the log-likelihood

filters developed earlier in this Chapter, and as such they inherit many of the architectural

properties of log-likelihoods.

2.4.4 T h e Information Fil ter in Multi-Sensor Systems

The application of the information filter to solve multi-sensor data fusion problems has,

surprisingly, not yet caught on. On the contrary, there is a large academic industry strug­

gling to use state-based methods to do data fusion. Popular examples include the work on

track-to-track fusion methods [4], and so-called federated filters [22]. All of these methods

grapple with the fact that state estimates generated by different sensor sites are correlated

by virtue of a common process model. However, it turns out to be very complex to unravel

these correlations and to modify the Kalman filter update (Equations 2.14 and 2.15) to fuse

multiple observations at the same time. Specifically, given observations from a number of

sensors in the form

Zi(fc) = Hi(fc)x(ft) + Vi(fc), * = 1, • • • ,iV, (2.57)

the Kalman filter estimate can not be constructed from a simple linear combination of

contributions from individual sensors

N

x(fe | k) £ x(fc I k - 1) + £ Wi(fc) [Zi(fc) - Hi(*)x(fc | k - 1)], (2.58)

2.4 The Information Filter 39

as the innovations Zj(fc) — Hi(k)x(k \ k — 1) generated from each sensor are correlated

through the use of the prediction x(fc | fe — 1). However, in information form, estimates

can be constructed from linear combinations of observation information as the information

terms U(k) from each sensor are uncorrelated.

N

2.4 The Information Filter 40

accounting for crosB-correlations. For this reason also, the information filter is occasionally

referred to as the likelihood filter.

Equations 2.59 and 2.60 can also be obtained by algabraic manipulation. Again, consider

a system comprising N sensors each taking observations according to

2.4 The Information Filter 41

2.4 The Information Filter 42

function of the particular sensor model. Figure 2.6 illustrates this simple distributed infor­

mation architecture which is the information filter equivalent of the independent likelihood

model described in Section 2.2.3.

Figure 2.6: A distributed information filter where the observation information is calculated
locally at the sensor and communicated to a central processor for fusion. This is the
information filter form of the independent likelihood architecture.

Figure 2.7 illustrates another distributed information filter architecture where each sensor

now computes the observation information and fuses this with its own local information

estimate. The local estimate is maintained using a local implementation of the prediction

and update equations and is formed solely from observations from the attached sensor. Each

sensor module outputs its own local information estimate to the central processor which

fuses the information to form a single global estimate.

However, to fuse these estimates at the central processor, it is necessary to determine the

amount of new information that each sensor has contributed. Denoting the local estimate

at each sensor i by y{(- | •) and Y$(- | •), the update at each local sensor can be written as

These local updates can then be sent to the central processor where the global update can

2.4 The Information Filter 43

Extending this architecture one step further to that shown in Figure 2.8 gives the infor­

mation filter form of the independent opinion pool presented in Section 2.2.3. In this

architecture the global estimate is communicated back to the sensor nodes once it has been

calculated. As each sensor now has global information it is able to perform further tasks,

such as data association, locally with the same accuracy as a central processor. While

this further decreases the computational burden of the central processor, the system is still

entirely reliant on it in order to function correctly as it is still a critical component. To

remove this reliance on a single component, the system must move from being distributed

to being decentralised.

2.4.6 The Decentralised Information Fil ter

It is a relatively simple step to decentralise the assimilation Equations 2.78 and 2.79 in

systems where there is a fully connected network of sensing nodes as shown in Figure 2.9.

2.4 The Information Filter 44

2.4 The Information Filter 45

2.4 The Information Filter 46

Yj{k | k — 1)), consist of the difference between the local information at a time k and the

prediction based only on information up to time k — 1. This can be interpreted as the new

information obtained by that node at the current time step. Indeed, the communicated

terms are algebraically equivalent to ij(k) and lj(k)\ logically the new information available

at a time k is just the information obtained through observation at that time. Thus, the

operation of the sensor network can be envisioned as a group of local estimators which com­

municate new, independent, information between each other and which assimilate both local

and communicated information to individually obtain a globally optimal local estimate.

There are three interesting points that can be made about these decentralised equations:

• The additional computation required of each node to assimilate information from

adjacent nodes is small; a summation of vectors in Equation 2.86 and a summation of

matrices in Equation 2.87. This is a direct consequence of the use of the information

form of the Kalman filter which places the computational burden on the generation

of predictions.

• The amount of communication that needs to take place is actually less than is required

in a centalised architecture. This is because each node individually computes a global

estimate so that there is no need for estimates or predictions to be communicated

prior to an estimation cycle. This results in a halving of required communication

bandwidth, which may be further improved if model distribution is incorporated.

• The algorithm defined by Equations 2.80-2.87 is appropriate for both fully connected

sensor networks or for sensors connected to a broadcast communication facility (such

as a bus).

The decentralised architecture has no central fusion site. Each sensor node forms an estimate

using information from its local sensor and new information communicated by neighbouring

nodes. In a decentralised architecture there is no single point of failure. The loss of any

one node results only in a commensurate loss of information to the system as a whole.

This essential architecture forms the basis for the development of the decentralised sensing

networks described in detail in later Chapters.

2.4 The Information Filter 47

2.4.7 T h e Extended Information Fil ter

The extended information filter is the information space equivalent of the EKF. It uses the

Jacobian of the non-linear process and observation models given by Equations 2.18 and

2.19, taken with respect to the states, in the same way as the EKF.

For a non-linear process model, the prediction stage simply uses the Jacobian in the standard

information filter equations. This gives

Y(fc|ife-1) = Mfc-MfeGfcE^GpVffc (2.88)

y(fc | k - 1) = Y(fc | k - l)f (x(fc — life — 1), u(&)), (2.89)

where

£fc = G£MfcGfc + Q^\

and

Mfc = V"Tf(k)Y(k - l \ k - l)V;xf(fc).

The observation information is calculated using

i(fc) = V j h ^ R ^ 1 [z(fc) - ^^ (2.90)

I(fc) * VjhWR^VxMfc), (2.91)

and updated using the standard addition equations

2.4 The Information Filter 48

2.4.8 Information Metr ics

Ideas of information underlie all the algorithms developed for decentralised data fusion

networks. It is therefore appropriate to define the two key common measures of information

employed in estimation and to understand their relation to each other and to the information

estimation algorithms so far described.

Consider a probability distribution P(x) defined on a random variable x. The Shannon in­

formation (or entropy) represented by this distribution is the expected value of the negative

log-likelihood. This is calculated as [24,71]

2.5 The Covariance Intersect Algorithm 49

for continuous valued random variables and

ffp(x) = -E{logP(x)} = -£P(x)logP(x)<*x, (2.95)

for discrete random variables.

Importantly, despite the convention of having x as an argument for Hpt the Shannon infor­

mation is function of the shape of the distribution and is not a function of the underlying

state x. Indeed, the Shannon information measures the volumetric compaction of the dis­

tribution on in the state space. Entropy is low (information is high) when the probability

distribution is confined to a few (ideally a single) state. Conversely, the entropy is a max­

imum (information is a minimum) when the distribution is uniformly distributed over the

state space.

The Fisher information is defined as the second derivative of the log-likelihood of a distri­

bution [71]

J(x) = p l o g P (x) . (2.96)

When the state x is a vector, the Fisher Information will be a matrix (known as the Infor­

mation Matrix). This matrix measures the axes of the bounding surface of the probability

mass. The Fisher information measures the compactness of a distribution by its surface

area. Unlike Shannon information, Fisher information is directional.

Both Shannon and Fisher information measure compactness of a distribution; through a

volume and through a surface measure respectively. Unsurprisingly, the two measures can

be shown to be related to each other. In the case where P(x) is an n-dimensional Gaussian

with covariance 2 , the Fisher information is simply S ' 1 , and the Shannon information is

4 log (27 re r |E | .

2.5 The Covariance Intersect Algorithm

The covariance intersect (CI) algorithm, developed by Uhlmann and Julier [55,98], allows

the fusion of two random vectors whose degree of correlation is unknown. The fusion process

uses a geometric interpretation of the covariance matrix in order to consistently fuse the

information.

2,5 The Covariance Intersect Algorithm 50

2.5 The Covariance Intersect Algorithm 51

Figure 2.10: Covariance Intersect updates for two estimates, (a) shows the result of fusing
the two estimates using the Kalman filter, (b) illustrates the CI update of the estimates over
a range of values of UJ. (c) shows the CI update with OJ — 0.465 minimising the determinant
of the resulting covariance. (d) shows a situation where the CI update will be dominated
by the more accurate estimate and ignore the less accurate one completely.

2.6 Summary 52

using the value of u which minimises the determinant of the resulting covariance matrix is

shown in Figure 2.10 (c). Note that this result is clearly more conservative than that of the

Kalman filter in Figure 2.10 (a).

In the extreme, if a; is set to either 0 or 1 the algorithm ignores one of the estimates

completely and uses the other as the result. In practice this can happen if one estimate is

significantly better than another as illustrated in Figure 2.10 (d). This highlights the fact

that CI discards information which can result in very conservative estimates. Although the

conservative nature of the algorithm is the very reason it is able to work consistently in

situations where the degree of correlation between estimates is unknown, it is also a major

drawback and a reason to use CI only where necessary. In a decentralised network where

information from different sources with an unknown degree of correlation is abundant, it is

a useful tool when used correctly.

2.6 Summary

This Chapter developed the mathematical foundations for decentralised data fusion meth­

ods. The log-likelihood formulation of Bayes theorem was applied to explore centralised,

distributed and decentralised data fusion architectures. The information filter was then

derived from both the the Kalman filter and directly from Bayes theorem. The information

filter was also applied to explore centralised, distributed and decentralised estimation meth­

ods. The relationship between these methods and the underlying log-likelihood formulation

of the data fusion problem were established. It was argued extensively that the information

filter has many advantages over the conventional Kalman filter in data fusion problems and

indeed is crucial in the development of distributed and decentralised data fusion systems.

26 Summary 53

Thr link between the information filter and the Shannon and Fisher information met rim

wan abo #trtahbshed The Corartance Intersect (CI) algorithm was also described. This

provides a method of fusing quantities which have an unknown decree of correlation. These

algorithm* arr now employed in subsequent Chapters to develop and demonstrate real- world

DDF algorithms and architecture

Chapter 3

Algorithms for Decentralised

Systems

3.1 Introduction

This Chapter describes the algorithmic implementation of decentralised data fusion systems.

A decentralised system is described by the local data processing algorithms at each node

and by the algorithms that decide what and when to communicate to other nodes. These

local processing and local communication algorithms define the operation of the overall

decentralised system.

This Chapter begins in Section 3.2 by discussing the problem of communication and net­

work structure in decentralised systems. In particular, the key issue of identifying common

information between two nodes in a network is described. This leads to the notion of a

channel filter; a filter which tracks the information common to two adjacent nodes. The

channel filter is fundamental to the efficient realisation of a decentralised network. It is

shown that in a structured network, the channel filter can optimally track this common in­

formation. In unstructured networks, sub optimal methods of tracking common information

are described.

In real networks, with estimates being transmitted from both locally attached sensors and

from remote nodes, account must be made of timing. Section 3.3 discusses the temporal

propagation of information in the network and presents solutions to the problem of delayed

3.2 Communication in Decentralised Sensing Systems 55

and asequent data communication.

The channel communication algorithm is presented in Section 3.4. The communications

management problem is described and a general method of handling communications in

channels is presented. The structure of this channel algorithm is discussed. The section

concludes by looking at the flow of information through the channel and how common

information is maintained.

With the communications algorithm defined, Section 3.5 describes the overall algorithmic

structure of a node in a realistic decentralised system. Sensor pre-processing, local filters,

channel filters and the communications manager are described. The section then addresses a

number of practical considerations for the implementation of decentralised sensing networks.

In particular, issues associated with timing and data association are discussed.

Section 3.6 uses the nodal architecture described in Section 3.5 to describe algorithms for

communicating in unstructured network topologies. The most complex of these, given in

Section 3.6.4, allows nodes to dynamically form into a tree topology which makes use of

complete information.

The algorithms and architecture developed in this Chapter sets the stage for the implemen­

tations described in Chapters 5 and 6.

3.2 Communication in Decentralised Sensing Systems

The issue of communication is significant in distributed and decentralised data fusion sys­

tems. This is because of limited communication bandwidth, time delays and communication

failures that can occur between sensing and fusion processes. In decentralised systems, a

significant issue is also the potential for time-varying communication topology.

This section considers the communication problem in depth. The fundamental issue of

determining what needs to be communicated is first developed in terms of Bayes Theorem.

This is then translated in to both the information filter and discrete estimation form. Any

realisable distributed sensing network should be able to cater for a variety of communication

topologies, variable communication delays and insertion of new sensors into the network.

The key to providing these abilities lies in the algorithms used to decide what information

should be communicated between different sensing nodes. This is the focus of this section.

3.2 Communication in Decentralised Sensing Systems 56

3.2.1 Communicat ion Topologies

There are three basic communication topologies that are considered in this section;

• Fully-connected or broadcast topologies in which every node has direct access to

every other node in the network. This type of topology occurs when a bus or broad­

cast medium is used for communication. In fully connected arrangements, individual

nodes may have intermittent connection to the communication medium. However,

it is generally assumed that once connected, they enjoy equal-access to other nodes

information.

• Tree-connected or singly connected topologies in which only one path exists between

any two nodes. This type of topology rarely occurs in physical practice. However,

it can readily be imposed on a more general network through the use of routing

or tagging algorithms. In singly-connected topologies, nodes can again communicate

intermittently. However, if a link is broken, then the network will become disconnected

until a different route can be established.

• Arbitrary-connected or multiply-connected topologies allow all nodes to connect to

any other node either through a single or, more generally multiple paths. In multiply-

connected topologies intermittent communication on any one link will not necessarily

halt the flow of information through other routes.

Throughout this thesis, the first two of the aforementioned communication topologies are

collectively known as structured networks as they both place restrictions on the overall

architecture in order to give it structure. Arbitrary connected networks will be known as

unstructured networks as they do not impose any restrictions on the network structure.

The different topologies determine different algorithms for communication. Fully connected

and broadcast networks follow most simply from the algorithms introduced in Chapter 2.

However, channel filters (to be described) are often still required to deal with intermittent,

delayed and burst communications.

In more general networks, the key data fusion problem turns out to be how to to determine

the common information between two nodes. This information must be removed before two

nodes can freely communicate with each other. In fully connected networks, the common

3.2 Communication in Decentralised Sensing Systems 57

information is simply the information the two nodes had in common last time they commu­

nicated. In tree or singly-connected networks, there is also a simple means of determining

common information by simply remembering (practically, summing) the information that

has previously been communicated down the channel connecting two nodes. This accom­

modates information that has been previously shared while allowing new information, from

further down the network, to be propagated.

In general networks however, there is no general optimal algorithm for both propagating

information and maintaining optimality within the locality constraints of a decentralised

sensing network (the proof of this result can be found in [100]). However, communication in

arbitrary networks can be accommodated either by relaxing the constraints imposed on de­

centralised systems, or by using sub-optimal fusion algorithms. In the former case, methods

such as routing or tagging can be used to reduce the problem to one of a singly-connected

network where channel-filter algorithms can be used to determine common information.

This approach is most appropriate for networks that already have some stable structure;

communication hierarchies, or sensors on a single platform. However, in large-scale net­

works in which the topology changes dynamically on a regular basis, sub-optimal methods

of determining the common information are most appropriate. This is typical of very large

networks operating in tactical situations. Algorithms for communication in this type of

network are discussed in detail in Section 3.6.

3.2.2 Bayesian Communicat ion in Sensor Networks

Expressions for the common information between two nodes are now derived from Bayes

theorem. This in turn establishes the relationships between log-likelihoods from which

common information filters can be derived.

Consider a sensor node i. The information set, consisting of all locally available observa­

tions, is denoted Z». Let x define the state to be estimated, then P(x | Zi) defines the

posterior probability on the state given the locally available information. Now the set Z*

contains information from both observations made locally at node i as well as information

communicated to it from other nodes. When it interacts and exchanges information with

another node j , it is essential to understand what information results. v

In general, if there are two nodes i and j , with information sets Zi and Zj respectively, who

3.2 Communication in Decentralised Sensing Systems 58

engage in communication, it is desirable to construct the common information set Z, U Zj

constructed from the union of the two local information sets. This may then be used to

construct a posterior distribution P (x | Zi U Zj) for the state based on both sources of

information. If the two information sets have no information in common Z* n Zj = 0, then

it is simple to construct the union of the sets from a sum. However if the two sets do have

information in common Z* n Zj ^ 0 then the problem of constructing the union Z* U Zj

resolves to finding the common information Z$ 0 Z.-. Determining this common information

turns out to be key to the decentralised communication problem.

The most general solution to the common information problem is in the form of Bayes

Theorem. Consider the interaction of pairs of nodes. For each communicating pair (i, j),

the required probability is P (x | Z$ U Zj). Let the union of the individual observation

information sets be partitioned into disjoint sets as

Zi U Zj = Z^- U Z i V U Z{j (3.1)

where

^ A J = ^A^i j j Zj\i = Zj\Zijj Zij = Zi n Zj}

and where the notation p\r (the restriction operation) means elements of the set p excluding

those elements that are also in set r. Note also that

2»\i U %ij = Zii Z ^ U Z^ = Zj.

Then,

PCZiUZ^Ix) = PCZ^-UZ^uZylx)

= P (Z i V I ZjV u Zij,x)P(ZiV u Zij I x) = P (Z i V I Zi9x)P(Zj | x)

^ Z ^ - U Z j . l x) P (Z J I X)

P(Zi7- | x) P (Z j I X) " P(Z*|x)P (Z ' I X)

P{Zi\x)P(Zj\x) , _ .
P(ZiHZi|x) ' ^-Z)

3.2 Communication in Decentralised Sensing Systems 59

This shows that the relation between the posterior probability in the unknown state given

information from both nodes, P(x \ Z$ U Zj), as a function of the posteriors based only on

locally available information, P(x | Zi) and P(x | Zj), and the information the two nodes

have in common P(x | Zj D Zj).
Taking logs of Equation 3.3, gives the intuitive result

lnP(x | Zi U Zj) - lnP(x | Z*) + lnP(x | Zj) - lnP(x | Z* O Zj). (3.4)

Equation 3.4 simply implies that the fused information is constructed from the sum of the

information from each of the nodes minus the information they have in common. The

term In P(x | Zi D Zj) describes the common information between two nodes which must

be removed before fusion.
3.2.3 Identification of Redundan t Information in Sensor Networks

The key step in deriving fusion equations for decentralised sensing networks is to identify

the common information Z, 0 Zj between estimates so that it is not used redundantly. In

decentralised data fusion systems, the incorporation of redundant information may lead to

bias, over-confidence and divergence in estimates.

The problem of identifying common information is most generally considered in terms of

information sets. A neighbourhood of a node is the set of nodes to which it is linked directly.

A complete neighbourhood includes the node itself. A node i forms an information set Z\

at time k based on a local sensor observation z»(fc) and the information communicated by

its neighbours. The objective of each node is to form the union of the information sets

in the complete neighbourhood [Ni] : UJGW*] Z*. In particular, consider communications

between node i and a neighbour I. The union of information sets, on which estimates are

3.2 Communication in Decentralised Sensing Systems 60

to be based, may be written as
Z f u Z j - Z j + Zj-Z&y, (3.5)

that is, the union is equal to the sum of information sets communicated minus the inter­

section of, or common information between, these information sets. A fully decentralised

solution to the estimation problem is only possible where the intersection or common com­

municated information Zfn• can be determined from information which is available locally.

The topology of the sensing network is the most important factor in determining common

communicated information. Consider the following three cases:

• Full Connection: Consider the case in which each node is connected to every other

in a fully connected, or completely connected topology (Figure 3.2). In this case, the

sensor nodes may acquire observation information from the entire network through

direct communication and the neighbourhood of any node is the full network. In a

fully connected network, the problem of locally detecting and eliminating redundant

information is considerably simplified as every node has access to the same infor­

mation. In this situation, the estimates formed by the nodes are identical and new

information is immediately communicated after the removal of the estimate from the

previous time-step as

This gives rise to a communication strategy where each node subtracts the estimate

formed at the previous timestep prior to communicating its current observation in­

formation. Thus, Equation 3.6 is an information-set equivalent of Equations 2.86 and

2.87 which explicitly subtract the common prediction from the local partial estimates.

Since the fully connected condition means that global and local information are in fact

the same, this must be regarded as a special case of the common information problem.

• Tree Connection: In a tree connected topology, there is only one path between each

pair of nodes (see Figures 3.3 and 3.4). Therefore, a receiving node can be certain

that the only redundant information communicated by a neighbour is the information

that they have exchanged in the past. Thus, the observation information history that

3.2 Communication in Decentralised Sensing Systems 61

3.2 Communication in Decentralised Sensing Systems 62

intersect of information sets, l b maintain the constraints imposed by full decentral­

isation, it must be possible to eliminate common communicated information terms

between any pair of communicating nodes, on the basis of local information only. In

a fully connected network, the solution is immediate since Ti = Tj at every time-step

and Equation 3.6 follows. A tree network is partitioned about any pair of connected

nodes (i,j) such that the information 2J held in the subtree from i and that held in

the subtree from j are disjoint: T{ n Tj = 0. Therefore, i acquires the terms from

the subtree Tj only through jl In an arbitrary network, it may be possible for i

to acquire the information known to j along other routes. The problem is that the

communicated terms are not necessarily disjoint, therefore, each node must be able

to determine Ti D Tj locally. As shown in Figure 3.1, information in the region of

intersection arrives at both i and jf. This multiple propagation must be accounted for.

The problem of arbitrary networks can be alternately be considered as estimation in

networks which admit multiple cycles.

Determination of the communication requirements for non-fully connected decentralised

networks therefore hinges on the extraction of common information.

3.2.4 Communicat ion Channel Fil ters

Equation 3,4 serves as the basis for developing information communication policies for non-

fully connected sensor networks. The probability density functions in Equation 3.4 can

represent four different information or Kalman filter estimates:

• The local estimate at node i:

Mk I k) ^ E{x(fc) | Z*} ,

with covariance Pj(fc | k).

• The local estimate at node j :

±j(k i k) ^ E{X(fc) i m ,

with covariance Pj(fc | k).

3.2 Communication in Decentralised Sensing Systems 63

Figure 3.1: Communicated information sets in the three classes of topology.

3,2 Communication in Decentralised Sensing Systems 64

The estimate based on the union of all information possessed by nodes i and j (in

effect the global estimate):

Xiutiklk) =E{x(k) \ZtuZ1?} ,

file:///ZtuZ1?}

3.2 Communication in Decentralised Sensing Systems 65

3.2 Communication in Decentralised Sensing Systems 67

to a characteristic triangular 'wave-front7 in the information map which describes the way

information is used at any one node to obtain an estimate.
3.2.5 Fully Connected and Broadcast Sensor Networks
Recall the assimilation equations given in Section 2.4.6

Mk\k) = y,(fe | fc - 1) -h ̂ [ŷ -Cfe | fe) - ^(A: | fc - 1)]
j

= y i (* l * - l) + £ i #) (3.25)

3GNi

and
Yi(k\k) = Yi(k\k-l)-[-Y,[^^\^-Yj(k\k-1)

j

= Yiiklk-^+^Ijik). (3.26)

Equations 3.25 and 3.26 make it clear that the estimate arrived at locally by a node i is

based on the observation information ij(k) and Ij(k) communicated to it by nodes j . If

node i only communicates with a local neighbourhood iVj, a subset of the complete network,

then the estimate arrived at locally will be based only on this information and will not be

equivalent to a centralised estimate.

In effect, each time a new local estimate Yj{k \ k) is obtained at a node j , the prior in­

formation at this node yj(k \ k — 1) is subtracted to provide the 'new' information to be

communicated to a node i. The assumption here is that the prior information yj(k \ k — 1)

at node j is the information that nodes i and j have in common up to time fc — 1. Subtract­

ing this from the local estimate should then give the new information to be communicated

from node j to node i. In the fully-connected case, the prior information at node j is indeed

the common information between nodes i and j and so only the information ij{k) is commu­

nicated. In the non-fully connected case, the prior information at node j includes not only

information common to node i but also information from other branches in the network.

Subtracting this from the local estimate however, again results in only the information ij(k)
being communicated to node i. This is because it assumes that node i already has the in­formation communicated to node j through other branches of the network. The net result

3.2 Communication in Decentralised Sensing Systems 68

of this is that nodes only exchange information in their immediate neighbourhoods and do

not propagate information from distant branches.

Figure 3.2: A fully connected sensor network consisting of four nodes, A, B, C, and D. All
nodes in this network can generate estimates, equal to a centralised estimate, using only
Equations 3.25 and 3.26.

Figure 3.2 shows a fully connected network in which local estimates will be equal to global

estimates using only Equations 3.25 and 3.26 for assimilation. Figure 3.3 shows a linear

connected sensor network and Figure 3.4 shows a tree connected sensor network. Here, the

estimates arrived at by each node, using Equations 3.25 and 3.26 for assimilation, will be

based only on observations made by sensors in the immediate neighbourhood.

3.2.6 General Network Structures

Tree networks are restricted to having only a single path between any two nodes. Therefore,

a failure of any one channel or node will divide the network into two non-communicating

halves. However, a decentralised network would ideally be composed of multiple, redundant,

paths between sensor nodes.

Unfortunately, the algorithms described in the previous section will not produce consistent

information-state estimates for networks with multiple paths. The reason for this is that the

channel filter y^-(- | •), which is intended to determine information common to nodes i and

3.2 Communication in Decentralised Sensing Systems 69

Figure 3.3: A linear sensor network consisting of four nodes, A7 B, C, and D. Nodes in
this network, using only Equations 3.25 and 3.26, can only generate estimates based on
information available in their immediate neighbourhood.

Figure 3.4: A tree connected sensor network consisting of four nodes, A, B7 C, and D.
Nodes in this network, using only Equations 3.25 and 3.26, generate estimates based on
information available in their immediate neighbourhood.

3.2 Communication in Decentralised Sensing Systems 70

j , does so only by summing up information communicated through the channel linking these

two nodes. The assumption is that there is only one path between two neighbouring nodes

so the information they have in common must have passed through the communication link

connecting them. If information is communicated to both nodes i and j directly by some

third node then this information will clearly be common information held by both z and

j , but will not appear in the channel filter yy(- | •) because it has not passed through the

channel between them.

There are three possible solutions to this problem

• Data Tagging: An obvious solution is to tag information as it passes through the

network so that nodes can determine which comments are "new" and which have

already been communicated through other links. The problem with this method is

that it will not scale well with large data sets and with large sensor networks.

• Spanning Trees: A viable solution is to use an algorithm which dynamically selects

a minimal spanning tree for the network. In effect, this allows redundant links to be

artificially "broken" at run-time so allowing tree-based communication algorithms to

function in a consistent manner. Links can be artificially broken by setting y^(- | •) =

yj(- | •), ensuring no information is communicated across the cut. The distributed

Belman-Ford algorithm is one algorithm which allows such a tree to be constructed in

a fully distributed or decentralised manner (it is commonly used for internet routing).

Overall system performance depends on reducing data delays by choosing a topology

with short paths between nodes. The best topology can then be implemented by

artificially breaking the necessary links and using the channel filter algorithm. The

network remains scalable although reconfiguration may be necessary if nodes are to

be added or removed. This may, at first, seem to be a disadvantage but, should the

network sustain damage to links or nodes such a strategy will enable the surviving

nodes to reconfigure to form a new topology, bringing formerly disused links into

service to bypass damaged nodes or links. Such a system will be more robust than a

purely tree connected system which will be divided into two non-communicating parts

by the loss of a node or link.

• Dynamic Determination of Cross-Information: A realistic and scalable method

in highly dynamic large scale networks is to use a local algorithm which does not

3.3 Delays and Timing: Temporal Propagation of Information 71

require knowledge of the common information between nodes. One such method is

the covariance intersect filter described in Section 2.5. This computes the relative

alignment between information matrices and produces a conservative local update

based on the worst-case correlation between incoming messages. The advantage of

this method is that it is fully general and will work in any network topology. The

disadvantage with this method is that the estimates arrived at, while consistent, are

often very conservative. A number of realistic algorithms using this approach are

presented in detail in Section 3.6.

3.3 Delays and Timing: Temporal Propagation of Informa­

tion

This section defines the general state model and the notation and procedure for propagating

state both forward and backward in time. This is necessary to enable information to

be correctly time-aligned between different sensors in communication and also to provide

algorithms to deal with delayed or asequent information. Together these algorithms then

allow a capability of dealing with intermittent and burst communications.

3.3.1 System Definitions

For the sake of completeness, some standard definitions are repeated here.

Consider the standard linear continuous-time state space model

x(t) = F(t)x(t) 4 B(t)u(t) + G(t)w(t), (3.27)

where x(t) is the state of interest, u(t) the control input, w(£) the driving noise, and

F(t), B(t), G(t) matrices modeling effects of state, control and noise inputs respectively.

Equation 3.27 admits a well known closed-form solution

x(t) = »(t,*o)x(fe)+ / *(t,T)B(T)u(r)dr+ [*(t,T)G(r)w(r)dr, (3.28)
Jto Jtn

3.3 Delays and Timing: Temporal Propagation of Information 72

3.3 Delays and Timing: Temporal Propagation of Information 73

3.3 Delays and Timing: Temporal Propagation of Information 74

The delayed data problem, where information or observations arrive late at the fusion

process, can affect the real time implementation of any data fusion system. One of the

simplest and most common causes is as a result of a communication latency between different

parts of the system. Other systems may use sensors that take some form of scan for an

observation which must undergo some time consuming batch processing to transform it to

a usable format. For these and many other reasons, it is not uncommon for data to arrive

late at the fusion process.

There has been a large amount of research on delayed data in the Kalman Biter, including

both conservative [9,25] and exact [7,50,67] solutions to the problem. However, these

solutions are all developed in state-space form. An exact solution to the problem for the

information form of the Kalman filter was therefore derived [77].

The problem that arises is how to fuse an observation taken at k — 1 that arrives sufficiently

late that the filter has already been propagated forward to k. The most common solution to

this problem has previously been to propagate the delayed observation information through

3.3 Delays and Timing: Temporal Propagation of Information 78

Sensor

3.3 Delays and Timing: Temporal Propagation of Information 79

3,3 Delays and Timing: Temporal Propagation of Information 80

which corresponds to the increment of information that the observation at k — 1 contributes

at the current time k. This increment can now be fused with the current information state

estimate without the delayed observation (given by Y~(k | k — 1) and y~(k \ k — 1)) using

Equations 3.43 and 3.44 to yield the exact result as if the observation had not been delayed.

It can be seen from Equation 3.43 that the net effect of this algorithm is to produce an

estimate in the form

Y(fc | k) = YY(k | k -1) + Y/(fc | k - 1) + Yy/(fc | k -1%

where Yy(k \ k — 1) is the estimate obtained without the delayed information, Yj(fc | k — 1)

is the estimate obtained using only the delayed information, and Yyi{k \ k — 1) is a cross-

information term (uniquely defined Yy(k \ k — 1) and Yj(k \ k — 1)) describing the cross-

information between the information states caused by propagation through a common pro­

cess model.

It should also be noted that although the exact delayed data solutions requires both M^ and

y(k — 1 | A; — 1), these values can be determined by backward propagation (Equations 3.41

and 3.42) as long as no other information has arrived since the delayed observation time. If

another observation has arrived in this period, then some filter history must be remembered

in order to obtain an exact solution. The following section covers this in detail.

Example 3 Consider again the simple tracking system using the models given in Exam­

ple 1.

3.3 Delays and Timing: Temporal Propagation of Information 81

Position Information: Information Matrix

Time [s]

Figure 3.7: Time history of the information filter with delayed data. The red plot illus­
trates the exact solution where the data is not delayed. The black plot demonstrates the
conservative result obtained by predicting the delayed observation information forward to
the next time step using the standard filter motion model. The blue plot shows the results
of using the exact delayed update equations to predict the observation forward to the next
time step, accounting for the correlation between the observation and the estimate over
that period.

Let ike information state at some time t = 1 be given by

The information estimate is propagated forward from time t = 1 to time t = 2 using the

information filter prediction equations. The estimate is again propagated forward to time

t = 3. An observation of the target location, taken at time t = 2 arrives late at time t = 3.

The increment of new information at time t = 3 from the delayed observation at t — 2 is

calculated using Equations 3.49 and 3.50. This is then fused with the existing information

3.3 Delays and Timing: Temporal Propagation of Information 82

state estimate at t = 3 using Equations 3.43 and 3.44 t° $ve $*& same result as if the data

had not been delayed.

Figure 3.7 shows the 3 step time history of this simple example for the exact solution (where

the data is not delayed), the delayed data solution handled using Equations 3.50 and 3.49,

and for the case where the observation information is predicted forward in a conservative

manner. Note that the delayed data equations yield exactly the same result as if the data

had arrived on time, whereas the method of predicting the observation forward to the current

time is more conservative.

3.3.9 Asequent Data

Data that arrives both late and out of sequence is termed asequent. For example, data from

a particular sensor may arrive sufficiently late that the estimate has already been updated

by one or more observations from some other sensor.

Delay

Figure 3.8: Asequent data timing occurs when observations are communicated to the esti­
mator but arrive both late and out of order.

The delayed data Equations 3.49 and 3.50 can be used to yield an exact solution to this

problem. However, the solution requires the system to store state history in memory. At

each time step, the system should store the current values of

When the asequent data from some time k — n arrives at the current time kt the update is

3*3 Delays and Timing: Temporal Propagation of Information 83

3.3 Delays and Timing: Temporal Propagation of Information 84

one.

Figure 3.9: Time history of the information matrix of a filter with asequent data. The red
plot illustrates the exact solution where the data arrived in time and in order. The black
plot demonstrates the conservative result obtained by the tradition method of predicting
the delayed observation information from t = 2 forward to the time step t = 4 using the
standard niter motion model. The blue plot shows the results of using the exact asequent
update equations to predict the observation forward through each step it was delayed while
accounting for the correlation between the observation and the estimate over that period.

Example 4 Consider the same system used in Example 3. Again, let the initial information

state at some time t = 1 be given by
y(l | 1) = | 2 3.3333 1 Y(l | 1) •

The sensor makes 2 observations at times t = 2 and t = 3 which are given by
z(2) = [15.2] z(3) = [25.3].

Due to a communications delay, the observation from t = 2 does not arrive until t = 4. The

system therefore predicts to time 2 then again to time 3 where the filter updates with z(3).

The system is then predicted to t = 4 when observation z(2) arrives.

Figure 3.9 illustrates the results of this simple example and shows that the results of using

the asequent data algorithm are exactly the same as the case where the data is not delayed

and arrives in order. At time t = 4 when the delayed observation arrivesf the update returns

the exact value. The results of predicting the late observation forward are also shown to be

conservative.

3.4 Channel Algorithms

The channel filter is a conventional information filter used to maintain an estimate of com­

mon data passed through a particular channel. A channel filter on node i connected to node

j maintains the common information vector yij(k \ k) and the common information matrix

Yij(k | k).

The prediction equations (for both forward and backward propagation) used in the channel

filter are the standard information filter equations described in Sections 3.3.6 and 3.3.7. For

the update stage, a channel filter receives information estimates from other nodes. When

this happens, the channel filter predicts the received information to a local synchronous

time (the local synchronous time is referred to as a 'time horizon') and then determines the

new information at that time. The new information at the channel filter at node i when

data arrives through the channel connected to node j is the information gain from node j

mj(fe) = yj(k | k — n) — %j{k \ k — m)

3.4 Channel Algorithms 86

3.4 Channel Algorithms 87

Together, the channel update equations allow data delayed from neighbouring nodes to

be fused. This together with local assimilation equations permits burst communication of

estimates accumulated over a time period, in a manner that ensures no double counting of

information. This also means that the channel filter algorithms are robust to intermittent

communication failure. There are a number of important implications of these results which

will be discussed in this section.

3.4.1 Management of Communicat ion

The communication channels exploit the associativity property of information measures.

The channels take the total local information yi(k \ k) and subtract out all information that

has previously been communicated down the channel, yy(fc | fc), thus transmitting only new

information obtained by node i since the last communication. Intuitively, communicated

data from node i thus consists only of information not previously transmitted to a node

j ; because common data has already been removed from the communication, node j can

simply assimilate incoming information measures by addition.

Channel filters have two important characteristics:

1. Incoming data from remote sensor nodes is assimilated by the local sensor node before

being communicated on to subsequent nodes. Therefore, no matter the number of in­

coming messages, there is only a single outgoing message to each node. Consequently,

as the sensor network grows in size, the amount of information sent down any one

channel remains constant.

2. A channel filter compares what has been previously communicated with the total

local information at the node. Thus, if the operation of the channel is suspended,

the filter simply accumulates information in an additive fashion. When the chan­

nel is re-opened, the total accumulated information in the channel is communicated

in one single message. The consequences of this are many-fold; burst transmission

of accumulated data can be employed to substantially reduce communication band-

• width requirements (and indeed be used to manage communications); if a node is

disconnected from the communications network, it can be re-introduced and informa­

tion synchronised in one step (the same applies to new nodes entering the system,

dynamic network changes and signal jamming).

3.4 Channel Algorithms 88

The remainder of this section details a practical algorithm for the implementation of a

channel.

3.4.2 S t ruc ture of t he Communicat ion Algori thm

Figure 3.10: Structure of the general communication channel algorithm: (a) Initial state
of the node p prior to estabhshing communication with node q\ (b) establishing common
information between nodes p and q at a time k in a channel pq; (c) computation of local,
partial estimates at the two nodes; (d) calculation of information gains at channel inputs
and subsequent updating of local estimates.

Consider a node p and its neighbourhood N(p) of nodes shown in Figure 3.10. Node p has

a local information estimate Yp(k — 1 | k — 1) at time k — 1. The node has a number of

communication channels open with its neighbourhood j € iV(p). Node p now decides to

also communicate with node q through a new channel pq. It is not generally known a priori

if p and q have previously communicated or indeed have been in indirect communication

with each other through another branch of the network. The first step in the general

communication algorithm is establish what information node p and q have in common.

This is done in three stages:

3.4 Channel Algorithms 89

1. A separate point-to-point channel, labeled pq, is established between the two nodes.

The current estimates at the two nodes Yp(k — 1 | k — 1) and Yq(k — 1 | k — 1) are

placed in the channel.

2. The two estimates are then time-aligned using the information state prediction or

retrodiction Equations 3.38-3.42 described in Section 3.3. The time alignment is

normally taken to some time k at which the next available observation information is

to occur. This yields process yields two predictions Yp(k | k — 1) and Yq(k \ k — 1).

3. The common information Ypnq(k \ k — 1) between nodes p and q is then determined.

This information may be computed by any of the methods described in Section 3.4.4.

The result of this process is a channel between the two nodes with a measure of

the common information Ypnq(k \ k — 1) between them at a time k. Similar measures

Ypnj{k | k — 1) are computed for every connected node j € N(p) in the neighbourhood

of p. This is shown diagramatically in Figure 3.10(b).

4. New information (the information gain) between node p and it's neighbours is com­

municated. As a first step, it is assumed that node p acquires some local observation

information Ip(fc) at time k and fuses this with its local prediction Yp(k | k — 1) to

produce a local, partial, estimate Yp(k \ k) at time k as

Yp(k | k) = Yp(k | k - 1) + Ip(k). (3.56)

Other nodes in the neighbourhood may also produce a similar estimate using obser­

vation data acquired since the last communication or otherwise based only on the

prediction (so Yp(k \ k) = Yp(k \ k — 1)). This is shown diagramatically in Figure

3.10(c). It is important here to reiterate the node-centric form of the algorithm: The

node time-aligns common information in a single point-to-point communication chan­

nel. The channels themselves may well act asynchronously with each other. The

different nodes in the network will certainly act asynchronously.

5. The final step is to compute the information gain from the channel following commu­

nication. The most robust method of doing this is to communicate the total informa­

tion Yq(k \ k) from a node q to node p and then to subtract the common information

Ypng(fc | k — 1) in the input channel of node p. This allows for the possibility that

3.4 Channel Algorithms 90

3.5 A Practical Decentralised Node Algorithm 91

With this substituted in Equation 3.59, the information gain is simply the locally observed

information AYpq(k \ k) = lq(k). This algorithm will be called the "all-common" commu­

nication method and would be used in a fully connected or broadcast structure.

If the channel pq is subject to delay or intermittent availability, the all-common algorithm

can be easily extended to communicate all information observed as a single 'burst' com­

munication. In this case, the common prior Yp^q(k \k — n) is set to the common estimate

Yp(k — n | k — n) at the last communication time k — n, appropriately predicted forward

to the new communication time k. The local estimates Yq(k | k) computed in Equation

3.56 now include all observation information Iq(k —j),j = n,---jO taken over the interval

k — n to k (and again, appropriately predicted through to time k). The computed infor­

mation gain AYpq(h \ k) obtained from Equation 3.57 now consists of all this observation

information with the last common prior Yp(k — n \ k — n) properly subtracted. It should

be clear that no matter what the time delay n or the number of observations made, only a

single information gain AYpg{k \ k) is computed and communicated. Fundamentally, this

is what a burst communication consists of. However, it is also worth noting that the time

propagation of observation information terms Iq(k — n) over a time n generally results in

a net loss of information through the addition of the process uncertainty accumulated over

the delay time.

3.5 A Practical Decentralised Node Algorithm

This section provides a practical algorithm for the general implementation of a decentralised

node. The communication algorithm is 'node' rather than 'network' centric. This is because,

locally, the structure of the network can change dynamically whereas the operation of a node

can be considered fixed and known. Thus a node is considered as an 'isolated' entity which

engages in communication intermittently and opportunistically rather than on a fixed basis.

This view also firmly fixes a modular node-centric model of system structure. This is shown

diagramatically in Figure 3.11.

The structure of a decentralised data fusion node can generalised to four specific modules.

Shown in graphically in Figure 3.11, these modules are the sensor preprocessing, local filter,

channel manager and channel filter.

3.5 A Practical Decentralised Node Algorithm 92

Figure 3.11: Structure of a decentralised node.

Regardless of the network topology, it is possible to use this as a generic structure for a

node. The algorithm implemented within each module can be changed, as can the number

of channels, in order to construct virtually any decentralised network configuration. For

example, when looking at the fully connected class of networks the only difference between

a bus architecture and a tree connection is the number of channels on each node (the bus

architecture needs only one channel, whereas the tree structure may have many). Therefore,

Figure 3.11 can be used to represent a node in a tree connected network when it has multiple

channels (shown), or as a node in a broadcast network by only having the one channel.

The extension to more general broadcast networks which make no requirements about topol­

ogy can also fit this structure at a node level by using only one channel and implementing

different update mechanisms such as covariance intersection in the channel filter. These

general networks will be discussed in more detail in Section 3.6.

The different modules comprising a sensing node are now presented and their purpose

described. The implementation of each module is then discussed in the context of a decen­

tralised tree network which is employed in subsequent implementations and demonstrations.

3.5.1 Sensor Preprocessing

When a sensor makes an observation, a number of preprocessing stages must occur to

transform observation data into information form (i(fc) and 1(h)) before it is fused in the

nodal filter. This includes coordinate transformations and conversion of the observation to

3.5 A Practical Decentralised Node Algorithm 93

information form. Section 5.5.2 describes the specific equations used for this preprocessing

in the ANSER project.

For example, when a range/bearing observation is made at some time kt both the obser­

vation and its associated covariance matrix are transformed to cartesian coordinates. The

observation information matrix and information vector are then computed.

The final preprocessing stage is a data association step. Certain sensors have extra informa­

tion they can use for data association that may not be available to the decentralised filtering

node. This information can be used and transmitted by the sensor preprocessing module

to increase association reliability. The sensor preprocessing then outputs the observation

information to the decentralised filtering node.

3.5.2 Local Filter

The local information filter, also known as the nodal filter, generates information state

estimates on the basis of observed, predicted and communicated information. Other infras­

tructure such as the channel filter and channel manager exist only to support the correct

implementation of the local filter. It is represented in Figure 3.11 by the prediction and

summation (update) loop.

Figure 3.12: Data flow from sensor observation.

The local filter takes input from local sensors (if present) and from the channel manager

(if connected). Local sensors preprocess observation data to produce an observation infor­

mation vector i(k)} observation information matrix I(k). These are then communicated to

the local filter. The generation of observations is typically asynchronous. This observation

information is communicated to the local node filter where (see Figure 3.12):

1. The local information state is predicted forward to observation time.

3.5 A Practical Decentralised Node Algorithm 94

2. It passes through a data association stage using a combination of both the information

gate of Section 3.5.6 and the results of any data association performed by the sensor

preprocessing.

3. With a correct association, the node filter then fuses observation and prediction in­

formation through the summation in Equation 2.35.

4. The fused estimate is then propagated forward from observation time to the syn­

chronous node time horizon.

5. Equation 3.38 is generally used to predict the information state forward in time.

If any delayed or asequent data arrives, the exact solution is computed using the algorithms

developed in Sections 3.3.8 and Section 3.3.9.

At the given node time horizon, the node filter also receives new information from the

channel manager. The state is predicted forward to this time using Equation 3.38 and

updated with Equation 2.35. The full information matrix Y(fe | k) and information vector

y(k | k) are then output to the channel manager for transmission to neighbouring nodes.

3.5.3 Channel Fil ter

The channel filter is used to manage communication between nodes. It serves two main

functions; to keep track of information previously communicated on the channel, and to

synchronize incoming and outgoing information with the node filter. Information previously

communicated is used to compute new information gain to other sensor nodes in the network.

Synchronization serves to accommodate any delays in information or differences in timing

between node filters at remote sites.

Figure 3.13 shows the flow of incoming information through the channels, channel manager

and local filter. Note that the channel filter in this figure is implemented for a structured

network as a conventional information filter. Information arrives asynchronously at each

channel from remote nodes. The information first passes through a preprocessing stage

where track-to-track association is performed to associate the new data with an existing

filter track. The information state is then predicted forward to the time horizon using the

standard prediction method of Equation 3.38. As the data enters the channel filter, the new

3.5 A Practical Decentralised Node Algorithm 95

information is determined and is then transmitted to the channel manager. The channel

filter is then updated.

Figure 3.14 shows the flow of outgoing information from the nodal filter to the channel

manager and to the channels. As information is sent to the channel, the channel filter

is updated and the current state is transmitted down the channel. In the event that the

channel becomes blocked or disconnected, the channel filter effectively fuses the new data

then cycles to the next available communication time.

3.5.4 Channel Manager

The channel manager serves as the interface between the nodal filter and the channel filters

(and through these, the other nodes in the network). The channel manager collects incoming

data from the channels at the time horizon, assimilates it, and then communicates the result

to the nodal filter. It also receives outgoing updated information states from the nodal filter

and disseminates this to the channel filters for transmission. The channel manager also

handles the online channel connectivity and allocation in any network allowing dynamic

changes in configuration.

In any implementation of a decentralised network using the architecture presented, it is

necessary to keep an estimate of the common information between nodes in a channel filter.

However, since this architecture supports multiple nodes operating on multiple processors

in different physical locations, it is important to define where the channel filter actually gets

implemented. If a single channel filter is used on any given communications link, then there

will be two subtly different node types implemented - there will be those nodes with the

channel filter and those nodes without. When organising the structure of the network, it is

vital to ensure that it was arranged such that non-channel filter nodes were not connected

to each other.

In order to remove this requirement for different node types, the architecture presented here

uses a channel filter on every node, effectively putting one at each end of a communication

link. This dual channel filter system on any given link means that every node is exactly the

same and that it is a simple matter to add and remove nodes without concern to possible

mismatch between differing node types. It does however, present some new difficulties not

present in a single channel filter implementation.

3.5 A Practical Decentralised Node Algorithm 97

It is possible for the dual channel filters to go out of alignment when communication mes­

sages are lost between nodes. This occurs as the sender updates its channel estimate when

transmitting and the receiver never gets to update as the message is lost. In this situation,

the receiver's channel filter will be different from that of the sender. If the receiver then

transmits a message of its own and that message is also lost then the problem only gets

worse.

Not handling this misalignment between the channel filters does not cause any serious

problems such as filter instability, it simply means that it is possible for a node to lose

information. If the channel filters are misaligned and the one with less information is the

first to successfully get a message through, then the receiving node with greater information

will end up with a negative information gain and essentially loses information when aligning

itself with the other node.

The simplest way to to handle this problem while ensuring that nodes never lose information

is to compare the information content of a received message with the existing channel

estimate using some heuristic such as trace or determinate. If the received message has less

information than the existing estimate, then discard it. The existing estimate can then be

3.5 A Practical Decentralised Node Algorithm 98

transmitted back to the other node as it is known to have more information. It is important

to note that this method does not necessarily end up using all information, it simply aligns

them to the node with the most information.

An exact solution for misaligned channel filters is also possible, however it requires the

storage of channel states and the transmission of channel timing information. The channel

filter would be required to-store the full state Y(k | k) and y(k \ k) and the time after every

update with information received from another node. It would also need to store the time it

last transmitted information to another node. The DDF message structure would then be

modified to include the time time at which the transmitting node last received information

from the node to which it is connected. Using this information, it is possible to keep dual

channel filters aligned such that the total amount of information is always used.

3.5.5 Timing

The clock at each node in a decentralised system must be synchronised to a common system

time in order to eliminate errors in clock drifts and the subsequent time alignment of data.

The method used in this thesis was to synchronise all nodes to GPS time. This is necessary

as every node operates asynchronously with respect to the other nodes. The nodes are

programmed to communicate their information every time period AT (where AT is the

period between time horizons), which need not be the same for all nodes. When a node

receives new information through a channel, it is predicted to the time horizon of the local

node and temporarily buffered (recall that the time horizon is the time in the future at

which the local node will assimilate the new data from all of its channels with the local

state estimate). The prediction to this horizon is done using the same model as the local

filter. Thus, data will arrive asynchronously at a nodes channel filter, then be predicted and

stored until the next time horizon. Figure 3.15 illustrates this timing. If a situation arises

where two pieces of information arrive on the same channel between any two time horizons,

only the most recent to arrive should be used and the other(s) discarded. As the channels

have a one to one mapping, the most recent of these measurements will always contain all

the information of the earlier message in addition to any newer data. This situation can

occur if different nodes are transmitting their information at different frequencies.

It is important that data not be transmitted from the node if there is still new data buffered

in the channels. Prior to transmitting information, the channels should be read and cleared.

3.5 A Practical Decentralised Node Algorithm 99

Figure 3.15: Data arrives at the channel filter asynchronously from other nodes. It is
predicted forward to a local time horizon and fused then.

This is necessary as the channel filter at the transmitting node will already have updated its

channel filter with the data waiting in the buffer at the receiving node, and if the receiving

node transmits information back that does not include this information then the system

becomes inconsistent. In practice, what occurs is at the time horizon the channels and the

local filter are updated and the node then outputs its new state. In this way, the timing

within each node is kept synchronous, but the timing between nodes is asynchronous while

ensuring that the filters remain consistent.

If the system is implemented in this manner, it also removes any delayed or asequent data

problem through the channel filter. When the data arrives, it is automatically predicted

forward to the time horizon. There still exists the possibility of delayed data from the

local sensor, however, this can be handled using the delayed data algorithm presented in

Section 3.3.8.

3.5.6 D a t a Association

Data association is necessary to correctly match information about the same target or

feature from different sources or at different time steps. When an observation is made, it

is necessary to determine if the target is same as one that has already been seen. Also, in

3.5 A Practical Decentralised Node Algorithm 100

a decentralised system, it is necessary to associate information from other nodes with that

stored locally. Figure 3.16 illustrates this notion where two nodes axe estimating the same

target set, but the targets are ordered differently on each node. When node 1 communicates

information about its target 1, node 2 must correctly associate it with its own target 3.

Figure 3.16: Different nodes may have the same physical targets stored in different orders.

The information gate [37] can be used for data association with the information filter.

Shown in Equation 3.60 below, it is the information equivalent of the state space innovation

gate. The primary advantage of this algorithm is that it is cast in terms of the information

states.

vT(k)B{k)+v{k) < 7, (3.60)

where 7 is selected from a Chi-Squared distribution with the number of degrees of freedom

of the observation and

A complete derivation of the information gate is given in Appendix A.

The nodes also include a data association index with each information communication. The

3.6 Unstructured (Dynamic) Network Topologies 101

data association index is the location of the target/feature at the transmitting node. When

received for the first time, the targets will pass through the data association algorithm

to determine if they match any targets at the receiving node. Once the receiving node

knows the index of that target locally, it can store the relationship between the targets on

different nodes. In this way, a look up table is generated once targets are identified rather

than having to apply a computationally expensive association algorithm at each update

iteration. Figure 3.16 illustrates this case, where a lookup table mapping the targets on

different nodes is created. Along with the data association index, nodes also include a

probability of the data association index being correct.

3.6 Unstructured (Dynamic) Network Topologies

This section presents network configurations which allow for dynamic changes in the net­

work topology. The algorithms presented use the same internal node structure as structured

networks, but have modified channel updates to allow for the dynamic aspect of the infor­

mation.

3.6.1 Limitations of S t ruc tured Topologies

The primary advantage of structured network topologies is that common information be­

tween nodes can be maintained exactly. However, structured networks also limit online

connectivity changes between nodes and are therefore not flexible to change.

Although unstructured networks are flexible they cannot make use of information in an

optimal manner. As the source of information is unknown, updates must be performed in a

conservative and sub-optimal manner. The unstructured network algorithms presented in

this section use the CI algorithm to compute a conservative update.

3.6.2 Broadcast With CI Update

The simplest model -for a dynamic network is for nodes to broadcast their full state in

information form and for any receiving node to fuse this in the channel using a CI update.

Nodes still use the standard information filter update for information received from locally

3.6 Unstructured (Dynamic) Network Topologies 102

attached sensors. It is important to note that since CI makes no assumptions about the

degree of correlation between nodes, it is technically possible to remove the channel filter

completely and simple fuse the communicated estimate directly with the estimate at the

nodal filter on reception. However, this will result in the conservative CI update degrading

the quality of any information obtained from the locally attached sensor at the receiving

node since the last communication. This information is clearly independent as it has not

yet been communicated, so it is sensible to preserve its integrity. The use of the channel

filter allows this as it only performs the conservative update on information that nodes may

have in common.

This method of communication update is completely scalable and is extremely simple to

implement. Nodes will never do worse than if they were operating independently, however,

it is possible that they will also never do better. This is function of the inherent conservative

behavior of the CI update. In practice, what usually occurs is that a'few nodes with the best

sensors end up dominating the network as they provide the best information. Information

from nodes with less accurate sensors is often not used. Figure 2.10(d) illustrates this

situation.

Example 5 Consider the situation where two nodes i and j have each been operating in

their own separate sub-network and communicate for the first time. Although they have

never communicated with each other before, both nodes have communicated with their sub­

networks and will therefore have a non-zero channel estimate. As it is not known whether

other nodes have interacted between the two sub-networks} the amount of common informa­

tion between i and j is completely unknown.

Using the same constant velocity tracking model developed in Example 1, let the estimates

3.6 Unstructured (Dynamic) Network Topologies 104

complete. The final result gives

The resulting determinate ofPj(k | k) using this update method is 2.8524, compared with

its initial determinate of 3.7500. Therefore, the covariance after the update is clearly more

compact, due to the information communicated from node i.

3.6.3 Broadcast W i t h Hybrid C I / I F Upda t e

One method of improving the conservative nature of the CI update in channels is to use a

hybrid Cl/full filter implementation. This aims to use the full information filter update on

data that is known to be independent while using CI on information for which independence

cannot be guaranteed.

When a node communicates, it is required to send two complete estimates in one message.

The first estimate, which will be referred to as type 1 data, is the current estimate of

common information at that node (ie the channel filter estimate). This estimate has some

unknown correlation with the rest of the network as it contains information communicated

previously. The second estimate, known as type 2 data, is the complete estimate at the

current communication time. This estimate contains all information that was in the type

1 data, plus any new information that may have arrived from the locally attached sensor.

This new sensor information is known to be independent from the rest of the network as it

has not yet been communicated.

When a node receives a message from the network, it first does a CI update with the type 1

data. This update is exactly the same as that described in Section 3.6.2 and has the same

conservative and sub-optimal properties. The second part of the update is to subtract the

3.6 Unstructured (Dynamic) Network Topologies 105

type 1 from the type 2 data, and perform a standard information filter update with the

result. As this information comes only from the sensor(s) attached locally to the node which

transmitted the data, the information is independent and can be fused using the additive

information filter update equations. When a node i communicates to node j , the complete

channel update at j can be written as

Y i c . J f c I *=) = ^ Y i c f c l n (f c | f c - l) + (l - w) Y i c w (f c | f e - l)]

+ p f # l &) ~ Y w f f t ! » - ! }] . (3.62)

+ lHk\k)-yichan(k\k-l)\. (3.63)

This method is as scalable and as easy to implement as the broadcast with CI update of

Section 3.6.2, but with the added benefit that it makes use of more information while still

maintaining consistency. The fact that less information is thrown away serves to increase

the accuracy of the estimates, and hence increase performance. The trade off is that this

requires twice the communication bandwidth to communicate the two estimates, however,

as this is a linear increase it does not void the scalability of the network.

Example 6 Consider again the situation in Example 5 where the two nodes i and j need to

communicate. Using this algorithm, node i now sends both the full current estimate Yi(k | k)

andyi(k \ k) as well as the channel estimate YiChan(k \ k — 1) o>ndy%Chan{k \ k — 1). As this

communication contains all information contained at node i, the channel filter at i is updated

by

YiChan(k\k) *- Yi(k\k)

yicw(fcl*0 *- y# l *0 -

At the receiving node, the channel filter at node j now performs a CI update on the channel

information from node i and its own existing channel estimate, then adds the difference

between Yi(k | k) and YiChan(k \ k — 1). This is done using Equations 3.62 and 3.63.

Selecting OJ to minimise the determinate of the resulting covariance gives OJ = 0.0061. The

increment of new information can now be determined by subtracting old channel estimate

3.6 Unstructured (Dynamic) Network Topologies 106

at j from the new updated one.

3.6.4 D y n a m i c T r e e S t r u c t u r e

While the standard tree structure for network connectivity makes the best use of communi­

cated information, it is also very brittle to loss of communication links. Conversely, the CI

broadcast network structure copes well with dynamic connectivity but at the cost of poor

use of communicated information.

This section describes a network structure that uses a combination of both architectures.

This network structure operates as a tree whenever possible but is able to dynamically

reconfigure in the face of link failure. The key elements of this architecture are:

1. A hierarchical parent/child link structure which ensures that it is impossible to create

a loop in any tree structure formed.

2. The use of CI to initialise a new channel filter rather than act as the nodal fusion

algorithm.

3.6 Unstructured (Dynamic) Network Topologies 107

A node is first defined with n links. Link 1 is defined to be a parent with the remaining n—1

links being children. The parent Hnk can operate as a peer-to-peer or as a broadcast Hnk,

depending on the network configuration. The child links can only be used in peer-to-peer

communications with other nodes. Figure 3.17 illustrates this node architecture.

Broadc* st/Parent
Lnk

Figure 3.17: A single node in a dynamic tree configuration.

The parent link on a node can operate in either a broadcast mode or can be joined to a tree,

but never both. When the nodes in the network form themselves into tree structures, they

do so using a hierarchical link structure. The only way that nodes may join is by joining a

parent and a child Hnk. As each node can, by definition, only ever have one parent link, this

ensures that any tree structure formed can only ever have one single node that sits at the

top of the tree and has its parent link in broadcast mode. This node is referred to as the

tree master. All other nodes in the tree must, by definition, have been attached to a node

using their parent finks and therefore do not receive broadcast information. This ensures

that there is only one single point at which the tree interacts with other nodes or trees. In

turn, this eliminates the possibility of double counting broadcast data.

This concept is illustrated in Figure 3.18 where a number of trees and an independent node

are all communicating. Note that it is only the master node in each tree which broadcasts.

Once the tree master has information, it can propagate this to all other nodes within the

tree in an optimal manner. An important difference in the dynamic tree architecture is that

nodes know the identity of both their immediate neighbours and the tree master node. No

further local knowledge of the global topology is required however.

The parent link on each node maintains a channel filter regardless of whether it is in a

broadcast or tree topology. This is necessary as the channel mode may change with changes

in network configuration. However, all child links can only ever be used in a peer-to-peer

3.6 Unstructured (Dynamic) Network Topologies 108

mode so a channel filter is only required when a connection is made.

When a parent link is not directly connected to the child on another node, it operates

in a broadcast mode. The channel niter update in broadcast mode needs to be conserva­

tive as there is no knowledge of the source of any information. The channel filter could

be implemented using the conservative algorithms described in either of Section 3.6.2 or

Section 3.6.3 above, although the latter would be preferable as it makes better use of the

information. When configured in a tree structure, channel filters are implemented to make

use of all information.

To join a tree structure, a node broadcasts a request to attach to another node. Any node

with a spare child link replies and they negotiate joining. When joining a tree it is important

3.6 Unstructured (Dynamic) Network Topologies 109

to ensure consistency, no double counting, between estimates in the joining nodes. The node

joining the tree must send a broadcast information message to the attacking node. The child

link on the attaching node must be updated with this estimate using the broadcast update

algorithm. The attaching node then sends this update back down the channel and the new

node need only overwrite its previous channel estimates with this new information. This

new information is guaranteed to be at least as good as its information prior to connection.

Multiple trees can be joined in the same way as an independent node joins a tree. The node

at the top of the tree uses its parent link to negotiate joining a child link on another tree.

As an example of this in operation, consider the simple case of two independent nodes, A

and Bt wishing to join together:

1. Node A broadcasts a Request To Join (RTJ) another node.

2. Node B receives the RTJ message. It has spare child links so it sends an Available

To Join (ATJ) message to node A.

3. Node A receives the ATJ message from node B and from any other node in the vicinity

that may also be responding to the original RTJ. Node A selects the best response

(node B) and commits to a joining by transmitting a Confirm Selected Link (CSL)

message.

4. Node B receives the CSL message and must ensure that the request to join does not

corrupt the integrity of the tree. It must pass a message to the tree master with the

identity of the node that wishes to join the tree. When ready, node B transmits a

Confirm Link (CL) message. Part of the acceptance message is the ID of the trees

master node, in this case Node B.

5. Node A receives the CL message and joins the tree. The parent link on Node A is

now in peer-to-peer mode and does not listen to any broadcast messages. In order to

align the channel filters, Node A sends its usual broadcast message structure through

the point to point link to node B. Node B uses this information with its own state

and performs a CI update. The result of this CI update is then written to the channel

filter and sent back to Node A down the same peer-to-peer link.

6. Node A receives the information from Node B and uses this to update its own channel

filter. The channel filter between the nodes is now initialised with a conservative

3.6 Unstructured (Dynamic) Network Topologies 110

estimate of the common information and the two nodes can communicate from this

point onward in a tree structure.

Figure 3.19: Joining two trees together.

This simple example can now be extended to a more complex situation where two trees

are joined together. Consider the scenario in Figure 3.19. The two nodes A and B have

now formed into a tree of two and would like to merge with another tree. When node B

broadcasts its request to join, it will be received by nodes A, C, D and E. Node A will

reject joining node B again as node A knows the identity of the tree master. In the example

shown, node C has two child links and they are taken by nodes D and E. It cannot accept

any new connections so it ignores the RTJ message. The two remaining nodes, D and E,

both have available child links and so will respond with ATJ messages.

Node B will receive the ATJ messages from both D and E and would select whichever is

best or which arrived first. Assuming the message from node D was the winner, B would

reply to D with a confirm selected link (CSL) message.

Node D receives the CSL message from B and must now pass a message to the top of

the tree to confirm that making this link will not violate the integrity of the tree. This is

necessary in order to prevent a race condition where B is joining to D at the same time

that C is negotiating to join to A. If this were to happen without any safeguards, the result

would be a tree looped back on itself.

Node D now sends a message up through its parent link (in peer-to-peer mode) to its parent

in the tree. The content of this message is simply that it is attempting to join with another

node. If the tree master is currently in the process of negotiating to join another tree, it

would deny the request to allow another node to join to its own tree. If it not negotiating,

3.7 Summary 111

it can immediately accept a new node and pass a message back through the tree to node

D. An interesting side issue here is that with a simple counter on this message increments

as nodes relay it down the tree, it is possible for nodes to know their position in the tree

relative to the top.

If any link in a tree connection is broken, then two trees are formed. However, as soon as

the link is broken the node lower in the tree has its parent link freed again and can use

this in broadcast mode or negotiate to join to another tree. Importantly, the channel filter

on the broadcast link must not be reset. This is because if a a tree splits then manages to

rejoin there will clearly be information in common up to the time of the split. The channel

filter at the child link can be reset and cleared safely.

While having knowledge of the identity of node at the top of the tree is new, it does not

violate any of the criteria for a decentralised system. It is not necessary to know all nodes

on the path to the top, merely the top itself. Another point of note is that it is easy and

useful to implement a system for counting the number of nodes on the path to the top as

this would enable a network manager to limit the size of any single tree, should that be

required.

3.7 Summary

This Chapter has developed the algorithmic structure of a decentralised node. It has ad­

dressed the issues of common information between nodes and presented algorithms capable

of robustly handling problems of timing and delay. Using these, an architecture for a generic

decentralised node was described. The architecture allows each node in the system to run

using exactly the same software, resulting in true "plug and play" operation.

The modules in this node architecture are general to any decentralised network configura­

tion. They can be mapped to specific network structures by modification of the channel

filter update method. The node architecture is able to run completely asynchronously, and

is able to handle communication delays, asequent data transmission and burst communica­

tion. Algorithms were also presented which allow for operation in dynamic networks.

Chapter 4 describes the practical realisation of this architecture.

Chapter 4

ANSER Project: Implementation

of a Decentralised System

4.1 Introduction

This Chapter describes the systems and hardware used in the ANSER project to demon­

strate the DDF architectures and algorithms developed in this thesis.

Section 4.2 begins by outlining the ANSER project. This includes an overview of the

scope of the project and its aims. Brief details of the Brumby aircraft are then presented

in Section 4.2.1. This details the evolution of the airframe through the three different

generations and gives a short account of its performance specifications.

Section 4.3 gives an overview of the main sensing equipment used on the ANSER project.

While there are many sensors and actuators required to operate the vehicles, only the

primary sensors used for the decentralised algorithms are described in this thesis. This

includes GPS, inertial, vision and radar sensors in Sections 4.3.1, 4.3.2, 4.3.3 and 4.3.5

respectively. An overview of the processing and communications hardware is also given in

Section 4.3.6

Section 4.4 describes how the decentralised architecture presented in Chapter 3 is mapped

to the physical hardware resources on the ANSER project. This includes details of where

the algorithms are physically implemented and which resources they use. A description of

how the communication resources are used is given in Section 4.4.1.

4^ The ANSER Project 113

Section 4.5 details the ANSER simulates** The simulator is a complex distributed software

tool that was designed to develop and test the decentralised algorithms prior to the flight

trials, and to play back and evaluate the flight data for post flight analysis. The software

is completely modular and designed to match the real system as closely as possible.

4.2 The ANSER Project

The Autonomous Navigation and Sensing Experimental Research (ANSER) project is a

large scale collaborative research project between the University of Sydney and BAE Sys­

tems. The goal of the project is to develop decentralised data fusion algorithms and demon­

strate these in real time aboard uninhabited air vehicles. Due to the scope of the project, a

large number of people across a variety of disciplines are involved. The contribution of this

thesis to the project is the development of the decentralised algorithms for tracking and

feature based navigation. However, in order to successfully demonstrate these algorithms

in an airborne environment it is important to have a team capable of manufacturing and

maintaining both the airframes and other specialised equipment.

The system which was used consists of four uninhabited flight vehicles of the type shown

in Figure 4.1. Each flight vehicle is equipped with GPS and inertial sensors and carries

two terrain payloads; a vision system and either a mm-wave radar or laser sensor. Each

payload incorporates it's own modular, fully decentralised processing hardware. On-board,

the payloads communicate with each other using a CAN bus. Inter-vehicle communication

is via radio ethernet. Each payload processor implements a fully decentralised data fusion

algorithm. Payloads communicate with each other directly in terms of terrain information;

all data fusion and assimilation occurs at the payload site. There is no separate fusion centre

on any flight platform and no fusion centre elsewhere on the ground. The architecture is

thus decentralised, fully modular and scalable. Further details of the system are given in

the following sections.

4.2.1 The Flight Vehicle

The Brumby airframe was designed and built at the University of Sydney in collaboration

with BAE Systems as a low cost, rapid development uninhabited aircraft. The airframe is

4.2 The ANSER Project 114

Figure 4.1: The four Brumby Mk.III airframes.

constructed from sandwiched nomex honeycomb and fibreglass. It has a tubular fuselage

with a large volume in order to accommodate multiple sensing payloads. A pusher (rear

mounted) engine design was used to allow a payload of sensing equipment to be installed in

the nose without any forward obstructions. In total, three versions of the Brumby airframe

have been developed. All are tricycle undercarriage, delta wing airframes capable of flying

at approximately 100 knots (180km/hr).

Figure 4.2: The original Brumby Mk.I airframe.

The original Brumby Mk.I airframe, shown in Figure 4.2, used a 74cc engine with a two

blade propeller and was capable of flying for 20 minutes with a 5kg payload. This airframe

was used for the initial vision data logging flights.

In order to increase the maximum payload capacity, the Brumby Mk.II was designed. This

used the same fuselage as the Mk.I, but had a larger wing area and a more powerful 80cc

engine which could deliver approximately 6hp. This aircraft was also used with a vision

system but was unable to accommodate the extra weight and volume of a terrain scanning

sensor such as the radar.

The current aircraft design is the Brumby Mk.III shown in Figure 4.3. This aircraft was

designed to fill the demonstration requirements of the ANSER project. The most noticeable

differences between this and earlier designs are addition of canards and the large bulbous

nose. The large nose was required in order to accommodate the scanner for the radar

and laser sensors, while the canards improve the low speed handling characteristics of the

aircraft. In addition to these modifications, a much more powerful 150cc engine was used

with a four blade propeller which increases the power over the Mk.II by approximately

lOhp. In its ANSER configuration, the Brumby Mk.III has an endurance in the order of 45

minutes with a 20kg payload. These parameters can be modified by the addition of extra

fuel tanks if required.

Figure 4.3: (Left) The Brumby Mk.III airframe on the runway at the flight test facility.
(Right) Although it has a 2.9m wingspan, the Brumby Mk.III often looks deceptively small.
Mr Jeremy Randle, the UAV engineer responsible for the design, construction and mainte­
nance of the aircraft, gives some perspective to its true size.

4.3 Sensing Equipment and Hardware 116

4.3 Sensing Equipment and Hardware

A variety of sensing hardware is required on each UAV in the ANSER system. These include

sensors for measuring quantities such as temperature, RPM and battery voltage, as well

as those for measuring the vehicle position and for the detection and tracking of external

features. While all are required for the UAV to function correctly, the discussion in this

section is restricted to only those sensors used directly in the implementation of the DDF

algorithms.

4,3.1 GPS

Each Brumby Mk.III airframe has two CMC Allstar DGPS receivers on board for locali­

sation. The antenna for these receivers are built into the top surface of each wing during

construction. Figure 4.4, taken during the assembly of a wing, shows the location of the

antenna. The base station for the differential GPS solution is a permanent fixture at the

University flight test facility.

Figure 4.4: A GPS antenna is embedded in the top of each wing under a layer of carbon fibre.
The black circle highlights the location of the antenna as the wing is being constructed.

4.3.2 Inertial System

Each aircraft is equipped with an Inertial Science ISIS inertial measurement unit, shown

in Figure 4.5. These six-degree of freedom systems are ideally suited for application in

uninhabited air vehicles due to their small size, light weight and low power consumption.

4.3 Sensing Equipment and Hardware 117

The gyro and accelerometer ranges used on these units are given in Table 4.2. A complete

listing of the specifications for this IMU are included in the Technical Manual [52],

When operating on the aircraft, the ISIS IMU outputs the acceleration and rotation rates

at the maximum rate of 400Hz using the built in RS422 serial link.

Figure 4.5: An Inertial Science ISIS IMU, measuring approximately 71mm x 76mm x
59mm.

4.3.3 Camera

A Sony CCS-SONY-HR camera, shown in Figure 4.6, is used for the vision system as it is

lightweight, inexpensive and readily available. This CCD imaging sensor has a resolution

of 600 horizontal lines and runs from a 12V power source. It has a composite video output

which gives images at up to 50Hz, or 25Hz when the images are interlaced for viewing. This

occurs as the odd and even lines are used to form separate images 20ms apart.

The vision sensor is mounted in the second payload bay of the Brumby Mk.III, immediately

behind the forward bulkhead. This places the camera slightly aft of the nosewheel on the

centre axis of the airframe. The sensor is mounted pointing directly down. Typical airborne

images from this sensor are illustrated in Figure 4.7.

4.3 Sensing Equipment and Hardware 118

Figure 4.6: A Sony CCS-SONY-HR vision sensor used on the Brumby Mk.III airframe.

The camera is used to detect and track artificial targets on the ground. A simple intensity

threshold algorithm is used in real time to extract these targets from the images. The

bearing to the target can then be generated. Although the vision sensor does not give range

directly, an estimated value is generated based on the size of the targets. A more accurate

method based on the height of the vehicle was also demonstrated as the terrain at the test

facility is relatively flat.

4.3.4 SIS: Vision/Laser System

The secondary information sensor (SIS) is a virtual range/bearing sensor obtained by pack­

aging a Sony CCS-SONY-HR camera (described in Section 4.3.3) with a laser ranging

device. It can be mounted in the Brumby Mk.III nose as a terrain sensing payload option.

The ranging sensor used in the SIS is a Measurement Devises Ltd ILM300HR laser. It uses

a GaAs laser diode to provide range measurements over distances from 5m to 300m at a

frequency of 1000Hz. The wavelength of the laser is 905nm, and range accuracy is in the

order of 30cm [65].

4.3 Sensing Equipment and Hardware 119

Figure 4.7: Typical images from the camera payload. The white 0.9m x 0.9m camera
targets are visible in the upper and lower left frames. The top right frame shows a white
Toyota Landcruiser 4 wheel drive in the image which was used to test performance with
moving targets. The bottom right frame is taken over one of the dams on the test facility
which could easily be used as a natural target.

4.3.5 Rada r

A millimeter wave radar and scanner are housed in the bulbous Brumby Mk.III nose. This

configuration is shown in Figure 4.8. The radar was designed at the University in order to

meet the stringent size, weight and power consumption limitations of the aircraft. However,

at the time of writing this thesis the radar is still undergoing calibration trials it is therefore

not used in any of the DDF experiments.

The frequency modulated continuous wave (FMCW) radar front end transmits a linear chirp

signal at 77GHz which is deflected to the ground using a gimballed mirror scanner. This

scanner rotates at constant speed and directs the radar beam at a mean grazing angle of

18° from the horizontal which results in a constant width annular swathe being scanned as

the aircraft flies. As the aircraft is constantly pitching and rolling, the system is gimballed

4.3 Sensing Equipment and Hardware 120

Figure 4.8: Millimetre wave radar and scanner fitted to the Brumby Mk.III nose.

to stabilise it and ensure the radar footprint is constant. Due to volume constraints within

the Brumby nose, the gimbal is only able to operate to + / — 15° in the pitch and roll axes.

Complete technical documentation on the radar design and performance is contained in

[18].

The radar is included as a payload in the ANSER system to give accurate range/bearing

information for the detection and tracking of artificial ground targets. These radar targets

are to be co-located with the vision targets to allow the decentralised algorithms to detect

and track the same objects using multiple sensors on multiple aircraft.

4.3.6 Processing and Communications

All onboard DDF computing for the payloads is done using commercial off the shelf PC104

hardware. The PC104 stacks include modules for power, processing, CAN and PCMCIA

cards. The processing modules are a combination of Pentium II 266MHz and Pentium III

700MHz CPUs. A two slot PCMCIA module is required to house a flash disk for data

logging and wireless ethernet card for inter-vehicle communications.

There are also some modules which are specific to the particular sensors used. The vi­

sion node incorporates a frame grabber for the capture of camera images. Once captured,

4.3 Sensing Equipment and Hardware 121

the processing module then performs all of the feature extraction and target estimation

algorithms.

The radar node uses special purpose ADC1 and DSP2 boards for interfacing and processing

the raw radar signals. The ADC had 8 x 10MHz channels with a resolution of 12 bits. The

DSP board uses two SHARC 21060 processors for the front end signal processing. This

hardware is necessary in order to perform the fast fourier transforms (FFTs) in real time.

All communication within the vehicles is done using a dual CAN bus system, as illustrated

in Figure 4.9. One CAN bus is used for DDF data and the other for vehicle control and

management tasks. The CAN controllers were configured to use the CAN 2.0B specifica­

tions.

For inter-vehicle communications, the wireless ethernet system is used. This system has

a line of sight range in the order of 4km. Although capable of a .maximum bandwidth of

11Mbps, the system is manually configured to run at 2Mbps for greater robustness.

Figure 4.9 illustrates how these processing and communication systems on the Brumby are

configured. The sensors and their attached processing modules are all connected to the

'environment bus' which is used to communicate DDF data. Note that only one of either
1 Analogue to Digital Converter
2Digital Signal Processor

4.4 Implementation of the Decentralised Architecture 122

the radar or laser can be installed in the aircraft at any one time, as they would both occupy

the same payload bay and use the scanner. The vehicle specific components such as the

GPS/IMU localisation filter and the flight controller are all connected to the 'vehicle bus'.

The commands from the pilot when being flown remotely are all received through a spread

spectrum wireless modem which is used for this purpose alone.

4.4 Implementation of the Decentralised Architecture

Each aircraft is capable of carrying up to two payload sensors, each of which has its own

PC104 processor and communication interface. This sensor and processing combination is

grouped together to form a node in the decentralised system.

The decentralised architecture on the ANSER project is implemented as a tree connected

network. The reason for selecting this configuration over a fully connected broadcast topol­

ogy is that only one node per aircraft has a radio ethernet card, which means that broadcast

messages do not actually reach every node. While a 'virtual' broadcast network could, in

principle, be constructed by forwarding messages from the radio ethernet onto the CAN

bus, this makes the node with the forwarding function critical to the operation of the sys­

tem. The tree configuration does not have this problem and it is a simple matter to create

virtual peer-to-peer connections using this hardware. Figure 4.10 illustrates the structure

of the intra and inter-vehicle communications mediums.

4.4.1 Communications

While the tree connected communication topology requires peer-to-peer communications,

both the CAN bus and radio ethernet are broadcast. Therefore, the peer-to-peer architec­

ture is developed in software using virtual channels to connect nodes. Figure 4.11 illustrates

this concept of virtual channels. The communications software can establish a virtual chan­

nel between any processes (applications) regardless of which CPU these are running on.

Within each aircraft, nodes communicate over the CAN bus. For external communications

between platforms, at least one of the nodes on any given aircraft is equipped with a wireless

ethernet card.

4.4 Implementation of the Decentralised Architecture 123

Figure 4.10: The ANSER system is configured into a tree connected communications topol­
ogy. Communication between nodes on the same vehicle is done using the CAN bus. As
only one node in each airframe has a radio ethernet card, it forms the communication links
to other vehicles.

When a node transmits information on either the CAN bus or the wireless ethernet, only

those nodes with which it is directly connected in the tree architecture will receive the

message. This occurs as the communication layer uses a messaging system that creates a

virtual point-to-point connection over the broadcast medium.

4.4.2 The Decentralised Filter

The decentralised information filter is implemented as a multi-threaded application, writ­

ten in C++. The filter is constructed using the modular node architecture presented in

4.4 Implementation of the Decentralised Architecture 124

Figure 4.11: A virtual tree connection on a bus architecture. The DDF nodes are connected
directly over the bus architecture using a virtual channel. Similarly, the sensor preprocessing
is a separate process (application) than the DDF filter and is connected to it using another
virtual channel.

Section 3.5 to ensure that each filtering node runs exactly the same software, regardless of

the type of sensor it is attached to. All sensor specific calculations are performed in the

sensor preprocessing stage, which is implemented as a separate process to the filter. Using

this architecture, the sensor preprocessing outputs the observations to the filter in their in­

formation form and the filter needs no knowledge of the sensor itself. Figure 4.11 illustrates

this connectivity between the preprocessing and the filter with the two applications running

on the same PC104 module.

The internal software structure of the decentralised filtering node is shown in Figure 4.12.

All communication to and from the node is handled using the CommLib software package

which was developed in-house by Ali Goktogan. The purpose of this is to allow the low

level communication interfaces to be abstracted from the filter itself.

The local filter runs a prediciton/update cycle that fuses information from the locally at­

tached sensor as it arrives, while only updating with channel information at the synchronous

time horizon. After the channel update, the node transmits its own new information to its

neighbours.

Each node in the system is configured in software to have a maximum of four channels.

4.5 ANSER Simulator 125

Figure 4.12: The software structure of a decentralised node. The CommLib communications
software handles interfacing to both the CAN bus and the radio ethernet. Observations from
the locally attached sensor are temporarily buffered and processed by the local filter as they
arrive. Channel data is processed as it arrives and buffered until the next time horizon when
it it fused in the local filter.

Although this can be changed, it is set at four channels as this allows nodes to have a

reasonably well branched tree without any node having so many channels as to cause a

computational bottleneck.

4.5 ANSER Simulator

The ANSER simulator is a software tool for developing and testing code for a real-time

airborne demonstration of multi-vehicle decentralised data fusion. While standard off the

shelf mathematical packages are capable of testing the validity of the algorithms, they were

4.5 ANSER Simulator 126

not able to realistically test such practical issues as the asynchronous nature of the nodes.

The ANSER simulator was therefore developed to run distributed modules on different

computers in order to match the actual system as closely as possible [40].

Figure 4.13 shows the structure of the simulator and the software modules. Each block is a

separate module which may be run on any computer connected on the network. The oval

components are changeable plug-in modules containing models of the hardware components,

and are designed to interface with a particular simulator block. It is a relatively simple

matter to add a different sensor payload to the system or indeed to phange the aircraft type

by changing these plug-in modules.

4.5.1 SimCompiier

The simulator is run using a configuration script which is interpreted by the SimCompiier.

The configuration script is used to define the number and type of each platform in the

simulation, their associated waypoints, the location and type of all ground targets and any

other simulation features. It is even possible to modify the length and alignment of the

runway and control tower by changing a few simple parameters.

The use of the SimCompiier allows the simulator to be rapidly configured for virtually any

environment. With a library of previous scripts, the development time for new simulations

is extremely short.

4.5.2 Flight Simulator

The flight simulator is the module which actually simulates the aircraft motion. This is

done through the use of the aircraft dynamic model provided, or alternatively, by playing

back the results of actual flights. The output of the module is the pose of the platform(s),

which is sent to other modules such as the sensor server to allow them to function.

The flight simulator uses a graphical display of the simulator world to convey vehicle pose

information to the user. Figure 4.14 shows a typical view of the GUI when zoomed in on

the aircraft.

When the aircraft motion is being simulated the control actions are generated by either the

simulator control module or by inputs direct from a joystick.

4.5 ANSER Simulator 127

Figure 4.13: Structure of the ANSER simulator. Each box corresponds to a simulator
module which may be run on any computer. The modules that include a graphical display
are shown with the diagram of an airfield. The oval components are plug-in modules which
contain models of components in the ANSER system. These include models for specific
sensors, as well as for the vehicle itself. The cylindrical components represent information
stored in files.

4.5 ANSER Simulator 128

Figure 4.14: A typical screenshot from the flight simulator GUI. The aircraft model used in
this version is the Brumby Mk.I, identifiable by lack of canards and regular nose. The solid
red line beneath the aircraft is the flightpath the platform is following. The transparent
cone extending down from the nose of the vehicle shows the field of view for the onboard
sensor payload, in this case a camera.

To use the flight simulator in playback mode, the output of the GPS/IMU localisation Alter

is input to the flight module via a logflle. The simulator then reads the logflle and uses this

as the actual platform pose.

4.5.3 Mission Planner

The mission planning module generates platforms trajectories for the simulator. It is ca­

pable of planning missions for multiple platforms anywhere in the simulation world. When

operating the simulator in playback mode with logged vehicle pose data, the mission planner

just uses the recorded GPS/IMU flightpath.

4.5 ANSER Simulator 129

4.5.4 Sensor Server

The sensor server, illustrated in Figure 4.15, outputs sensor observations to the decentralised

estimator. It can do this by using either a plug-in sensor model to generate simulated

observations, or by outputting real flight data from a logfile. The sensor server can run up

to five different sensors on each of four platforms.

Figure 4.15: The sensor server outputs observations to the DDF module. It is capable of
using either a software model of a sensor to simulate observations or of reading logged flight
sensor data from file.

The simulation mode of the sensor server uses a plug-in sensor model to determine how a

sensor interacts with the world. This model is some parameterised description of the sensor

and its capabilities. The sensor server is designed with a fixed interface so different plug-in

modules can be easily inserted into the simulator.

When in playback mode the sensor server reads the logged observation data from file and

uses the datas timestamp to determine when to output information. This mode enables

algorithms to be tested as rigorously as possible on real data before real-time implementa­

tion.

4.5 ANSER Simulator 130

4.5.5 D D F

The decentralised estimators are implemented in the DDF module. This module receives

the current time from the time server and observations from the sensor server. It then uses

the observation information for the decentralised estimation algorithm.

There can be any number of DDF modules in any simulation, all of which communicate in

a decentralised tree structure. The connectivity of the tree structure is defined by the user

each time the DDF component is run. Output from the DDF module can be sent to the

Picture Compilation module for display on a GUI. This output is solely for visual purposes

and does not in any way affect the operation of the decentralised estimator.

Decentralised Picture Cempilation Simulator
• Version 3.2

Figure 4.16: The decentralised tracking simulator. The selection boxes for which type of
sensor to simulate and where the sensor is located are visible at the top of the image. The
check boxes enabling DDF channels and defining their connectivity are in the middle of the
picture and the timing information and data association gate are at the bottom. The text
boxes on the left hand side enable the user to view the current estimate of any targets being
tracked.

Figure 4.16 shows the decentralised tracking simulator. Multiple copies of this program

4.6 Summary 131

are run on a number of different machines simultaneously in order to simulate a real-time

implementation using different computers in different aircraft. This configuration enables

algorithms to be tested under conditions where nodes are completely asynchronous and

operating with unknown communications latencies.

4.5.6 P ic tu re Compilation

The picture compilation module is a graphical display for the decentralised estimator. It

receives the position and 2a variance of each target or feature being tracked on the ground

and displays the result so the user can verify the correct operation of the algorithms. When

operating the simulator in playback mode with logged data, it is possible to overlay the

raw output from the vision sensor to give a more meaningful picture of the tracking task.

Figure 4.17 shows a typical image of the display during playback mode with real data.

4.5.7 Time Server

As the simulator is run on multiple computers distributed throughout the network it is

necessary generate a common time reference on all machines for the algorithms to function

correctly. Tb do this, a single time server is run on one machine in the network and it

outputs a regular count to all other modules. This count is then used as a global time

source by the entire simulator. The speed of the count can be controlled to speed up or

slow down the simulation time. It is important to note that although the simulator is used

to test algorithms in the presence of communication delays and the like, it does not run in

real-time.

4.6 Summary

This Chapter has presented a description of the equipment used in the ANSER system

to demonstrate decentralised estimation. An overview of the flight vehicle and the sensor

packages it carries is given. The processing and communication hardware is also presented

and discussed in the context of a decentralised node. The decentralised tree connected

network presented in Chapter 3 is mapped to the physical system on the aircraft.

4.6 Summary 132

Figure 4.17: The ANSER simulator graphical display in playback mode. Note the real
vision frames in the top left corner, as viewed from the red aircraft. The estimates are
plotted as red spheres and the 2a ellipse as a yellow sphere.

An overview of the ANSER simulator is given. This software is designed to develop and

test the decentralised algorithms in a realistic scenario and validate the system using real

flight data.

Chapters 5 and 6 develop specific decentralised tracking and navigation problems and

present results of implementing the algorithms in real-time on this airborne multi-vehicle

system.

Chapter 5

Decentralised Tracking

5.1 Introduction

This Chapter presents the theory and results of applying the DDF algorithms to the problem

of tracking multiple ground targets from the air. This problem is often referred to as 'picture

compilation' as collectively, the tracked targets form a picture or map of a region. Section 5.2

presents and discusses the problem for both single and multiple aircraft scenarios.

The implementation in this Chapter uses a combination of both the passive vision sensor

and the SIS described in Sections 4.3.3 and 4.3.4. The specific sensor model and feature

equations are given in Sections 5.3.1 and 5.3.2 respectively. These algorithms are used to

extract point features from an image prior to calculating the observation information.

Section 5.5 describes the decentralised tracking algorithm. This covers the models used for

the track motion, the equations used in the sensor preprocessing to calculate the observation

information, a description of the physical targets used, the track maintenance method, data

association and a description of the communication strategy between neighbouring nodes.

Section 5.6 presents results of implementing the decentralised tracking algorithm. A de­

scription of the DDF tracking system implemented in the ANSER simulator with logged

flight data is presented in Section 5.6.1. The simulator enables the same data sets to be

used to test the performance of the tracking system in different configurations. Results

of the aircraft acting independently against results in a DDF network are presented in

Section 5.6.2.

5.2 Problem Definition 134

Section 5.7 details the configuration of the system for real-time implementations of the DDF

architecture on multiple aircraft. Results of these real-time demonstrations are included in

Sections 5.7.1-5.7.3. These results represent the first ever use of cooperative UAV's in

decentralised estimation [72,102]. Section 5.8 concludes the Chapter with a summary of

the key points.

5.2 Problem Definition

This Chapter presents a classic multi-target tracking problem. The objective is to track all

targets within some bounds, and therefore build a picture of all objects in that area.

There has been extensive research in the area of tracking over the last fifty years. This work

has concentrated on topics such as computational efficiency, data association, model accu­

racy, multiple model techniques, multiple hypothesis techniques and spatial representations.

Blackman [16,17] and Bar-Shalom [5,6,8,9] for example, contain very detailed descriptions

of these techniques as well as results of the application of these to real problems.

Figure 5.1: A single platform tracking multiple ground targets. The aircraft overflies some
area and uses its sensors to detect and track any targets it encounters. Collectively, these
targets form a picture or a map of the region.

The single platform picture compilation problem is illustrated in Figure 5.1, where an

aircraft is building a map of targets in an area. The extension to the multiple vehicle scenario

is, in principle, straightforward. If a central processor were used, all platforms could send

5.2 Problem Definition 135

their target information to this central point for fusion. However, this architecture is neither

scalable nor robust due to the reliance on a central fusion point. It is therefore desirable in

the multi-platform picture compilation problem to fuse the global network information in

a decentralised architecture, without a central fusion algorithm.

If the terrain sensing payload on each aircraft is integrated with local processing and com­

munication facilities, the resulting unit can be treated as a sensing node. A decentralised

network of these nodes can then be formed using the architecture and algorithms developed

in Chapter 3. The sensing nodes can communicate directly in terms of target information

in order to have a local estimate using global information. This concept is shown in Fig­

ure 5.2 where all platforms have the complete global picture available locally through the

communication of target information. This communication has a number of positive effects:

• The extra information available to nodes through the communicated information im­

proves the quality of the estimates.

• The robustness of a DDF architecture to 'node failure' is equivalent in the airborne

tracking problem to 'aircraft failure'. If an aircraft is damaged or destroyed, the

information it gathered is not lost in a DDF network as it has been communicated to

all other vehicles.

• The picture of all targets in a region is available to all aircraft in the DDF network

as soon as any single platform visits that area. Aircraft can therefore have a picture

of targets in an area they they have not yet visited.

The framework used here leads very naturally toward directed sensing techniques. As all

platforms have global knowledge and can track targets that they have not detected them­

selves, it is possible for a platform to enter an area for the first time and direct its attention

immediately to the targets of interest. Furthermore, since the entire decentralised problem

is formulated in its information form, there are readily available information metrics for pre­

dicting the information that could be gained by looking at each target. Grocholsky [44,45]

took this concept a step further by using information measures about particular targets or

areas to determine control actions for the platforms themselves. Rather than directing a

sensor to point at a particular area, this approach directed the platforms to locations which

would maximise their information gain.

5.3 The Vision Sensor 136

Figure 5.2: Multiple platforms performing decentralised tracking. The communication be­
tween aircraft enables all vehicles to have the same estimate of the target locations.

The targets that are tracked in this research are artificial landmarks positioned at stationary

points on the ground. The targets were designed to be easily visible to the sensors used

in order to focus on the decentralised nature of the task rather than areas such feature

extraction.

The estimation of the target locations is done in a North, East, Down (NED) coordinate

frame which is common to all platforms. These axes correspond to the x, y and z axes

respectively, constructed using the right hand rule. Each platform is tracking the position

of the target in all three axes, and the velocity in the North and East axes. The vertical

velocity is not considered as the surface around the test facility is relatively flat and there

is little to be gained from the extra state.

5.3 The Vision Sensor

This section presents the algorithms applied to the vision sensor described in Section 4.3.3.

5.3.1 Sensor Model

The camera was calibrated with methods similar to that described in [48] with a readily

available tool-box. While these methods employ a fifth order polynomial for image correc-

5.3 The Vision Sensor 137

tion, this is unsuitable for a real-time system with limited processing resources. A pinhole

camera model was therefore chosen for simplicity and speed.

The calibration procedure provides the principal point (uo,vo) and focal lengths fUJfv fa

pixels) for each axis and the expected error in the pinhole model. Prom this model a

mapping from sensor coordinates (#,y,z) to image coordinates (u^v) can be defined.

Figure 5.3: Principal point, image and sensor axes for the vision payload.

The inverse mapping cannot recover the loss of range information. However a direction

to the feature can be recovered. It is convenient to define this information in a similar

form to the Euler angles defining the current platform state, as shown in Figure 5.3. The

relationship between the sensor and body axes is illustrated in Figure 5.4.

5.3 The Vision Sensor 138

9 « - arctan(tan(0') cos(^)) (5.5)

Figure 5.4: Image, sensor and body axes for the vision payload.

5.3.2 Feature Extract ion

Due to limited processing resources, a simple but fast method of point based feature extrac­

tion is employed. All pixels above a threshold are converted into line segments. A range

gate performs data association on these segments and the centre of mass of the pixels is

obtained. The mass, aspect ratio and density of the cluster of pixels is then utilised for

target identification. Figure 5.5 illustrates an image frame with an extracted target.

Figure 5.5: Image showing extracted feature.

&> The Vision Sensor 139

Some range information can be recovered due to the fact that the beacons are of a known

size. Utilising Equation 5.2 and assuming the target is parallel to the image plane, the

height, width and corresponding area (in pixels) Ai of an object can be defined. This gives

(5.6)

(5.7)

(5.8)

where At is the beacon area.

Re-arranging provides an expression for an estimate of the perpendicular height x above

the target, with the area being expressed in terms of effective side length in pixels p.

Differentiating with respect to p provides an expression for the error in the height estimate

where erp
2 is the variance in the p. Figure 5.6 illustrates the error associated with this height

estimate given the pixel resolution of the camera. The range estimate is then obtained by

correcting the height estimate with the direction the the target.

5.4 Vision/Laser Sensor: SIS 140

40 50
Area of feature (pixels)

Figure 5.6: Height estimate and error bounds.

5.4 Vision/Laser Sensor: SIS

The SIS is a virtual sensor obtained by using a laser to obtain a range to targets detected

by a camera. Its sensor model is identical to that of the vision system, with the exception

that range is now provided by the laser rather than determined by the size of the target in

the image. This virtual sensor therefore provides the same information as the vision system,

but with a greater accuracy in the target range.

The noise statistics of the sensor are given in Table 5.2. As the elevation and bearing

are observed by the camera, the values of o$ and a^ are identical to those of the vision

system listed in Table 5.1. The standard deviation in the laser range was determined from

experimental data.

5.5 Track Formulation 141

5.5 Track Formulation

This section describes the models, environment and management methods used in the im­

plementation of the ground target tracking problem. These are implemented using the

decentralised architecture presented in Chapter 3 on multiple uninhabited aircraft for real­

time demonstrations of DDF.

The aircraft track the position of the ground targets in 3-dimensions and their associated

planer velocity on the surface. The state vector for each target is" given by

introduced in Chapter 2, where n is the number of targets being tracked. The target

positions and velocities in x and y are modeled as Integrated Ornstein-Uhlenbeck (IOU)

processes [94], and the z position as a simple brownian process. In the demonstrations

considered in this thesis the targets are known to be stationary so the IOU process is tuned

to rapidly decay target velocity towards zero.

The state transition matrix for this process model is given by

5.5 Track Formulation 142

5.5.2 Sensor Preprocessing

To simplify the filter observation model, the raw sensor observations are converted to carte­

sian coordinates [x,y, z] in a global reference frame. The transformations are applied in the

sensor preprocessing stage, which outputs the observations in their information form (i(&)

and l(k)). When implemented in this manner, the filter observation model is reduced to a

simple linear model and is the same for all sensor types. This ensures that the filter code

on each node is exactly the same and that only the sensor preprocessing is sensor specific.

The conversion of observations to cartesian coordinates is calculated as follows:

The Cosine Matrix relating frame i to frame j is obtained by first rotating the frame by the

yaw angle ip, then pitch 9 and then roll <j>. For notational brevity, sin and cos are written

as s and c respectively.

This defined, the objective is now to relate the target to the earth frame. This is calculated

by relating the target to the sensor, the sensor to the body and then the body to the earth

5.5 Track Formulation 143

• P | = [xf, yl, z%] is the position of the body in the earth frame and is provided by the

GPS/INS filter [58]. It is important that this filter be accurate as it is used to register

the relative observation generated by the sensor in the global frame. Any error in the

estimate of P£ will result in a corresponding error in the converted sensor observation.

• Cf is the direction cosine matrix which relates how the body frame is rotated with

respect to the earth frame.

• P* = [z£>S/«>2s] is the position of the mission sensor to the body frame. This is

determined by calibration.

• C* is the direction cosine matrix which relates how the sensor frame is rotated to the

body frame and is also provided by calibration. If the sensor frame is perfectly aligned

so that the axes of both the sensor and body frames are parallel then the matrix is

simply an identity matrix.

• P£ = [^tiVu^] i8 *ne position of the target with respect to the sensor. The vector

which points to the target from the sensor frame can be described by two angles and

a range measurement. 0* is the look down angle of the target from the sensor frame

on the xy plane. This angle will transform the vector over to the xy plane. From

this point, the azimuth of the target %l>f can be determined. Thus the position of the

target becomes

Note that for the radar system the look down angle (grazing angle) is fixed (9f is constant).

Also note that positive is looking down from the xy plane. The azimuth angle is positive

from the x axis clockwise when looking from above.

5.5 Track Formulation 144

Once the measurements have been converted, it is necessary to convert the observation noise

to cartesian space. For a sensor with a standard deviation of ar in range, &$ in azimuth

and <r$ in pitch, the converted observation noise matrix Rfc is a function of the square of

the range of the observation and the rotation matricies.

When calculating the observation information using Equation 2.34, it is necessary to eval­

uate Rfc-1. This can done by recognising that the inverse of a rotation matrix C^ is its

transpose C? . The inverse of Equation 5.21 can now be written as

If a bearing only sensor is used (no range information is available), ar can be set to infin­

ity. Although this is not numerically possible in state space, in information space -̂ - can

be written as zero. The estimated range is now represented with infinite covariance, or

equivalently, zero information. Using a more accurate value of r under these conditions will

simply allow the estimate to converge more quickly.

Although the bearing only formulation in Equation 5.22 is valid, the vision system in this

application extracts a range estimate based on the size of the target in the image (Equa­

tion 5.10-5.11). While the variance of this range estimate is large, it is defined rather than

being infinite which enables the filter to converge more quickly than for the bearing only

problem.

As the raw observations are now in cartesian space, the observation model mapping them

5.5 Track Formulation 145

The sensor preprocessing then uses Equation 2.34 to calculate the information in the ob­

servation and transmits it onto the decentralised filtering node.

It should be noted that although the observation model has been linearised by preprocess­

ing the raw observation to the required coordinate system, it is not a requirement of the

decentralised filter. The system could just as easily function using a non-linear observation

model.

It is also recognised that the coordinate transformations used are only approximations.

However, the resulting accuracy is sufficient for the applications considered in this the­

sis. Should a more accurate result be required, the unbiased polar to cartesian transform

proposed by Bar-Shalom [5] or the unscented transform proposed by Julier [53] could be

used.

Results of the coordinate transformation and sensor preprocessing for the vision sensor are

included in Figure 5.7. The results shown have been filtered to remove observations taken

when the aircraft is banking at greater than 30°. This was necessary as estimated ranges at

high bank angles were extremely noisy and unreliable. The results after this filtering indicate

that there are still several areas, particularly on the lower left side of the plot, where clusters

of observations are seen away from targets. Rather than being spurious observations, these

are actually natural features such as patches of sand and wombat holes [97] which appear

in the images very similar to the artificial white targets. They are detected consistently

during every flight.

5.5.3 Artificial Targets

Artificial targets were used in the demonstrations in this thesis as the focus of the work is

on DDF rather than target detection. The white 0.9m x 0.9m artificial vision targets were

positioned at the flight test facility and their location surveyed using a carrier phase differ­

ential GPS receiver to an accuracy of 2cm. The number of targets used varied depending on

5.5 Track Formulation 146

Figure 5.7: Real logged flight data recorded from the vision system after the transformations
from range/bearing to cartesian coordinates. All observations were from a single flight using
one aircraft. Observations taken when the aircraft is banking at greater than 30° are ignored.

5.5 Track Formulation 147

the flight trial requirements, but was never less than 50. The locations of these targets were

also changed between different flights in order to maximise the number under the flightpath

at all times.

At the time of writing this thesis the radar is undergoing calibration and testing trials and

has not been flown as a sensing payload. However, when it is flown, tetrahedral radar

beacons are to be co-located with the vision targets to ensure that both sensors can be used

to track the same objects.

When 150 targets were deployed during the initial real-time flight, the target density was

found to be too high for robust data association. The minimum spacing between any two

targets in this demonstration was less than 20m. During poor GPS coverage, the vehicle pose

uncertainty increased (particularly in attitude) and it was possible for the uncertainty in

the observation covariance to encapsulate multiple targets. For later flights, approximately

50 targets were used which ensured that no two targets were closer than 50m.

5.5.4 Track Maintenance

For the initial real-time flight trials, a maximum of 17 targets were tracked using vision nodes

with a 266MHz CPU. This was later changed to 15 targets on nodes with a 266MHz CPU

and 25 targets on a 700MHz CPU. The number of targets was decreased on the 266MHz

CPU as more complexity was added to the algorithm to improve the results of the initial

real-time flights. The limiting of tracked targets is done to ensure adequate computation

is available on the PC104. However, it is a conservative estimate and the number of tracks

can be increased substantially using the same processors.

When a new target is detected, a Alter is initialised with the first observation. To detect

tracks that are initialised with spurious observations, all Alters are maintained as 'tentative'

tracks for the first two seconds. After this time, the tentative track must contain a minimum

of 10 valid observations to be promoted to a track, otherwise it will be reaped and the

Alter classified as unused. This method was found to be very effective when using the

vision system as each complete pass over a target at cruising speed and height results in a

minimum of 20 successive frames.

No track-to-track fusion algorithm was implemented on the simulator or during the first

real-time flights. Under conditions where the ANSER simulator was used to playback real

5.5 Track Formulation 148

flight data this did not cause any problems. However, real-time results from the first flights

do indicate that at some instances there were multiple filters allocated for the same target.

A track-to-track fusion algorithm is required under these circumstances in order to fuse the

two estimates into a single track. A more simplistic approach is to simply delete all but one

of the tracks, however this can discard a significant amount of useful information. For the

initial real-time testing the focus concentrated on the DDF algorithms rather than track

maintenance so the poor allocation (and effective loss) of a small number of filters tracking

the same target was accepted.

To eliminate the wasteful allocation of filters, a simple track-to-track fusion algorithm was

implemented for later flights. It uses a distance measure to determine filters which are

tracking the same targets, and fuses multiple estimates (for the same target) together using

CI. This ensures that the resulting single track remains consistent, and was found to work

very well. However, this method is conservative and other track-to-track fusion algorithms

formulated in information space (such as [28]) could be implemented in this framework in

a straightforward manner.

5.5.5 D a t a Association

The information gate, described in Section 3.5.6, is used for observation to track data

association. Each observation is tested against every track, and only used if a unique

assignment is made. While this method is computationally expensive, it runs in real-time

provided the maximum number of targets is bounded. However, results of the initial real­

time flights indicted that this algorithm alone was not sufficient when targets were grouped

very closely together, as the vehicle uncertainty could sometimes be sufficiently large that

multiple assignments were possible. To solve this issue, the GPS/IMU localisation filter was

improved and the target density was reduced such the targets could be uniquely identified.

The information gate is also used for track to track association when DDF information is

communicated between vehicles. The first real-time flights demonstrated that here too the

target density was sufficiently large that multiple assignments were possible. Another issue

on the initial real-time flights was that observations that were correlated through the vehicle

position were treated as independent, which resulted in overly confident estimates. This

gave results where the estimate was often within a few metres of the true target location,

5.5 Track Formulation 149

but the covariance was overly confident and did not encompass the true location. When

DDF information about these estimates was communicated, it was often impossible for the

information gate to correctly associate them as the same track, instead treating them as

two separate tracks. This issue was initially handled by adding a distance based gate to the

information gate that matched any estimates that were located closely together. However,

the issue was solved completely when the filtering algorithm was modified to correctly

handle observations that are correlated (see Section 5.5.7), as this ensured that estimates

did not become overly confident.

To further improve data association in the future, a frame to frame tracker for the vision

node is proposed. Using this technique, the first observation by the camera would need to

be associated with a target track using the information gate, but observations of the same

target in subsequent sequential frames can be identified by the vision node using the frame

to frame tracking algorithm. For an average target which is observed for a 2 second period

at 50Hz} this would reduce the number of applications of the information gate from 100 to

1.

5.5.6 Communicat ion Strategy

The decentralised architecture presented in this thesis allows the communication rate be­

tween nodes to be selected as part of the system design. In the application described here,

two nominal communication rates are used:

1. 2Hz: Every half second, nodes communicate any tracks that have received new infor­

mation. For example, if a node is tracking 20 targets but only three of them contain

information that has not yet been communicated, then only these three will be sent.

There is no need to communicate the remaining 17 as this will not give neighbouring

nodes new information. New information occurs when observations are made or when

information is received from another node. When information arrives through a chan­

nel, it is not propagated back to its sender at the next communication time unless the

local node has received further information from another source. This ensures that

nodes do not continue to communicate information gains of zero.

2. 0.1Hz: Every 10 seconds, nodes communicate all information about all tracks. This

ensures that if any of the higher frequency information messages are lost through

5.5 Track Formulation 150

some communication failure, the nodes can get the information in a timely manner.

Although this communication rate is not strictly necessary (the nodes will get any

lost information next time that particular target is observed), it was implemented for

the initial real-time flight test as the radio LAN between aircraft had not been used

in this role previously. This communication rate was only used on the real-time flight

and not the ANSER simulator. Results of the real-time flight also indicate that it

may not be necessary to continue these 0.1Hz messages in future flights.

5.5.7 D a t a Fusion

This section describes the evolution of the data fusion algorithms for the real-time picture

compilation problem. Following each set of real-time flights, the results were evaluated and

any issues were addressed for future flights.

The sensor preprocessing module was implemented to convert the raw sensor observations

into the global cartesian frame in an information form. This was done by registering the

relative observation using the aircraft pose estimate and adding the pose uncertainty to

every observation.

For the initial real-time flight, the error in the vehicle position was assumed to be zero

mean and Gaussian over multiple passes of the target and the observations were simply

added in the information filter update stage. However, as each pass over a target resulted

in approximately 15-30 observations of each target, any error in the vehicle pose during

that pass gave a corresponding error in the estimated target location. More importantly,

the target covariances were found to be overly confident as all 15-30 observations on each

pass were in fact correlated through the vehicle pose.

This issue was corrected following the initial flights by using the CI algorithm to fuse

information from the locally attached sensors at the nodal filter. The use of this conservative

method to fuse correlated observations was extremely successful, as results from recent real­

time flights demonstrate. However, the CI algorithm is only used to fuse information which

is correlated through the vehicle position, and the standard information filter update used

at all other times. Specifically, CI is used to fuse observations from the locally attached

sensor at the nodal filter, and also to fuse DDF information from another node on the same

airframe. This latter case is necessary as multiple sensing nodes on the same air vehicle

5.6 Implementation 151

use the same pose estimate to register the target location. Information received from nodes

on' other vehicles in the DDF network are handled using the standard additive information

update to make complete use of information.

5.6 Implementation

This section presents results of implementing the DDF tracking algorithm both offline and

in real-time. The offline results are obtained by post processing real flight data in the

ANSER simulator. Although it is possible for the simulator to generate its own synthetic

data, the use of logged flight data is more realistic. Real-time results are obtained from

flight trials with the decentralised algorithm implemented on multiple aircraft.

5.6.1 Offline Implementation

The following results were obtained using the ANSER simulator in playback mode with real

flight data. The data sets were from a single platform flight test using a camera payload

registered with IMU and GPS data. This single 15 minute flight was then spliced into four

separate 3 minute segments (with no segments overlapping) to 'simulate' the four different

aircraft nodes listed in Table 5.3. The flight paths over the terrain were determined by

fusing the real GPS/IMU data [58].

The camera payload which was used on this flight logged frames at 50Hz. Prom these

images, a bearing and approximate range (based on the size of the target) was extracted.

While the uncertainty in range is extremely large, range information of any sort improves

track quality.

The implementation was first run with each platform acting.independently. There was no

communication of any sort between aircraft. In this situation, each of the four aircraft

track targets using only observations from their local sensor. The ANSER simulator was

then run a second time using exactly the same data sets, but with the aircraft configured

in a decentralised tree network as shown in Figure 5.8. Here, aircraft communicate target

information to build a single common picture of target tracks. Results of these two scenarios

are presented in Section 5.6.2.

5.6 Implementation 152

Table 5.3: Node configuration for post-processed data.

5.6.2 Offline Implementat ion Results

Results of tracking a typical target are presented for both the independent platform and

decentralised network scenarios. The maps of tracked targets generated by the aircraft

operating individually are plotted in Figures 5.9 and 5.10 and in Figures 5.11 and 5.12

for the DDF network. The maps on each aircraft when operating independently are all

different. This is expected, as there is no sharing of information. Conversely, the DDF

network has all aircraft operating with exactly the same map. Furthermore, the target

estimates in a DDF environment have smaller errors. A zoomed in section of the DDF map

is illustrated in Figure 5.13 to give a clearer indication of the estimates and the 2a ellipses.

Consider now the results illustrated in Figures 5.14-5.19 which describe the evolution of

a typical target estimate over the entire period of the flight. When the aircraft act inde­

pendently, this track was only initialised on each platform when the local sensor observed

5.6 Implementation 153

Figure 5.9: Post-processed results: When the aircraft operate independently, they each
generated their own map as no information is communicated from other platforms. The
maps from aircraft 1 and 2 plotted here are clearly different.

5.6 Implementation 154

Figure 5.10: Post-processed results: The maps from aircraft 3 and 4 operating independently
are different as each platform is using only locally generated information.

5.6 Implementation 155

Figure 5.11: Post-processed results: The map of targets tracked by aircraft 1 and 2 are
plotted with the true target locations and the respective flightpaths for the case where the
platforms operated in a decentralised network. Note that the map on each platform is
identical.

5.6 Implementation 156

Figure 5.12: Post-processed results: The maps generated on aircraft 3 and 4 are identical
to those of aircraft 1 and 2 when operating in the DDF network.

5.6 Implementation 157

Complete Map - Aircraft 1 DDF Network

Figure 5.13: Post-processed results: A close up of the DDF network map from aircraft 1,
The estimates are all very close to the true target locations.

the target for the first time. Inspection of Figure 5.14 for the case where the platforms

act independently shows the track begins at approximately 25 seconds for platform 2, 28

seconds for platform 3 and 61 seconds for platform 4. As platform 1 never sees this target,

it does not ever track it. In comparison, in the DDF network results shown in the same

figure, all aircraft including platform 1 begin tracking this target immediately after platform

2 first observes it. This sharing of information around the network enables all platforms to

maintain estimates of targets as soon as one initialises a track.

Once all platforms have information about a target, any further observations they make can

be used to improve the estimate. Figures 5.14-5.16 show the position error over the entire

period of the simulation. It is clear from these plots that there is a significant improvement

in the quality of the estimate from the decentralised network. Figure 5.14 shows the error

in the a: position for each target to be approximately 5m, 2m and 12m respectively for

5.6 Implementation 158

Figure 5.14: Post-processed results: x axis position error of a typical target for 4 aircraft
acting individually and in a DDF network. When the platforms act independently, the errors
are all independent and are different. In the DDF network, the error plots for each platform
are all essentially on top of one another as all platforms are using global information. Any
period where the plots are not the same is the result of a communication dropout.

Figure 5.15: Post-processed results: y axis position error of a typical target for 4 aircraft
acting individually and in a DDF network. Although two of the individual aircraft each
have relatively good estimates in y, the third is less accurate and the fourth does not see
the target at all. The DDF network enables all platforms, including the one that does not
observe the target, to have an accurate estimate.

5.6 Implementation 159

Figure 5.16: Post-processed results: z axis position error of a typical target for 4 aircraft
acting individually and in a DDF network. The z axis error is significantly larger than that
for x and y as the vision sensor used does not directly provide range information. In order
to obtain this, an estimate of range is extracted based on the size of the target in pixels.

Figure 5.17: Post-processed results: x axis position variance of a typical target for 4 aircraft
acting individually and in a DDF network. As the aircraft in the DDF network all have
global information, this results in an estimate with a lower variance than for any of the
independent single platforms.

5.6 Implementation 160

Figure 5.18: Post-processed results: y axis position variance of a typical target for 4 aircraft
acting individually and in a DDF network. Note that when acting individually, all of the
platforms run for a significant amount of time without observing the target as the variance
gradually increases due to the process noise. However, in the DDF network the target
variance on all platforms is decreased whenever any one of them makes an observation.

Figure 5.19: Post-processed results: z axis position variance of a typical target for 4 aircraft
acting individually and in a DDF network. The periods where the independent platforms
do not observe the target is very noticeable in the z position variance as it grows rapidly.
The DDF network enables the growth of this variance to be managed more effectively by
making use of global information.

5.6 Implementation 161

Figure 5.20: Post-processed results: The maximum, mean and minimum errors in x for a
typical target are plotted over the entire flight for aircraft acting both independently and
in a DDF network.

Figure 5.21: Post-processed results: The maximum, mean and minimum errors in y for a
typical target are plotted over the entire flight for aircraft acting both independently and
in a DDF network.

5.6 Implementation 162

platforms 2, 3 and 4 when they are acting independently. However, when operating in a

decentralised network this is reduced to under lm for every platform.

The y axis position error in Figure 5.15 is actually very good for platforms 2 and 3 acting

alone, but poor for platform 4. When configured in a DDF architecture, the use of global

information results in the error at platform 4 being drastically reduced.

The z position error for the DDF architecture in Figure 5.16 results in a final error of

approximately 0.2m. The information from platform 4 is highly important in this estimate

as the final jump in this error plot occurs at time 170 seconds - the exact time that the

target estimate on platform 4 changes when acting independently. Therefore, although the

position error of the target on platform 4 is large in y, its information in the z axis is good.

The maximum, mean and minimum errors of a target over the entire duration of the simula­

tion are shown in Figures 5.20-5.22. When there is no communication of target information,

these values can be seen to vary significantly. However in the DDF network the errors are

a function of global information and are, subject to communication delays, identical on all

aircraft. The communication between platforms means that this common DDF error is a

global minimum based on the information from all nodes in the system.

As the targets are known to be stationary, the IOU process model is tuned to decay velocity

5.7 Real-Time Implementation 163

to zero when predicting. Therefore, the errors in these states are essentially zero over the

duration of the 'simulated' flight.

Figures 5.17-5.19 show the position variances over the period of the simulation. Inspection

of these plots shows that the DDF network has a much lower variance than when the

platforms act independently. This is to be expected as the extra information from other

platforms helps to bound the growth of uncertainty. This is particularly important in this

airborne environment as each aircraft is flying at approximately 100 knots (180km/hr) and

is therefore only able to observe each target for a maximum of 2 seconds. By the time the

aircraft continues on its orbit of the area it is not likely to revisit any target in less than

60 seconds. Even then, it was noted that targets were rarely seen on every orbit due to

the difficulty the remote pilot had in following exactly the same flight path each circuit.

This means that once a target is seen and the tracking filter updated, the filter must run

on its process model for at least a minute, usually longer, unless information from another

source is available. The target position variance plots for the individual platforms shown in

Figures 5.17, 5.18 and 5.19 illustrate this as the variance can be seen to grow quite rapidly

in the absence of any observation information. In the extreme case, the filters will become

sufficiently uncertain that they will have to be discarded. The decentralised network on

the other hand uses information from all platforms to continually bound the estimate to

reasonable values. Therefore, not only is the physical error in the target location improved

using the DDF architecture, but the estimate of the uncertainty in the filter is also reduced.

It is important to note that these results were obtained using real flight data from a vision

sensor. The results highlight the effectiveness of the DDF architecture in improving the

accuracy of target estimates. The final target position error for all platforms is significantly

improved using the decentralised architecture. This follows logically as the use of more

information in a filter should indeed allow for a better track estimate.

5.7 Real-Time Implementation

After initial testing using the ANSER simulator, the decentralised architecture was imple­

mented in real-time on multiple airborne platforms. The system used the output of the

real-time GPS/IMU navigation filter [58] to give the platform pose, and a combination of

vision and SIS payloads to track the ground targets.

5.7 Real-Time Implementation 164

Section 5.7.1 presents the results of the initial real-time flight. While the results of this

demonstration illustrated that the DDF algorithm communicated information robustly and

correctly, it also highlighted some serious issues with the tracking algorithm and target

registration. These issues were subsequently addressed and Sections 5.7.2 and 5.7.3 present

results of the upgraded system.

5.7.1 Results of First Real-Time Flight Test - Mult iple Aircraft D D F

Results are presented for a 2 aircraft, 4 node system running in real-time. Table 5.4 lists

the different nodes used in this demonstration.The DDF network was configured as shown

in Figure 5.23. A ground node with no sensor attached was connected to each aircraft in

order to extend the size of the network and to show the full information states on a non-

critical node. As the ground nodes have no sensor, they do not contribute any information

to the network and therefore have exactly the same estimates as the aircraft to which they

are connected. These ground nodes then output their tracking estimates to a graphical

interface.

Table 5.4: Configuration for the 4 node real-time DDF flight.

Both aircraft in this real-time demonstration use an identical vision system as their external

sensing payload. The cameras process images at 25Hz, half their maximum rate, due to

computational limitations. Each DDF node is limited in software to track a maximum of 17

targets. As the targets are known to be stationary, the IOU target process model is tuned

to decay target velocity to zero.

The resulting maps of ground targets when running the DDF tracking algorithm in real­

time are presented in Figures 5.24, 5.25 and 5.26. Figure 5.24 presents the complete map

of targets from aircraft 1, along with the true target locations and the flight path of the

aircraft. The area containing the majority of the targets has been enlarged in the lower

plot. Similarly, Figure 5.25 contains the same information from the second aircraft. The

results generated by the ground nodes are included in Figure 5.26.

5.7 Real-Time Implementation
Aircraft 1
/

Ground Node 1 Ground Node 2
Figure 5.23: Peer-to-peer communications architecture used when flying 2 aircraft for real­
time tracking. The aircraft communicate not only between themselves, but to DDF ground
nodes as well. As these ground nodes have no sensor attached they do not contribure any
information to the network. Their purpose is to provide information to the ground based
GUI.

An inspection of the results illustrates that the maps on aircraft 1 and ground node 1 are

both identical, as are the maps on aircraft 2 and ground node 2. This is the expected result

as the DDF information from the respective aircraft was the only source on information for

each of the ground nodes. However, there is a slight difference between the maps on the two

aircraft. While the majority of targets in the maps are common, there are a small number

of targets that aircraft 1 tracks that 2 does not, and vise versa. This result is also expected

in a real system, and occurs due to the delay in transmitting target information between

nodes. Each node will track the first 17 targets it encounters, whether they be targets the

node observes directly or tracks received from other nodes via DDF information.

What occurs in practice is that each of the nodes observes targets directly and initiates

tracks, then communicates these tracks to neighbouring nodes at the next communication

step. If the neighbouring nodes have unused tracking filters they can allocate one of these

and maintain a track estimate. This process works up until the point where each of the

nodes has only a small number of filters free. When this happens, it is not unusual for each

node to allocate its last remaining Alters to targets it directly observes. If all nodes do this,

5.7 Real-Time Implementation 166

Figure 5.24: Real-time results: The map generated by aircraft 1 is shown with the true target
locations and the platform flightpath. Note the jumps in the flightpath which are a result
of poor GPS coverage during the flight. This has a significant impact on the registration of
the target estimates, as they are generally offset from the true target locations.

5.7 Real-Time Implementation 167

Figure 5.25: Real-time results: The map generated by aircraft 2 differs from that on aircraft
1 for only a few targets. This is an expected result which occurs due to limiting the number
of tracks that a node can maintain. The poor GPS coverage during the flight affects the
registration of target estimates at this node, as with aircraft 1.

5.7 Real-Time Implementation 168

5.7 Real-Time Implementation 169

there axe no spare filters to use for estimates communicated from neighbouring nodes. This

gives the result illustrated in this implementation where there are a small number of targets

that are not common between connected nodes.

Figure 5.27: Real-time results: x axis position error for a typical target during real-time
tracking. As the aircraft are operating in a DDF network, the estimates on each node are
all identical.

As the target estimates are generated relative to the aircraft pose, an error in the location

of the platform will result in a corresponding error in the target location. Over multiple

passes of a target this error is assumed to be zero mean. However, as the real-time flight

was only of a relatively short duration and not all targets were observed on each circuit,

the errors in the estimated platform location did result in an offset from the true target

location. This can be seen in the results as the 2c ellipses do not encapsulate the true target

locations. The effect was amplified during the flight as there was poor GPS coverage at the

time, which degraded the estimate of platform pose significantly. The estimated flightpath

of aircraft 1, illustrated in Figure 5.24, shows jumps of up to 10m occur periodically. The

errors in the height estimate of the platform were significantly worse than this, and were

often in the region of 10 — 20m. As a result, there are some estimates which sit midway

between two real targets as the platform uncertainty was sufficiently large to allow two

different targets to be associated with a single track. This issue was addressed in later

flights by improving the GPS/IMU navigation loop, decreasing the target density and by

5.7 Real-Time Implementation 170

Figure 5.28: Real-time results: y axis position error for a typical target during real-time
tracking. As the camera is pointing straight down, there is a large amount of information
in horizontal plane (x-y axes) which in turn results in accurate estimates.

Figure 5.29: Real-time results: z axis position error for a typical target during real-time
tracking. Due to poor GPS coverage at the time of the flight, the aircraft pose had significant
errors, particularly in the z axis. This error, combined with the vision sensors intrinsicly
poor range estimate combine to give a large error in the z position of the target.

5.7 Real-Time Implementation 171

Figure 5.30: Real-time results: The x axis position variance for a typical target during
real-time tracking is quite low as the platforms are sharing their information. With the
camera mounted in the aircraft pointing directly down, the x axis is also in a plane which
is directly observable.

Figure 5.31: Real-time results: The y axis position variance for a typical target during
real-time tracking exhibits the same properties as the x axis error. As it is in the image
plane, observations of the target give good information in this axis.

5.7 Real-Time Implementation 172

Figure 5.32: Real-time results: z axis position variance for a typical target during real-time
tracking. Although the variance in this axis is greater than the others, it is not as high as it
should be as there were large errors on the platform height when observations were made.

x Position Errors - DDF Real-Time

Figure 5.33: Real-time results: The maximum, mean and minimum errors in x for a typical
target over the entire flight duration.

5.7 Real-Time Implementation 173

y Position Errors - DDF Real-Time

Figure 5.34: Real-time results: The maximum, mean and minimum errors in y for a typical
target over the entire flight duration.

z Position Errors - DDF Real-Time

Node

Figure 5.35: Real-time results: The maximum, mean and minimum errors in z for a typical
target over the entire flight duration.

5.7 Real-Time Implementation 174

making the data association more stringent. Notwithstanding these problems, the majority

of estimates were still within 10m of the true location.

Although the target estimates are close to the true target locations, the 2a covariance ellipses

are clearly overly confident. The primary reason for this is that successive observations of

a target are correlated through the vehicle pose estimate which is used to register the

observation, and this is not accounted for.

As the focus of this initial demonstration was on the DDF architecture, there was no track-

to-track fusion implemented. This can be seen in the results from aircraft 1 (Figure 5.24)

as there are two tracks for one of the targets. While this does result in a poor allocation

of resources, it does not hinder the demonstration of the DDF technology. As the ANSER

project evolved, the inclusion of a simple track-to-track fusion algorithm did occur.

The detailed tracking results for a single target over the duration of the flight are shown in

Figures 5.27-5.35. These plots show the position error and variance of a typical target esti­

mate on all nodes over the entire period of the flight. Note that as the decentralised network

shares all information between all nodes, the plots are almost on top of one another. Any

period where the plots are not exactly the same is a result of a temporary communication

failure between nodes. The robustness of the decentralised architecture allows the network

to realign the estimates in all nodes when communications are restored.

The position error in x and y shown in Figures 5.27 and 5.28 illustrate the logical result that

the accuracy of the track in the camera plane is quite good. Figures 5.33 and 5.34 illustrate

that the mean error in these axes over the entire flight was approximately 5m. The results

in height shown in Figures 5.29 and 5.35 are not as accurate. There are two main factors

contributing to this error. First, the only range information being extracted from the vision

sensor is based on the size of the target. This gives extremely poor quality information and

requires a large number of observations to converge to an accurate estimate. Second, at the

time of the experiments the GPS satellite coverage was quite poor, with only 6 satellites in

view. When the aircraft banked it often lost sight of some of these satellites which degraded

the platform height estimate, and subsequently the estimated height of the targets tracked

by the platforms. This highlights the importance of an accurate estimate of the platform

pose in picture compilation as any error here will result in an error in the target location.

In practice this error in platform pose is assumed to be a zero mean Gaussian over multiple

passes of the target. The more often the target is visited, the more accurate this assumption

5.7 Real-Time Implementation 175

and the better the resulting estimate.

As the IOU process model was tuned with knowledge that the targets are stationary, the

velocity errors and variances are both near zero throughout the duration of the flight.

The decentralised architecture can be seen to communicate effectively as the real-time results

presented in this section are the same for all nodes. However, the registration of targets

and overly confident estimates were a serious problem and were addressed in later flights.

5.7.2 Resul ts of Second Real-Time Flight Test - Single Vehicle D D F

Figure 5.36: 1 aircraft, 2 node DDF network.

Following the initial real-time flight, the DDF algorithm was modified to address the issues

that arose. These changes included:

• The GPS/IMU localisation filter was improved, ensuring the relative observations

were registered with greater accuracy.

• The GPS coverage at the time of this flight was sufficient to ensure that the aircraft

was able to maintain a differential RTK solution.

• The target density was reduced to allow the data association algorithm to uniquely

identify targets.

• The nodal filter used the CI update to fuse observations from the locally attached

sensor.

Of these changes, the first three contribute primarily to ensuring the estimated target

location Is more accurate, while the fourth ensures that the estimate covariance is consistent.

5.7 Real-Time Implementation 176

The first flight after making these changes involved a single aircraft with a vision node

connected to a ground node. Table 5.5 lists the different node types used. Observations

from the vision sensor were converted to their information form using the equations given in

Section 5.5.2, and fused in the nodal filter with the CI update maximising the determinate

of the information matrix (equivalent to minimising the determinate of the covariance).

The DDF information was then communicated to the ground node where it was handled

by a channel filter using the full information update.

Table 5.5: Configuration for the 2 node real-time DDF flight.

The results of this real-time demonstration are illustrated in Figure 5.37. The vision node

was limited to tracking 15 targets for this flight as it was using the 266MHz CPU configu­

ration.

The map generated on both the ground node and the vision node are identical as a result

of communicating DDF information, as was the case in the initial real-time demonstrations

described in Section 5.7.1. However, unlike the earlier results, the estimates are consistent

with the 2& ellipses clearly encapsulating the true target location.

It is also worth noting that these results were obtained with the aircraft flying autonomously

rather than being remotely flown. The circuits are therefore largely on top of one another

as the flight controller was able to follow the desired flightpath significantly better than a

remote pilot. This ensured that the same targets were repeatedly observed on every circuit.

5.7.3 Results of Third Real-Time Flight Test - Multiple Vehicle DDF

Following the successful single vehicle real-time demonstration in Section 5.7.2, the DDF

algorithm was flown on a 5 node, 2 vehicle system. Table 5.6 lists the different nodes used

in this demonstration. This network, illustrated in Figure 5.38, has one aircraft with both

vision and SIS nodes, the other with a vision node only, and two ground nodes with no

sensors attached.

The results of this flight test are illustrated in Figures 5.39, 5.40 and 5.41. All 5 nodes

in this network have common target estimates, as a result of the DDF information. As

5.7 Real-Time Implementation 177

5.7 Real-Time Implementation 178

SIS—Z__ Vision

Table 5.6: Configuration for the 5 node real-time DDF flight.

The results of this flight were obtained using the CI update on observation information at

the nodal filter, as well as a CI update on DDF information between sensors on the same

platform. As explained in Section 5.5.7, this is necessary as the sensors on the same platform

are also correlated through the vehicle pose in the same way as consecutive observations

from the same sensor. A standard information filter update is performed on all DDF data

to other vehicles and to the ground station.

The results in the maps of Figures 5.39, 5.40 and 5.41 demonstrate that the algorithm

worked successfully. All nodes have a common global tactical picture of the targets. Fur­

thermore, the target estimates in these maps are clearly consistent as the 2a error bounds

5.8 Summary 179

enclose the true target location. The few estimates plotted on the map that do not corre­

spond to a surveyed target were all investigated post-night and found to be natural features.

These include a number of wombat holes, a rock outcrop and the roof of a small shed.

5.8 Summary 180

Complete Map - Aircraft 3 Vision Node

5.8 Summary 181

5.8 Summary 182

validate the algorithms under controlled conditions and are included to highlight the key

advantages of the decentralised architecture over a system which does not share information.

Results are also presented of real-time demonstrations of the decentralised tracking system

on multiple UAVs. Although information was propagated successfully in the initial real-time

demonstration, the registration of target locations was very poor and the resulting target

estimates inconsistent. However, this issue was then addressed by improving the vehicle

localisation filter, decreasing the target density and by allowing for the correlation between

successive observations from the same sensor. Following these improvements, subsequent

real-time DDF flights were highly successful and provided accurate and consistent target

maps on all nodes.

Chapter 6

Simultaneous Localisation and

Map Building

6.1 Introduction

This Chapter develops the Simultaneous Localisation and Mapping Building (SLAM) al­

gorithm in a decentralised multi-platform environment. SLAM is a method for building a

navigation map of an environment from a moving platform while at the same time estimat­

ing the location and trajectory of this platform. Essentially it provides a navigation solution

for a vehicle without access to external map, beacon or landmark information. While the

single platform SLAM algorithm has received considerable attention in the past five years

[23,59,63], the multiple platform problem has only recently been addressed and this Chap­

ter represents one of the first developments in this area. The Decentralised SLAM problem,

D-SLAM, has a number of additional features which make it much more than simply a

novel application. In particular it shows how the information filter concepts developed for

the DDF algorithms find a natural application in map building. Practically, it also permits

a scalable number of platforms to build, fuse and share a common map.

Section 6.2 describes the SLAM problem for the single vehicle case. The augmented state

vector, vehicle model, observation model, and state and information space feature initialisa­

tion processes are described in Sections 6.2.1, 6.2.2, 6.2.3, 6.2.4 and 6.2.5 respectively. These

models are used throughout this Chapter and are applied in simulation to demonstrate the

essential SLAM and later D-SLAM algorithms.

6.1 Introduction 184

Section 6.3 presents closed form solutions to the continuous time single degree of freedom

SLAM problem both in state-space and information-space form. These closed-form solu­

tions are a substantial aid in understanding the performance of the SLAM algorithm and

the efficacy of the information form in multiple platform algorithms. These solutions are

obtained by solving the continuous time Riccati equation in both its information and state

space forms using the method presented in Section 6.3.2. The multiple platform problem

is initially presented in state space in Section 6.3.3 before Sections 6.3.4 and 6.3.5 present

the information form for single and multiple platforms respectively.

One of the key results from the closed form solutions of D-SLAM is that the total map

in information space is equal to the sum of the maps on each of the individual platforms.

Therefore, it is only the map information that platforms need to communicate to each other

in the D-SLAM algorithm. Section 6.4 considers this map information and how it can be

extracted for communication.

Section 6.5 presents algorithms for D-SLAM. The algorithm is initially presented in its

information form in Section 6.5.1. This formulation makes use of the fact that vehicles

only need to communicate map information in order to solve the multiple vehicle SLAM

problem. Using the vehicle and observation models generated in Sections 6.2.2 and 6.2.3, the

operation of the prediction and update stages of the filter are discussed. The update with

map information from other vehicles, which is the critical part of the D-SLAM algorithm,

is also presented.

Although the formulation of the D-SLAM problem in information space is more natural for

communication between vehicles, it requires significant computation to decouple the vehicle

state estimate from the map when the vehicle is described by a non-linear motion model.

For this reason, a hybrid state/information space formulation of the D-SLAM algorithm

is presented in Section 6.5.2. This formulation is numerically identical to the information

space algorithm of Section 6.5.1, but maintains the vehicle and map estimates in state space

form while leaving the channel filter, through which map estimates are communicated, in

information space. As inter-vehicle communication will usually occur at a significantly

slower rate than the local prediction stage of the SLAM filter, this formulation requires

less computation than the information space formulation. A discussion of the two D-SLAM

formulations is given in Section 6.5.3.

In order for D-SLAM to work in any large scale problem, it is necessary to define a com-

6.2 Problem Definition 185

munications scheme which is flexible to the size of maps transmitted between platforms.

Section 6.6 discusses this issue and presents a constant time communication scheme which

uses a hybrid information filter/covariance intersect algorithm. Using this method, vehi­

cles can form a sub-map of an arbitrary size which, when communicate to other nodes,

guarantees the system remains scalable. Section 6.6.1 shows how the sub-map is extracted.

Sections 6.6.2 and 6.6.3 respectively describe the channel filter update and the method of

updating the SLAM filter with information from other nodes.

Section 6.7 describes a simulation of the different D-SLAM algorithms presented in this

Chapter. The simulation compares three different DDF communication methods to demon­

strate their performance. The methods compared were:

1. No communication between platforms. The platform simulations run a SLAM filter using

only locally generated information.

2. Complete communication. The complete map of JV2 elements is communicated between

platforms every 10 seconds.

3. Constant time communications strategy. A sub-map of at most 5 features is communi­

cated every 10 seconds. The features selected for communication are those with the greatest

information gain that had not yet been transmitted.

The results of these simulations are presented in Section 6.7.1. Section 6.8 concludes this

Chapter with a summary of the key issues in D-SLAM.

6.2 Problem Definition

The SLAM algorithm involves a platform building a map of an environment while simulta­

neously using this map to localise. Figure 6.1 shows this process graphically. A platform

uses some sensor to make relative observations to stationary features or landmarks in the

environment. Once observed, the features are augmented with the vehicle states into a

single combined state vector. As these observations are relative to the vehicle, an error in

the platform pose results in a corresponding error in the landmark location. This is clearly

shown in the figure, where the target is offset from its true location by the same amount as

the vehicle error. Over time, the entire map becomes correlated through the motion of the

6.2 Problem Definition 186

vehicle. This and other convergence properties of the SLAM algorithm were investigated

by Newman [80], who proved the following:

1. The determinate of any submatrix of the map covariance matrix decreases monoton-

ically with every observation.

2. In the limit, as the number of observations increases, the map becomes fully correlated.

3. The lower limit of accuracy of the map is given by the vehicle uncertainty when the

first landmark is observed.

These proofs were a significant advance in the understanding of the SLAM problem as they

show that the algorithm will force convergence of the map error to a fixed lower bound.

Figure 6.1: The SLAM problem.

A large amount of research has been undertaken in the SLAM problem in recent years [61,

90,92]. There has been particular interest and progress in areas such as large scale mapping

problems [54,60], computational efficiency [62,73] and convergence properties [35,39,80].

However, to date, this research has concentrated on using conventional state space formu­

lations of the SLAM algorithm.

6.2 Problem Definition 187

In this thesis, the SLAM problem is cast in an information space form. This enables the

SLAM algorithm to exploit the properties of the information filter in being decentralised

and allows the multiple platform SLAM problem to be developed in a fully decentralised,

information theoretic form.

The benefits of decentralising SLAM are potentially enormous. For a single platform using

a SLAM algorithm to decrease its location covariance, it must revisit features it has seen

previously. However, with multiple platforms it is possible to share information and so gen­

erate a more accurate map and location estimate. Indeed, if certain platforms are directed

to revisit shared features, then there will be significant location estimate improvements for

all platforms.

Solutions to the multi-vehicle SLAM problem have been investigated in a number of different

forms. Thrun [95] demonstrated a robust implementation for cyclic environments using a

combination of maximum likelihood and posterior estimation techniques on both single and

multiple mobile robots. However, the multiple robot version of this algorithm is restrictive

in that it requires one robot to be a "team leader" to initialise all other platforms.

A Kalman filtering approach was taken by Williams [103] who generated local submaps

which were uncorrellated with the global map on each vehicle. These local submaps could

then be transmitted to other vehicles and periodically fused into a local global map. While

this approach manages the amount of communications very well (the size of the submap

is not fixed), it is not robust to communications failure. The submaps are essentially an

increment of information, and if one of these messages is corrupted or not received, the

information it contains is not encapsulated in any future transmissions.

When formulated in information space it was shown in [79] that the global map with multiple

platforms is simply the sum of the map information at each platform. This follows logically

from the update stage of the information filter which is additive and the fact that the

process noise acts only on the vehicle. Further research into information space SLAM can

be found in [32,34,78,96].

The communications management scheme presented in this thisis uses a hybrid Covariance

Intersect/Information filter algorithm to manage the complexity of large maps. Julier [54]

also used Covariance Intersection for large scale SLAM, and in the process noted that the

algorithm could also be used for the multiple vehicle problem. However the communications

€.2 Problem Definition 188

management algorithm presented here differs in that it utilises the channel filter as a means

of reducing the information loss in a conservative CI update.

When implemented using a Kalman filter, the SLAM algorithm operates using a recursive

prediction and update cycle. The prediction stage propagates the platform estimate and

covariance over time, and is updated when observations to landmarks are made. When

considered in its equivalent information form, the SLAM filter again uses the recursive pre­

diction and cycle, but maintains the estimate in terms of information. The prediction cycle

serves to decrease the amount of information about the platform position, while observations

add new information and hence increase the certainty of the estimate.

6.2.1 T h e Augmented Sta te

Consider the problem of estimating the position and orientation of a platform in two degrees

of freedom. The state vector can be written

-\T

6.2 Problem Definition 189

When formulated using the Kalman filter, the estimate and covariance of the combined

state vector are defined using the standard definitions given in Equation 2.11. In discrete

time notation, these are written as

6.2 Problem Definition 190

6.2 Problem Definition 191

6.2 Problem Definition 192

vehicle states and the those of the observed landmark, the result is a sparse matrix and can

be written as [103]

6.2 Problem Definition 193

6.2 Problem Definition 194

initialisation function g with respect to the augmented states. This gives

P(fc | fc) = Vxg(fc)P'(fc I * - l)Vjg(fc), (6.40)

6.2 Problem Definition 195

6.2.5 Feature Initialisation in Information Space

The initialistion of features in information space can be done by transforming the state

space initialisation equations in Section 6.2.4 to their inverse covariance form.

The initial step involves augmenting the diagonal of the information matrix for the map

with the inverse of the observation variance R*. as

6.3 Closed Form Solutions 196

and making the substitutions

6.3 Closed Form Solutions 197

6.3.1 Platform Models

All platforms i = 1,... > m use the same linear one degree of freedom model given by

6.3 Closed Form Solutions 198

total observation noise can then be constructed in the form

6.3 Closed Form Solutions 199

where

x (t) = x (t) - x (t) . (6.70)

In information space, the inverse of the state variance is maintained, and is denoted Y(£) =

6.3.2 Solutions to t he Riccati Equat ion

The evolution of the SLAM covariance matrix is described by the algebraic Riccati equation

P{t) = FP{t) + P{t)FT + GQGf1, - PWlFR^HPit) (6.71)

Similarly, the evolution of the information matrix is described by the inverse of Equa­

tion 6.71, written in the form

T D - 1 Y(t) = -Y(t)F - F1 Y{t) - YtyGQG1 Y{t) + H1 IT'H (6.72)

Further information on the Riccati equation and its applications can be found in [2,3,15,89].

Solving Equations 6.71 and 6.72 provides a closed form solution to the covariance and

information matricies. These solutions are potentially extremely valuable as they allow the

performance of the problem to be evaluated for any set of system parameters.

The method used to solve the Riccati equation in this thesis is to represent it as a fraction

decomposition in the form

P(t) = U(t)V-\t), (6.73)

for a state space solution, and

Y(t) = V(t)U~Ht), (6.74)

for an information space solution, where U(t) and V(t) are the solution to the Hamiltonian

described by the linear dfferential equation [2,41]

U(t)

V(t)

F Q

HR^H -F

U{t)

V(t)
(6.75)

6.3 Closed Form Solutions 200

As F = 0 (Equation 6.60), Equation 6.75 simplifies to

'(/(t)

which can be solved using a commercial symbolic algebra package. The results presented

in this thesis are obtained by solving Equation 6.77 for n = 1,2,3 features and m = 1,2,3

platforms. Using these solutions, the general case was deduced and checked by substitution

back into Equations 6.71 and 6.72.
6.3.3 S ta te Space Solution

A closed form solution to the single degree of freedom SLAM covariance matrix in continuous

time was first presented for the single vehicle case in [39]. This investigated the convergence

properties of the SLAM algorithm for various combinations of process and observation noise.

In this thesis, development is focused on information filter formulations of multiple vehicle

SLAM problems.

A general form of covariance matrix P(t) for the of the n feature, m platform scalar SLAM

problem is presented in Equations 6.78-6.86. The solution was obtained by solving Equa­

tion 6.71 using the method described in Section 6.3.2. Multiple platforms each observe the

same n continuously observable, viewpoint invariant features at all times. These features

are used for SLAM. Data association is not considered in this problem and platforms only

sense the features and not the relative location of each other. The process noise q is the

same for all platforms.

The solution to the covariance matrix is decomposed into three different sub-matrices due

to size constraints. These are the platform to platform Ppp(t), platform to map PpM{t)

6.3 Closed Form Solutions 201

and map to map PMAT(*) components. The structure of the full matrix is given by

6.3 Closed Form Solutions 202

Figure 6.2: The evolution of the continuous time SLAM covariance matrix for a two plat­
form, two feature problem. The results were obtained with q = 0.1 for both platforms and
r = 5 for both features.

The characteristic equation of the system, given by Equation 6.86, is clearly dependent on

the number of platforms. This occurs as all platforms are correlated through the use of the

same map, and subsequently affect one another.

The structure of the platform to platform elements are somewhat simplified due to each

platform having the same process noise covariance q. The term beginning (m — l)3- in

Equation 6.79 would in practice change if q were different for each platform. However, it

is important to note that the platform to platform cross correlations are all non-zero and

equal, as each platform is correlated through the use of the common map.

6.3 Closed Form Solutions 203

The time t on the denominator of the first term of each element in Equation 6.83 is multiplied

by the number of platforms m. This occurs as all platforms, using the same process noise

q, are observing the same features with the same observation noise r. The net result is that

this can be thought of as one sensor observing the same features for m times as long (where

m is the number of platforms).

In the limit t —* oo, the platform to platform cross correlations become equal to the platform

to map cross correlations and also the map to map cross correlations. The reason for this

is that all features and platforms are correlated through the use of the same map. This is

illustrated in Figure 6.2 which plots the evolution of the covariance matrix over time.

6.3.4 Information Space Solution for a Single Pla t form

The information filter form of the SLAM problem can also be found using an identical

solution procedure to that used for the Kalman filter form. The inverse covariance matrix

for general form of the n feature scalar SLAM problem is given by

qcoth(at) tanh(^) tanh(^)
9 TiCt TjCt

tanh(^) v fn\ i t t , 2tanh(f) t 2tanh(f)

(J Closed Form Solutions 204

system by observing feature i. The term £• is thus the information added by observing the

ith feature for t seconds.

The off diagonal feature i to feature j cross-information is structured very closely to that

of the diagonal elements.

^ +
2 t M l h y (6.90)

TiTjIr atrial?

The primary difference is that the off diagonal terms do not contain the -£• term described

above. This is to be expected as this term relates to a continuous observation of a feature

rather than the cross information between features.

The feature i to platform cross information is in the form

tanh(f;

na
(6.91)

The cross information for a feature i is clearly dependent on r$« This differs significantly

from the state space case in Equation 6.82 where all cross-correlations are the same [39].

In the limit t —• oo, the platform to platform information approaches ^ The limits of the

vehicle to map components are different for each feature, and are governed by Ti for that

feature. This differs from the state space equivalent where the feature to feature and feature

to map terms were all equivalent in the limit (see Figure 6.2). Also, the information term

for a particular feature grows without bound. This is reasonable because as the platform

continuously observes a feature, information continues to accumulate.

6.3.5 Information Space Solution for Mult iple Platforms

The information filter solution to the multiple platform SLAM problem is now considered.

The same models and assumptions stated in Section 6.3.3 are employed save that different

process noise covariance values, gj, are used for each platform.

The information matrix Y(t) for the n feature, m platform scalar SLAM problem is decom­

posed into three sub-matrices. These are platform to platform Ypp(t), platform to map

ypM(t) and map to map YA/M(*) components. The structure of the full matrix is

6.3 Closed Form Solutions 205

6.3 Closed Form Solutions 206

6.4 Map Information 207

where bu = 2 taph[2 \ This follows logically from the structure of the information filter

update stage which is additive. The limits of the feature to feature elements are all un­

bounded as t —» 00. This occurs as extra information is continually being added to the map

information matrix.

6.4 Map Information

There are two important results that the continuous time solution to the multiple platform

information matrix in Section 6.3.5 provides:

1. The platform to platform cross information is zero provided the vehicles do not sense

each other.

2. The global map information is the sum of the map information on each platform in

the system.

These illustrate that when the multi-platform SLAM problem is formulated in information

space, the only information that platforms have in common is map information. Provided

platforms do not use relative observations of each other for localisation, the cross information

between vehicles is always zero. As the global map information is simply the sum of the

contributions from each vehicle, it is possible to construct a decentralised system where the

map information is all that needs to be communicated between platforms.

Each platform in the decentralised network now maintains a combined state estimate in

information form of its own states and the map of landmarks. Crucially, the fact that

the cross information between multiple platforms is zero means that it is not necessary

for a platform to augment the vehicle states of any other node it is communicating with.

Platforms merely receive map information from others in the network and fuse this with

their own local map.

6.4.1 The Information M a p

The D-SLAM problem can be depicted as shown in Figure 6.3 where multiple aircraft are

all communicating map information and localising themselves within the common map.

6.4 Map Information 208

6.5 Algorithms for Decentralised SLAM 209

y* (A; | k) are not simply the map component of the information matrix.

6.5 Algorithms for Decentralised SLAM

This section describes practical algorithms for D-SLAM using the decentralised architecture

presented in Chapter 3. Multiple platforms axe now considered as nodes communicating

map information in a decentralised network. However, to use the communicated map in­

formation, it is assumed that all platforms are initialised in a global coordinate frame. For

the UAV applications considered in this thesis, the D-SLAM algorithms can be registered

in a global frame by using the IMU/GPS solution on each aircraft for initialisation.

6.5.1 Decentralised Information Space Formulation

In the decentralised information form of the SLAM problem each node maintains an es­

timate of its own platform states together with a common information map. At no time

does any node need to estimate the states of any other platform. This augmented state

estimate maintained using the information filter prediction and update equations is derived

in Section 6.2 (Equations 6.18-6.21 for predictions and Equations 6.34-6.37 for updates).

6.5 Algorithms for Decentralised SLAM 210

When computing the prediction stage of the information filter, it is important to recognise

that the information about every state (including the map elements) will change even though

the model only propagates the vehicle states. The result of this is that the prediction

stage of SLAM is more computationally expensive in an information form as the entire

SLAM matrix will change instead of just the vehicle submatrix. However, the the SLAM

update in information form, given by Equations 6.34-6.37, very simple as it only affects the

submatricies of the vehicle and feature being observed.

The difference between a network of independent platforms and a D-SLAM implementation

is the incorporation of map information from other nodes in the DDF network. Whereas

an independent platform will only update with information obtained from locally attached

sensors, the decentralised version has an extra update stage which is used to fuse this extra

map information.

It is the map information quantities Y^m(/c | k) and y^k | k) given by Equations 6.109

and 6.110 that are communicated between nodes. A channel filter is used to maintain

communications and keep a record of the map information nodes have in common. When

information is received at a node, the channel filter determines the new information by

subtracting the existing channel estimate from the newly arrived data using the algorithm

described in Section 3.4. This difference or new information, written as I^m(fc) and i^(fc),

is then output by the channel filter to the local filter for update.

An important property of the channel filter in decentralised SLAM is that there is no

time alignment problem as all features are, by definition, stationary. This results in a

simple channel algorithm that literally only performs addition and subtraction operations

for updating and calculating new map information.

After the channel filter has computed the new information l^m(k) and i^(fc), it passes

these increments on to the local SLAM filter. These increments are essentially a pseudo-

observation of the entire map. Therefore, the associated observation matrix H(fc) is simply

which is the identity in the map section and zeros in the vehicle section. The inverse of the

6.5 Algorithms for Decentralised SLAM 211

6.5 Algorithms for Decentralised SLAM 212

6.5.2 Decentralised Hybrid Space Formulation

Although the information formulation of decentralised SLAM has the map in a form which

is easily communicated, it requires significant computation to invert the information matrix

and extract the states if non-linear platforms models are employed. This occurs as the

models are linearised around the current state estimate which is not readily available in an

information form.

One method of reducing the computation is to note that the prediction stage of the filter

will invariably be more frequent than an update with information from other nodes in

the system. As a non-linear process model would require the inversion of the information

matrix for every prediction, it is therefore usually simpler to formulate the SLAM problem

in state space and only perform an inversion to information space when communicating

with other nodes. The channel filter in this formulation is still left in information space.

Using this method, the prediction and update with local observation can be done using the

EKF Equations 6.11-6.12 and 6.30-6.33 respectively.

When information from another node is received, the channel filter operates using the algo­

rithm defined in Section 3.4 and calculates the new map information increment I^m(/c) and

i£j(fc). At this time, the local SLAM estimator is converted from state space to information

space and the update is performed using the information update given in Equations 6.117

and 6.118. After the update step, the local SLAM estimate is converted back to state space

where the EKF continues to run.

6.5.3 Information Space SLAM Vs Hybrid Space SLAM

The two D-SLAM formulations given in Sections 6.5.1 and 6.5.2 are both numerically iden­

tical. The former, developed entirely in information space, allows the inter-vehicle commu­

nications to be integrated easily with the rest of the system as the map is always available

in its information form. For a linear system, this formulation is ideal as it is not necessary

to convert to state space at any time. However, if the system uses non-linear models as is

usually the case, the information matrix must be constantly inverted to extract the state

estimate. Given that the prediction stage on platform navigation filters often run at quite

high rates, this can cause significant computational problems.

6.6 Scalable Communication with Large Maps 213

Recognising that inter-vehicle communication will usually be must less frequent than local

predictions enables the D-SLAM filter to be recast into a hybrid state/information space

filter which has the state estimates readily available. However, this does have the disad­

vantage that at every inter-vehicle communication step the state estimate is converted to

information space and updated before returning to state space. Notwithstanding this, the

hybrid form given in Section 6.5.2 is typically more efficient for a non-linear system as these

inter-vehicle updates occur much less often than predictions.

The selection of which form of D-SLAM to use therefore depends on whether the system

is linear. If it is, the entire problem can be left in information space using the method in

Section 6.5.1. Otherwise, the hybrid form given in Section 6.5.2 is typically more efficient.

6.6 Scalable Communication with Large Maps

While the preceding sections have demonstrated that communicating map information re­

sults in a natural and elegant D-SLAM the problem remains of managing the complexity of

communicating large maps between platforms. This section discusses this issue and presents

a realistic and scalable solution to the problem.

The heart of a D-SLAM algorithm is the communication of map information between plat­

forms. The simplest and most obvious method is to send the entire map. However, this leads

to communication requirements of order JV2, where N is the number of features in the map.

As the map size increases, this method will rapidly become impossible to maintain over any

communication medium with a finite bandwidth. Some alternative method that communi­

cates the 'most informative' map information given communication bandwidth limitations

is therefore appropriate.

One possible algorithm is to simply send a subset of the total map (a submap) and to fuse

this at the receiving node as if it were the entire map. However such communications ignore

the correlation between this submap and the remaining map. If future communications only

refer to this submap, then all will remain consistent. However if, in future other submaps

are communicated, the correlation between submaps must be known if a consistent estimate

is to be obtained. The problem is therefore how to send different submaps and fuse them

consistently. The solution to this problem lies in the implementation of the channel filter.

Since the channel filter keeps track of common information between nodes, it is necessary to

6.6 Scalable Communication with Large Maps 214

implement it in such a way that it does not pass inconsistent information from the network

to the local filter. As it is the unknown cross-correlations that cause the problem, it is

useful to exploit the well known advantage of Covariance Intersect (CI) to update pieces of

information whose degree of correlation is unknown. By using a CI update in the channel

filter, it is possible to handle different submaps simply and effectively.

The essential problem is to implement a a channel filter which is able to communicate and

fuse submaps consistently. The approach taken here is to use the Covariance Intersect (CI).

The CI method allows data with unknown correlation to be fused in a conservative and

consistent manner. Implementing the CI method in the channel filter gurantees that the

node filter only ever fuses consistent estimates. This structure allows submaps of arbitrary

size to be consistently communicated between nodes.

6.6.1 Extrac t ing t he Submap to Communicate

An important consideration of decentralised SLAM is how to dynamically select which

submaps to communicate. In information form, this problem has a natural solution in

terms of information gain. Practically, map information in the channel filter is substracted

from information at the local filter and those map elements whose information residual is

the greatest are communicated. Doing this in the channel filter, where common information

is maintained, has the effect of maximising information gain at the node where map data is

to be sent. Other possible submap selection strategies are possible including, for example,

requesting a submap in a specific area.

Once the submap for transmission have been selected, information from all of the other

states in the map must be removed. This can be done by defining a projection matrix Gm

such that Gmy(k \ k) extracts only those features in the map which are to be transmitted,

and another projection Gv such that Gvy{k \ k) contains all other states. Using the notation

y*(fc | k) and Y*(fc | k) to define the information vector and information matrix of the

submap to be sent gives

y*(*|Jb) = <^*(k\k)-Y{k\h)<g(GvY{k\k)<fy~1CW{k\k)] (6.119)

Y*(fe | k) = Gm [Y{k | k) - Y(* | k)Gl (GvY(k \ k)Gl)~l GvY(k \ k)] fl£

(6.120)

6.6 Scalable Communication with Large Maps 215

The small information submap given by y*(fc | k) and Y*(fe | k) is now sent to the channel

niters prior to transmission to another node.

6.6.2 Channel Update

The channel filter maintains an estimate of the common information between nodes. In

SLAM, this common information is simply those map elements that have been communi­

cated. As map features are assumed stationary, the prediction step in the channel filter is

redundant.

The channel filter update is computed using the CI algorithm to maintain consistency when

communicating submaps without additional map coorelations. When a submap y*(k | k)

and Y*(fc | k) is received in a channel filter, the CI update may be accomplished by first

back-projecting through the matrix Gm to the global map, and then updating according to

Ychon.(fc|fc) = <jYchani(k\k-l) + (l-u>)GlY*(k\k)Gm (6.121)

fc7fc»«(*|*) = V9chani{k\k-1) + (1-Ul)(%j*{k\k), (6.122)

where a;, as in Section 2.5, is chosen to minimize the determinant of the updated information

matrix.

The channel filter update is used to compute a new information increment resulting from a

transmission as

Ychanj {k\k)- Ychan; (k \ k - 1) (6.123)

YChanj {k | fc) " YChanj { k \ k - l) . (6.124)

These increments are then sent to the local node filter for fusion.

6.6.3 Fusing Information from Other Nodes at t h e Local Filter

At the local filter, the information increments R(fc) and i*,(fc) from the channel filter are

first projected, through a matrix <?s, into the complete information state dimension. The

6.7 Simulation 216

update (fusion) is then performed in the standard manner:
y(fc|fc) = M k | * - l) + GJ&<« (6.125)

Y(fc|fc) - Y(fc | fc- l) + GJ£(fc)G*\ (6.126)

This update of the local filter is essentially the same as that given by Equations 6.117 and

6.118 for the case where the full map is sent. Both updates contain zero information for

the vehicle and simply add in the map information increments. The only difference is the

number of landmarks that are updated with new information.

6.7 Simulation

The D-SLAM algorithm developed in this thesis is demonstrated in simulation with a num­

ber of different communication strategies. These are:

1. No communication between platforms - each vehicle operates independently using only

its own observations.

2. Transmission of the complete information map of N2 elements at every communication

step.

3. The constant time communications strategy where a submap of only 5 features is

transmitted at each communication step. The features to include in the transmitted

submap are selected at transmission time to be those which had the greatest amount

of information not yet sent.

The simulation uses 100 vehicles moving in an environment of 100 features. Table 6.1

lists the bandwidth required by each of the communication strategies in this operating

environment. Figure 6.4 illustrates this simulation world, marking the feature locations

and a number of the vehicle paths. Platforms use the non-linear motion model presented

in Section 6.2.2 to estimate their position and orientation x y <f> \. Each vehicle is

equipped with a range/bearing sensor which gives observations to features in the forward

hemisphere of the vehicle at a frequency of 1Hz. Vehicles are able to communicate map

information to their neighbours in the network at a frequency of 0.1Hz.

6.7 Simulation 217

6.7.1 Results

The results of the simulation are illustrated in Figures 6.5-6.12. Platform and landmark

error and variance results are shown for a typical vehicle and feature in Figures 6.5-6.10.

These illustrate that the different communication algorithms all operate logically and con­

sistently. Unsurprisingly, platform and feature location errors are significantly lower when

platforms communicate map information than when they do not. This can be seen as the

error and 2a bounds of both the vehicle and feature estimates are significantly smaller for

the constant time method than when the platforms act independently. The N2 communi­

cation strategy communicates more information again, so it follows that it is better again.

Importantly, the constant time method is only marginally less accurate than the full N2

algorithm, even though it communicates only 0.25% the data.

Figure 6.11 superimposes the estimate of a typical feature from each of the different commu­

nication strategies. Clearly, the covariances associated with this estimate differ significantly

with different communication strategies. As expected, the covariance ellipse for the plat­

forms acting independently is the largest, while the constant time strategy and N2 strategy

are both significantly better. Of these, the latter has the smallest error ellipse as it com­

municates the most information. However, it is again important to stress that the marginal

improvement in the feature estimate using the N2 algorithm over the constant time method

comes at an enormous expense in terms of communication.

The results indicate that the constant time algorithm approaches the N2 strategy quite

quickly even though it is not transmitting as much information. This occurs as the submap

that is transmitted is dynamically selected to contain those features which will give the

greatest information gain. This trend illustrates the idea that good information about a

small number of features increases the map accuracy significantly. This concept is further

illustrated in Figure 6.12 which shows the mean variance of the vehicle states over the

6.7 Simulation 219

6.7 Simulation 220

6.7 Simulation 221

6.7 Simulation 222

6.7 Simulation 223

6.7 Simulation 224

6.7 Simulation 225

6.7 Simulation 226

X Variance vs CT Map Size

40 50 60
Communicated Map Size

Figure 6.12: The mean variance in x, y and <j> from all vehicles over the period of the simu­
lation for different maximum map sizes using the constant time communications algorithm.
This illustrates that the information gain obtained by sending greater map sizes decreases
as the maps get larger.

6.8 Summary 227

entire simulation period for different communicated map sizes. While the vehicle variances

are significantly lowered by communicating map information, the benefit of sending larger

maps decreases asymptotically. This is to be expected as communication of the whole map

will include features that have not been observed recently and which will therefore not

contribute large amounts of new information. Communicating larger submaps using this

constant time algorithm simply has the effect of allowing the estimate to converge toward

the N2 result faster.

By communicating map information, platforms can improve their self-location estimates.

Tim has the knock-on effect of allowing new features to be initialised in to the map with

lower uncertainty.

6.8 Summary

This Chapter has investigated the SLAM problem as an application of DDF. To provide a

better understanding of the problem, closed form solutions to the continuous time single

and multiple platform SLAM problem in both information and state-covariance form were

presented. These solutions showed that the information form of the SLAM problem has two

advantages: the cross-information between multiple platforms is zero and the global map

estimate can be obtained simply by summing the individual maps from each platform. Using

these results, a decentralised architecture for SLAM was developed that allows platforms

to only communicate map information.

The D-SLAM architecture was formulated in both information space and a hybrid state/

information space. The former allows inter-platform communication to occur more easily,

but can become computationally expensive when the system uses non-linear models. To

reduce this problem, the hybrid space formulation was presented which allows non-linear

systems to operate in state space for local observation and prediction operations, but per­

forms inter-platform updates in information space.

To manage communications in D-SLAM systems with large maps, a communication scheme

was presented which allows nodes to communicate submaps of an arbitrary size. Using this

method allows platforms to continue sending submaps of a manageable size even as the

map grows extremely large. Furthermore, the strategy uses information gains to dynami-

6.8 Summary 228

cally determine the features to transmit to other nodes at each communication step which

maximises the amount of information in every message.

Simulated results were presented of a 100 platform D-SLAM system using different com­

munication schemes. The results illustrate that using the DDF architecture improves the

estimates of both the platform and the map when compared to the case where platforms

act independently. The constant time communication scheme performed extremely well,

producing estimates substantially better than independent operation and only marginally

worse than communication of the complete map. It was also demonstrated that the value

of sending larger submaps decreases asymptotically.

Chapter 7

Conclusions and Future Work

7.1 Introduction

This Chapter briefly summarises the principle contributions of this thesis and provides

suggestions for future research directions. Section 7.2 summarises the main contributions in

developing and demonstrating decentralised data fusion architectures. Section 7.3 describes

possible new research directions.

7.2 Summary of Contributions

This thesis is concerned with the development and demonstration of decentralised data

fusion algorithms for tracking and feature based navigation problems in an airborne en­

vironment. The principle contributions of the thesis are in the development of the DDF

architecture and its application to real problems.

7.2.1 Decentralised Architectures

A substantial contribution of this thesis is the development of a general-purpose architecture

for decentralised data fusion systems. This architecture focused on developing a structure

for sensing nodes allowing local fusion of information and efficient and consistent communi­

cation in different networks. The architecture described provides for a modular design and

permits unlimited scalability in a fully decentralised manner.

7.2 Summary of Contributions 230

Both structured and unstructured communication topologies were considered. In structured

networks, optimal data transmission and fusion algorithms were described. In unstructured

networks it is known that no finite realisable method exists which can guarantee optimal

decentralised estimates. A number of suboptimal unstructured network algorithms were

developed, and in particular, a scalable architecture for a dynamic tree connected DDF

system was presented. This architecture combines the advantages of the tree topology

with the robustness and flexibility of a dynamic network. Nodes can therefore form into a

topology which will make maximum use of network information wherever possible.

7.2.2 Delayed and Asequent D a t a

Exact solutions to both the delayed and asequent data problems were presented for the

information form of the Kalman filter. These solutions allow the information filter to

consistently use observation information that arrives both late and out of sequence. These

algorithms are essential in realistic operational environments, such as the airborne domain

considered in this thesis, where transmission delays and intermittent communication occur.

7.2.3 Decentralised Tracking

A decentralised tracking and tactical picture compilation system was presented and imple­

mented in real-time on multiple UAVs. This implementation is probably one of the most

complex and demanding operating environments in which to develop and demonstrate de­

centralised data fusion methods. The implementation uses a full six-degree of freedom

platform model together with range and bearing information from an on-board visual sen­

sor. The platforms themselves are registered with a separate GPS/INS navigation system.

The system is demonstrated in real-time using two aircraft and two ground stations in a five

node DDF configuration. The aircraft, using the onboard vision and laser payload sensors,

are able to maintain tracks to multiple ground targets and are able to communicate to

and fuse information from other nodes in the network. This ensures that even the ground

nodes, which have no sensor attached, benefit from having real-time estimates of target

states. The results of this demonstration illustrate and confirm the properties of the DDF

architecture in correctly propagating and fusing information in a network. The real-time

implementation of the DDF method is a substantial contribution of this thesis. The results

7.2 Summary of Contributions 231

are believed to be the first ever flight of a set of cooperative UAVs. Registration and bias

problems were identified in the initial tracking results. However, these were identified and

corrected and subsequent real-time flights performed extremely well.

7.2.4 Decentralised SLAM

In this thesis the SLAM problem is considered as an application of DDF. Closed form

solutions to the one degree of freedom continuous time information matrix were presented

for both single and multiple platform scenarios. A closed form solution to the multiple

vehicle covariance matrix for the same problem was also described. The structure of the

problem revealed by these solutions illustrates two important points:

1. The cross information between multiple vehicles is zero provided the vehicles do not

sense each other.

2. The global map in D-SLAM is simply the sum of the map information from each node

within the system.

These two points enabled a D-SLAM architecture to be developed in which vehicles commu­

nicate map information between one another. The decentralised architecture was initially

formulated in information space enabling map information to be maintained in a readily

available form for communication. However, as this formulation requires a computation­

ally expensive inversion operation to obtain state estimates when non-linear models are

employed, an equivalent hybrid state/information space formulation is also presented.

To ensure that communications in the D-SLAM algorithm remain scalable, a constant time

communication algorithm was presented. This uses a hybrid information filter/covariance

intersect method to ensure consistent sub-map fusion. This method allows nodes to dynam­

ically select a submap of features to communicate to other nodes. The size of this submap

is not fixed and can be dynamically selected based on the requirements of the system and

the available bandwidth. The selection of landmarks to be included in these submaps is

based on maximising the information value of communicated messages.

The D-SLAM method is one of the first consistent algorithms for performing multiple ve­

hicle SLAM and is a substantial contribution made in this thesis. It shows the enormous

7.3 Further Research 232

potential "value in communicating map information between platforms. It also shows the

fundamental nature of using information measures as the primary means of communicat­

ing and fusing map estimates. While the implementation and simulations described are

somewhat preliminary, they show the way to future development of multi-platform SLAM

systems.

7.3 Further Research

This thesis has presented a comprehensive theory and experimental results supporting the

use of decentralised estimation methods in airborne sensor networks. The results in this

thesis are limited, especially in regard of up-front sensor processing, and could be signifi­

cantly improved in future demonstrations. Some of these improvements are described here.

The decentralised data fusion method also gives rise to related questions in the development

of analogous decentralised control and network management issues. Some of these future

directions are also discussed.

7.3.1 System Complexity

The focus of the work presented in this thesis is on the design and implementation of

a robust real time decentralised system in an airborne environment. As such, most of

the complexity is directed at architecture and communications systems rather than target

registration, models, data association and feature extraction. However, with the robustness

and integrity of the decentralised architecture now demonstrated, future efforts should be

made to add more detail and complexity into these areas.

7.3.2 Real T ime Decentralised SLAM

The D-SLAM algorithm which is presented and shown in simulation can be implemented in

real time. At the time of writing this thesis, single vehicle airborne SLAM on the ANSER

project is undergoing testing prior to a real-time flight. Once this has been accomplished,

the D-SLAM algorithm is to be implemented.

7.4 Summary 233

7.3.3 Decentralised Control

A decentralised control layer would integrate neatly with the decentralised estimation prob­

lems presented in this thesis. Currently, the vehicles use each others information to obtain

a better, more robust estimate of some state. However, it is possible to integrate this

with a decentralised control strategy to determine platform control actions which maximise

some criteria specific to the common task. For example, in an information gathering task

platforms could be directed to regions which maximise the information gain of the system.

Some work has been done on this by Grocholsky [45], however it remains an open issue.

7.3.4 Dynamic Networks

A demonstration of a dynamic network architecture is an important step which should

be included in the next generation DDF implementation. The concept has already been

designed in theory and tested in simulation (see Section 3.6), and the next logical progression

is to run such a system in real-time.

The implementation of this type of architecture is significant as it maintains all of the

advantages of the DDF architecture demonstrated in this thesis, with the additional benefit

of complete flexibility in network topology. This architecture would be the most useful in

any large scale operational environment as it allows nodes to come and go freely.

7.4 Summary

This thesis has provided a significant contribution to the development and eventual de­

ployment of decentralised data fusion systems in real problems. With an increasingly large

number of applications needing to realise the benefits of large numbers of distributed sen­

sors, the DDF method provides an important starting point for designing and implementing

algorithms capable of delivering robust and scalable sensor networks.

Appendix A

Normalised Innovation: The

Information Gate

The information gate is the information space equivalent of the state space innovation gate.

The information observation quantities i(fc) and I(fe) are of dimension the state space,

whereas the innovation and innovation variance are of dimension the observation space.

In the innovation gate, the inverse innovation covariance is used to normalise the gate.

In the information gate, the inverse of the corresponding information matrix is required.

This, however will generally be singular as it is of dimension the state but has rank of only

observation dimension. A generalised inverse I+(fc) is therefore defined in the following

manner.

I(Jfe)I+(fc) = E, (A.1)

where E is an idempotent matrix which acts as the identity for both I(fc) and I+(fc),

I(ife)E = I(ife), I+(fc)E - I+(A;), (A.2)

and

I(fc)I+(Jb)I(fc) = I(fc), I+(fe)I(Jfe)I+(fc) = I+(fc). (A.3)

One generalised inverse which satisfies these requirements is calculated by exploiting the

observation model H& as a projection operator. This matrix projects a state space into an

observation space and conversely it's transpose projects observations back to state space.

Normalised Innovation: The Information Gate 235

The generalised inverse is then

I+(fc)=Hj[HfcI(fe)H^]-1Hft. (A.4)

The appropriateness of this selection of projection matrix is apparent as

HfcI(fc)I+(fc) = H*I(*)HJ [HfcKAOHj]-1 Hfc = Hfc. (A.5)

The innovation, defined as the the difference between the observed and predicted observation

and given in Equation A.6 below, is used for data association'

u{k) = z(fc) - Hfcx(fc | k - 1). (A.6)

Written in its equivalent information form, this information residual vector is given by

v(fc) i H£R^(fe) . (A.7)

Substituting Equation A.6 into Equation A.7 gives

v(fc) = H£Rfc lz{k) - HjR^Hfcftfife | k - 1)

= i(Jfe) - ItibJY-Vfe I k - l)y(Jfe | k - 1). (A.8)

The covariance of this information residual is now calculated from E{v(fc), vT (k) | Z 1 (k)}

as

B(fc) = HjRfc1E{i/(Jfe)i/T(fc) | Z*} R^Hfc

= HjB^ 1 [SpP(fc | fc- l)H f c + R*]Rfc1Hfc

= I(fe) + I ^ Y - ^ f c | k - l)I(fc)

« I W t l + W + Y - 1 ^ ^ - !)] " 1 ^) - (A.9)

The normalised information residual is now given by

r(fc) = vr(fc)B+(&)v(fc), (A.10)

Normalised Innovation: The Information Gate 236

where B+(&) is the generalised inverse of B(fc) and is again calculated using the projection

operation H& as

B+(fc) = H£ [HfcB(fc)H£] - 1 Hfc. (A.11)

The relationship between the information gate to the state space innovation gate can be

illustrated by noting that Equation A.ll can also be written

B+(fc) = HnHfcBWHjH^Hfc

= H n H f c H ^ R f c S ^ R f e t H f c H ^ H f c . (A.12)

Substituting Equations A.7 and A.12 into Equation A.10 gives

vT{k)B+(k)vT(k) = ^ (^ R ^ ^ f e H n H f c H ^ - ' R f c S ^ ^ ^ H f c H ^ - ' H ^ R ^ ^ W

= vT(k)Sj;lv(k). (A.13)

The normalised information residual is thus an information form of the conventional inno­

vation residual.

Bibliography

[1] D. Alberts, J. Garstka, and P. Stein. Network Centric Warfare: Developing and
Leveraging Information Superiority. C4ISR Cooperative Research Program (CCRP),
http://www.do^x;rp.org/NCW/ncw.htmlT 1999.

[2] B. Anderson. Optimal Control. Prentice Hall International, Englewood Cliffs, 1990.

[3] B. Anderson and J. Moore. Optimal Filtering. Prentice Hall International, Englewood
Cliffs, 1979.

[4] Y. Bar-Shalom. On the track-to-track correlation problem. In IEEE Trans. Automatic
Control, volume 25(8), pages 802-807, 1981.

[5] Y. Bar-Shalom. Multitarget-Multisensor Tracking: Advanced Applications. Artech
House, Norwood, 1990.

[6] Y. Bar-Shalom. Multitarget-Multisensor Tracking: Applications and Advances Volume
2, Artech House, Norwood, 1992.

[7] Y. Bar-Shalom. Update with out-of-sequence measurements in tracking: Exact solu­
tion. In O.E. Drummond, editor, Signal and Data Processing of Small Targets 2000,
volume 4048, pages 541-556, Bellingham, 2000.

[8] Y. Bar-Shalom and W. Blair. Multitarget-Multisensor Tracking: Applications and
Advances Volume 3. Artech House, Norwood, 2000.

[9] Y. Bar-Shalom and X. Li. Multitarget-Multisensor Tracking: Principles and Tech­
niques. Artech House, Norwood, 1995.

[10] P. Bauer, M. Sichitiu, R. Istepanian, and K. Premaratne. The mobile patient: Wire*
less distributed sensor networks for patient monitoring and care. In Proc. of the
IEEE Conference on Information Technology Applications in Biomedicine, pages 17-
21, 2000.

[11] T. Berg. Model Distribution in Decentralised Multi-Sensor Data Fusion. Ph.D Thesis,
The University of Oxford, 1993.

[12] T. Berg and H. Durrant-Whyte. Model distribution in decentralised multi-sensor data
fusion. In Proceedings of the American Control Conference, pages 2292-94, 1991.

http://www.do%5ex;rp.org/NCW/ncw.htmlT

BIBLIOGRAPHY 238

[13] T. Berg and H. Durrant-Whyte. Model distribution in decentralised sensor networks.
In IEEE International Conference on Intelligent Control and Instrumentation, 1992.

[14] T. Berg and H. Durrant-Whyte. On distributed and decentralised estimation. In
Proceedings of the American Control Conference, pages 2273-4, 1992.

[15] S. Bittanti, A. Laub, and J. Willems. The Riccati Equation. Springer-Verlag, Berlin,
1991.

[16] S. Blackman. Multiple-Target Tracking with Radar Application. Artch House, Nor­
wood, 1986.

[17] S. Blackman and R. Popoli. Design and Analysis of Modern Tracking Systems. Artch
House, Norwood, 1999.

[18] G. Brooker. Technical Manual: ANSER Radar Node. BAE Systems Australia, 2001.

[19] R. Brown and P. Hwang. Introduction to Random Signals and Applied Kalman Fil­
tering, Third Edition. John Wiley and Sons, New York, 1997.

[20] T. Burke. Design and Control of a Modular Wheeled Mobile Robot. Ph.D Thesis, The
University of Oxford, 1994.

[21] T. Burke and H. Durrant-Whyte. Design and control of a modular wheeled mobile
robot. In IEEE Conference on Intelligent Robotics, 1993.

[22] N. Carlson. Federated square root filter for decentralized parallel processes. IEEE
Transactions on Aerospace and Electronic Systems, 26(3):517-525, 1990.

[23] J. Castellanos, J. Montiel, J. Neira, and J. Tardos. Sensor influence in the performance
of simultaneous mobile robot localization and map building. In 6th International
Symposium on Experimental Robotics, pages 203-212, Sydney, 1999.

[24] D. Catlin. Estimation, Control and the Discrete Kalman Filter. Springer Verlag,
1984.

[25] S. Challa, R. Evans, and X. Wang. A fixed lag smoothing framework for target
tracking in clutter using out of sequence measurements. In Proceedings of Defence
Applications of Signal Processing (DASP), 2002.

[26] S. Challa, M. Palaniswami, and A. Shilton. Distributed data fusion using support
vector machines. In Proceedings of the Fifth International Conference on Information
Fusion, volume 2, pages 881-885, Sunnyvale, 2002.

[27] K. Chang, R. Saha, and Y. Bar-Shalom. On optimal track-to-track fusion. IEEE
Transactions on Aerospace and Electronic Systems, 33(4):1271-1276, 1997.

[28] K. Chang, Z. Tian, and R. Saha. Performance evaluation of track fusion with in­
formation matrix filter. IEEE Transactions on Aerospace and Electronic Systems,
38(2):455-466, 2002.

BIBLIOGRAPHY 239

[29] C. Chong. Distributed architectures for data fusion. In Proceedings First International
Conference on Multisource-Multisensor Information Fusion, pages 84-91, 1998.

[30] M. Chu, H. Haussecker, and F. Zhao. Scalable information driven sensor querying
and routing for ad-hoc heterogeneous sensor networks. International Journal of High
Performance Computing Applications, 16(3):293~314, 2002.

[31] L. Clare, G. Pottie, and J. Agre. Self-organizing distributed sensor networks. In
Unattended Ground Sensor Technologies and Applications, volume 3713, pages 229-
237, 1999.

[32] R. Deaves. Covariance bounds for augmented state kalman filter application. Elec­
tronic Letters, 11th November 1999, 35, No 23, 1999. ^

[33] R. Deaves. The Management of Communications in Decentralised Bayesian Data
Fusion Systems. Ph.D Thesis, Bristol University, Dept of Electrical and Electronic
Engineering, 1999.

[34] R. Deaves, D. Nicholson, D. Gough, L. Binns, P. Vangasse, and P. Greenway. Mul­
tiple robot system for decentralised SLAM investigations. In G.T. McKee and P.S.
Schenker, editors, Sensor Fusion and Decentralised Control in Robotic Systems III,
volume 4196, pages 360-369, Bellingham, 2000.

[35] M. Dissanayake, P. Newman, H. Durrant-Whyte, S. Clark, and M. Csorba. An experi­
mental and theoretical investigation into simultaneous localisation and map building.
In 6th International Symposium on Experimental Robotics, pages 171-180, Sydney,
1999.

[36] H. Durrant-Whyte, R. Deaves, and P. Greenway. Decentralised multi-platform data
fusion. In Proc. SPIE, volume 3393, pages 63-71, Bellingham, 1998.

[37] M. Fernandez. Failure Detection and Isolation in Decentralised MulUsensor Systems,
Ph.D Thesis, The University of Oxford, 1993.

[38] A. Gelb. Applied Optimal Estimation. MIT Press, Cambridge, 1974.

[39] P. Gibbens, M. Dissanayake, and H. Durrant-Wrryte. A closed form solution to the
single degree of freedom simultaneous localisation and map building (SLAM) problem.
In 39th IEEE Conference on Decision and Control, pages 191-196, Sydney, 2000.

[40] A. Goktogan, E. Nettleton, M. Ridley, and S. Sukkarieh. Real time multi-UAV sim­
ulator. In IEEE Conference on Robotics and Automation, 2003.

[41] M. Grewal and A. Andrews. Kalman Filtering Theory and Practice. Prentice Hall,
New Jersey, 1993.

[42] S. Grime. Communication in Decentralised Sensing Architectures. Ph.D Thesis, The
University of Oxford, 1992.

[43] S. Grime and H. Durrant-Whyte. Data fusion in decentralized sensor networks. Con­
trol Engineering Practice, 2(5):849-863, 1994.

BIBLIOGRAPHY 240

[44] B. Grocholsky. Information-Theoretic Control of Multiple Sensor Platforms. Ph.D
Thesis, The University of Sydney, 2002.

[45] B. Grocholsky, H. Durrant-Whyte, and P. Gibbens. Information-theoretic approach
to decentralised control of multiple autonomous flight vehicles. In G.T. McKee and
P.S. Schenker, editors, Sensor Fusion and Decentralised Control in Robotic Stystems
III, volume 4196, pages 34S-359, Bellingham, 2000.

[46] L. Guibas and F. Zhao, editors. Proceedings of the 2nd International Workshop on
Information Processing in Sensor Networks. Springer-Verlag, 2003.

[47] H. Hashemipour, S. Roy, and A. Laub. Decentralized structures for parallel kalman
filtering. IEEE Transactions on Automation and Contrgl, 33(l):1054r-1061, 1988.

[48] O. Heikkila, J. & Silven. A four-step camera calibration procedure with implicit image
correction. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'97), pages 1106-1112, 1997.

[49] P. Ho. Organisation in Decentralised Sensing. Ph.D Thesis, The University of Oxford,
1995.

[50] L. Hong, S. Cong, and D. Wicker. Distributed multirate interacting multiple model
(DMRIMM) filtering with out-of-sequence gmti data. In Proceedings of the Fifth Inter­
national Conference on Information Fusion, volume 2, pages 1054-1061, Sunnyvale,
2002.

[51] B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker, K. Rawlins, and V. Lesser. Dis­
tributed sensor network for real time tracking. In Proceedings of the 5th International
Conference on Autonomous Agents, pages 417-424. ACM Press, June 2001.

[52] Inertial Science Inc. Technical Manual: Inertial Measurement Unit, ISIS Rev. C. 1999.

[53] S. Julier and J. Uhlmann. A consistent, debiased method for converting between polar
and cartesian coordinate systems. In Proceedings of SPIEf Aerosense, Orlando, 1997.

[54] S. Julier and J. Uhlmann. Building a million beacon map. In G. McKee and
P. Schenker, editors, Sensor Fusion and Decentralised Control in Robotic Stystems
IV, volume 4571, pages 1-9, Bellingham, 2001.

[55] S. Julier and J. Uhlmann. General decentralised data fusion with covariance inter­
section (CI). In D. Hall and J. Llinas, editors, Handbook of Data Fusion. CRC Press,
2001.

[56] R. Kalman. New methods in Weiner filtering theory. In Transactions of the ASME,
volume 82, pages 34-45, 1960.

[57] R. Kalman. A new approach to linear filtering and prediction problems. In J. Bog-
danoff and F. Kozin, editors, Proceedings of the Symposium on the Engineering Ap­
plications of Random Function Theory and Probability, 1963.

BIBLIOGRAPHY 241

[58] J. Kim and S. Sukkaxieh. Flight test results of GPS/INS navigation loop for an
autonomous unmanned aerial vehicle (UAV). In Proceedings of ION GPS, pages 510-
517, 2002.

[59] J. Kim and S. Sukkarieh. Airborne simultaneous localisation and map building. In
IEEE Conference on Robotic and Automation, 2003.

[60] J. Leonard, R. Carpenter, and H. Feder. Stochastic mapping using forward look­
ing sonar. In International Conference on Field and Service Robotics, pages 69-74,
Pittsburg, 1999. -

[61] J, Leonard and H. Durrant-Whyte. Simultaneous map building and localisation for
an autonomous mobile robot. In IEEE/RSJ International Workshop on Intelligent
Robots and Systems, pages 1442-1447, New York, 1991.

[62] J. Leonard and H. Feder. A computationally efficient method for large-scale concurrent
mapping and localization. In Proceedings of the Ninth International Symposium on
Robotics Research, pages 169-176, 2000.

[63] J, Leonard, J.D. Tardos, S. Thrun, and H. Choset, editors. Workshop Notes of ihe
ICRA Workshop on Concurrent Mapping and Localization for Autonomous Mobile
Robots (W4). IEEE Conference on Robotic and Automation, Washington, DC, 2002.

[64] J. I4a, J. Reich, and F. Zhao. Collaborative in-network processing for target tracking.
Journal on Applied Signal Processing, 2002.

[65] Measurement Devices Ltd. Technical Manual: ILM300HR OEM Industrial Laser
Module. 200L

[66] S. Lu, A. Poore, and B. Suchomel. Network-centric mfa tracking architectures. In
Proceedings of the Fifth International Conference on Information Fusion, volume 1,
pages 520-526, Sunnyvale, 2002.

[67] M. Mallick, J. Krant, and Y. Bar-Shalom. Multi-sensor multi-target tracking using
out-of-sequence measurements. In Proceedings of the Fifth International Conference
on Information Fusion, volume 1, pages 135-142, 2002.

[68] J. Manyika. An Information Theoretic Approach to Data Fusion and Sensor Manage­
ment PhD Thesis, The University of Oxford, 1993.

[69] J. Manyika and H. Durrant-Whyte. Information as a basis for management and control
in decentralised fusion architectures. In IEEE Conference on Decision and Control,
1992.

[70] J. Manyika and H. Durrant-Whyte. Data Fusion and Sensor Management: An
Information-Theoretic Approach. Prentice Hall, 1994.

[71] P. Maybeck. Stochastic Models, Estimation and Control, Volume 1. Academic Press
Inc, New York, 1979.

[72] S. Mitchell. Two of a Kind Chat in ihe Blue. The Australian, 20/8/2002.

BIBLIOGRAPHY 242

[73] M. Mbntemerlo, S. Thrum, D. Roller, and B. Wegbreit. EastSLAM: A factored solution
to the simultaneous localisation and mapping problem. In Proceedings of the AAAI
National Conference on Artificial Intelligence, 2002.

[74] A. Mutambara. Decentralised Control PhD Thesis, University of Oxford, 1995.

[75] A. Mutambara. Decentralised Estimation and Control for Multisensor Systems. CRC
Press, 1998.

[76] A. Mutambara and H. Durrant-Whyte. Nonlinear information space: A practical
basis for decentralisation. In Sensor Fusion VII, volume 2355, 1994.

[77] E. Nettleton and H. Durrant-Whyte. Delayed and asequent data in decentralised
sensing networks. In G.T. McKee and P.S. Schenker, editors, Sensor Fusion and
Decentralised Control in Robotic Stystems IV, volume 4571, pages 1-9, Bellingham,
2001.

[78] E. Nettleton, H. Durrant-Whyte, P. Gibbens, and A. Goktogan. Multiple platform
localisation and map building. In G.T. McKee and P.S. Schenker, editors, Sensor
Fusion and Decentralised Control in Robotic Stystems III, volume 4196, pages 337-
347, Bellingham, 2000.

[79] E. Nettleton, P. Gibbens, and H. Durrant-Whyte. Closed form solutions to the mul­
tiple platform simultaneous localisation and map building (SLAM) problem. In Bu-
lur V. Dasarathy, editor, Sensor Fusion: Architectures, Algorithms, and Applications
IV, volume 4051, pages 428-437, Bellingham, 2000.

[80] P. Newman. On the Structure and Solution of the Simultaneous Localisation and Map
Building Problem. PhD Thesis, University of Sydney, 1999.

[81] D. Nicholson and R. Deaves. Decentralised track fusion in dynamic networks. In O.E.
Drummond, editor, Signal and Data Processing of Small Targets 2000, volume 4048,
Bellingham, 2000.

[82] D. Nicholson, C. Lloyd, S. Julier, and J. Uhlmann. Scalable distributed data fusion.
In Proceedings of the Fifth International Conference on Information Fusion, volume 1,
pages 630-635, Sunnyvale, 2002.

[83] L. Pao and N. Baltz. Control of sensor information in distributed multisensor systems.
In Proceedings of American Control Conference, pages 2397-2401, San Diego, 1999.

[84] A. Papoulis. Probability and Statistics. Prentice-Hall Inc., Englewood Cliffs, 1990.

[85] B. Rao. Data Fusion Methods in Decentralised Sensing Systems. PhD Thesis, The
University of Oxford, 1991.

[86] B. Rao and H. Durrant-Whyte. A fully decentralized algorithm for multi-sensor
Kalman filtering. In IEE Transactions Schedule D, volume 138(5), pages 413-420,
1991.

BIBLIOGRAPHY 243

[87] B. Rao and H. Durrani-Whyte. A decentralised bayesian algorithm for identification
of tracked targets. In IEEE Transactions of Systems Man and Cybernetics, volume
23(6), pages 168&-1698, 1993.

[88] B. Rao, H. Durrant-Whyte, and A. Sheen. A fully decentralised multi-sensor system
for tracking and surveillance. In International Journal of Robotics Research^ volume
12(1), pages 20-45, 1991.

[89] W. Reid. Riccati Differential Equations, Academic Press Inc., New York, 1972.

[90] W. Rencken. Concurrent localisation and map building for mobile robots using ul­
trasonic sensors. In Proceedings of the 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems, volume 3, pages 2192-7, 1993.

[91] M. Ridley, E. Nettleton, S. Sukkarieh, and H. Durrant-Whyte. Tracking in decen­
tralised air-ground sensing networks. In Proceedings of the Fifth International Con­
ference on Information Fusion, volume 1, pages 616-623, Sunnyvale, 2002.

[92] R. Smith and P. Cheeseman. On the representation of spatial uncertainty. Int J.
Robotics Research, 5(4):56-68, 1987.

[93] A. Stevens, M. Stevens, and H. Durrant-Whyte. Oxnav: Reliable autonomous nav­
igation. In Preceedings of the IEEE International Conference on Robotics and Au­
tomation, volume 3, pages 2607-2612, 1995.

[94] L. Stone, C. Barlow, and T. Corwin. Bayesian Multiple Target Tracking. Artech
House, Norwood, 1999.

[95] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping
with applications to multi-robot and 3D mapping. In Proceedings of IEEE Conference
on Robotics and Automation, 2000.

[96] S. Thrun, D. Koller, Z. Ghahmarani, and H. Durrant-Whyte. SLAM updates re­
quire constant time. In Proceedings of Fifth International Workshop on Algorithmic
Foundations of Robotics, 2002.

[97] B. Triggs. The Wombat: Common Wombats in Australia. University of New South
Wales Press Ltd, 1988.

[98] J. Uhlmann. Dynamic Map Building and Localisation, New Theoretical Foundations.
PhD Thesis, The University of Oxford, 1995.

[99] S. Utete. A Network Manager for a Decentralized Sensing System. Masters Thesis,
The University of Oxford, 1992.

[100] S. Utete. Network Management in Decentralized Sensing Systems, PhD Thesis, The
University of Oxford, 1994.

[101] S. Utete and H. Durrant-Whyte. Reliability in decentralised data fusion networks. In
Proceedings of IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems, pages 215-221, 1994.

BIBLIOGRAPHY 244

[102] UVOnline. World First for Multiple UAV Applications, www.uvonline.com, 7/8/2002.

[103] S. WiUiams, Efficient Solutions to Autonomous Mapping and Navigation Problems.
PhD Thesis, The University of Sydney, 2001.

http://www.uvonline.com

