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Performance Evaluation of Simultaneous Sensor Registration and
Object Tracking Algorithm

Sofie Macdonald, Ian Proudler, Michael E. Davies, and James R. Hopgood

Abstract— Reliable object tracking with multiple sensors
requires that sensors are registered correctly with respect to
each other. When an environment is Global Navigation Satellite
System (GNSS) denied or limited – such as underwater, or
in hostile regions – this task is more challenging. This paper
performs uncertainty quantification on a simultaneous tracking
and registration algorithm for sensor networks that does not
require access to a GNSS. The method uses a particle filter
combined with a bank of augmented state extended Kalman
filters (EKFs). The particles represent hypotheses of registration
errors between sensors, with associated weights. The EKFs are
responsible for the tracking procedure and for contributing to
particle state and weight updates. This is achieved through the
evaluation of a likelihood. Registration errors in this paper are
spatial, orientation, and temporal biases: seven distinct sensor
errors are estimated alongside the tracking procedure. Monte
Carlo trials are conducted for the uncertainty quantification.
Since performance of particle filters is dependent on initialisa-
tion, a comparison is made between more and less favourable
particle (hypothesis) initialisation. The results demonstrate the
importance of initialisation, and the method is shown to perform
well in tracking a fast (marginally sub-sonic) object following a
bow-like trajectory (mimicking a representative scenario). Final
results show the algorithm is capable of achieving angular bias
estimation error of 0.0034o, temporal bias estimation error of
0.0067 s, and spatial error of 0.021m.

I. INTRODUCTION

A. Problem Overview

Sensor registration is an important capability for sensor
networks [1]. Ensuring that the reference frames (RFs) of
sensors are aligned – in space or time [2] – is key to
a network’s reliability. If sensors can’t be accurately cali-
brated relative to each other then their gathered data can’t
be usefully compared or combined. In the object tracking
case, failure to calibrate sensors may lead to generation
of false tracks or termination of true tracks [3]. In an
emergency situation or hostile environment this could mean
disaster. Calibrating sensors before deployment is not suf-
ficient to ensure they remain calibrated for the duration
of their commission. Effects of harsh weather, platform
vibrations, incorrect initial calibration, as well as loss of
Global Positioning System (GPS) access are all sources of
potential error. Temporal bias can originate from: differences
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in sensors’ internal processing time, data collection rates,
transmission time, or effects of CPU load. Therefore, a
sensor network must be able to continuously self-localise,
or perform ad-hoc self-localisation, to mitigate these errors,
lest its data become meaningless. In this paper, three types
of registration error (subsequently called bias) are consid-
ered: spatial, angular, and temporal. This means that there
are seven distinct parameters to estimate per non-calibrated
sensor: x, y, z, τ (time delay), α (yaw), β (pitch), γ (roll).
Sensor registration is achieved with non-cooperative targets
and the network operates in a centralised manner with a
plot fusion architecture. The bias estimation procedure uses a
hierarchical Bayesian model (HBM) [4] (suited to Bayesian
inference problems) which manages the joint tracking and
sensor registration – confirmed by extensive simulation. The
HBM also ensures an adaptive setup. That is, the extended
Kalman filter (EKF) used in the tracking procedure can be
swapped out for any other filter.

B. State of the Art

The sensor registration problem has been considered pre-
viously [5]. A range of methods have been employed to
approach the problem. In Sigalov et al. [6], the problem is
also considered in the target tracking context. The authors
present an algorithm for calibration of multiple sensors util-
ising targets of opportunity – i.e. targets which are observable
to sensors but have no action scheduled. Their results show
that in estimation of sensor rotational bias (yaw, pitch, roll)
they come within 1.5mRad (0.09◦) of the true values. They
also show that this degrades with increasing measurement
noise. The team recently revised this work in [7] where they
have stated that the updated version guarantees convergence
in three dimensional scenarios. The maximum error on
angular bias estimation of the newest algorithm is 0.013◦:
to be compared with a maximum error of 0.08◦ in their
previous paper. Alignment of sensor reference frames in
multi-platform, multi-sensor systems is also considered in
[8]. They align sensors with what they call a global sensor
which they assume is free of bias: the same approach taken
in this paper. A method based on the unit quaternion is
proposed for the estimation of rotation and spatial bias of
the sensors in space. The mean error on the spatial bias
estimation falls within 2m and for angular bias estimation
the mean error falls within 0.02◦ of the truth. Pu et al.
[9] consider the estimation of sensor biases in multisensor
systems given noisy and asynchronous measurements. They
address this problem with a nonlinear least squares formu-
lation and a reference target moving with unknown constant
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Fig. 1: Graphical representation of the HBM used in this
paper. It shows the calibration of one sensor with respect
to another, the reference sensor. Without loss of generality,
sensor 1 is designated the reference .

velocity. They show how root mean squared error (RMSE)
of bias estimation varies with measurement noise and that
the proposed approach outperforms five other approaches.
Shang et al [10] use the exact maximum likelihood (EML)
algorithm for spatial registration of a coastal multi-radar
tracking system. They provide results from a simulated test
environment of true sensor bias versus estimated sensor bias
using their approach. Cong et al [11] model the alignment
of reference frames in networked radars as a maximisation
problem, solved by a genetic algorithm. They provide a
comprehensive performance evaluation and comparison with
five other methods. The sensor registration problem has been
approached from many angles: random finite set formulations
[12], modification of filters [13], least squares [14], and the
minimum mean square error (MMSE) framework [15].

C. Contributions

The algorithm investigated in this paper builds on that
introduced in [16]. It extends the original algorithm by
replacing the Kalman filter (KF) with an extended Kalman
filter (EKF). The original grid-search technique for the bias
estimation is replaced by a full particle filter method.

• Performance evaluation of the algorithm to estimate
seven distinct sensor registration errors (spatial, tem-
poral, angular) is performed through MC simulation.

• The accuracy of the algorithm is investigated in an
artificial scenario that is generated to closely match a
representative case: a fast-moving object following a
bow-like trajectory.

Uncertainty quantification through MC trials allows assess-
ment of the performance of the bias estimation algorithm
and of the reliability of the corresponding tracking solution.

II. FRAMEWORK

This section gives an overview of the hierarchical
Bayesian model (HBM) used by the bias estimation algo-
rithm in this paper. HBMs allow complex models to be bro-
ken down into series of simpler models. They have already
been shown to be useful in joint tracking and registration [1].
In this paper, the HBM consists of a parent and an offspring
process (Fig. 1). The chosen architecture for the centralised
sensor network is plot fusion. In plot fusion, the sensors’
collected data is merged and processed by the same filter.

A. Parent Process: Parameter Estimation

The parent process carries out the bias parameter estima-
tion. The registration errors are: x, y, z, τ , α, β, and γ. Here,
x, y, z correspond to spatial offsets; τ is a fixed time delay
and α, β, γ correspond to angles of yaw, pitch, and roll, re-
spectively. These errors are all relative to a reference point: in
this case, a reference sensor. With the particle filter approach,
particles correspond to bias hypotheses. Therefore, for uncal-
ibrated sensor s at timestep k the space of hypotheses is given
by the following set of N particles: Ψk,s = {ψi

k,s, w
i
k,s}Ni=1.

The particle state ψi
k,s is a vector of seven dimensions:[

x̂ik,s ŷik,s ẑik,s τ̂ ik,s α̂i
k,s β̂i

k,s γ̂ik,s

]T
with associ-

ated weight wi
k,s. The particle weight is a reflection of the be-

lief that the particle state (sensor registration error) is close to
the truth. The set of hypotheses and their weights is updated
and therefore vary in time. Following evaluation of effective
sample size and comparison with a threshold, particles may
be resampled and propagated. A multinomial resampling
strategy has been selected for this work. The initial set
of hypotheses are drawn from uniform distributions, U[a,b],
where the lower and upper bounds (a and b, respectively)
are bias parameter dependent (Table I). It is assumed that
all randomly drawn initial states are equally likely so the
prior distribution is flat. Weights are predicted and updated
recursively as in [3] – see equations (2a) and (2b). The
weights prediction can be understood as a convolution of
prior weights with a kernel function. The kernel function
for this work is the binomial distribution, B(n, p). n and
p are determined empirically and set to values of N and
0.5, respectively. The weights are updated with a likelihood
function, ℓk(ψi

k,s|Zk), derived from the evaluation of the
integral form of the Kalman likelihood conditioned on ψi

k,s

– see Equation (11) in [16]. Note that Zk is the set of all
sensor measurements up to time k. In the case of the EKF:

ℓk(ψ
i
k,s|Zk) = N (z⃗k|h(V̂ i

k ),S
i
k) (1)

Si
k is the EKF innovation covariance used to calculate the

Kalman gain; h(·) represents the Cartesian to spherical polar
transformation; V̂ i

k is the object state prediction with bias
hypotheses applied (see Section II-B.1 for further detail); z⃗k
is the augmented measurement vector at timestep k – that is,
it holds the measurements from all sensors at that time. The
likelihood is an output of the offspring process. Following
evaluation of the likelihood function, particle weights are
updated according to Equation (2b) in [3].



B. Offspring Process: Tracking Procedure

1) AS-EKF: The tracking problem is non-linear and a
bank of EKFs is chosen to carry out the tracking procedure.
Bias hypotheses are incorporated into the filters. The EKFs
have augmented state vectors and extended transition and
observation matrices. This is to allow for the temporal
bias estimation. It is identical to the setup in [16] – see
Section II-A, equations (1)–(4). The offspring process in
this paper diverges from that in [16] in its observation
matrix and the Jacobian, J i

k. Temporal and orientation bias
are directly incorporated into the observation matrix, while
spatial bias must be incorporated through subtraction of
translation vector, T i

k. To incorporate a time delay hypothesis
into the observation matrix, units of seconds are converted
to number of timesteps. Only integer values of temporal bias
are considered (although fractional is possible). Object state
is defined as: x⃗k =

[
px,k vx,k py,k vy,k pz,k vz,k

]T
and sensors observe only object position, so:

H0 =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 (2)

is the observation matrix before augmentation or inclusion of
biases. Let dobj be the number of dimensions of the object
state, dmeas the dimension of a measurement vector from any
sensor (assuming all sensors collect the same data), τmax the
maximum hypothesised temporal bias, and τ̂ ik,s the temporal
bias of hypothesis i at time k, sensor s. Then:

Hi
k,s =

[
Odmeas×dobj τ̂ i

k,s
H0 Odmeas×(dobj(τmax−τ̂ i

k,s))

]
(3)

is the observation matrix for temporal hypothesis i, at time
k, sensor s. Om×n is an m × n zero matrix. Augment for
all sensors (sensor indices 1 to S):

Hi
k =

H
i
k,1
...

Hi
k,S

 (4)

Next we apply the rotation hypothesis. Uncalibrated sensors
can have three different orientation biases relative to a
reference sensor. Yaw: rotation around z-axis; pitch: rotation
around y-axis; and roll: rotation around x-axis. Each rotation
can be achieved by applying the respective rotation matrix.
The full rotation matrix is the product of each rotation. For
hypothesis i, at time k, sensor s, the full rotation matrix is:

Ri
k,s = Ri

k,s,z(α)R
i
k,s,y(β)R

i
k,s,x(γ) (5)

This matrix is also augmented for each sensor:

Ri
k = blkdiag

{
Ri

k,1 · · · Ri
k,S

}
(6)

The rotation is then applied to Hi
k:

Hi
k = Ri

kH
i
k =

R
i
k,1H

i
k,1

...
Ri

k,SH
i
k,S

 (7)

resulting in the observation matrix Hi
k which has temporal

and rotation bias hypothesis i incorporated. Now the spatial
bias hypothesis can be applied. Let the translation vector:

T i
k =

[
x̂ik,1 ŷik,1 ẑik,1 · · · x̂ik,S ŷik,S ẑik,S

]T
(8)

be that associated with hypothesis i at time k. This is applied
to the object state prediction, X̂i

k, in the following manner:

V̂ i
k = Hi

kX̂
i
k − T i

k (9)

We can calculate the Jacobian, J i
k, for hypothesis i, time k:

J i
k =

∂h(V̂ i
k )

∂X̂i
k

(10)

The evaluation of this derivative involves the chain rule:

∂h(V̂ i
k )

∂X̂i
k

=
∂h(V̂ i

k )

∂V̂ i
k

· ∂V̂
i
k

∂X̂i
k

(11)

Notice ∂V̂ i
k

∂X̂i
k

, the second term on the right hand side of
Equation (11), can be immediately evaluated using Equation
(9) using standard vector calculus results. In short: ∂V̂ i

k

∂X̂i
k

=

Hi
k. Finally, ∂h(V̂ i

k )

∂V̂ i
k

is trivial but long-winded to evaluate and
so, for brevity, has been omitted here. Therefore:

J i
k =

∂h(V̂ i
k )

∂V̂ i
k

· Hi
k (12)

III. MODELLING, DATA, AND SCENARIOS

A. Implementation

The parent process of the HBM is represented by a
set of particles. A particle is made up of bias hypotheses
(one hypothesis per bias) and an associated weight. Particle
weights are continuously updated following evaluation of a
likelihood function (see Equation (1)) – an output of the
offspring process. Particle states are updated based on cal-
culation of effective sample size against a preset resampling
threshold Nthr. The multinomial resampling strategy has
been selected here. Table I describes the two different starting
configurations of the particle filter. In a real-world scenario
it is feasible that hypothesis initialisation can closely match
the favourable case. This can be accomplished either through
precursory GPS readings, inertial measurement unit (IMU)
reports, or dead reckoning, amongst other techniques.

Parameter SETUP 1 SETUP 2 Truth

x ±5m ±200m −500m
y, z ±5m ±200m 0m
τ 0 s to 1 s 0 s to 2 s 0.4 s

α, β, γ 0◦ to 5◦ 0◦ to 10◦ 2◦

TABLE I: Particle initialisation for more and less favourable
starting configurations: Setups 1 and 2, respectively. Columns
2 and 3 show the range within which initial hypotheses are
randomly generated. In the spatial bias case, it is the range
either side of the truth (column 4).



B. Model Definitions

In order to make some inference about a dynamic system,
both a process model and a measurement model are required:

x⃗k = f(x⃗k−1, v⃗k) (13)
z⃗k = h(x⃗k, w⃗k) (14)

where x⃗k is the ‘hidden’ state (i.e. the true state - a vector
of six dimensions describing object position and velocity
in 3D Cartesian space) at time instance k, while z⃗k is the
observation associated with it (a three dimensional vector for
each sensor consisting of observations of object azimuth, el-
evation, and range). v⃗k and w⃗k are process and measurement
noise, while f(·) and h(·) are the process and measurement
functions, respectively. v⃗k is zero-mean Gaussian process
noise with covariance given by:

Q = blkdiag
{
Σ0 Σ0 Σ0

}
(15)

where [17]:

Σ0 =

[
1
4δt

4 1
2δt

3

1
2δt

3 δt2

]
σ2
v (16)

σ2
v is known as the process noise intensity level ([18], pg.

273) and its value determines how closely the object follows
constant velocity (CV) motion. The choice of value for σ2

v is
directed by knowing the order of magnitude of the possible
change in velocity from one timestep to the next, k → k+1.
This is given approximately by: ∆v ≈

√
Q22 =

√
δt× σ2

v

([18], pg. 270). The greater the value of σ2
v , the further

the object deviates from CV motion. The measurement
noise, w⃗k, is drawn from a zero-mean Gaussian distribution,
N (w⃗k|0,Rk). Per sensor, Rk takes the following form:

Rk =

σ2
θ 0 0
0 σ2

ϕ 0

0 0 σ2
R

 (17)

C. Scenarios

This section reviews the artificial scenarios used to test the
bias estimation algorithm. Uncertainty quantification of the
algorithm is performed for the tracking of a random object
trajectory (Section III-C.1) as well as for a bow trajectory
(Section III-C.2). However, for all trajectories, sensor biases
are identical and remain fixed. For the numerical detail see
the final column of Table I in Section III-A. In the interest of
reducing computation time, only two sensors are considered
here: an uncalibrated sensor and a reference sensor. Note
that this algorithm can be applied to the registration of any
number of sensors to a chosen reference point. However,
bear in mind the limitation in the use of the particle filter
which scales up poorly in terms of computation time (see
the conclusion for a suggested solution to this constraint).
Sensor sampling interval is δt = 0.1 s and the simulation
is run for a total of t = 40 s. Clutter and false alarms are
not considered in these analyses, and probability of detection,
Pd, is assigned the value 1. The impact of Pd on the accuracy
of the algorithm is investigated in future work. The full set
of simulation parameters in the case of the random trajectory
scenario is provided in Table II.
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(a) Contour plot of bivariate function f(x, y) for a = 0.05 and b = c = 1; a
is chosen to emphasise the central bow-like line, which satisfies f(x, y) = 0.

(b) Example bow trajectory extracted from f(x, y) = 0 and enveloped with
an exponential function.

Fig. 2: The bivariate function and a bow-like trajectory.

Symbol Parameter Name Value

σR Range noise SD 10m
σθ Azimuth noise SD 0.01 rad
σϕ Elevation noise SD 0.01 rad
σ2
v Process noise intensity 100m2s−4

δt Sampling interval 0.1 s
t Total simulation time 40 s
ns Number of sensors 2
Pd Probability of detection 1
λ False alarm rate 0 s−1

N Number of particles 100

Nthr Resampling threshold 1
2
N

TABLE II: All simulation parameters. The abbreviation SD
stands for standard deviation.

1) Random Trajectories: Data is generated for the track-
ing of a single object with nearly constant velocity (NCV)
motion. Initial states for the object following a random
trajectory are drawn from a uniform distribution. Starting
location is drawn from within a cubic region of dimension
2 km × 2 km × 2 km, while starting velocities are drawn
within ±100ms−1. The variable q̃ determines how closely
the object follows CV motion (Section III-B): the greater the
value, the further the object is from constant velocity motion.

2) Bow Trajectory: The bow trajectory generated for
this paper is based on a representative scenario. In the
scenario, aircraft, with speed around 222ms−1, approach
a (stationary) point at an altitude of 60m. They follow
a bow-like path close over the coordinates and retreat at
an altitude of 9 km. The trajectory generated to closely
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(b) SETUP 2 - random trajectory (x, y, z errors only).

Fig. 3: Uncertainty quantification for random trajectory sce-
nario. Note the difference in the scale of y-axes. This reflects
the influence of PF initialisation on algorithm accuracy.
Results have been separated for setup 2 for clarity.

match this case is based on the following bivariate function:
f(x, y) = ax4 + by3 − cx2y. This function produces a bow-
like shape when f(x, y) = 0 (see Figure 2a for contour
plot of f(x, y)). The bow-like contour line must be extracted
from the function and the data points ordered so that it is
temporally coherent. Thereafter, data points are generated
such that the speed of the object is as desired (i.e. varying
smoothly between 200ms−1 and 300ms−1) for the given
simulation time-step. At this point, the trajectory is still only
traced in two dimensions. However, adding a third dimension
is trivial once one has decided the required three dimensional
shape of the trajectory. In this case, an exponential curve
was preferred. To achieve this, z coordinates were produced
by setting: z = ed×y . The value of d can be varied to
alter the rate of increase of the exponential function; here
d = −0.0006 was found to produce the most suitable
trajectory (see Figure 2b).

IV. RESULTS

The results in this section have been obtained by averaging
over a series of MC trials. In the random trajectory case
1000 MC trials were executed for each PF setup, and in
the bow trajectory case 50 MC trials were executed (due to
time constraints). Box plots and error ellipses are provided
comparing bias estimation in setup 1 with setup 2. The
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(b) SETUP 2 – bow trajectory.

Fig. 4: Uncertainty quantification for the bow trajectory case.
Note the differences in y-axes. The impact of less favourable
particle initialisation is more pronounced than in Figure (3).

difference in these setups is in their hypotheses initialisation
– see Table I in Section III-A. This is reflected in the graphs
that follow: setup 1 leads to results that are at least 10 times
more accurate than setup 2. This result is expected since
the performance of the PF is sensitive to initial conditions.
Particle updates begin at k = 2. Likelihood is evaluated,
particle weights updated, and effective sample size calculated
to assess whether resampling is necessary. When particle
weights are updated with the likelihood, the particle with
the highest weight is selected and its state (the set of bias
hypotheses) extracted and stored. This builds a large array
containing only the apparent best hypotheses per timestep.
This process runs for the full simulation time. At the end
of the simulation, the array containing the best hypotheses
is averaged. For example, the final temporal bias estimate is
the mean of the most likely temporal bias hypotheses. Since
parameters being estimated are constant values, hypotheses
appear to oscillate continuously around the truth as opposed
to being guided by a motion model. Estimation error is
calculated as the difference between the final estimate and
the true value. The box plots (see Figures (3) and (4)) show
this error; they are labelled with either setup 1 or 2 to
indicate how the PF is initialised to generate the results.
The notation ϵi along the x-axes of the plots simply denote
‘error on bias parameter i’. Note that, spatial, temporal, and
angular biases have units m, s, and o, respectively. Finally,



error ellipses are provided: these error ellipses define the
region that contain a specified percentage of the data that
can be drawn from an underlying Gaussian distribution. For
this paper, 95% error ellipses have been generated. Only
pitch-yaw is shown as a representative case. For the purpose
only of obtaining ballpark figures (and keeping in mind that
simulation setups vary from those presented in this paper) a
brief comparison to those papers mentioned in Section I-B
where numerical values have been quoted is offered: Sigalov
et al [7] come within 0.013◦ of true angular biases in their
best case scenario and the work in this paper shows that – in
the favourable case – angular estimates come within 0.6◦. In
the paper by Ge et al [8] mean spatial bias falls within 2m
and in this paper – again, in the favourable case – spatial bias
falls within 0.5m. In the same paper by Ge et al their mean
error on angular bias is 0.02◦. The temporal bias estimation
results can be compared with the work by Bu et al [15] who
obtain root mean squared error (RMSE) values for temporal
bias estimates that fall within 0.1 s of the truth: that is, with
a minimal error of 0.074 s and maximal error of 0.097 s. The
less favourable setup in this paper has ϵτ = 0.8525 s.

V. CONCLUSIONS & FUTURE WORK

This paper performs uncertainty quantification on a joint
sensor registration and object tracking algorithm. The algo-
rithm uses a HBM which allows for simultaneous registration
and an adaptive architecture. The results demonstrate the
importance of PF initialisation in both the slower, simple
trajectory case, as well as for a marginally subsonic object
describing a more complex trajectory. There are multiple
avenues for future work: integrating the bias estimation and
object state estimation updates such that they are carried out
by a single filter rather than in parallel with two different
types of filter; the PF EKF setup can be replaced with the
recently proposed adaptive kernel Kalman filter [19] (which
also addresses the issue of scalability); and improvements to
the simulation for algorithm testing – such as variation of
probability of detection and inclusion of false alarms.
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